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ABSTRACT

It is generally accepted that there are four fundamental forces in nature: the
electro-magnetic force, the weak force, the strong force and the gravitational
force. In this thesis we will focus on the strong force, which is described by a
gauge theory that is known as Quantum Chromo-Dynamics (QCD)1.
Considering nucleons, of which protons and neutrons are the simplest exam-

ples, we know that they are composed of quarks and gluons whose interactions
are described by QCD. On the other hand, the fact that quarks and gluons
are confined in nucleons is still not very well understood. We know that at
low-energy the strong force becomes, well... strong (i.e. the coupling constant,
which describes how strongly particles interact with each other, becomes large
∼ 1) but this alone is not enough to explain confinement. For the moment
the question of how and if confinement can be derived from theory is still
open, so we will not discuss this in any more detail in this text.
Focusing on low-energy phenomena, the fact that the coupling constant

becomes large is conceptually easy to understand but, from a calculation
point of view, making predictions in this regime is far from trivial. The main
reason for this is due to the fact that when the coupling constant gets large we
can no longer use standard perturbative methods to do calculations. In other
words, we have entered the non-perturbative regime of the theory (QCD). This
means that if we want to "calculate" or predict low-energy or large-distance
phenomena, starting from the QCD Lagrangian without inserting anything by
hand, we need to have access to non-perturbative calculation methods. There
are several ongoing attempts to construct such methods of which we mention:
Lattice QCD [1], Borel Resummation [2], AdS/CFT [3] and BRST inspired
techniques [4], none of which are completely satisfactory for the moment.
In this text we will discuss another approach, which makes use of a special

kind of loop space, where with loop space we refer to the space constructed of
all possible loops in the (space-time) manifold under consideration or put in
more mathematical terms: the space of all (not necessarily continuous) maps
from the circle (S1) to the manifold. The "special kind" will refer to the fact
that we consider a Generalized loop space, for which a detailed construction

1 Some of the techniques can be extended to the other forces, but here we will only consider
a QCD setting.
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will be given. The interesting part about this approach is that it might give
access to some restricted parts of the non-perturbative sector and has an extra
motivation coming from another question in nuclear physics: How does the
proton (nucleon) inherits it’s spin from the constituent particles [5]? Naively
one could answer this question by stating that a proton is a composition of
three quarks, two up and one down, where each of these quarks has spin 1/2,
such that one could conclude that the spins of two quarks cancel and the
remaining one gives the proton the known spin 1/2. Problem solved..., but
not quite. From scattering experiments in the second half of the 20th century,
and from renormalization theory, we know that the (collinear) distribution
functions2 of quarks in a proton depend on the energy scale at which we do
the experiments and on the "longitudinal fraction of momentum" the quarks
are carrying with respect to the proton. As a result we conclude that the
naive picture from above is too simple and fails to reproduce the results of
the high-energy experiments beyond the collinear approximation. Now, also
taking gluon contributions to the spin into account, it is far from trivial how
the proton gets to have a fixed spin 1/2 value. The situation even gets worse
when we realize that the quarks and gluons are moving around in the proton
(nucleon), such that there is possibly also an angular momentum contribution.
So how can we try to solve this problem?
In order to investigate what is happening inside the proton we turn to scat-

tering experiments, which in the last century have given us the insights we
have today in particle physics. Dedicated scattering experiments to unravel
the proton’s structure, performed in the second half of the last century, mainly
measured the longitudinal Parton momentum Distribution Functions giv-
ing us in some sense only one-dimensional information. These distributions
describe, in some reference frame, the probability to find a parton (quarks,
anti-quarks and gluons) inside the proton (or nucleon) with a certain momen-
tum fraction at some energy scale. Using a Fourier transform, this momentum
information is then transformed in position information.
This information is clearly inadequate to describe the full internal structure

of the proton, for instance if we are interested in the angular momenta of
the parton’s contribution to the protons spin we obviously will need some-
thing more than just the information provided by the longitudinal distribution

2 In certain inertial frames one can associate to these distributions a number of quarks, but
the interpretation of these distributions in this way is non-trivial and debatable. We don’t
go into the details of this interpretation in this text to avoid getting into a philosophical
discussion.
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functions. Several generalizations of the longitudinal Distribution Functions
have been proposed. We mention the Generalized Parton Distributions that
give us access to the three dimensional structure of the nucleon, and the
Transverse Momentum Distributions describing the probability to find a par-
ton in a nucleon with a certain momentum fraction and a certain transverse
momentum with respect to the nucleon direction of motion. Many others
exist (see for instance [6]), but in this text we will restrict ourselves to these
Transverse Momentum Distributions and in the last chapter we will focus
on the half-Fourier transform of such a distribution, a Transverse Distance
Dependent (TDD) distribution function.
However, we point out that there is still an ongoing discussion about the

correct definition for these transverse distributions and that in this text we
will use one specific definition [7].

The problem with these distribution functions, both the longitudinal and
the transverse, is that they cannot be calculated from theory because they
originate in the non-perturbative sector of the theory, which is problematic as
we discussed above. All we can do at this time is to measure them over as
large as possible ranges of their parameter space. Having this information we
can then investigate if we can find evolution equations with respect to the
different parameters hopefully providing us with some more insight about the
underlying physics. In other words, starting from a certain value of one of the
parameters, one can go over to another value for this parameter by means of
the evolution equations. We mention as examples of such evolution equations
the famous Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations with
respect the mass parameter µ [8–11] and the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation for evolution with respect to the momentum fraction x [12,
13]. Both equations, unfortunately, do not cover the entire ranges possible
for their evolution parameters so there is still room for improvement. For the
transverse-dependent case we mention the Collins-Soper equations [14, 15],
which again have only a restricted application range with respect to their
parameter space.
The quest of this Dissertation is to look for a consistent field-theoretically

motivated and mathematically correctly formulated set of evolution equations
with respect to all the scales (ultra-violet, rapidity, infra-red, if needed) for
the Transverse Momentum Distributions (TMDs). As we will discuss, using the
standard quantum field-theoretical renormalization techniques for these TMDs
do not always work. In the hope of dealing with some of the renormalization
issues we turned our attention to the Generalized Loop Space formalism [16,

v



17]. In this formalism we only considered the subset of Wilson loops, where we
then applied a kind of geometrical renormalization to arrive at an evolution
equation. These equations should in principle be testable at the Thomas
Jefferson National Accelerator Facility (Newport New, VA), planned Electron-
Ion Collider, LHC (CERN) and other machines.
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Eine neue wissenschaftliche Wahrheit pflegt
sich nicht in der Weise durchzusetzen,
daß ihre Gegner überzeugt werden und

sich als belehrt erklären,
sondern vielmehr dadurch,

daß ihre Gegner allmählich aussterben und
daß die heranwachsende Generation von vornherein

mit der Wahrheit vertraut gemacht ist.

— Max Planck [18]
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Part I

QUANTUM CHROMO-DYNAM ICS , D I STR IBUT ION
FUNCT IONS AND WILSON LOOPS .

This part will give a short history and a comparison of Feynman’s
parton model with the Gell-Mann-Zweig quark constituent model
ultimately unified by QCD. We also give a very brief (graphical)
review of renormalization, the importance of infrared safety and
factorization. A discussion of two scattering processes, Deep In-
elastic Scattering and Semi-Inclusive Deep Inelastic Scattering,
is then used to introduce the Transverse Momentum Dependent
Parton Distribution Functions. At the end of this part we discuss
the relation between Wilson loops and these Transverse Momen-
tum Dependent Distribution Functions followed by a chapter that
gives an extra motivation to study Wilson loops coming from
Super-Symmetry.





1
I NTRODUCT ION

In this chapter I give a brief account of the discoveries and problems that lead
to the introduction of Transverse Momentum Distribution (TMD)s. Although
the main focus of this thesis is to study of Wilson Loops and their application
to the evolution equations of these TMDs this allows me to place it in a
broader context. More detailed explanations and definitions are given in the
chapters following this introductory overview.
This Dissertation is part of a larger program which has the goal to describe

and understand the internal structure of nucleons (e.g. protons, neutrons, deu-
terium nuclei,...). Translated in more technical terms, to understand QCD, the
theory assumed to describe the strong or nuclear force, both at the perturba-
tive and non-perturbative level. This so-called strong force is one of the four
fundamental forces (gravitational, electro-magnetic, weak and strong) so far
observed in nature. The first force, gravity, will not be discussed any further
in this text, which technically reflects in the fact that we only consider flat
(Minkowski) metrics for the space-time backgrounds in this thesis. The last
three forces are considered to be accurately described by the Standard Model
having as symmetry group

U(1)× SU(2)× SU(3).

Here we will only be concerned about the SU(3) part of the Standard Model
[19], where this group is the symmetry group of a non-Abelian gauge theory
referred to as QCD, describing the force that keeps nucleons together. This
force is also often referred to as the strong force reflecting the fact that the
gauge theory coupling constant αs (see for instance [19]) can be large (∼ 1),
rendering a perturbative expansion in the parameter useless. It should then
not come as a surprise that QCD is permeated by non-perturbative effects.
This is a big problem from a calculation point of view since until now we
have no idea how to deal with this. There are some attempts like Lattice
calculations [1] , AdS-CFT [3] , Ghosts Fields [4] and so on, but none of
them is fully satisfactory at the moment.
The above fact is contrasted by the huge successes of Perturbative Quan-

tum Chromo-Dynamics (pQCD) in the last quarter of the twentieth century.
But how can we understand these successes in the background of the failure

3



4 introduction

of perturbation theory? For pQCD to work as well as it does we need essentially
two things: Asymptotic Freedom [20, 21] and Factorization [22–24].
The first is provided by the discovery that non-Abelian (sometimes referred

to as Yang-Mills theories) gauge theories are renormalizable [19, 24], which
allowed to derive the QCD β-function describing the running of the coupling
constant αs with energy. It came as a great surprise that this β-function
showed that at high-energies the QCD coupling constant becomes small, al-
lowing for perturbation theory, at least in some energy region.
In the mean time, on the experimental side, it had become clear that

nucleons are not fundamental but composite objects. In the late sixties of
the previous century this had given rise to two models: The constituent
quark model (by Gell-mann/Zweig) [25, 26] and Feynman’s parton
model [27–30] later to be unified in QCD [20, 21] (see next chapters for a
discussion).
Combining these partons (quarks/gluons) with Lorentz boosts and the run-

ning of the coupling constant αs eventually lead to the discovery of Asymp-
totic Freedom, where these partons can be considered as "free" (or non-
interacting with other nucleon constituents) in high-energy scattering experi-
ments.
The second thing we needed was factorization, which basically allows us

to separate cross-section calculations for high-energy scattering experiments
in a hard and a soft part. Asymptotic freedom shows that the coupling con-
stant in the hard part is small (<< 1) such that this part can be calculated in
perturbation theory. On the other hand in the soft part the coupling constant
is large (∼ 1) such that this cannot be calculated from theory. This leads to
the introduction of PDFs and FFs, describing the soft part, which fortunately
can be measured in experiments. These PDFs and FFs turned out to be univer-
sal objects in the sense that they are the same for different types of processes
(e.g. Deep Inelastic Scattering (DIS), Drell-Yan (DY),...), a property that is
highly desirable if one wants to make predictions for other processes.
Since QCD was shown to be renormalizable, these PDFs (FFs) also need to

obey some renormalization group equations. These equations were written
down by Dokschitzer,Gribov, Lipatov, Altarelli and Parisi, which are now re-
ferred to as the DGLAP equations1 [8–11]. The DGLAP equations allow us to

1 Since these PDFs (FFs) not only depend on the energy scale but also on the momentum-
fraction carried by the parton there exists also and evolution equation with respect to this
parameter. These evolution equations are known as the BFKL evolution equations, but are
beyond the scope of this text. For more details see for instance [12, 13]
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make predictions at different energy scales, which combined with Asymptotic
Freedom, Factorization and the universality of the PDFs (FFs) led to the pre-
dictive power of pQCD over a large range of energies (at very low energies, the
non-perturbative nature of QCD takes over, destroying the predictive power
of pQCD).
But then there was spin...
In the last decade of the twentieth century experiments started showing sin-
gle spin asymmetries [31, 32] in scattering experiments with polarized beams
and/or targets. The polarizations of the beams and/or targets themselves do
not form much of an obstruction since they can be incorporated in polarization
dependent PDFs (FFs). The problem is that even when including this polariza-
tion dependence pQCD predicts that these spin asymmetries should be zero,
while the experiments clearly measured a non-zero result. Such asymmetries
where first measured in 1988 in the European Muon Collaboration (EMC)
[33] using longitudinal polarized protons. Around the same time, at Fermi
National Accelerator Laboratory (FNAL), similar asymmetries where found for
transversely polarized proton’s [34–39] which recently have been confirmed
at larger energies at the Relativistic Heavy Ion Collider (RHIC) facility (STAR,
PHENIX and BRAHMS collaborations) [40–42].
Even more upsetting was that when one added all the known spin contri-

butions of quarks (valence and sea) one only arrives at about 25-30 percent
of the total spin of the proton (first measured by EMC [33] returning a quark
spin contribution of 14±9±21 percent to the proton’s spin). Naively thinking
of the proton to be built out of just three valence quarks, which are as we
now know spin 1/2 particles, we would expect for the proton’s spin something
like 1

2 + 1
2 − 1

2 = 1
2 , but this doesn’t seem to be right. So, where is the spin

of the proton coming from?
As a first idea, in an attempt to tackle this problem, one would think

that maybe the gluons (spin 1 particles) contribute somehow. This idea is
supported by the fact that the picture of the protons changes with the kine-
matical variables that are used to probe the proton wave function, for instance
that for large x values (this is the momentum fraction of the proton carried by
the parton) the proton seems to be more or less built from three quarks, while
for low x values gluons seem to dominate. Unfortunately current experimental
data [43, 44], which are very limited for the moment, seems to indicate that
gluons indeed contribute to the proton’s spin but in an insufficient way to
explain the full spin of the proton.
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A second idea is then to include the orbital momenta of the quarks and
gluons, but unfortunately the decomposition of the proton spin in spin and
angular momenta contributions is not unique. The specific structure of the
composition depends on the chosen gauge and quantization scheme2, making
things even more complicated and obscuring the physical interpretations of
the different contributing parts. Measurements for both are still underway, as
are measurements to reduce the error bars on all the contributions mentioned
above which are still large due to limited data.
The important step in this last idea is the emergence of the dependence

on the (intrinsic) transverse momenta of quarks and gluons in the PDFs (FFs).
There are several different extensions of the "collinear" PDFs (FFs) to include
these transverse momenta (see for instance [6, 46, 47] ), but here we will
restrict ourselves to Transverse Momentum Dependent Parton Distribution
Function (TMDPDF)s (FFs).
These TMDs turn out not only to depend on the transverse momentum but

also on a rapidity parameter, which is captured by the Wilson line structure
in the TMDs definition3. Because of this the renormalization group equations
for TMDs will be more involved then in the collinear case (DGLAP), leading to
combined energy-rapidity evolution equations.
This now brings us to the main subject of this thesis, Wilson loops and

their relation to TMDs.
In this thesis we will discuss the link between the rapidity evolution of some

specific TMDs and the area evolution of Wilson Loops in Generalized Loop
Space (GLS). Using this link we where then able to derive evolution equations
for these TMDs which was the main goal of this thesis.
The structure of the text is as follows:

• Part 1 starts by giving a more detailed motivation to introduce TMDs,
followed by a short review of the history of pQCD, a brief introduction
to TMDs, an explicit demonstration of how the area variation of Wilson
Loops is related to rapidity evolution and ends with an additional mo-
tivation coming from Super-Symmetry (SUSY) to study Wilson Loops.

• Part 2 contains an overview of most of the mathematical terminology
and theorems used throughout this thesis, readers with a strong math-

2 Most well-known are the Ji, Jaffe-Manohar, Hatta and Chen decomposition, see for instance
[45] and references therein.

3 A more detailed account of this and how it is related to different TMD definitions will be
discussed in the next chapters.



introduction 7

ematical background might skip this part. Readers unfamiliar with this
material can also skip this and use reference links in the electronic
version to jump to the relevant definitions when necessary.

• Part 3 gives a detailed introduction to GLS (following Tavares [16])
along with its algebraic structure and differential operators necessary to
understand area evolution in this space. In this part we also review some
aspects of the geometric representation of gauge theory by Principal
Fiber Bundles, showing explicitly how Wilson Lines and Loops emerge
in gauge theory as parallel transporters.

• Part 4 contains the main results of my research. We start by reviewing
some Quantum Field Theory (QFT) leading to the Schwinger-Dyson
(SD) equations. After a discussion on the large Nc-limit, the SD ap-
proach together with the area derivative operation is then used to de-
rive the Makeenko-Migdal (MM) equations, as was originally done by
Makeenko and Migdal. This is followed by the formal introduction of
the quadrilateral Wilson loop on the light cone, for which we then
explicitly show in Section 22.5 that the area derivative, as used by Ma-
keenko and Migdal, is not well defined. This motivated us to introduce
a new derivative in Section 22.6 [48] and in Section 22.11 we show that
this derivative is equivalent, at least at Leading Order, to the Fréchet
derivative [49]. We then use this derivative, in combination with the
renormalization parameter derivative ( d

d lnµ) to conjecture an evolution
equation for the Wilson Loop quadrilateral on the light cone in Section
22.7 [48] and investigate our conjecture at leading order for several
other Wilson Loops in the following Sections [50]. Before moving on
to the Next-to-Leading Order (NLO) tests of our conjecture we briefly
discuss the connection between the area derivative used by MM and
Polyakov’s loop derivative in Section 22.12. Testing our conjecture at
NLO, forced us to modify our evolution equation to incorporate the
running of the coupling constant, introducing an extra derivative with
respect to the coupling constant multiplied with the QCD β-function
next to the renormalization parameter derivative. We then confirm our
modified evolution equation at NLO for the quadrilateral on the light
cone and the Π-shaped Wilson Loops in Section 22.13 [11]. Next we
show the validity of our conjectured evolution equation to all orders
in Super-Yang-Mills (SYM) Theory [11]. We end with an application of
our evolution equations to a special distribution function namely a TDD,
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conjecturing an evolution equation for this function that in principle can
be tested after the upgrade at the JLab facility in Virginia.

• The last part contains a conclusion and a discussion on open questions
and possible future research.

We also point out that throughout the entire text we work in natural units

~ = c = 1,

only writing these symbols explicitly when absolutely necessary.



2
QUARKS VS PARTONS

In the late 1960’s there were two competing models to describe the atom
nucleus, the constituent quark model (Gell-mann and Zweig) and Feynman’s
parton model. This chapter will give a very brief history that led to the intro-
duction of these models and addresses the question if the two models can be
related to each other.

2.1 history

In the nineteenth century people where trying to figure out what material ob-
jects where made of. The organizing of discovered elements in the Mendeleev
table seemed to indicate that there was an underlying structure to the differ-
ent types of matter. Dalton proposed that all these elements where made of
atoms, but this atom concept was still quite raw and not well understood.
In 1897 Thomson discovered the electron which led to the idea of a plumb

pudding model for atoms, where negative and positive charges where uni-
formly distributed in the atom. But then in 1911 Rutherford interpreted the
Geiger-Marsden scattering experiments on gold atoms as a favoring of a plan-
etary model for the atom, where one now assumed the positive charge to
be at the center of the atom and a cloud of electrons surrounding that core,
much like planets around the sun.
Although these scattering experiments where still rudimentary, they con-

tained the basic concept of studying the structure of matter by scattering
experiments.
Using similar scattering experiments Chadwick then discovered the neutron

in 1932, which quickly led to the proposition by Ivanenko that the atom
nucleus was composed of protons and neutrons.
During the 1940’s the pion triplet was discovered followed by a whole zoo

of new hadronic particles during the 1950’s and 60’s leading to the classifi-
cation of hadrons into mesons and baryons. In 1955 Robert Hofstadter [51]
discovered that the proton charge was smeared out, giving an indication that
it might have an internal substructure. Combining this information with the
observed symmetries (SU(3) multiplets of these hadrons Gell-Mann and

9
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Massive/slow Massless/fast
Energy/Momentum E = p2

2m E=p
Hadrons Quark Model Parton Model

Feynman
Deep Inelastic Scattering

Fast moving hadrons
l

Collection of ∞ partons with
wide-spread momentum

distribution

Gell-Mann/Zweig
Symmetry - Hadron spectrum

Slow moving Hadrons
l

Bound states of quarks

Figure 1: Differences quark and parton model

Zweig proposed their constituent quark model, where now mesons are
assumed to be made up of two quarks and baryons of three quarks. Using
these multiplets the Ω− particle was predicted in 1962 and was discovered
in 1964, a success for the introduction of color as a new degree of freedom.
As a result quarks were considered as a pure mathematical trick, since
there was no observation of any individual quarks.
Then in 1967 the Stanford Linear Accelerator Center (SLAC) came online

and with it the start of the age of DIS, ultimately leading to Feynman’s
parton model [27–29]. Naturally Feynman’s partons were identified with
Gell-Mann and Zweig’s quarks and gluons, but is this really correct? A
question we will try to answer in the next section of this chapter.

2.2 are quarks and partons the same thing?

Let us first try to understand the difference between the two models. The
quark model was proposed based on symmetry for stationary hadrons, thus
in a low-energy regime. The parton model on the other hand was proposed
based on scattering experiments at relatively large energies (a few GeV) and
thus for highly energetic colliding hadrons. Another difference can be found
in the number of quarks or partons that are assumed to be present in hadrons,
the quark model states that mesons are made up of two quarks and baryons
of three quarks. In contrast the parton model has an infinite number of par-
tons. These statements are summarized in figure 1. We can now wonder if
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quarks can be related to partons by boosting the Gell-Mann/Zweig quarks.
To study this let us consider a simple hadron, a di-quark. In this simple model
we assume both quarks to be distributed along the z-axis and t-axis with a
Gaussian distribution, representing the Heisenberg uncertainty principle for
position (q-number) and time (c-number). Due to the Gaussian nature, the
Fourier transform is also Gaussian for momentum and energy. Both distribu-
tions are graphically represented in figure 2. Boosting these distributions has

xz

x0

q0

qz

Figure 2: Di-quark hadron: quark coordinate and momentum distribution

the same effect on both of them, shown in figure 3. In time-position space
the boost "weakens" the spring constant of the harmonic oscillator such that
the quarks become almost free, which is consistent with the parton model.
The energy-momentum boost shows that the momentum distribution of the
quarks becomes wider again consistent with the parton model. But, there is an
apparent violation of the uncertainty principle, for instance both momentum
and position distribution become narrower. This violation is only apparent,
because in the boosted frame z and qz are not conjugate anymore, the cor-
rect conjugate variables are the light-cone (see A.2) position and momenta
coordinates (x+ and q+). Also, there is still the problem of relating a finite
number of quarks to an infinite number of partons. Boosting to the Infinite
Momentum Frame (IMF), the frame where the hadron has infinite momentum
along one of the light cone directions, and taking the massless approximation
it follows from statistical mechanics that the number of particles is no longer
conserved1. This now forms a bridge between the number of quarks and the
number of partons. So, can we conclude from the above that partons are just
boosted quarks? According to Feynman the answer is no, while according to
Gell-Mann the answer is yes. As it turns out both are right, where the correct
answer is provided by QCD, which will be discussed in the next section. Let

1 On light-cone massless particles can split and combine such that there is no longer a fixed
number of them.
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xz
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Figure 3: Di-quark hadron: boosted distributions

us end this chapter by giving again a comparison between quarks and partons
but now from a QCD point of view.

Feynman Gell-Mann/Zweig
Parton Model Quark Model
”mass-less” ”massive”
> 3 Baryon : 3 Meson : 2

Perturbative QCD Non-Perturbative QCD
Current quarks and gluons are
fundamental DOF

Constituent quarks are ”quasi”
particles, dressed with gluons
and quark anti-quark pairs

Point-like Internal Structure

Figure 4: Partons vs Quarks



3
QCD AND NUCLEON STRUCTURE

This chapter will review, in a very elementary way, the most relevant concepts
necessary to introduce TMDs and understand their relation to cross-sections
of scattering processes.

3.1 qcd-lagrangian and quantization

As like any other gauge theory QCD is formulated in the Lagrangian formalism
where the QCD Lagrangian is given by

LQCD(ψ,A) =
∑

f

ψ̄fi (x)
[(
i∂µδij − gAµ,a(ta)ij

)
γµ −mfδij

]
ψfj (x)

− 1
4F

a
µν(x)Fµνa (x), (1)

and where the ψfi are the quark fields with color index i = 1, 2, 3 = Nc and
flavor index f = u, b, s, c, b, t.

Aµ,a(ta)ij

represent the color gauge field with (adjoint) color index a = 1, 2, ..., 8 =
N2
c − 1.
Unfortunately if one wants to quantize this Lagrangian using the path

integral method one runs into a problem, which leads to extra terms in the
Lagrangian. We will here only give a brief description of this problem and how
it is solved, a full treatment of this problem can be found in [19]. Let us start
by writing a simple path integral for an action S only depending on the field
A

∫
DAeiS[A], (2)

where the integral is over all field configurations. Now remember that in gauge
theory there are an infinite number of field configurations that are related by
gauge transformations, all representing the same physical situation. Due to
this fact, the path integral in a sense over counts (physical) field configurations

13
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such that it is badly defined. Moreover, one cannot define a gluon propagator
at this point (see [19] for details). Since we are ultimately only interested in
physical configurations introduction of a gauge fixing condition (for instance
∂µA

µ = 0) allows us to separate the physical configurations from the gauge
equivalent ones. This procedure leads to a factor in front of the path integral
and an extra contribution, the gauge fixing term, to the Lagrangian (3). In
Quantum Electro-Dynamics (QED) this extra term is independent of the field
A and disappears after devision by the vacuum diagrams, in QCD on the
other hand this term is field dependent and thus cannot be simply divided
away. Fadeev and Popov solved this new problem by rewriting this factor as
a new path integral over a set of new fields, which are now known as Fadeev-
Popov ghosts. The introduction of these ghost fields adds another term, the
ghost term, to the Lagrangian so that we finally end up with the following
Lagrangian

LQCD(ψ,A) =
∑

f

ψ̄fi (x)
[(
i∂µδij − gAµ,a(ta)ij

)
γµ −mfδij

]
ψfj (x)

− 1
4F

a
µν(x)Fµνa (x)− 1

2λ(∂µAµa)(∂νAνa)
︸ ︷︷ ︸

Covariant
Gauge Fixing

+ (∂µη̄a(x))(∂µηa(x))− gfabcAµb (x)ηc(x)
︸ ︷︷ ︸

Ghosts

. (3)

The parameter λ is called the gauge-fixing parameter and accounts for
different choices of the covariant gauge fixing condition. What this new La-
grangian says is that if we want to use the path integral formalism to do
quantum calculations in QCD in a covariant gauge, we need to take Feynman
diagrams with ghost fields into account.
An alternative choice for the gauge fixing condition are the axial gauges,

where
− 1

2λ(∂µAµa)(∂νAνa)

is replaced by
1

2λ(nαAµaα)(nαAµaα),

with the big advantage that no ghost fields are required, but with the dis-
advantage of resulting in a more complex gluon propagator. In a general
covariant gauge the expression for the gluon propagator is given by

Dab
µν(k) = iδab

k2

(
−gµν + kµkν

k2

(
1− 1

λ

))
,
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while in an axial gauge fixing it is given by

Dab
µν(k) = −iδ

ab

k2

(
−gµν − kµnν + kνnµ

kn
+ kµkν

n2 + λk2

(kn)2

)

Most calculations in this thesis however, have been done in the Feynman
gauge (λ = 1), such that the gluon propagator is well-defined and simplifies
to

Dab
µν(k) = iδab

k2 (−gµν). (4)

For an overview of the possible Feynman diagrams and their mathematical
expressions we refer the reader to [19, 52].

3.2 renormalization

3.2.1 Renormalization as re-parametrization

Calculating Feynman diagrams from the Lagrangian from the previous section
one quickly runs into the problem that some of these diagrams are (Ultra-
Violet (UV)) divergent. This problem was solved by the introduction of the
concept of renormalization. In the renormalization procedure the divergent
terms in a diagram calculations are first isolated through the introduction
of a regulator (mass, dimensional,...) and then removed from the result. Of
course the way this removal is done is not unique such that there exist different
renormalization schemes, which we will not discuss in more detail here (see
[52, 53] for a discussion).
The effect of this is the introduction of extra terms in the Lagrangian,

known as counter-terms which depend on a renormalization (energy) scale
(usually written as µ). This means that the theory itself depends on this
parameter µ. The way to interpret this is that renormalization effectively re-
sums terms in the perturbative calculation of a diagram in such a way that
the diagram is finite order by order.
Instead of giving a long and complicated mathematical derivation, which

falls outside the scope of this thesis, we follow the approach of J. Qui and use
a simple example to show how this works. A formal mathematical treatment
can be found in [53].
Consider the Left Hand Side (LHS) diagram in figure 5, which is UV diver-

gent due to the large momenta that can run around in the (triangular) loop.
Diagrams with these large momenta are sometimes referred to as high-mass
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states and when applying the uncertainty principle to them it is easy to see
that they are "localized" diagrams due to the short existence time of such
states. Since no experiment has an infinite resolution, high-mass states can
only be seen up to a certain mass scale 1

µ . This means that the diagram on the
LHS in figure 5 can be rewritten as in the Right Hand Side (RHS), separating
low-mass states from high-mass states. The red blob represent a divergent
term, such that the low-mass state becomes finite due to subtraction of this
divergent term from the original (divergent) diagram.

Q2

=

Q2

−

”Low mass” state

1
µ

+

”High mass” state

1
µ

Figure 5: Example of a divergent diagram and renormalization

Combining now the different terms as in figure 6 results in a renormal-
ized coupling constant g(µ) but with removed UV divergencies in the NLO
diagram. This figure demonstrates that renormalization is indeed just a re-
parametrization.

3.2.2 β-function

As discussed above the renormalization procedure introduces a parameter
µ in the Lagrangian. This parameter is artificial in the sense that physical
quantities cannot depend on it. As a direct consequence of this statement we
have for instance for the cross-section σ that

µ
d

dµ
σphys

(
Q2

µ
, g(µ), µ

)
= 0.

Such equations are referred to as Renormalization Group Equations (RGE).
As we have seen in the example above also the coupling constant gets

renormalized for which in its turn the RGE lead to a running (with µ) of the
coupling constant defining the Beta-function

µ
∂g(µ)
∂µ

= β(g) = g3 β1
16π2 +O(g5),
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LO

Q2

+

1
µ

= g(µ) Renormalized coupling

NLO

Q2

−

1
µ

+ · · · NO UV DIV

Figure 6: Re-parametrization of the perturbative series

where
β1 = −11

3 Nc + 4
3

1
2nf (5)

with Nc the number of colors and nf the number of quark flavors. Notice that
β1 < 0 for nf ≤ 16. Thus the β-function describes how the coupling constant
changes with the (energy) scale µ, and it’s derivation only became possible
after it was shown that Yang-Mills Theories are renormalizable. The exact
form of the β-function then lead to the discovery of Asymptotic freedom.

3.3 asymptotic freedom, infrared safety and factor-
ization

3.3.1 Asymptotic freedom

Combining the expression
αs(µ) = g2(µ)

4π
with the β-function from the previous section we can derive

αs(µ2) = αs(µ1)
1− β1

4παs(µ1) ln
(
µ2

2
µ2

1

) ≡ 4π

−β1 ln
(

µ2
2

Λ2
QCD

) . (6)
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Now taking the limit for µ2 → ∞ the above expression goes to zero for
β1 < 0, an effect that is known as Asymptotic freedom. Asymptotic freedom
states that the coupling constant becomes small at high energy (µ� ΛQCD),
such that the partons become asymptotically free in this energy regime. The
importance of this property becomes apparent in scattering experiments on
hadrons where, due to this property, in first approximation we can neglect
interactions of the constituent of the hadron we are scattering on with the
other constituents, giving rise to the (generalized) parton model. Choosing the
renormalization scale µ ∼ Q, the energy at which we perform the experiment
and assuming that Q� ΛQCD form the background of pQCD1.

3.3.2 Infrared Safety

In the previous sections we have seen that UV divergences induce renormaliza-
tion, but there is another type of divergences that can occur in QCD namely
Infra-Red (IR) divergences. This last type of divergences find their origin in
the emission of soft (zero momentum) or collinear gluon emissions such that
even in high-energy, short-distance regime, long-distance aspects of QCD can-
not be ignored and are not described correctly by perturbation theory2. In
this sense the study of IR divergencies is actually a study of which regions one
can trust perturbation theory.
Divergent propagators are actually a sign of propagation of partons over

long distances. In the case distances becomes comparable with the size of
hadrons, the quasi-free partons of perturbative calculation are confined sig-
naled by their hadronization which is a non-perturbative effect, and apparent
divergences disappear.
In the previous section we found asymptotic freedom, which seemed to

indicate that we would be able to perform perturbative calculations in a high-
energy regime, but now we hit another wall or better another divergence. How
can we deal with these new divergencies?
The solution is to restrict ourselves to observables for which perturbation

theory is still valid. This statement seems somewhat empty but actually there
are two classes of such observables

1 The freedom of choice of the scale µ is often used to optimize the accuracy of the pertur-
bative expansion, see [52] for a discussion.

2 In the case we are considering the massless limit for quarks, also quark will contribute to IR
divergencies.
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(i) Infrared safe quantities: this are quantities that are insensitive to soft
or collinear branching. This insensitivity can find its origin in the can-
cellation of IR divergencies between real and virtual contributions or are
removed by kinematic factors. They are determined primarily by hard,
short-distance physics. Long-distance effects show up as power correc-
tions, suppressed by inverse powers of a large momentum scale µ ∼ Q.

(ii) Factorizable quantities (see also next section) : these are quantities in
which infrared sensitivity can be absorbed into an overall non-perturbative
factor, to be determined experimentally3.

Cross-sections for scattering experiments are infrared sensitive such that we
will need factorization theorems in order to use pQCD to calculate them.

3.3.3 Factorization

Hadrons are by definition non-perturbative objects such that we currently
cannot derive their properties from the underlying theory. On the other hand
we have seen in the previous sections that at high-energy the constituents
of these hadrons become asymptotically free opening the door for perturba-
tion theory to apply to scattering on such a constituent. Unfortunately the
exact content or distribution of constituents is still non-perturbative making
calculations impossible. This is the point where factorization comes in. Factor-
ization tries, in any process containing hadrons, to separate the perturbative
hard part (the scattering Feynman diagram) from the non-perturbative part
(the hadron contents). Or put differently, separate the process into a perturba-
tive and a non-perturbative part4. The non-calculable, non-perturbative part
has to be described by a probability density function or PDF that gives the
probability to find a parton with momentum fraction x in the parent hadron.
Unfortunately factorization has not been proven but for a small number of

processes which include e+e−-annihilation, DIS, SIDIS and DY (see further).
PDFs, with as input a momentum fraction x, return the probability to hit a
parton carrying this momentum fraction x when the hadron is struck by a
photon. Again we point out that a PDF is not calculable from theory and thus
needs to be determined from experiment.

3 And essentially define the PDFs
4 In a sense factorization is the statement of the Axiom of Choice, claiming the existence of
a choice function that allows one to select a particle inside the hadron that serves as the
center for the hard scattering.
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Next to PDFs we will also need FFs that describe how partons hadronize, in
sense they describe the probability to find a hadron of a certain type inside
a parton. Also these functions are non-perturbative in nature and thus not
calculable, such that they also need to be determined experimentally.
We point out that the definition of both PDFs and FFs depends on the

factorization scale µf , the scale that dictates which parts of the scattering
belong to the hard part and which to the soft part. As a consequence the
definition of these distribution functions is µf dependent, making them also
susceptible to renormalization. In many cases the factorization scale is set
equal to the renormalization scale i.e. µf = µ.
We end this section on factorization with a (graphical) overview of fac-

torization for different types of processes where "DF" stands for Distribution
Function and "FF" for Fragmentation Function. The hard part is represented
by the gray blobs, and is only shown in the DIS diagram because it would
make the drawings overloaded so we don’t show it for the other processes. In
the next chapter some of these processes will be discussed in more detail.
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DIS : collinear factorization

σep→eX =
∑

q

DF ⊗ σeq→eq

SIDIS : very rich phenomenology,
most explored

σep→ehX =
∑

q

DF ⊗ σeq→eq ⊗ FF

e+e− : Study Fragmentation

σee→hhX =
∑

q

σee→qq ⊗ FF ⊗ FF

DY : Hard to measure in
experiments

σpp→eeX =
∑

q

DF ⊗ DF ⊗ σqq→ee

Hadron reactions : Challenge for
theory due to Initial and Final

state interactions

σpp→hX =
∑

q

DF ⊗ DF ⊗ σqq→qq ⊗ FF
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3.3.4 pQCD summary

We end this chapter with a short summary about pQCD.

• pQCD is a perturbative approach to the theory of QCD in the sense
that it is a method to do calculation in full QCD under certain approx-
imations.

– We integrate out the UV region of momentum space by renormal-
ization.

– Match renormalized pQCD and QCD at the energy scale µ ∼ Q:

σ(Q,αs(0))→ σ(Q
µ
,αs(µ))

– This operation then leads to the RGE.

• Collinear factorization in pQCD is an effective field theory of pQCD
– We integrate out the transverse momenta of the active partons,

returning the collinear factorization.

– Match factorized form in pQCD at the energy scale µf ∼ Q (with
µf the factorization scale)

σ

(
Q

µ
,αs(µ)

)
= σ̂

(
Q

µf
,
µ

µf
, αs(µ)

)
⊗ q(µf , αs(µ)) +O

( 1
Q

)

where q(µf , αs(µ)) is the PDF associated to the quark of type q
in the hadron.

– µf independence of physical quantities leads to evolution equa-
tions for the PDFs that are known as the DGLAP equations. Note
that this means that (the definition of) PDFs are scale dependent.

– Going beyond leading order contributions introduces power correc-
tions
(i) generated by multi-parton correlation functions

(ii) leading to modified evolution equations in µf (e.g. Bjorken
scaling violation, PDFs become Q dependent)



4
NUCLEON STRUCTURE AND TRANSVERSE
MOMENTUM D ISTR IBUT IONS

4.1 how can we access the nucleon structure?

The most straightforward way to access the structure of a nucleon is through
interaction with an electromagnetic probe. In practice this is realized by scat-
tering a lepton, usually an electron, off a nucleon. In this process the electron
exchanges a virtual photon with four-momentum qµ with the nucleon. If this
probe is energetic enough it causes the breakup of the nucleon, a reaction

l +N → l′ +X

referred to as inelastic. From the uncertainty principle we know that the higher
the momentum transfer qµ the smaller distances we probe in the nucleon. In
the case the virtual photons virtuality

Q2 = −q2

is large enough, the lepton is effectively interacting with the nucleon con-
stituents, a process known as DIS.
In its simplest form we assume the photon to interact with only a single

charge constituent in the nucleon, a model that we recognize from before,
namely the parton model. It then doesn’t come as a surprise that the nucleon
constituents are often referred to as partons. It is then possible to distin-
guish if the parton we scatter on is a fermion or boson [54] such that it
was quickly determined that the scattering happened on point-like charged
fermions (quarks) and their (bosonic) gauge field (gluons).
Combining now the parton model with factorization, effectively allows us

to determine the distribution of quarks in a nucleon parametrized by the PDFs.
Although the PDFs are strongly modified by QCD corrections, using collinear
factorization the concept of PDFs remains in a generalized parton model.
As already mentioned in the introduction, adding spin and transverse-

momentum to these experiments reveals dynamics that cannot be captured
fully by the collinear treatment. In these experiments emerged differential
observables describing the azimuthal distributions of produced hadrons. One

23
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such type of experiment is SIDIS, where now in contrast to inclusive DIS not
only the scattered lepton is measured but also one final-state hadron. This
process

l +N → l′ + h+X

now also couples to the parton distribution functions, but where we now also
have access to the transverse momentum of the active parton through the mo-
mentum of the measured final state hadron. Parametrizing these "new" distri-
bution functions, that include the parton’s transverse momentum dependence,
require more extended PDFs that are called TMDs. Again these distributions
get heavily modified by QCD corrections which are now captured by a TMD
factorization process. A discussion of this factorization falls outside of the
scope of this thesis, more details can be found for instance in [15, 52, 55, 56].
We only point out that the universality property is not fully retained, such that
they become process dependent and require separate factorization theorems.
It need not be said that this complicates things significantly.
Inclusion of spin not only affects the collinear PDFs but also the TMDs, intro-

ducing a rich collection of spin-momentum dependent distribution functions
and correlation functions in cross-section calculations for SIDIS experiments
with polarized beams and/or targets.

The next subsections will review both processes (DIS and SIDIS) in order
to demonstrate how the different PDFs and TMDs can be parametrized, also
showing how they contribute to the differential cross-section calculations. Of
course a fully detailed treatment would take us to far, such that we will only
sketch the general outline of the derivations. More details can then be found
in the mentioned references.

4.1.1 DIS,(spin dependent) PDFs and structure functions

To discuss inclusive DIS in more detail we restrict ourselves to electrons for
the scattering leptons on protons

e− + P → e− +X.

In this type of experiments, shown graphically in figure 7 we only measure the
scattered electron, or put in technical terms we integrate over all hadron final
states. In order to describe this process analytically we need to chose which
(kinematic) parameters we will use, which we require to be Lorentz invariant
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l

l′

q

θ

p

X

pX

Figure 7: Proton - Lepton interaction

such that they are frame independent. In many cases these parameters are
chosen to be the photon’s virtuality Q2 and the Bjorken variable

xB ≡
Q2

2p · q = Q2

2Mν
,

M representing the mass of the proton and ν = E′ − E the energy transfer.
Working in the Bjorken limit, where Q2 � M2 we have the center-of-mass
energy √s (s is the usual Mandelstam variable) defined by

s ≡ (p+ q)2 = M2 −Q2 + 2p · q ≈ Q2
( 1
xB
− 1

)
,

where the approximation represents the Bjorken limit. Using the positive-
definiteness of the energy this returns as kinematic limits for the Bjorken
variable

0 ≤ xB ≤ 1.

The photon emission and propagation can be described by perturbation theory
and the coupling of this photon to the proton can be described by a matrix
element of the electromagnetic current Jµ such that the Feynman amplitude
can be expressed as

M = ū(l′, λ′)γµu(l, λ) e
2

Q2 〈PX |Jµ(0)| pS〉 .

The λ, λ′ and S represent the spin states of the electrons and of the incoming
hadron respectively, l is the momentum of the incoming electron and l′ =
l−q the momentum of the outgoing electron. PX represents the unmeasured
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outgoing proton debris. Assuming the photon interacts with a quark, the
hadronic current Jµ is given by

Jµ = ef ψ̄(x)γµψ(x),

where ef is the charge of the quark of flavor f and a sum over flavors is
assumed.
To calculate the cross-section we use the optical theorem, which is graphi-

cally represented in figure 8. This figure also shows the splitting of the differ-
ential cross-section in a leptonic part and a hadronic part represented respec-
tively by the Lepton Tensor and the Hadron Tensor both defined through
the square of the Feynman amplitude

|M|2 = e4

Q4LµνH
µν .

The differential cross-section can then be written as

dσ = 1
4p · l

d3l′

(2π)32E′l

∑

X

∫
d3PX

(2π)32EX
(2π)4δ4(p+ l − PX − l′

)|M|2

E′l
d3σ

dl′3
= 2
s−M2

α2

Q4LµνW
µν (7)

where Lµν represents the leptonic tensor given by (neglecting the lepton
masses, see [57] for more details):

Lµν
(
l, λ; l′, λ′

)
= δλλ′

(
2lµl′ν + 2lν l′µ −Q2gµν + 2iλεµνρσqρlσ

)
. (8)

This expression also uses the Levi-Civita symbol εµνρσ where we use the
convention ε0123 = 1. The hadronic tensor is defined from (7) as

2MWµν = 4π3∑

X

∫
d3PX

(2π)32EX
δ4(p+ q − PX) 〈pS |Jµ(0)|PX〉

× 〈PX |Jν(0)| pS〉

= 1
4π

∫
d4xeiq·x 〈pS |Jµ(x)Jν(0)| pS〉 , (9)

where the translation operator was used

〈pS |Jµ(0)|PX〉 ei(p−PX)·x = 〈pS |Jµ(x)|PX〉 , (10)
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= 2Im
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=
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⊗

(
e2

Q2

)2

Propagators

⊗

µ ν

2MW µν

Hadronic Tensor

Figure 8: Optical Theorem : a graphical representation

and where we integrated out a complete set of states by use of the complete-
ness relation:

∑

X

∫
d3PX

(2π)32EX
|PX〉 〈PX | = 1. (11)

Notice that the hadronic tensor is non-local, depending on two different space-
time points and therefore non-gauge invariant. Using the operator product
expansion (see [17] for details) the hadronic tensor for the handbag diagram
shown in figure 9 can be rewritten as

Wµν =
∑

q

e2
q

∫
d4k δ+

(
(k + q)2

)
Tr
[
φq γ

µ
(
/k + /q

)
γν
]

(12)

φqij(k, p, S) = 1
2

∫
d4x

(2π)4 e
−ik·x

〈
pS
∣∣∣ψ̄j(x)ψi(0)

∣∣∣ pS
〉

(13)

where φ is called the quark-quark correlator where a summation over color
indices is assumed1. This correlator is a bi-local operator and thus obviously
not gauge invariant. To restore gauge invariance one needs to introduce
a gauge link, attached to each quark field (Mandelstam fields), making the
correlator gauge invariant again. The gauge links are defined by (~ = 1)

U(x, y) = Pe
ig

y∫
x

dzµ Aµ(z)
,

1 The δ+((k + q)2) = δ
(
(k + q)2)θ((k + q)0)
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k k

p p

k+q
q q

Figure 9: DIS handbag diagram.

which is in the perturbative sector2 nothing more than the parallel transporter
between the two relevant points 0 and x in the correlator (13), which will be
introduced formally in the chapters on gauge theory and parallel transport.
Notice already here that the gauge links are path dependent, which at
leading order O

(
M
Q

)
, can be determined from the process in hard scattering

processes (or thus by the choice of factorization scheme). A derivation of
the exact path for the gauge links falls outside of the scope of this text, the
reader is referred to [7, 58–60] and reference therein for a detailed treatment.
Including this gauge link (or Wilson line) in the definition of the quark-quark
correlator we have

φqij(k, p, S) = 1
2

∫
d4z

(2π)4 e−ik·z
〈
pS
∣∣∣ψ̄j(z)U(0, z)ψi(0)

∣∣∣ pS
〉
.

Although the introduction of the gauge links in the correlator seems ran-
dom, it is physically motivated by the fact that after its introduction in
the correlator, the correlator actually represents a whole set of diagrams
that contribute at the same order. The situation is then similar to the case in
QFT where a single diagram (like the correlator without the gauge link) is not
gauge invariant but the combination of several diagrams is gauge invariant as
shown in figure (10). In order to continue we change to light-cone coordinates

k k

p p

k+q
q q

adding gauge link
= · · · · · ·

Figure 10: Effect of adding gauge link

2 In the non-perturbative sector the gauge potentials Aµ are no longer unique, such that the
definition of the gauge link becomes degenerate.
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(see A.2) and choose a specific frame, namely the frame where the incoming
nucleon p defines the direction of the n+ vector such that the kinematical
vectors p, S, k can be written as

p = M2

2p+n
− + p+n+ (14)

S = −λ M

2p+n
− + λ

p+

M
n+ + S⊥ (15)

k = k−n− + xp+n+ + k⊥, (16)

from which it is clear that p2 = M2 and p · S = 0.
Returning to the correlator we see that it is constructed from a matrix

element of Dirac spinors, thus is a Dirac matrix. This allows us to express it
as a function of Lorentz vectors, pseudo-vectors (k, p, S) and Dirac Matrices3

BD = (1, γµ, γµγ5, iσ
µν , iγ5),

with
σµν = γµγν − γνγµ.

Combining this with restrictions from Hermiticity, Parity and Time-Reversal,
for which the analytical expressions are shown in table 1, returns the most
general expression for the correlator (for more details see [61])

φ(k, p, S) = A1M +A2 /P +A3/k + iA4

[
/p, /k

]

2M + iA5(k · S)γ5

+A6M/Sγ5 +A7
(k · S)
M

/pγ5 +A8
(k · S)
M

/kγ5

+A9

[
/p, /S

]

2 γ5 +A10

[
/k, /S

]

2 γ5 +A11
(k · S)
M

[
/p, /k

]

2M γ5

+A12
εµνρσγ

µpνkρSσ

M
. (17)

Imposing Time-reversal symmetry will eliminate A4, A5 and A12.

3 These matrices form a Clifford Algebra, more specifically they form the algebra of space-
time.



30 nucleon structure and transverse momentum distributions

φ†(k, p, S) = γ0φ(k, p, S)γ0 Hermiticity
φ(k, p, S) = γ0φ(k, p̄,−S̄)γ0 Parity

φ∗(k, p, S) = (−iγ5C)φ(k̄, p̄, S̄)(−iγ5C) Time Reversal

Table 1: Quark-quark correlator consistency conditions [61]

For the DIS process we are interested in

φij(x) =
∫
d2k⊥ dk

− φij(k, p, S)|k+=xp+

=
∫
d2k⊥ dk

−
∫
dk+δ

(
k+ − xp+

)
φij(k, p, S)

=
∫
d2k⊥ dk

−
∫
dk+ 1

2π

∫
dξ−eik

+ξ−φij(k, p, S)

=
∫
dξ−

2π eik·ξ
〈
pS
∣∣∣ψ̄j(0)U(0, ξ)ψi(ξ)

∣∣∣ pS
〉∣∣∣
ξ+=ξ⊥=0

. (18)

The matrix elements for which ξ+ = 0, i.e. defined on the light cone, are
called light front matrix elements. In this case the correlator is at equal
light cone time (which is identified with the plus component in light cone
coordinates), such that time ordering in these elements is automatic (see [62]
and references therein). The correlator (18) can be parametrized as

φ(x) = 1
2


f1(x)/n+ + λg1(x)γ5/n

+ + h1(x)
γ5
[
/S⊥, /n

+
]

2




+ M

2p+


e(x) + gT (x)γ5/S⊥ + λhL(x)

γ5
[
/n+, /n−

]

2




+ M

2p+


−λeL(x)iγ5 − fT (x)ερσT γρS⊥σ + h(x)

i
[
/n+, /n−

]

2




+ M2

2(p+)2


f3(x)/n− + λg3(x)γ5/n

− + h3(x)
γ5
[
/S⊥, /n

−
]

2


,

(19)

where the factors
M

p+
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Leading twist (t=2) Twist 3 Twist 4

φγ
+

(x) = f1(x) φ1(x) = M
p+ e(x) φγ

−
(x) = f3(x)

φγ
+γ5(x) = λg1(x) φiγ5(x) = M

p+ eL(x) φγ
−γ5(x) = λg3(x)

φiσ
i+γ5(x) = Si⊥h1(x) φγ

i

(x) = −MεiρT S⊥ρ
p+ fT (x) φiσi−γ5(x) = Si⊥h3(x)

φγ
iγ5(x) =

MSiT ρ
p+ gT (x)

φiσ
+−γ5(x) = M

p+λhL(x)

φiσ
ijγ5(x) = M

p+ ε
ij
T h(x)

Table 2: DIS distribution functions

assure Lorentz invariance but are also used to define the so called oper-
ational twist t of the distribution functions in the above parametrization,
defined by ( 1

p+

)t−2
.

The functions eL, fT and h vanish because of Time-Reversal Symmetry as
they only depend on the amplitudes A4, A5 and A12 in (17). The distribution
functions at different twist order can be extracted by projecting on the Dirac
basis BD according to

φΓ ≡ 1
2Tr(φΓ), Γ ∈ BD.

For example
f1 = 1

2Tr
(
φγ+

)

They are summarized in table 2. Before we move on to the SIDIS case we give
a short graphical summary of the leading twist PDFs for the DIS process.

• Non-polarized PDF: f q1 (x,Q2)

• Longitudinal spin distribution : ∆f q1 ≡ f q→→ − f q←→ ≡ gq1(x,Q2)

−
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• Transverse spin distribution : δf q1 ≡ f q↑↑ − f
a↓
↑ ≡ h

q
1(x,Q2)

−

In the graphical representation, the red disc is the parton and the blue circle is
the hadron. The drawings are assumed to move from left to right, the arrows
in side the the hadron representing the polarization of the parton and the
arrow outside the blue circle represents the polarization of the hadron4. In all
the cases shown here the parton is assumed to be collinear, in the sense that
it does not carry any transverse momentum k⊥. This concludes our short
review of DIS and we are now ready to move on to the SIDIS case.

4.1.2 SIDIS-TMDs

A graphical representation of the process was given at the end of section 3.3.3
and a similar discussion to the DIS case about correlators exists, where now
we are not only interested in the fully k-integrated correlators but also in the
ones that are not integrated over k⊥ (the transverse component of the quark
with momentum k in the frame where p has no transverse components). As
stated in the introduction,we have access to k⊥ in the SIDIS process through
the transverse momentum of the measured hadron. Thus the correlator of
interest is now

φij(x,k⊥) =
∫
dk− φij(k, p, S)|k+=xp+,k⊥

=
∫
dξ−d2ξ⊥

(2π)3 eik·ξ
〈
pS
∣∣∣ψ̄j(0)U(0,∞)U(∞, ξ)ψi(ξ)

∣∣∣ pS
〉∣∣∣
ξ+=0

.

(20)

This introduces a dependence on the transverse separation between the quarks
ξ⊥, explaining the designation of TMDs for the associated PDFs. Due to this
dependence there will also be additional gauge links (see [7, 58–60] for de-
tails). Figures 11 and 12 show a graphical representation of these gauge links
for the correlators and the fragmentation functions (see further) respectively.
Restricting to twist two and twist three contributions the correlator (20) can

4 More specifically it means that when the arrows are horizontal we have longitudinal polar-
ization, while in the vertical case we have transverse polarization.
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ξ−

ξ⊥

•

•

(ξ−, ξ⊥)

Figure 11: PDF gauge link structure SIDIS

ξ−

ξ⊥

•

•

(ξ−, ξ⊥)

Figure 12: FF gauge link structure SIDIS

be expanded as (see [6, 47, 61] for derivations and a more detailed discussion)

φ(x,k⊥) = 1
2

(
f1(x,k⊥)/n+ + f⊥1T (x,k⊥)εµνρσγ

µn+νkρ⊥S
σ
⊥

M

+ g1s(x,k⊥)γ5/n
+ + h1T (x,k⊥)

γ5
[
/S⊥, /n

+
]

2

+ h⊥1s(x,k⊥)
γ5
[
/k⊥, /n

+
]

2M + h⊥1 (x,k⊥)
i
[
/k⊥, /n

+
]

2M




+ M

2p+

(
e(x,k⊥) + f⊥(x,k⊥)

/k⊥
M
− fT (x,k⊥)ερσ⊥ γρS⊥σ

− λf⊥L (x,k⊥)ερσ⊥γρk⊥σ
M

− es(x,k⊥)iγ5

+ g′T (x,k⊥)γ5/S⊥ + g⊥s (x,k⊥)γ5/k⊥
M

+ h⊥T (x,k⊥)γ5
[
/S⊥, /k⊥

]

2M

+hs(x,k⊥)
γ5
[
/n+, /n−

]

2 + h(x,k⊥)
i
[
/n+, /n−

]

2


+O

((
M

p+

)2
)
,

(21)

a beastly expression where for notational convenience we introduced the no-
tations

g1s(x,k⊥) ≡ λg1L(x,k⊥) + g1T (x,k⊥)(k⊥ · S⊥)
M

(22)

h⊥1s(x,k⊥) ≡ λh⊥1L(x,k⊥) + h⊥1T (x,k⊥)(k⊥ · S⊥)
M

(23)

g⊥s (x,k⊥) ≡ λg⊥L (x,k⊥) + g⊥T (x,k⊥)(k⊥ · S⊥)
M

(24)

hs(x,k⊥) ≡ λhL(x,k⊥) + hT (x,k⊥)(k⊥ · S⊥)
M

. (25)
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The motivation of the restriction to twist three comes from the fact that
factorization does not hold beyond this level for k⊥ dependent functions [61].
We also would like to point out that f⊥1T , h⊥1 , fT , es, h and f⊥l are Time-odd
functions, which are kept to allow for the study of the spin-asymmetries in
SIDIS measurements we mentioned in the introduction. Again the functions
are extracted by projection on the Dirac basis BD.
This overwhelming amount of functions are summarized in in a table 3,

where the bold functions survive integration over k⊥, U stands for un-

Nucleon pol. Quark pol.

U L T

Twist 2

U f1 h⊥1

L g1 h⊥1L

T f⊥1T g1T h1 h
⊥
1T

Twist 3

U e f⊥

L hL g⊥L

T hT g′T g⊥
T h⊥T

Table 3: Twist 2 and Twist 3 TMDs

polarized, L for longitudinally polarized and T for Transversely polarized. For
the twist two distribution functions there exists several names in the literature
which we list below [6]

• f1 : unpolarized TMD

• g1 : helicity TMD

• h1 : transversity TMD

• f⊥1T : Sivers TMD

• h⊥1 : Boer-Mulders TMD

• g⊥1T : worm-gear or transversal helicity TMD

• h⊥1L : worm-gear, Kotzinian-Mulders or longitudinal transversity TMD
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• h⊥1T : pretzelosity or quadrupole TMD.

Since in SIDIS we also measure a hadron we need more than just the dis-
tribution of quarks (gluons) in a hadron, since the hadron is formed out of
fragments coming out of the struck hadron or from the active quark (as was
shown at the end of section 3.3.3). In any case we need a function that
describes how hadrons are formed from quarks (gluons), a process that is re-
ferred to as hadronization. The functions describing the probability to "find"
a certain hadron in a quark (gluon) are called the fragmentation functions
and look very similar to correlators.
This fragmentation functions depends on the quark momentum k, the mo-

mentum of the measured hadron ph and the spin vector of this hadron Sh.
They are defined by

∆ij(k, Ph, Sh) =
∑

X

1
(2π)4

∫
d4ξ eik·ξ

× 〈0 |U(0, ξ)ψi(ξ)|Ph, X〉
〈
Ph, X

∣∣∣ψ̄j(0)
∣∣∣ 0
〉

(26)

Again these functions can be expanded in terms of the vectors k, ph, Sh and
projected on the Dirac basis BD to extract the different fragmentation func-
tions for which we refer the reader to [6, 61]. Nevertheless we do want to
show briefly how the correlators and fragmentation functions combine in the
hadronic tensor for SIDIS through which they also enter the cross-section cal-
culation where the hadronic tensor is contracted with the lepton tensor.

2MWµν(q, ps, PhSh) = 1
(2π)4

∫
d3PX

(2π)32P 0
X

(2π)4δ4(q + p− PX − Ph)

× 〈ps |Jµ(0)|PX ;PhSh〉 〈pX ;PhSh |Jν(0)| ps〉

= 1
(2π)4

∫
d4x eiq·x

×
〈
ps

∣∣∣∣∣Jµ(x)
∑

X

∣∣∣∣∣PX ;PhSh
〉〈

PX ; phSh

∣∣∣∣∣Jν(0)
∣∣∣∣∣ps
〉

LO=
∫
d4p d4k δ4(p+ q − k)Tr


 Φ(p)︸ ︷︷ ︸

correlator

γµ ∆(k)︸ ︷︷ ︸
Fragmentation

Function

γν




+




q ↔ −q
µ↔ ν



 (27)



36 nucleon structure and transverse momentum distributions

Note that also the fragmentation functions depend on the gauge link structure,
where this structure for the SIDIS fragmentation functions is shown in figure
12.

As a last part we would like to explain the relation between PDFs, FFs and
Structure Functions, but before doing that we will give a summary of the
leading twist TMDs in SIDIS and which observables are related to them. The
kinematical parameters that can be used to construct observables from are
given by

• Nucleon parameters
(i) Direction ~z (assuming IMF)
(ii) Helicity H
(iii) Transverse Spin ~S⊥

• Parton parameters
(i) Helicity h
(ii) Transverse Spin ~s⊥
(iii) Longitudinal Momentum Fraction x
(iv) Transverse Momentum ~k⊥

which can be classified as shown in table 4. With these parameters the PDFs

Vectors ~k⊥, ~z

Axial Vectors ~s⊥, ~S⊥

Pseudo - Scalars h,H

Table 4: Kinematical parameters

and FFs can be summarized as shown in table 5, where in the graphics there are
new arrows, compared to the DIS case, representing the transverse momentum
of the parton inside hadron (yellow arrows and orange circles which use the
usual convention for representing arrows pointing inwards or outwards of the
page).
As a last part of this section on SIDIS we would like to demonstrate how
structure functions are constructed from the convolution of PDFs and FFs in
the differential cross-sections. Rather then giving a full detailed treatment
we will restrict ourselves to one example of a differential cross-section and
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Graphics PDF Description FF Observables

f1 Momentum Distribution - Number Density D1 1

− g1 Helicity Distribution - Net Polarization G1 hH

− h1 Transversity - Relativistic Effects Nucleon H1 ~s⊥ · ~S⊥

− g1T Worm-gear-T G1T h
(
~k⊥ · ~S⊥

)

− h⊥
1L Worm-gear-L H⊥

1L H
(
~k⊥ · ~s⊥

)

− × f⊥
1T Sivers D⊥

1T
~S⊥ ·

(
~k⊥ × ~z

)

− × h⊥
1 Boer-Mulders H⊥

1 ~s⊥ ·
(
~k⊥ × ~z

)

− h⊥
1T Prezelosity - Quadrupole H⊥

1T

(
~S⊥ · ~k⊥

)(
~s⊥ · ~k⊥

)
− 1

2
~k2
⊥

(
~s⊥ · ~S⊥

)

Table 5: Leading twist TMDs

explain in a graphical way how the structure functions emerge. In order to do
that we first need to define some angles, which is also done in a graphical
way in figure 13. The example cross-section is given by

Lepton Plane
l

l′

Transverse Plane

Had
ron

Pla
ne

Spin
Pla

ne

Ph⊥

Ph

~S⊥

~SL
φh

φh

φs

φs

Figure 13: Defining SIDIS angles
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dσ

δφh
= FUU + λeSLFLL + cos(2φh)F cos(2φh)

UU + SLsin(2φh)F sin(2φh)
UL

+ λeS⊥cos(φh − φS)F cos(φh−φS)
LT

+ S⊥
[
sin(φh − φS)F sin(φh−φS)

UT + sin(φh + φS)F sin(φh+φS)
UT

+ sin(3φh − φS)F sin(3φh−φS)
UT

]
+ twist 3 (28)

where the different F ji represent the different structure functions. Each of
these functions is actually generate by a convolution of a PDF and a FF, to
make this more clear consider the following examples

FUU ∼
∑

a

e2
a f

a
1 ⊗ Da

1

FLL ∼
∑

a

e2
a g

a
1L ⊗ Da

1

F
cos(2φh)
UU ∼

∑

a

e2
a h
⊥a
1 ⊗ H⊥a1

where the convolution integral is defined by

⊗ → xB
∑

q

e2
qd

2p⊥d
2k⊥δ(2)

(
p⊥ − k⊥ −

Ph
z

)
w(p⊥, k⊥)fa(x, p2

⊥)Da(z, p2
⊥)

with
w(p⊥, k⊥)

an arbitrary weighting function. Following [6] this function is 1 for the first
two cases and

−2(ĥ · k⊥)(ĥ · p⊥)− k⊥ · p⊥
MMh

,

with ĥ defined as
ĥ = Ph⊥

|Ph⊥ |
for the last example. Similar relations hold for the other structure functions
and details can be found in [6] and references therein.
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4.2 pdf and tmd evolution: why wilson loops?

In the above discussion, restricting for a moment to the collinear case (no k⊥),
we used factorization to split up the scattering process in its hard and soft
part, where the distinction between them is set by a factorization scale µF .
So far, although we did not say it explicitly, we only considered the leading
order contribution in the hard part such that, considering higher order contri-
butions, QCD corrections come into play. These corrections have as we know
divergences (e.g. quark self-energy), such that a renormalization procedure is
necessary. This ultimately, after tedious calculations, leads to a redefinition
of the PDFs making them dependent on the scale µF (as discussed before).
It is important to point out (again) that this means that the definition of
PDFs is scale dependent!
Considering that the structure functions, constructed out of these PDFs

and FFs, are physical observables it is obvious that we will end up with RGE
for the PDFs. For the collinear case these equations are known as the DGLAP
equations [8–11] which can be summarized as

∂

∂ lnµ2


qi(x, µ

2)
g(x, µ2)


 = αs

2π

∫ 1

x

dξ

ξ


Pqiqj Pqig

Pgqj Pgg



∣∣∣∣∣
x
ξ

·

qj(

x
ξ , µ

2)
g(xξ , µ2)


 . (29)

where the Pij are called the splitting functions or kernels given at leading
order by (table below is a courtesy of F. Van der Veken)

z

1−z
Pqq(z) = CF

1 + z2

1− z , (30)

z

1−z
Pqg(z) = 1

2
(
z2 + (1− z)2

)
, (31)

z

1−z
Pgq(z) = CF

1 + (1− z)2

z
, (32)

z

1−z
Pgg(z) = 2CA

(
z

1− z + 1− z
z

+ z(1− z)
)
.

(33)
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We would now like to consider the evolution of TMDs which is unfortu-
nately quite more involved. The reason for this is that the introduction of the
gauge links (or Wilson lines), when laying on the light cone, introduced in the
correlators and fragmentation matrix elements to keep them gauge invariant,
makes them more divergent than usual Green functions. To deal with this
several different definitions for TMDs have been put forward with respect to
the gauge link structure in the correlators and fragmentation functions. Below
we give an overview of the most relevant ones. In some of these definitions a
new parameter, rapidity

ζ2 = (p · v)2

|v2| ,

is introduced. This parameter essentially measures how much a gauge link is
off-light cone and thus is can be interpreted as a kind of regulator to deal
with the extra divergencies that emerge when putting the gauge links on
the light cone. The divergence that emerges when taking the limit for the
gauge link going from off the light cone to on the light cone is referred to
as a rapidity divergence. This can be clearly seen from the definition of the
rapidity parameter, where v2 → 0 if v → n, with n a light cone direction.
As a side note we point out that in the papers [63–67] the projections on

the Dirac basis have an index unsub which refers to the fact that the soft
factors have not been factored out. These soft factors are designed to extract
the rapidity divergences out of the TMDs into a multiplicative factor. We will
not discuss these soft factors here in more detail since that would lead us to
far, but a discussion on this subject can be found in [52, 68].
Before going into more detail let us first give an overview of the different

TMD definitions.

1. Axial off-light cone (Av):
• Axial gauge fixing condition : v · A = 0, where A is the gauge

field and v is the (off-light cone) direction of the gauge link (such
that in the gauge link integral dzµAµ = dt v · A = 0) and also
the direction of the incoming hadron.

• "Longitudinal" (along v) gauge links vanish
• Transverse gauge links at infinity
• Rapidity parameter dependence of the TMD used as cut-off

2. Covariant off-light cone (Cv):
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• Covariant gauge fixing condition : ∂ ·A = 0
• "Longitudinal" (along direction of incoming hadron) gauge links

survive
• Transverse gauge links cancel
• Rapidity parameter dependence of the TMD used as cut-off
• Soft factor contains non light like gauge links

3. Axial on-light cone (An):
• Axial gauge fixing condition : n ·A = 0, with n2 = 0
• "Longitudinal" (along v) gauge links vanish
• Transverse gauge links at light cone infinity
• Regularization parameter ηLC = p·n

η for the q+ pole in the gluon
propagator or regularization through Principal Value method

1
[q+]η

= 1
2

( 1
q+ + iη

+ 1
q+ − iη

)

• Soft factor contains light like longitudinal and transverse gauge
links

4. Covariant on-light cone (Cn):
• Covariant gauge fixing condition : ∂ ·A = 0
• Longitudinal gauge links survive and are now on-light cone
• Transverse gauge links cancel
• Rapidity parameter dependence of the TMD in soft factor due to

the presence of non-light like gauge links in this factor

All these definitions are a priori different and there need not be any relation
between them, we only point out that integrating over the "parton" transverse
momenta in the off light cone cases does not reduce to the collinear case which
is rather disturbing. In this text we restrict ourselves to the unsubtracted (no
extraction of soft factors) Covariant on the light cone case.
In this case for TMDs beyond the three approximation, at one loop level,

the appearing divergences can be divided into three categories:

(i) Standard Ultra-Violet poles : removable by the usual renormalization
procedure and dimensional regularization
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(ii) Pure rapidity divergences : they depend on a rapidity cut-off but do
not violate renormalizability as they can be re-summed using the Collins-
Soper evolution equation [14, 15]

(iii) Overlap divergencies : these are the problematic ones since they con-
tain UV and rapidity divergences simultaneously and break renormaliz-
ability. This type of divergencies are marked by the presence of terms
proportional to

1
ε

ln ζ

Since we have chosen to work with light like gauge links, these overlapping
divergencies will occur in our calculations. This means that if we want to
apply the renormalization procedure by subtracting these "double" poles the
RGE still contain a divergent part since only one pole is annihilated by the
mass scale derivative

µ
∂

∂µ
,

destroying the renormalization procedure. This means that we will somehow
have to renormalize both divergencies at the same time, thus producing a
combined evolution equation in energy and rapidity. Our approach to con-
structing such combined evolution equations is based on the observation that
the (on light cone,divergent) rapidity evolution is related to the area variation
of a Wilson loop laying on the light cone. A formal mathematical introduction
and description of this area variation will be given in the last two parts of this
thesis but for the moment let us just give a pictorial description to illustrate
the relation with rapidity (figure 14). The Wilson loop is considered to have

N−

N+
δσ+−

δσ
−+

Figure 14: Light like Wilson Loop variation

all it’s sides (all gauge links) on the light cone. Let now

Σ = N+N−
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be the area of the loop, then the area variation is can be expressed as

δ

δ ln Σ = σµν
δ

δσµν
, δσµν = N−δN+ +N+δN−.

On the other hand the (on light cone) rapidity is

Y = lim
η→0

1
2 ln

(
N+N−

η

)
,

and its variation is given by

δY = 1
2

1
N+N−

(
N+δN− +N−δN+

)
.

From these expressions we derive that the Wilson loop area variation is related
to rapidity variation

δ

δY
≈ δ

δ ln Σ .

This observation will allow us at the end of this Dissertation to conjecture an
evolution equation for TDDs.

4.3 summary

In this Chapter we gave a short demonstration how considering the cross-
section of DIS and SIDIS gives rise to PDFs and FFs as functions that parametrize
nucleons. We gave a short overview of the lowest order contributions and how
they combine in the physically observable structure functions. We ended by
demonstrating how area variation of a Wilson loop lying on the light cone
is related to rapidity evolution, an essential observation that will allow us to
conjecture an evolution equation in the last chapters of this Dissertation.





5
SUPER YANG -M I L LS , GLUON SCATTER ING
AMPL ITUDES AND WILSON LOOPS

In this chapter we investigate the relationship between certain gluon scatter-
ing amplitudes in N = 4 SYM and Wilson loops. We have no intention of
explaining the details of SYM or even super-symmetry, for this we refer to the
standard literature on these subjects. We will rather demonstrate how one
can see that there is a well-established duality between gluon scattering
amplitudes and light-like Wilson loops.

5.1 why N = 4 super yang-mills?

SYM is a gauge theory which has an extended spectrum compared to Yang-
Mills Theory without Super-Symmetry. The extra particles are two gluons with
helicity ±1, six scalars with helicity zero and eight gauginos with helicity ± 1

2 .
Due to the Super-Symmetries the theory has only two free parameters, the

t’Hooft coupling constant
λ = g2

Y MNc

and the number of colors Nc. In this theory at weak coupling the number of
contributing Feynman integrals is very large compared to QCD but the final
answer is much simpler, and at strong coupling by making use of the AdS/CFT
correspondence it can be described by a weakly coupled string theory on a
AdS 5 × S 5 manifold [69–74].

5.2 scattering amplitudes

Scattering amplitudes have the property that they are on-shell elements
of the S-matrix and that they are gauge independent. Not unlike Wilson
loops, they are also non-trivial functions of the generalized Mandelstam
variables

sij = (pi + pj )2 .

In SYM theory these amplitudes are easier but they still share many properties
with the QCD amplitudes and they seem to have a remarkable structure that

45
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allows to make all-order conjectures about them. Furthermore, the large Nc

limit of QCD is very similar to the N = 4 SYM theory. Recently Arkani-
Ahmed discovered the amplituhedron [75–77], which allows for full all-order
calculations by calculating the volume of this new mathematical object.
Perhaps, in the future, this object can be modified to a QCD setting providing
new calculation methods for scattering amplitudes.
To show how the Wilson loops come out in quite a natural way let us

investigate these scattering amplitudes in a little bit more detail by looking at
on-shell gluon scattering. The quantum numbers describing these gluons
are given by

| i〉 = | pi, hi, ai〉 ,
with p2

i = 0 the momentum, h = ±1 its helicity and ai its color index. In
SYM these scattering amplitudes suffer from IR divergences such that an IR
regulator is needed and they look very similar to the gluon amplitudes in
QCD. The amplitudes for planar diagrams can be parametrized by partial
color-ordered amplitudes

An = Tr [T a1 · · ·T an ]Ah1,··· ,hn
n (p1, · · · , pn) + [Bose-symm.],

which can be classified according to their helicity structure. Due to super-
symmetry relations we have that

A+···+ = A−+···+ = 0

from which we conclude that all four and five gluon scattering amplitudes
are Maximally Helicity Violating (MHV). In general MHV amplitudes are am-
plitudes with n external gauge bosons, where n − 2 gauge bosons have a
particular helicity and the other two have the opposite helicity. These am-
plitudes are called MHV amplitudes, because at tree level, they violate helicity
conservation to the maximum extent possible. These MHV amplitudes can
be calculated efficiently by the Parke-Taylor formula [78]

A(1+ · · · i− · · · j− · · ·n+) = i(−g)n−2 〈i j〉4
〈1 2〉〈2 3〉 · · · 〈(n− 1) n〉〈n 1〉 ,

which was derived rigorously in [79]. This result was interpreted geometrically
by Edward Witten when he introduced Twistor String Theory [80]. Using
this geometrical interpretation Witten, together with Cachazo and Svrcek, in-
troduced the Cachazo-Svrcek-Witten (CSW)-rules where MHV amplitudes
are glued together to build complex three diagrams. They can be derived
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from the light cone Yang-Mills Lagrangian by performing a canonical change
of variables [81]. These rules can be continued to quantum theory, i.e. con-
structing loops of MHV diagrams but it has problems for which we do not
have the time and space here to discuss them any further (see [82] for a
discussion). Together with Ruth Britto CSW generalized their approach to the
BCSW-rules [83] which allows for strong simplification of calculating gluon
scattering amplitudes due to these recursion relations, making them very rele-
vant for LHC background calculations at higher orders in perturbation theory.

Before moving on the singularity structure of the amplitudes we would
like to draw the readers attention to the emergence of the twistor con-
cept. We will not explain this concept but point out that it is quickly gaining
attention obviously in the scattering amplitude community but also in
the nucleon three-dimensional modeling community. This is not such a
big surprise since the Penrose transform, an integral transform used to ex-
press particle fields as a function of twistors, is very similar to the Radon
transform which is used in tomography where one creates an image from
the scattering data associated with cross-sectional scans of an object. More
specifically, if a function f represents an unknown density, then the Radon
transform represents the scattering data obtained as the output of a tomo-
graphic scan (in nuclear physics this tomography is related to General-
ized Parton Distributions). The inverse of the Radon transform allows then
to reconstruct the original density from the scattering data, and thus it forms
the mathematical basics for tomographic reconstruction, also known as image
reconstruction.
Returning to the IR divergences, we first look at the following relation for

the all-order four-gluon scattering amplitudes in SYM

A4
Atree

4
= 1 + a

1 4

2 3

+O(a2), a = g2
YMNc

8π2 . (34)

which was derived in [84]. This result allows for the amplitude to be factorized
in a finite and an IR divergent part

A4(s, t) = Div(s, t, εIR)Fin(s
t
),

with
s = (p1 + p2)2 and t = (p1 + p3)2,
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where the ε is the parameter associated with the dimensional regularization
operation. As in every gauge theory ([85–87] and references therein) the IR
divergences exponentiate

Div(s, t, εIR) = exp
[
−1

2

∞∑

l=1
al
(

Γ(l)
cusp

(lε2IR) + G(l)

lεIR

){
(−s)lεIR + (−t)lεIR

}]
.

(35)
In [88] it was then demonstrated that there exists a one-to-one correspondence
between these IR divergences and UV divergences of cusped Wilson loops
where in (35):

Γcusp(a) =
∑

l

alΓ(l)
cusp = cusp anomalous dim of Wilson loops (36)

G(a) =
∑

l

alG(l)
cusp = collinear anomalous dim. (37)

Although interesting results on the finite part exist (for instance Bern-Dixon-
Smirnov (BDS) conjecture [89]) we will not discuss it here further since we
are interested in the singular behavior. Using the dual coordinates

pi = xi − xi+1

where the pi refer to the gluon momenta a new symmetry of gluon scattering
amplitudes in SYM was discovered, namely the dual conformal invariance [90].
Combined with the IR-UV duality in [91] it was shown that the expectation
value of a light-like Wilson loop possesses the same properties. More explicitly
for four-gluon scattering we can write

W (C4) = 1
Nc

〈
0

∣∣∣∣∣∣
Tr P e

ig
∮
C4

dxµ Aµ(x)
∣∣∣∣∣∣
0
〉
,

x2

x4
x1

x3
•

•
•

•

C4 =
.

(38)
This contour is now composed of four light-like segments, has four light-like
cusps generating the UV divergencies and where the conformal symmetry
of SYM is mapped onto the conformal symmetry of the Wilson loop in terms
of the coordinates xµ. As we have shown in our paper [48], consistent with
previous result from other authors and which will be derived in this thesis,
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that at one loop order the vacuum expectation value of this contour results
in

lnW (C4) = g2

4π2CF

(
− 1
ε2UV

[(
−x2

13µ
2
)εUV +

(
−x2

24µ
2
)εUV ]

+1
2 ln

(
x2

13
x2

24

)2

+ const


+O

(
g4
)
, (39)

where from comparison with the gluon scattering amplitude at LO:

lnA(s, t) = g2

4π2CF

(
− 1
ε2IR

[(
−s
µ2
IR

)εIR
+
(
−t
µ2
IR

2
)εIR]

+1
2 ln

(
s

t

)2
+ const

)
+O

(
g4
)
, (40)

we have the suggested identifications

x2
13µ

2 := s

µ2
IR

, x2
24µ

2 := t

µ2
IR

,
x2

13
x2

24
:=
(
s

t

)
. (41)

It is now clear how the UV divergencies of the Wilson loop and the IR diver-
gencies of the gluon amplitude map onto each other. We also mention that
the finite terms coincide at least at the one loop order. From this Drummond,
Henn, Korchemsky and Sokatchev proposed the duality between light-like
Wilson loops and gluon amplitudes

lnA4 = lnW (C4) +O( 1
N2
c

, εIR). (42)

The duality has been shown to hold at leading order in
1√
λ

(t’Hooft coupling)

at strong coupling [70] using AdS/CFT to calculate the amplitudes in String
Theory, at weak coupling it was verified up to two loop level [91]. The duality
has also been generalized to n ≥ 5 gluon MHV amplitudes, where the corre-
sponding Wilson loop has now n cusps and n light-like segments. At weak
coupling the BDS ansatz was confirmed [82] and for n = 5 the duality was
confirmed at the two loop level.
Finally in [92, 93] the Twistor concept was used by David Skinner and

collaborators to derive a Super-Symmetric Twistor version of the MM
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equations (see Chapter 21), which they then used to prove the duality be-
tween Super-Symmetric Wilson loops and Correlation Functions (Am-
plitudes).
These are all very nice results, but in a Super-Symmetry setting. So what

can we say when we consider QCD? Korchemsky showed in [94, 95] that for
QCD the duality only holds in the Regge limit. Nevertheless Wilson loops, be
it in regular Minkowski space, in Super-Symmetry, in String Theory or Twistor
Theory, can provide us with a means to investigate symmetries and properties
in a plethora of different theories. For us the main relevance remains that they
have a singularity structure that is related to the singularity structure of TMDs,
show up as soft factors in factorization schemes and ultimately they might
allow us to recast QCD in a loop space setting. We also mention that the
cusp anomalous dimension seems to show up in quite different settings,
indicating its importance in understanding and studying not only QCD but
any QFT.

5.3 summary

In this chapter we gave a very short overview of how Wilson loops are re-
lated to n-gluon scattering in N = 4 Super-Yang-Mills theory. We explained
how through several advances in calculation methods one was able to derive
a duality between gluon scattering amplitudes in SYM and Wilson loops. A
main attribute in this duality is the relation between singularities in vacuum
expectation values of Wilson loops and those in gluon scattering amplitudes,
giving an extra motivation to study the singularity structure of Wilson loops.
It was also pointed out that the singularity structure of gluon scattering am-
plitudes is related to the cusp anomalous dimension, and since the singularity
structure of TMDs is related to the ones in its Wilson line structure it will
come as no surprise that in the evolution equation for TMDs we conjectured
in our papers will depend strongly on the cusp anomalous dimension.
Combining the introduction on TMDs and on SYM the following diagram

(figure 15) gives quite a good overview of the logic we applied to derive our
evolution equation. The rest of this thesis will deal with the details of this
diagram.
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TMD Evolution Singularity Evolution

Wilson Loop EvolutionArea Evolution

1
rapidity

Figure 15: Overview diagram





Part II

MATHEMAT ICAL PREL IM INAR I ES

In this part we will review the necessary mathematical concepts
needed to understand the next part of this thesis, where we in-
troduce GLS. Topics covered are Topology, Differential Geometry,
Algebra, Topological Algebras and Category Theory. In the review
of Category theory we also introduce different categories of differ-
entiations that will be used to generalize the concept of paths and
loops, which are not standard material. We recommend readers
familiar with most of the mathematical material to quickly browse
through the Category Chapter before continue reading. We men-
tion that the PDF version of this document has hyperlinks to
most of the definitions, theorems,... given in this part to increase
readability and reduce the necessity of looking up concepts in
reference works.





6
GENERAL TOPOLOGY

6.1 basic definitions

This chapter revises some of the basic concepts from general topology that
will be used in this thesis. This review is far from complete and is not supposed
to be an introduction to topology but rather a help for the reader, to avoid
the need to lookup definitions in different textbooks.

Definition 6.1.1 (Topology).
Let X be a set and U a collection of subsets of X. We call X a
topological space provided that:

(i) ∅, X ∈ U

(ii) U is closed under finite intersections:

U1, · · · , UN ∈ U , N ∈ N ⇒
N⋂

k=1
Uk ∈ U

(iii) U is closed under arbitrary (possibly uncountably infinite) unions:

Uα ∈ U , α ∈ A ⇒
⋃

α∈A
Uα ∈ U .

The sets U ∈ U are called open, their complements X −U closed in X.

Defining a topology is stating which subsets of X are called open. From a
topology we derive the concept of a neighborhood of a point x ∈ X. If
x ∈ X is a point and U an open set containing it, then U is called a neighbor-
hood of x in X. When we have different topologies, defined on X, they can
be compared with eachother, where a topology U is called stronger (finer)
then a topology U ′ which then is weaker (coarser) if U ′ ⊂ U , as collections
of subsets.

55
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Considering the subsets of a space X, equipped with a topology, this nat-
urally induces a topology on its subsets, referred to as the induced topol-
ogy.

Definition 6.1.2 (Induced topology).
Let (X,U), (Y,V) be topological spaces such that Y ⊂ X. The relative
or subspace topology UY induced on Y is given by defining the sets
U ∩Y ; U ∈ U to be open. We say that we have a topological inclusion,
denoted by

Y ↪→ X,

provided that the intrinsic topology V is stronger than the relative one
(UY ⊂ V).

Different topologies can have varying properties, which will determine strongly
how much structure is imposed on the considered sets. Some of these prop-
erties will be highly desirable from a physics point of view, allowing us to
apply certain operations that would not be allowed on topological spaces not
having these desired properties. One of the most relevant properties for us is
the so called Hausdorff property:

Definition 6.1.3 (Hausdorff).
A topological space X is said to be Hausdorff iff for any two of its
points x 6= y there exist neighborhoods U, V of x, y respectively, which
are disjoint.

This essentially allows one to separate points on the considered topological
space. This will become highly relevant when considering limits.

6.2 topology and basis

A common situation in physics is that one has a set X and a collection of
subsets U of X on which we want to apply some operations, like for example
take a derivative. To be able to define consistently such operations one usually
needs quite a number of properties that are generated by choosing a topology
on X such that all the elements of U are open. In many cases we want to
restrict the imposed structure to a minimum which translates in finding an
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optimal topology with the above property. The fact that at least there exists1

such a topology where all elements of U are open is treated by the following
lemma.

Lemma 6.2.1

Let X be a set and (Uβ)β∈B a collection of topologies on X. Then
T := ∩β∈BUβ is again a topology on X.

This topology can now be optimized due to the following proposition:

Proposition 6.2.1

Let X be a set and D ⊆ P(X ), a collection of subsets of X. Then there
exists a coarsest, or weakest, topology on X with the property that all
subsets U ∈ D are open. In other words, there exists a topology T such
that:

(i) every U ∈ D is open in T

(ii) if U is a topology on X such that every U ∈ D is open in U , then
U is finer then T

Here P(X) represents the power set of X, i.e. the set of all subsets of X.
Unfortunately proposition 6.2.1 does not give us an explicit method to deter-
mine such a topology T . It will take some extra work before we can write an
explicit form, so let us first consider a simpler case where the collection of
sets D have an extra property.

Definition 6.2.1 (Topology basis).
Let X be a set. A basis for a topology on X is a collection B of subsets
of X with the properties:

(i) For every x ∈ X there exists a B ∈ B such that x ∈ B

(ii) If B1, B2 ∈ B, then there exists a B3 ∈ B with x ∈ B3 and
B3 ⊆ (B1 ∩B2).

1 Choosing the power set P(X) for U makes all subsets of X open, such that there always
exists a topology to start with.
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If T is the coarsest (weakest) topology on X such that all B ∈ B are
open in T , then we call B a basis for T or we call T the by B generated
topology.

Proposition 6.2.2

Let B be a basis for a topology on a set X and let T be the topology
generated by this basis. If U ⊆ X then the following properties are
equivalent:

(i) U is open in T

(ii) For every x ∈ U there exists a B ∈ B such that x ∈ B and B ⊆ U

(iii) U can be written as a union of sets Bα from the collection B

In physics we will be mostly consider spaces that are equipped with a metric.
This metric can be used to construct a topology where the open balls will
form a basis for this topology. So let us first revise the definition of a metric
on a set.

Definition 6.2.2 (Metric on a set).
Let X be a set. A metric on X is a function

d : X ×X → R≥0,

with the following properties:

(i) d(x, y) = 0 if and only if x = y.

(ii) Symmetry :
d(x, y) = d(y, x), ∀x, y ∈ X.

(iii) Triangle inequality :

d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X.
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A set with a metric is called a metric space. A metric is called an
ultra-metric if it satisfies the following stronger version of the triangle
inequality where points can never fall between other points:

∀x, y, z ∈ X, d(x, z) ≤ max (d(x, y), d(y, z))

A metric d on X is called intrinsic if any two points x, y ∈ X can be
joined by a curve with length arbitrarily close to d(x, y). For sets on
which an addition

+ : X ×X → X

is defined, d is called a translation invariant metric if:

d(x, y) = d(x+ a, y + a), ∀x, y, a ∈ X.

We now explicitly construct the topology induced by the metric. Define an
open ball for x ∈ X and a real number r ≥ 0,

B(x, r) := {y ∈ X | d(x, y) < r}, (43)

and a collection
B := {B(x, r) | x ∈ X, r > 0}. (44)

Simple calculations show that the B obey the conditions of the definition of
a topology basis (6.2.1) and thus form the basis of a topology by definition.
Note that the topological space (X, T ) is called metrizable if there exists a
metric on X and that such a space is Hausdorff. Above we have constructed
a topology starting from a given basis B, but the goal is to construct a
topology starting from a given collection of subsets, that not necessarily obey
the properties of a basis. We need something more before we can realize such
a construction, namely the concept of a sub-basis

Definition 6.2.3 (Subbasis of a topology).
Let X be a set. A sub-basis of a topology on X is a collection S of
subsets of X with the property that ⋃S∈S = X.

Sub-bases have the nice property that they can be used to construct a basis.
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Proposition 6.2.3

Let S be sub-basis for a topology on X. Then define the collection B
of subsets B ⊆ X that can be written as the intersection of a finite
number of sets in the collection S. Put differently, B ∈ B if and only if
there exists S1, S2, · · · , Sn ∈ S such that B = S1 ∩S2 ∩ · · · ∩Sn. Then
B is a basis for a topology on X and the topology generated by B is the
coarsest (weakest) topology on X with the property that every S ∈ S
is open in this topology.

From proposition 6.2.3 it is now easy to construct a topology from a given
collection of subsets. One just adds the set X to this given collection so that
this new collection becomes a sub-basis for a topology onX. Proposition 6.2.3
then shows how to construct a basis and the coarsest topology for which the
original collection of sets are now open. In this way we have achieved our
initial goal of this section.

6.3 continuity

In this section we introduce the concept of continuity and some of its relations
to topology and properties of topological spaces.

Definition 6.3.1 (Continuity).
A function

f : X → Y

between topological spaces X,Y is said to be continuous provided that
the pre-image f−1(V ) of any set V ⊂ Y that is open in Y is open in
X.

The pre-image is defined by
f−1(V ) = {x ∈ X; f(x) ∈ V } (45)

and despite the notation does not require f to be either an injection or a
surjection. It is easy to demonstrate that f is continuous if it is continuous
at each point x ∈ X, where f is continuous at x ∈ X if for any open
neighborhood V of y = f(x) there exists an open neighborhood U of x such
that

f(x′) ∈ V, ∀x′ ∈ U,
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in other words f(U) ⊂ V . Strengthening the continuity conditions, by requir-
ing that the inverse function is also continuous makes f into a homeomor-
phism.

Definition 6.3.2 (Homeomorphism).
If f is a continuous bijection and also f−1 is continuous then f is called
a homeomorphism or a topological isomorphism.

One should think of a homeomorphism as an isomorphism between topological
spaces. We point out that definition 6.3.1 for continuity is consistent with the
usual definition of continuity in real calculus in the following way:

Corollary 6.3.1

Let (X, dX) and (Y, dY ) be metric spaces. Let f : X → Y be a map.
Then f is continuous with respect to the metric topologies on X and
Y if and only if:

∀x ∈ X,∀ε > 0, ∃δ > 0 : f(B(x, ε)) ⊆ B(f(x), δ).

Put differently f is continuous if and only if:

∀x ∈ X,∀ε > 0,∃δ > 0|dX(x, ξ) < δ ⇒ dY (f(x), f(ξ)) < ε, ∀ξ ∈ X.

Interestingly continuity can be used to define a topology on products of
sets.

Definition 6.3.3 (Product topology).
Let {Xα}α∈A be a collection of topological spaces, then consider the
product set

Y :=
∏

α∈A
Xα.

Write
prα : Y → Xα

for the projection on the factor Xα. We then define the product topol-
ogy on Y as the coarsest (weakest) topology on Y where each of the
projections prα is continuous.
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Introducing extra conditions on a map allowed us to strengthen continuity
to homeomorphism, putting now even more restrictions we can extend this
further to define open or closed maps.

Definition 6.3.4 (Open/Closed map).
Let

f : X → Y

by a map between topological space. Then f is called an open map if

∀U ⊆ X

its image f(U) is open in Y . Alternatively f is called a closed map if

∀U ⊆ X

its image f(U) is closed in Y .

In a certain way maps allow to transfer properties from one space to the next,
usually this means that one can ask questions about the structure of the image
of the source space when considered as part of the target space. Depending
on how much structure is transferred by the map, maps get different names.
For further reference, when we will discuss manifolds, we need such a specific
map which is referred to as an embedding.

Definition 6.3.5 (Embedding).
A continuous map

i : X → Y

is called an embedding if i is injective and is a homeomorphism from X

to its image
i(X) ⊂ Y,

where i(X) is equipped with the subspace (induced) topology.

An embedding thus has the following three properties:

(i) i is continuous

(ii) i is injective
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(iii) ∀U ⊆ X,∃V ⊆ Y with U = i−1(V ).
For the moment these properties might seem a bit random, but when we
discuss maps between manifolds they will turn out to be very useful.

6.4 connectedness

In this section I will review the basic definitions of connectedness of a topo-
logical space.

Definition 6.4.1 (Connected).
A topological space X is called disconnected if there exist non-empty
open subsets

U, V ⊂ X
such that

U ∩ V = ∅ and U ∪ V = X.

A topological space is called connected when it is not disconnected.

A bit strange is that according to this definition the empty set is connected.
From the definition it also follows that X is only connected if and only if
the only clopen (open and closed at the same time) subsets of X are ∅ and
X. A property that is sometimes useful to check if a space is connected or
not. From considering maps between topological spaces and restricting to
continuous maps we get a generalization of the Mean Value Theorem.

Proposition 6.4.1: Mean Value

Let

f : X → Y

be a continuous map. If X is connected then

f(X) ⊆ Y

is also connected.

The link with the usual Mean Value theorem from real calculus can be demon-
strated by considering the map

f : X → R.
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Under the assumption that this map is continuous we have from proposition
6.4.1 that is f is continuous we have that

f(X) ⊆ R.

Put differently we have that if

x, y ∈ X

with
f(x) < f(y)

and c is a real number such that

f(x) < c < f(y),

then
∃z ∈ X : f(z) = c.

Sometimes it will be useful to parametrize a space by its connected com-
ponents, which can be considered as the classes of the equivalence relation
induced by connectedness.

Definition 6.4.2 (Connected components).
Let X be a topological space. The equivalence classes for the equiv-
alence relation introduced by connectedness are called the connected
components of X.

It follows that X is the disjunct union of its connected components. The
name connectedness induces the image of having a path between points
in a connected space. In topology this kind of connectedness is referred to
as path-connectedness and is not necessarily the same as connectedness. To
introduces path-connectedness we first need to define what we mean with a
path in a topological space.

Definition 6.4.3 (Path and Loop in a topological space).
Let X be a topological space. A path in X is a continuous map

γ : [0, 1]→ X.
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γ(0) is called the initial point and γ(1) is called the terminal or endpoint
of the path. If

γ(0) = γ(1)

then γ is called a loop.

This definition can then be used to define a path-connected topological space
and a new equivalence relation introducing path-connected components, cor-
responding the naive image that every two points in a path-connected com-
ponent can be connected by a path that completely lays within this compo-
nent.

Definition 6.4.4 (Path-connected components).
Let X be a topological space. The equivalence classes introduced by
this equivalence relation are called the path-connected components of
X.

Definition 6.4.5 (Path-connected).
A topological space is called path-connected if every two points of X
are equivalent under the above equivalence relation.

Naturally we have the following relation between path-connected and con-
nected.

Corollary 6.4.1

A path-connected space is connected.

The concept of connectedness can be straightforwardly extended to more
complicated spaces by using the product topology (definition 6.3.3).

Definition 6.4.6 (Connected products).
Consider the topological spaces X and Y and let

X × Y

have the product topology.

(i) If X and Y are connected then X × Y is also connected.
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(ii) If X and Y are path-connected then X×Y is also path-connected.

As a consequence one also has

Corollary 6.4.2

Consider the topological spaces

X1, · · · , Xn.

(i) If every Xi is connected then

X1 × · · · ×Xn

is also connected.

(ii) If every Xi is path-connected then

X1 × · · · ×Xn

is also path-connected.

To demonstrate the relevance of these concepts in physics, we will give an
example that is often used in physics courses for which we need the concept
of a topological group.

Definition 6.4.7 (Topological Group).
A topological group is a group G that has been augmented with a
topology, such that the maps

m : G×G→ G, (g1, g2) 7→ g1g2 Multiplication
i : G→ G, g 7→ g−1 Inverse

are continuous. Note that here the elements of the group are considered
as the points of the topological space.

From this definition it is not so hard to prove that:
1. Left translations on G defined by

∀a ∈ G, ta : G→ G : ta(g) = ag

is a homeomorphism on G
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2. A topological group G is Hausdorff if and only if the unit element e ∈ G
is a closed point.

3. Let G0 ⊂ G be the connected component of G containing the unit
element e. Then G0 is a subgroup of G.

4. If H ⊂ G is a subgroup that is open, then H is also closed.

Let us now consider the following example.

Example 6.4.1. Consider the group

GL2(R) :=






a b

c d



∣∣∣∣∣∣
a, b, c, d ∈ R, ad− bc 6= 0



 . (46)

We can consider GL2(R) as an open subset of R4 for the Eucledian
topology, which then induces a topology on GL2(R). This is actually
a topological group, moreover it has the structure of a C∞-variety (a
special type of manifold), making it an example of a Lie Group. This
group cannot be connected. To see this consider the determinant map

det : GL2(R)→ R∗

which is continuous and surjective while

R∗ = R \ {0}

is not connected. By contraposition we thus have that the group cannot
be connected.

6.5 local connectedness and local path-connectednes

This sections treats the local versions of the previous section, where locally
refers to a neighborhood of some point of the topological space.

Definition 6.5.1 (Locally connected).
A topological space X is called locally connected if

∀x ∈ X
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and for every open neighborhood U of x there exists a connected open
neighborhood V of x such that

V ⊆ U.

In the same way we have for path-connected:

Definition 6.5.2 (Locally Path Connected).
A topological space X is called locality path-connected if

∀x ∈ X

and every open neighborhood U of x there exists a path-connected open
neighborhood V of x such that

V ⊆ U.

The connection between connected and path-connected is stronger in the
local versions, which is demonstrated by the following proposition:

Proposition 6.5.1

If X is locally path-connected then X is also locally connected.

As a warning it is important to keep in mind that if a space is locally (path-
)connected it is not necessarily (path-)connected. Moreover the inverse is also
not always true2.

6.6 compactness

Consider a topological space X and define an open cover of X as a collection

U = {Uα}α∈A

of open subsets of X such that

X = ∪α∈AUα.

2 As a counter example consider the Dirac Comb.
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Given such a cover U and a set

A′ ⊂ A

this defines an open sub-cover U ′ if this itself is an open cover of X. Such cov-
ers will allow us to say when a topological space is compact or not, a property
that will again show its usefulness when we are considering manifolds.

Definition 6.6.1 (Compact).
A topological space X is called compact if every open cover U of X
(a collection of open sets of X whose union is all of X) has a finite
sub-cover.

Let us again give a familiar example from real analysis.

Example 6.6.1.
A closed interval [a, b] ⊂ R is compact in the Euclidean topology.

An alternative definition of compactness, continuity and closed can be given
by using nets. We introduce them here since it will allow us to also introduce
the Tychonov topology and Tychonoff’s Theorem.

Definition 6.6.2 (Partially Ordered Set).
A (non-strict) partial order is a binary relation ≤ over a set P which is
reflexive, antisymmetric, and transitive, i.e., which satisfies

∀a, b, c ∈ P :

(i) a ≤ a (reflexivity)

(ii) if a ≤ b and b ≤ a then a = b (antisymmetry)

(iii) if a ≤ b and b ≤ c then a ≤ c (transitivity).

This is sometimes also called an anti-symmetric preorder.

Definition 6.6.3 (Directed Set).
A directed set (or a directed preorder or a filtered set) is a nonempty
set A together with a reflexive and transitive binary relation ≤ (that is,
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a preorder), with the additional property that every pair of elements has
an upper bound:

∀a, b ∈ A : ∃ c ∈ A : a ≤ c, b ≤ c

Definition 6.6.4 (Net).

(i) A net (xα) in a topological space X is a map

α→ xα

from a partially ordered and directed index set A (relation ≥) to
X.

(ii) A net (xα) converges to x, denoted

lim
α
xα = x

if for every open neighborhood U ⊂ X of x there exists α(U) ∈ A
such that xα ∈ U for every α ≥ α(U) (one says that (xα) is
eventually in U).

(iii) A subnet
(
xα(β)

)
of a net (xα) is defined through a map

B → A; β 7→ α(β)

between partially ordered and directed index sets such that for any
α0 ∈ A there exists β(α0) ∈ B with α(β) ≥ α0 for any β ≥ β(α0)
(one says that B is cofinal for A).

(iv) A net (xα) in a topological space X is called universal if for any
subnet

Y ∈ X
the net (xα) is eventually either only in Y or only in

X − Y.

Notice that for a subnet there is no relation between the index setsA,B except
that α(B) ⊂ A such that in particular the subnet of a sequence (A = N)
may not be a sequence any longer. The notions of closedness, continuity and
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compactness can now be reformulated in terms of nets. The fact that one
uses nets instead of sequences is that lemma 6.6.1 is no longer true when
A = N unless we are dealing with metric spaces.

Lemma 6.6.1: Closed, Continuous and Compact using nets

(i) A subset Y of a toplogical space X is closed if for every convergent
net (xα) in X with

xα ∈ Y, ∀α
the limit actually lies in Y .

(ii) A function
f : X → Y

between topological spaces is continuous if for every convergent
net (xα) in X, the net (f(xα)) is convergent in Y .

(iii) A topological space X is compact if every net has a convergent
subnet. The limit point of the convergent subnet is called a cluster
(accumulation) point of the original net.

From the above it should be clear that if a net converges in some topol-
ogy, then it also converges in any coarser (weaker) topology. Returning to
compactness, we first give some properties, before continuing to describe the
Tychonov topology .

Proposition 6.6.1

If
f : X → Y

is a continuous map and X is compact, then also the image

f(X) ⊆ Y

is compact.
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Proposition 6.6.2

If X is compact and Z ⊆ X is closed in X then Z is compact.

Proposition 6.6.3

If X is Hausdorff and Z ⊆ X is compact, then Z is closed in X.

Definition 6.6.5 (Tychonov).
The Tychonov topology on the direct product

X∞ =
∏

l∈L
Xl

of topological spaces Xl, L any index set, is the weakest topology such
that all the projections

pl : X∞ → Xl, (xl′)l′∈L 7→ xl

are continuous, that is, a net

xα = (xαl )l∈L

converges to
x = (xl)l∈L

iff
xαl → xl

for every l ∈ L point-wise (not necessarily uniformly) in L. Equivalently,
the sets:

p−1
l (Ul) =


∏

l′ 6=l
Xl′


× Ul,

are defined to be open and form a basis for the topology of X∞ (any
open set can be obtained from those by finite intersections and arbitrary
unions).

The definition of this topology is motivated by the following theorem.
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Theorem 6.6.1: Tychonov

Let L be an index set of arbitrary cardinality and suppose that for each
l ∈ L a compact topological space Xl is given. Then the direct product
space

X∞ =
∏

l∈L
Xl

is a compact topological space in the Tychonov topology.

This theorem has a nice proof using universal nets, for which we refer the
reader to [96]. As a consequence we have the well known fact from real
calculus

Corollary 6.6.1

A subset Z ⊆ Rn is compact if and only if Z is closed and bounded.

6.7 countability axioms and baire

In an onset to get to the separation properties of topological spaces we need
to consider the concept of countability.

Definition 6.7.1 (Neighborhood basis).
Let X be a topological space and x ∈ X. Let

U = {Uα}α∈A

a collection of open neighborhoods of x. Then U is a neighborhood basis
of x if for every open neighborhood V of x there exists an α such that
Uα ⊆ V .

This lets us define the first countability axiom defining A1-spaces .

Definition 6.7.2 (A1).
A topological space X obeys the first countability axiom if each x ∈ X
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has a countable neighborhood basis. Such a topological space is said
to be A1.

Note that every metric space is A1, which can be seen by considering open
balls of radius 1

N , N ∈ N. A stronger version of this is called the second
countability axiom returning A2-spaces.

Definition 6.7.3 (A2).
A topological space X obeys the second countability axiom if there
exists a a countable basis for the topology on X. Such a topological
space is said to be A2.

Proposition 6.7.1

Let X be a topological space that is A2.

(i) Every open cover of X has a countable sub-cover. A space with
such a property is called a Lindelöf space.

(ii) There is a countable subset of X that is dense (Definition 6.7.4)
in X.

Important to note is that:
A2 ⇒ A1. (47)

Definition 6.7.4 (Dense).
A subset A of a topological space X is called dense (in X) if every point
x ∈ X either belongs to A or is a limit point of A (see definition 6.8.1).
Formally, a subset A of a topological space X is dense in X if for any
point x ∈ X, any neighborhood of x contains at least one point from
A. Put differently, A is dense in X if and only if the only closed subset
of X containing A is X itself. This can also be expressed by saying that
the closure A of A is X, or that the interior of the complement of A
is empty.
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Definition 6.7.5 (Meagre subset - First Baire Category).
Let X be a topological space. We say that a subset V ⊆ X is nowhere
dense if the interior of the closure of V is empty. We call V meagre if
V is a countable union of nowhere dense subsets.

Despite their name meagre subset have some nice properties.

Proposition 6.7.2

Let X be a topological space.

(i) A subset V ⊆ X is nowhere dense if and only if the interior of the
complement X \ V is dense in X.

(ii) A finite union of nowhere dense subsets is again nowhere dense.

(iii) A countable union of meagre subsets is again meagre.

Lemma 6.7.1

The following properties of a topological space X are equivalent.

(i) Every countable intersection of dense open sets is again dense in
X.

(ii) If C1, C2, · · · are closed subsets of X with empty interiors, then
also their union

∞⋃
i=1

Ci has an empty interior.

(iii) If U ⊆ X is a non-empty open subset, then U is not meagre.

(iv) If V ⊆ X is a meagre subset, then the complement X \V is dense
in X.

With interior of a set C we mean the points x ∈ C that have an open
neighborhood x ∈ U such that U ⊂ C. Spaces that have the above properties
are called Baire spaces, and with them comes a theorem
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Theorem 6.7.1: Baire Category Theorem

Every compact Hausdorff space is a Baire space.

Baire referred to a meagre subset as a subset of the First Baire Category and
to a non-meagre subset as being of the Second Baire Category. Then a Baire
space is a space where every non-empty set is of the second category. Note
that here category has nothing to do with Category-Theory, we just mention
this old terminology since it is sometimes used in older literature.

6.8 convergence

We now define what it means for sequences in a topological space to converge.
This will allow us to give meaning to limits of sequences.

Definition 6.8.1 (Convergence and Accumulation point).
Let (xn)n∈N be a sequence of elements in a topological space X and
let ξ ∈ X.

(i) We say a sequence (xn) converges to ξ, or that ξ is the limit of
the sequence (xn), if for every open neighborhood U of ξ there is
an index N(U) such that

xn ∈ U,∀n ≥ N(U).

A sequence is called convergent if it has a limit.

(ii) We call ξ an accumulation point of the sequence (xn) if for every
open neighborhood U of ξ there exist an infinite number of indices
n such that xn ∈ U .

One might expect that this is enough to state that if a sequence converges
that it has a unique limit, but this is not true! To be able to make this
statement the space also needs to be Hausdorff, where a sequence can have
at most one limit.
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Definition 6.8.2 (Countable compact).
A topological space X is called countable compact if every countable
open cover

X =
⋃

α∈A
Uα

has a finite sub-cover.

Notice the difference with compactness, where every cover needs a finite sub-
cover and not only the countable ones. Moreover we have that if X compact
then it is also countable compact, but the inverse is not always true.

Proposition 6.8.1

A topological space X is countable compact if and only if each sequence
(xn)n∈N has an accumulation point.

Definition 6.8.3 (Sequentially compact).
A topological space X is called sequentially compact if every sequence
in X has a converging sub-sequence.

Lemma 6.8.1

Let X be a topological space that is A1 and let (xn)n∈N be a sequence
in X. Let ξ ∈ X. Then the following two statements are equivalent.

(i) The sequence (xn) has a subsequence that converges to ξ.

(ii) ξ is an accumulation point of the sequence (xn).

Theorem 6.8.1

Let X be a topological space.

(i) If X is sequentially compact, then X is also countable compact.

(ii) If X is countable compact and A1 then X is also sequentially
compact.
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(iii) If X is countable compact and A2 then X is also compact.

Graphically this is represented as:
+A2⇐= +A1=⇒

compact =⇒ countable compact ⇐= sequentially compact

Definition 6.8.4 (Cauchy sequence and Complete space).
Let (X, d) be a metric space.

(i) A sequence (xn)n∈N in X is called Cauchy if ∀ε > 0 there exists
an index N such that

d(xm, xn) < ε, ∀m,n ≥ N.

(ii) This metric space is called complete if every Cauchy sequence in
X is convergent.

As a consequence, if a Cauchy sequence has a convergent sub-sequence than
the original sequence is convergent. We also have that every metric space can
be completed.

Definition 6.8.5 (Totally bounded).
A metric space (X, d) is called totally bounded if there exists ∀ε > 0 a
finite cover of X with open balls of radius ε.

Lemma 6.8.2

A totally bounded metric space (X, d) is A2.

Theorem 6.8.2

IfX is a metric space, thenX is compact for the metric induced topology
if and only if X is complete and totally bounded.
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Definition 6.8.6 (Uniform Continuity).
Let (X, dX) and (Y, dY ) be metric spaces. A map

f : X → Y

is uniformly continuous if

∀ε > 0, ∃δ > 0

such that
∀x, x′ ∈ X

with
dX(x, x′) < δ

we have that
dY (f(x), f(x′)) < ε.

Theorem 6.8.3

Let (X, dX) and (Y, dY ) be metric spaces. If X is compact, then every
continuous map

f : X → Y

is uniformly continuous.

6.9 separation properties

We begin by stating the separation axioms. Roughly speaking they classify
which basic objects can be seperated in a topological space.

Definition 6.9.1 (Seperation Axioms).
Let X be a topological space. We call X

(i) T1 : if all 1-point sets {x} are closed in X.

(ii) T2 : if X is Hausdorff
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(iii) T3 : if for every point x ∈ X and for every closed subset C ⊂ X

with x /∈ C, there exist open neighborhoods U of x and V of C
such that U ∩ V = ∅.

(iv) T4 : if for every couple of closed set C,D ⊂ X with C ∩ D = ∅
there exist open neighborhoods U of C and V of D such that
U ∩ V = ∅.

The T refers to the German "Trennung".

Depending on which (combinations) of the axioms are valid for a topological
space they acquire different designations.

Definition 6.9.2 (Regular and Normal).
A topological space X is called regular if it is T1 and T3. If it is T2 and
T4 we call it normal.

Certainly it is clear that some of the axioms induce others, we have that

Lemma 6.9.1

(T4 + T1) =⇒ (T3 + T1) =⇒ T2 =⇒ T1

or in words

normal =⇒ regular =⇒ Hausdorff =⇒ T1.

Proposition 6.9.1

(i) We have that every metric space X is normal.

T1 + T3 +A2 =⇒ T1 + T4

(ii) If X is compact and Hausdorff, then X is normal.
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Lemma 6.9.2: Urysohn

Let X be normal. If A and B are disjunct subsets of X, then there
exists a continuous map

f : X → R

with
f(a) = 0, ∀a ∈ A

and
f(b) = 1, ∀b ∈ B.

Theorem 6.9.1: Tietze

Let X be a normal space and C a closed subset of X. Assume

fC : C → R

is given. Then there exists a continuous function

f : X → R

with
f |C = fC .

Theorem 6.9.2: Urysohn’s metrizability theorem

If X is a regular space that is A2 then X is metrizable.

In other words one can define a metric on X such that it induces a topology
on X.

6.10 local compactness and compactification

This section will become important when we consider Wilson lines that go
out to infinity on the space-time manifold. Since infinity is actually not part
of the space-time manifold one needs to add it (compactification). This can
be done in different ways (see below) and if one adds more then one point
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at infinity the question arises to which infinity is the Wilson line going? A
problem not solved today.

Definition 6.10.1.
Let A be a subset of a topological space X. Then the subset B ⊆ X is
called a neighborhood of A if A is contained in the interior of B.

Definition 6.10.2.
A topological space X is called locally compact if ∀x ∈ X there is a
compact neighborhood.

As discussed we want to compactify a topological space. The most econom-
ical way of doing this for a locally compact Hausdorff space is the following
compactification

Theorem 6.10.1: Alexandroff Compactification

LetX be a locally compact Hausdorff space. Then there exists a compact
Hausdorff space X∗ and a point P ∈ X∗ such that X is homeomorphic
with X∗\P . Moreover the pair (X∗, P ) is unique up to homeomorphism
in the following sense, assume that we have compact Hausdorff spaces
X∗1 and X∗2 , together with points Pi ∈ X∗i and homeomorphisms

f1 : X∗ → X∗1 \ {P1}

and
f2 : X∗ → X∗2 \ {P2}.

Then there is a unique homeomorphism

g : X∗1 → X∗2

with
g(P1) = P2 and g ◦ f1 = f2.

This compactification method is sometimes also called one-point compact-
ification, because we add one point at infinity. Note that this adds an extra
symmetry to the space. This is best seen in two dimensions. Adding one point
at infinity turns this "plane" into a Riemann sphere, a projective space that
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has conformal symmetry. This simple example demonstrates clearly that one
has to be very careful when applying compactifications, if one is not careful
one might introduce extra structure that is not necessarily wanted. An al-
ternative compactification method is given by Stone-Cech compactification,
which we will not discuss here because it is much more involved.

6.11 quotient topology

When one introduces an equivalence relationship on a topological space natu-
rally the question arises if the set of equivalence classes also has a topological
structure. We will explain below that they indeed have such a structure, the
quotient topology.

We start by investigating the connection between the concepts

(i) Equivalence relations on a set X.

(ii) Partitions of a set X.

(iii) Surjective maps X � Y .

If we have an equivalence relation ∼ on X then the equivalence classes form
a partition of X. On the other hand if we have a partition of X we can
introduce an equivalence relation by stating that two elements x, y ∈ X are
equivalent if they are in the same subset of the partition. We conclude that
we have a bijection

equivalence relations on X ∼ partitions of X.

To see the relation with surjective maps, assume that we have an equivalence
relation on X and write X/ ∼ for the set of equivalence classes. Then we
clearly have a map

q : X � X/ ∼
taking an element x ∈ X to its equivalence class. We also refer to this map
q as dividing out the equivalence relation. Inversely we get an equivalence
relation on X from a surjective map

f : X � Y
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by calling two elements x, y ∈ X equivalent if f(x) = f(y). The fibers3 of f
are thus per definition the equivalence classes.

Definition 6.11.1 (Quotient Topology).
Let X be a topological space and let ∼ be an equivalence relation on X.
We then define the quotient topology on X/ ∼ as the weakest topology
for which the map

q : X → X/ ∼
is continuous.

Definition 6.11.2 (Quotient map).

(i) Let X,Y be topological spaces and

p : X → Y

a surjection. The map p is said to be a quotient map provided that
V ⊂ Y is open in Y if and only if p−1(V ) is open in X.

(ii) If X is a topological space, Y a set and

p : X → Y

a surjection then there exists a unique topology on Y with respect
to which p is a quotient map.

(iii) Let X be a topological space and let [X] be a partition of X (i.e.
a collection of mutually disjoint subsets of X whose union is X).
Denote by

[x], x ∈ X
the subset of X in that partition of X which contains x. Equip
[X] with the quotient topology induced by the map

[] : X → [X]; x 7→ [x].

3 Notice here the reference to fibers in the context of equivalence relations. This will resurface
when we are discussing fibre bundle theory in the context of gauge theory, where we will
have classes of physically equivalent theories.
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Then [X] is called the quotient space of X.

Notice that the requirement for p to be a quotient map is stronger than
just being continuous which would only require that p−1(V ) is open in X

whenever V is open in Y (but not vice versa). From a geometrical point of
view taking quotients is gluing topological spaces.

Quotient spaces naturally arise if we have a group action

λ : G×X → X; (g, x)→ λg(x) := λ(g, x)

on a topological space X and define

[x] := {λg(x); g ∈ G}

to be the orbit of x. The orbits clearly define a partition of X.

Lemma 6.11.1

Let X be a compact topological space, Y a set and

p : X → Y

a surjection. Then Y is compact in the quotient topology.

Lemma 6.11.2: Hausdorff in quotient topology

Let X be a Hausdorff space and

λ : G×X → X

a continuous group action on X (i.e., λg defined by λg(x) := λ(g, x) is
continuous for any g ∈ G). Then the quotient space

X/G := {[x]; x ∈ X}

defined by the orbits

[x] = {λg(x); g ∈ G}

is Hausdorff in the quotient topology.
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Theorem 6.11.1: Equivariance

Let X,Y be topological spaces and let G be a group acting (not neces-
sarily continuously) on them via λ, λ′ respectively. If

f : X → Y

is a homeomorphism with respect to which the actions λ, λ′ are equiv-
ariant (i.e. they commute with the group action) then f extends as a
homeomorphism to the quotient spaces X/G, Y/G in their respective
quotient topologies.

6.12 fundamental group

As a last subject in the topology introduction we would like to discuss the
fundamental group, which is of course very related to loops in a manifold.
Before we start we introduce the notation

I := [0, 1]

for the rest of this chapter unless stated otherwise.

Definition 6.12.1 (Homotopy).
Let

f0, f1 : X → Y

be two continuous maps between topological spaces. A homotopy from
f0 to f1 is a continuous map

F : X × I → Y

such that
F (x, 0) = f0(x) and F (x, 1) = f1(x).

If such a map exists we call f0 and f1 homotopy equivalent

f0 ' f1.

This means that there is a continuous deformation between the two functions.
Note that a homotopy also provides a set of intermediate functions, which are
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relevant in physics in the study of renormalization flows and in relating vacuum
expectation values or vacua in different frames or with different Hamiltonians.

Lemma 6.12.1

Homotopy is an equivalence relation on the set C(X,Y ) of continuous
maps

X → Y.

We can extend the restrictions on homotopies by introducing extra condi-
tions.

Definition 6.12.2 (Relative homotopy).
Let X,Y be topological spaces and A ⊆ X. Consider the two continu-
ous maps

f0, f1 : X → Y

with
(f0)|A = (f1)|A.

Then a homotopy from f0 to f1 relative A is a continuous map

F : X × I → Y

such that
F (x, 0) = f0(x) and F (x, 1) = f1(x)

for all x ∈ X with the extra condition that also

F (a, t) = f0(a),∀a ∈ A,∀t ∈ I.

Applying the definition of relative homotopy for loops with a fixed base point
(thus the set A is a single point) in the manifold we have that two loops

γ0, γ1 : I → X

are homotopy equivalent if there exists a homotopy

F : I × I → X

relative {0, 1}. This lead to the definition of the fundamental group.
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Definition 6.12.3 (Fundamental Group).
If X is a topological space and x0 ∈ X a base point, then we define:

π1(X,x0) := {homotopy classes of loops in X with base point x0.}

We call this the fundamental group of X with base point x0.

The group operation is defined as the composition of loops and can be proven
to define a group structure on the homotopy equivalence classes. Moreover
it can be proven that

Proposition 6.12.1: Independent of the base point.

Let X be a path-connected space and let

x0, x
′
0 ∈ X,

then the groups π1(X,x0) and π1(X,x′0) are isomorphic.

We now investigate what happens to the fundamental groups if we consider
maps between topological spaces. Suppose we have a topological space X
with base point x0 and a continuous map

f : X → Y,

with Y another topological space with

Y 3 y0 = f(x0).

If now γ is a loop in X at x0 then

f ◦ γ : I → Y

is a loop in Y at y0. Assume γ homotopy equivalent to γ′ then we also have
that f ◦ γ is homotopy equivalent to f ◦ γ′. Thus we have a map f∗ defined
as

f∗ : π1(X,x0)→ π1(Y, y0) [γ]→ [f ◦ γ],

a map between fundamental groups.
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Lemma 6.12.2

Let X be a topological space with x0 ∈ X a base point. Consider the
continuous maps

f : X → Y

and
g : Y → Z,

with
y0 := f(x0)

and
z0 := g(y0).

Then we have that:

(g ◦ f)∗ = g∗ ◦ f∗ : π1(X,x0)→ π1(Z, z0).

Corollary 6.12.1

Let X and Y be path-connected spaces that are homeomorphic, then

π1(X,x0) ∼= π1(Y, y0)

for every choice of base points x0 and y0.

The fact that the corollary 6.12.1 can be taken literally is a consequence of
the following theorem.

Theorem 6.12.1

Let X be a topological space with x0 ∈ X a base point and

f, g : X → Y

continuous maps that are homotopic. Assume

y0 := f(x0)
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and
y1 := g(x0).

Chose a homotopy
F : X × I → Y

from f to g, and consider the path α in Y from y0 to y1 given by

α(t) := F (x0, t).

If
a : π1(Y, y1)

∼=→ π1(Y, y0),

is the isomorphism given by

[γ]→ [α−1γα]

then the homomorphisms

a ◦ g∗ : π1(X,x0)→ π1(Y, y0) and f∗ : π1(X,x0)→ π1(Y, y1)

are equal.

This allows us to define a quite strong relationship between topological spaces,
and thus perform a classification according to homotopy equivalence.

Definition 6.12.4 (Homotopy equivalence of spaces.).
A continuous map

f : X → Y

is called a homotopy equivalence if there exists a continuous map

g : Y → X

such that g ◦ f is homotopic to idX and f ◦ g to idY . Two spaces are
called homotopy equivalent if there is a homotopy equivalence between
them.

Note that homotopy equivalent is stronger than homeomorphic, and is closer
to the notion of topological spaces as rubber objects.
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Corollary 6.12.2

LetX,Y be path-connected spaces. If they are also homotopy equivalent
the fundamental groups are isomorphic:

π1(X,x0) ∼= π1(Y, y0),

for every choice of the base points x0 and y0.

Definition 6.12.5 (Simply connected).
A path-connected space X is called simply connected if

π1(X,x0) = 0

for an x ∈ X.

Definition 6.12.6 (Contractible).
A topological space X is called contractible if and only if it is homotopy
equivalent to a point.

With these two last definitions we end the part on topology, now fully prepared
to move on to the differential geometry part.





7
D IFFERENT IAL GEOMETRY

In this chapter we will review some of the basic definitions of differential
geometry necessary to understand the discussion on gauge theory from a
principal fibre point of view and to extend the manifold concept to more
complicated spaces eventually allowing for the construction of GLS in later
chapters.

7.1 manifolds

We start be reviewing some of the definitions of manifolds.

Definition 7.1.1 (Manifolds).

(i) A topological space M is called an m-dimensional Ck manifold
provided there is a family of pairs (UI , xI)I∈I consisting of an
open cover of M and homeomorphisms

xI : UI → xI(UI) ⊂ Rm, p 7→ xI(p),

such that
∀I, J ∈ I

with
UI ∩ UJ 6= ∅

the map

φIJ := xJ ◦ x−1
I : xI(UI ∩ UJ)→ xJ(UI ∩ UJ),

is a Ck map between open subsets I of Rm.

(ii) The sets UI are called charts, the functions xI coordinates, the
family of charts and coordinates form an atlas and m refers to
the dimension of M . Two atlases (UI , xI)I∈I , (VI , xJ)J∈J for a
topological spaceM are compatible if their union is again an atlas.

93
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Compatibility defines an equivalence relation on atlases and such
an equivalence class is called a differentiable Ck structure.

(iii) A topological space M is said to be a manifold with a boundary
∂M if each of the UI is homeomorphic to an open subset of the
negative half-space

H− = {x ∈ Rm;x1 ≤ 0}.

The smoothness condition now demands that the φIJ are Ck on
open subsets of Rm containing xI(UI ∩UJ). The boundary points
have coordinates x1 = 0, that is, they lie in

∂H− = {x ∈ Rm;x1 = 0}.

Definition 7.1.2 (Diffeomorphism).
A map

ψ : M → N

between Ck manifolds M,N is called Ck if for all pairs of charts UI , VJ
of atlases for M,N respectively for which

ψ(UI) ∩ VJ 6= ∅

the maps (where defined)

ψIJ := xJ ◦ ψ ◦ x−1
I : xI(UI)→ xJ(VJ)

are Ck maps between open subsets of Rm,Rn respectively. If all the
ψIJ are invertible and also the inverses are Ck then ψ is called a Ck
diffeomorphism. The diffeomorphisms of a manifold form a group which
is denoted Diff(M).

Definition 7.1.3 (Paracompact).
An atlas (UI , xI) is said to be locally finite provided that every p ∈M
has an open neighbourhood in M intersecting only a finite number of
the charts. A manifold M is called paracompact if each atlas (UI , xI)
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admits a locally finite refinement (VJ , yJ) where each VJ is contained
in some UI .

Definition 7.1.4 (Sub-manifold).
Let N be a subset of an m-dimensional manifold M . We can equip N
with a manifold structure by making use of the induced topology and
an induced (subspace) differentiable structure, given an atlas (UI , xI)
for M , by the atlas (VI = N ∩ UI , yI = (xI)|VI ) for N . We thus have
a differentiable structure under the condition that the maps

φIJ = yJ ◦ y−1
I

for
VI ∩ VJ 6= ∅

have constant rank n.

Definition 7.1.5 (Immersion and embedding).
Assume N an n-dimensional manifold and

ψ : N →M

is Ck. ψ is called a local immersion if each q ∈ N has an open
neighborhood V such that

V → ψ(V )

is an injection. If ψ is a global immersion, that is,

N → ψ(N)

is an injection (the image of N in M does not intersect itself), then ψ
is called an embedding. If additionally for each V open in N the set
ψ(V ) is open in the subset topology induced from M then ψ is called a
regular embedding (the image of N does not come arbitrarily close to
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itself in M without ever self-intersecting). In the latter case we will say
that N is an embedded sub-manifold of M . An embedded sub-manifold
of dimension n = m− 1 is called a hyper-surface.

Definition 7.1.6 (Orientability).
A manifold M is said to be orientable if it admits an atlas such that:

det
(
∂xJ(p)
∂xI(p)

)
> 0, ∀p ∈ UI ∩UJ.

If M has a boundary then M induces an orientation on ∂M .

Definition 7.1.7 (Smooth and Real Analytic).
A manifold is called smooth if it is C∞. A manifold is called real
analytic or Cω if the maps φIJ are real analytic.
A manifold of real dimension 2m is called complex analytic or a

holomorphic, a manifold of complex dimension m, provided that the
maps

φIJ = zJ ◦ z−1
I : Cm → Cm

satisfy the Cauchy-Riemann equations and where

(xI , yI)→ zI = xI + iyI

is the standard isomorphism between R2m and Cm.

Comparing homeomorphisms and diffeomorphisms of a topological space it
can be shown that for m < 4 all homeomorphisms are also diffeomorphisms
and for m ≥ 4 this is not always the case. In that respect we mention
that R4 has an infinite number of distinct differentiable structures while S7

only has 28. Another interesting observation is that one can show that any
smooth, paracompact manifold admits an analytic structure which is unique
up to smooth diffeomorphisms. As we will discuss further in this text Wilson
loops are constructed from integrals, so we better make sure the manifold we
consider allows for an integrable structure, which is provided by the para-
compactness property. Moreover a connected, finite-dimensional, Hausdorff
manifold is para-compact if and only if it has a countable base.
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7.2 differential calculus

There are several differential objects that can be defined on a manifold. Here
we will repeat the definition of some of these objects, restricting to only the
most relevant for our objectives.

Definition 7.2.1 (Smooth function).
A smooth function on a manifold M is a map

f : M → C

such that
f ◦ x−1

I

is smooth on
xI(UI) ⊂ Rm.

The set of smooth functions C∞(M) forms an Abelian ∗-algebra (Defi-
nition 9.1.3) where operations are defined point-wise and the involution
is given by complex conjugation.

Definition 7.2.2 (Vector Field).
A smooth vector field on M is a derivation on C∞(M). That is, it is
a linear map

v : C∞(M)→ C∞(M); f 7→ v(f)

that obeys Leibniz

v(fg) = v(f)g + fv(g),

and annihilates constants. Given an atlas (UI , xI) we can define special
vector fields ∂Iµ on UI defined by the condition:

∂Iµ(xνI ) = δνµ

for p ∈ UI where

x(p) = (x1(p), · · · , xm(p)) ∈ Rm.
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This allows us to write a vector field v as

v(p) = vµI [xI(p)]∂Iµ(p),

where we assumed the Einstein summation convention. The Leibniz Rule
induces the chain rule such that we have:

vµI [xI(p)]∂Iµ(p) = vµJ [xJ(p)]∂Jµ (p),

if
p ∈ UI ∩ UJ , xJ(p) = φIJ(xI(p)).

With this definition we can investigate the action of a vector field on a smooth
function

v(f) = vµI ∂µ[fI(x)]
∣∣
x=xI(p),

with
fI = f ◦ x−1

I .

The space of smooth vector fields on M is written as T 1(M).

Definition 7.2.3 (Contra-variant Vector).
A tangent vector or contra-variant vector, sometimes also just called a
vector at p ∈M , written symbolically as X, assigns to each coordinate
patch p ∈ (U, x) an n-tuple of real numbers

(Xi
U ) = (X1

U , ..., X
n
U )

such that if p ∈ U ∩ V , then the coefficients of a contra-variant trans-
form as

Xi
V =

∑

j

(
∂xiV
∂xjU

(p)Xj
U

)
(48)

XV = cV UXU , (49)

where cV U is called the transition function (Jacobian matrix). In a
local coordinate system tangent vectors can be written as first-order
differential operators

Xp =
∑

j

Xj ∂

∂xj
∣∣
p
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Definition 7.2.4 (Linear Functional - Covector).
A (real) linear functional α on a vector space E is a real valued function

α : E → R

from E to the one-dimensional vector space R. We thus have

α(av + bw) = aα(v) + bα(w), Linearity

for the real numbers a, b and vectors v,w. Such a linear functional is
also called a covector or covariant vector or one-form. After introducing
local coordinates and choosing a basis it can be expanded as

α =
∑

j

aj(x) dxj ,

and it transforms under a coordinate change as

dxiV =
∑

j

(
∂xiV
∂xjU

)
dxju,

such that its coefficients transform as

aVi =
∑

j

aUj

(
∂xjU
∂xiV

)
.

Notice the difference in the transformation rule with the transformation rule
for contra-variant vectors! This difference generalizes to tensors, such that the
transformation rule can be used to determine its contra-variant and covari-
ant rank. In some literature these transformation rules are used to introduce
objects that are then referred to as tensors.

Definition 7.2.5 (Dual Space).
The collection of all linear functionals α on a vector space E form a
new vector space E∗, the dual space to E, under the operations

(α+ β)(v) := α(v) + β(w), a, β ∈ E∗, v ∈ E (50)
(cα)(v) := cα(v), c ∈ R (51)
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Definition 7.2.6 (Tangent Bundle).
The tangent bundle TM to a differentiablemanifoldM is by definition
the collection of all tangent vectors at all points of M . Note that if M
is n-dimensional, then TM is 2n-dimensional and the differential refers
to the differentiability of the atlas transition maps.

Definition 7.2.7 (Interior Product).
If v is a vector and α is a p-form, their interior product (p − 1)-form
ivα is defined by

ivα
0 = 0 if α is a 0-form

ivα
1 = α(v) if α is a 1-form

ivα
p(w2, · · · , wp) = αp(v, w2, · · · , wp) if α is a p-form

Obviously we have that

iv+w = iv + iw

and
iav = aiv

Definition 7.2.8 (Exterior product and Exterior Algebra).
The exterior algebra ∧(V ) over a vector space V over a field k is
defined as the quotient algebra of the tensor algebra T (V ) by the two-
sided ideal I (Definition 8.2.1) generated by all elements of the form
x⊗ x such that x ∈ V

∧
(V ) := T (V )/I.

The exterior product ∧ of two elements of ∧(V ) is defined by

α ∧ β = α⊗ β/I.

or written differently:

a ∧ β = α⊗ β − β ⊗ α.
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The algebra associated with this product is called the exterior algebra
on M (notation: ∧nM) and is constructed from the vector space of
one-forms on M .

Theorem 7.2.1: Interior product is an Anti-Derivation

iv :
p∧
→

p−1∧

is an anti-derivation, that is

iv(αp ∧ βq) = [ivαp] ∧ βq + (−1)pαp ∧ [ivβq]

Definition 7.2.9 (Differential of a map).
Let

φ : M → N

be a smooth map of manifolds and φ(x) = y. The differential φ∗ is then
the map between the tangent spaces φ∗ : TxM → TyN defined by:

φ∗(vx) = wy,

where vx ∈ TxM and wy ∈ TyN , elements of the respective tangent
spaces at x and y.

Definition 7.2.10 (Pull-back).
Let φ : M → N be a smooth map of manifolds and let φ(x) = y. Let

φ∗ : TxM → TyN

be the differential of φ. The pull-back φ∗ is the linear transformation
taking covectors at y into covectors at x, φ∗ : N∗(y)→M∗(x) defined
by

φ∗(β)(v) := β(φ∗(v)),

for all covectors β at y and vectors v at x.
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Definition 7.2.11 (Local Section).
A local section of P is a smooth map

sI : UI → P

such that
π ◦ sI = idUI ,

where π is the projection on in P . A cross section is a global section,
that is, defined everywhere on M .

Definition 7.2.12 (Push-Forward).
Let φ be a smooth map

φ : M → N

and a let X be a vector field on M , it is not usually possible to define
a push-forward of X by φ as a vector field on N . A demonstration of
this is the example where the map φ is not surjective, then there is no
natural way to define such a push-forward outside of the image of φ.
Nevertheless, one can make this difficulty precise, using the notion of a
vector field along a map.
A section (7.2.11) of φ∗TN over M is called a vector field along

φ. Assume X to be a vector field on M , i.e., a section of TM . Then,
applying the differential (7.2.9) pointwise to X yields the push-forward
φ∗X, which is a vector field along φ, i.e., a section of φ∗TN over M .

Any vector field Y on N defines a pullback section of φ∗TN with

(φ∗Y )x = Yφx.

A vector field X on M and a vector field Y on N are said to be φ-related if

φ∗X = φ∗Y

as vector fields along φ. In other words

∀x ∈M,dφx(X) = Yφ(x).

Using the above introduced language we can give an alternate definition for
an immersion.
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Definition 7.2.13 (Immersion).
A smooth map of manifolds φ : M → N is an immersion and φ(M) is
an immersed sub-manifold provided

φ∗ : TxM → Tφ(x)N,

is 1 : 1 or said otherwise ker φ∗ = 0 at each x ∈M .

Definition 7.2.14 (Support (of a function)).
Let

f : M → R

be a real-valued continuous function. We thus have by the definition of
continuity that the inverse image of every open set of R is open in M .
Now the set of non-zero real numbers form an open subset of R, such
that the subset ofM where f 6= 0 is an open subset ofM : f−1(R−0).
The closure of this set is called the support of f . This definition can be
extended to tensor fields on M .

Definition 7.2.15 (Bump Function).
Given a point p ∈ M , with n the dimension of M , we can easily
construct an n-form with its support contained in an open ε-ball around
the point p.

ωn := f(‖x‖)dx1 ∧ · · · ∧ dxn, for x in the ball ‖x‖ ≤ ε
ωn := 0, outside of the ball

This n-form is called a bump form or bump function if n = 0.

Definition 7.2.16 (Partition of Unity).
Let M be a manifold of dimension n that can be covered by a finite
number of coordinate patches (generalization is possible but one needs
to take care). Given this covering {Uα} a partition of unity subordinate
to this covering will return n real-valued differentiable functions

fα : M → R
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such that

1. fα ≥ 0, ∀α, x

2. The support of fα is a closed subset of the patch Uα

3. ∑α fα(x) = 1, ∀x ∈M

Such a partition always exists.

Note that when a manifold is compact, for every cover of this manifold there
exists a finite sub-cover allowing thus a partition of unity. A very useful ap-
plication of partition of unity is the construction of a Riemannian metric on
a manifold M . Suppose this manifold is covered by the coordinate patches
{Uα, xiα}, then we can introduce in each patch a metric

ds2
α =

∑

i

(dxiα)2.

When introducing these metrics we have a problem in Uα ∩ Uβ, since the
metrics ds2

α and ds2
β need not to agree. But this can be solved by making use

of a partition of unity, to get a "global" Riemannian metric

ds2 =
∑

α

fαds
2
α.

7.3 stokes theorem

Many derivations in loop space will heavily depend on the use of Stokes’
theorem. Therefore we will here briefly review some of the material about
Stokes.

Theorem 7.3.1: Stokes’ Theorem

Let X be an oriented manifold of class C2, dimension n, and let ω be
a (n− 1)-form on X, of class C1. Assume that ω has compact support.
Then ∫

X
dω =

∫

∂X
ω

For a proof we refer the reader to [97]. The theorem can be extended for
ω that have almost compact support, where almost compact support means
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that there exists a decreasing sequence of open sets Uk in X such that their
intersection is empty together with a sequence of C1 functions that satisfy

(i) 0 ≤ gk ≤ 1, gk = 1 outside Uk and gkω has compact support.

(ii) if µk is the measure associated with |dgk ∧ ω| on X then

lim
k→∞

µk(Ūk) = 0

Stokes’ theorem then becomes

Theorem 7.3.2: Stokes’ Theorem 2

Let X be an oriented manifold of class C2, dimension n, and let ω be
a (n− 1)-form on X, of class C1. Assume that ω has almost compact
support, and that the measures associated with |dω| on X and |ω| on
∂X are finite. Then ∫

X
dω =

∫

∂X
ω

Even more relevant for us is Stokes’ theorem with singularities, meaning that
we consider for instance in a two dimensional case polygons. In this case the
problems occur at the vertices where ω becomes singular. Nevertheless under
certain circumstances Stokes’ theorem is still valid. For this version of the
theorem we need the concept of negligible subsets.

Definition 7.3.1 (Negligible subset).
Let S be a closed subset of Rn. We will call S negligible for X if there
exists an open neighborhood U of S in Rn, a fundamental sequence
(Cauchy sequence) of open neighborhoods {Uk} of S in U , with (the
closure) Uk ⊂ U , and a sequence of C1 functions {gk}, having the
properties:

(i) We have 0 ≤ gk ≤ 1 and gk = 0 for x in some open neighborhood
of S, and gk = 1 for x /∈ Uk.
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(ii) If ω is an (n − 1)-form of class C1 on U , and µk is the measure
associated with |dgk ∧ ω| on X ∩ U , then µk is finite for large k,
and

lim
k→∞

µk(U ∩X) = 0

The first condition says that gkω will vanish on an open neighborhood of S,
in such a way that gk = 1 on the complement of Uk such that dgk = 0 there.
Combining this with the second condition we see that the measure on X near
the singular points |dgk ∧ ω| will tend to zero if k goes to infinity because
they are concentrated on shrinking neighborhoods. We can now write down
Stokes’ theorem with singularities.

Theorem 7.3.3: Stokes’ Theorem 3

Let X be an oriented sub-manifold of class C3 without boundary of Rn.
Let dim X = n. Let ω be a (n− 1)-form on X, of class C1 on an open
neighborhood of X in Rn, and with compact support. Assume that

(i) If S is the set of singular points in the frontier X −X, then S ∩
supp ω is negligible for X.

(ii) The measures associated with |dω| on X, and |ω| on ∂ω, are finite.

Then ∫

X
dω =

∫

∂X
ω

We conclude this section by giving two criteria for a set to be negligible [97]:

(i) Let S, T be compact negligible sets of a sub-manifold X of Rn (and
assuming X without boundary). Then the union S ∪ T is negligible for
X.

(ii) Let X be an open set, and let S be a compact subset in Rn. Assume
that there exists a closed rectangle R of dimension m ≤ n− 2 and a C1

map σ : R→ Rn such that S = σ(R). Then S is negligible for X.
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ALGEBRA

In this chapter we revise some concepts from algebra theory where we start
from the most basic definitions slowly building up the structures necessary to
give a detailed discussion on the properties of the shuffle product which we
will introduce in section 11.2.

8.1 rings and modules

Definition 8.1.1 (Monoid).
A monoid or semi-group with unit is a set, S, together with a binary
operation "·" that satisfies the three axioms:

(i) Closure :
∀a, b ∈ S : a · b ∈ S

(ii) Associativity:

∀a, b, c ∈ S : (a · b) · c = a · (b · c)

(iii) Identity element:

∃e ∈ S, ∀a ∈ S : (a · e) = (e · a) = a

Definition 8.1.2 (Ring).
A ring is a set R equipped with two binary operations + and "·" called
”addition” and ”multiplication”, that map every pair of elements of R
to a unique element of R. These operations must satisfy the following
properties called ring axioms, which must be true

∀a, b, c ∈ R

107
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• Addition is abelian:
(i) (a+ b) + c = a+ (b+ c) (+ is associative)
(ii) There is an element 0 ∈ R such that

0 + a = a

(0 is the zero element)
(iii) a+ b = b+ a (+ is commutative)
(iv) ∀a ∈ R,∃ − a ∈ R|a + (−a) = (−a) + a = 0 (−a is the

inverse element of a)

• Multiplication "·" is associative:
(v) (a · b) · c = a · (b · c)
Multiplication distributes over addition:
(vi) a · (b+ c) = (a · b) + (a · c)
(vii) (a+ b) · c = (a · c) + (b · c).

• Sometimes the above structure is called a pseudo-ring, or a "ring",
referring to the fact that some people believe that a ring should
have an additional axiom:
(vii) Multiplicative identity: ∃1 ∈ R|a · 1 = 1 · a = a

Rings satisfying all of the above axioms are referred to as unital rings.
Although ring addition is commutative, such that a + b = b + a, ring
multiplication is not required to be commutative (a · b 6= b · a). Rings
that also satisfy commutativity for multiplication are called commuta-
tive rings. Some basic properties of a ring follow immediately from the
axioms:

• The additive identity and the additive inverse are unique.

• The binomial formula holds for any commuting elements (i.e.,
a · b = b · a).
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Definition 8.1.3 (Field). (following [98])
A field F is a set together with two composition laws:

F × F +→ F a, b 7→ a+ b (52)
F × F ×→ F a, b 7→ ab (53)

called addition and multiplication satisfying the axioms:

(i) (F,+) is an abelian group

(ii) (F,×) is associative and commutative, making F \ {0} into a
group. The identity element is written as 1.

(iii) Distributivity :

∀a, b, c ∈ F, (a+ b)c = ac+ bc

Definition 8.1.4 (Vector Space). (following [98]))
A vector space V over a field F is a set together with two composition
laws:

V × V +→ V v,w 7→ v + w (54)
F × V ×→ V c, v 7→ cv (55)

called addition and scalar multiplication satisfying the axioms:

(i) (V,+) is an abelian group

(ii) Scalar multiplication is associative with multiplication in F :

(ab)v = a(bv), ∀a, b ∈ F, v ∈ V (56)

(iii) The element 1 defined in 8.1.3 acts as identity

1v = v,∀v ∈ V.

(iv) Double Distributivity :

(a+ b)v = av + bv
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and
a(v + w) = av + aw,

∀a, b ∈ F,∀v, w ∈ V.

Sometimes the notion of a vector space is not adequate and one needs a
generalization which is accomplished by the concept of modules. A module
over a ring then generalizes the notion of vector space over a field, where
the corresponding scalars are now the elements of an arbitrary ring instead
of a field. Modules also generalize the notion of Abelian groups, which are
modules over the ring of integers.

Definition 8.1.5 (Module).
A left R-module M over the ring R consists of an abelian group (M,+)
and an operation

R×M →M

such that ∀r, s ∈ R and x, y ∈M , we have

(i) r(x+ y) = rx+ ry

(ii) (r + s)x = rx+ sx

(iii) (rs)x = r(sx)

(iv) 1Rx = x

In a similar way one can define a right module and a bimodule which
is then a module which is a left module and a right module such that
the two multiplications are compatible. If R is commutative, then left
R-modules are the same as right R-modules and are simply called R-
modules.

At this point we introduce the notation

Hom(A,B) = Homk(A,B)

for the set of morphisms between two k-modules A and B.

8.2 ideals

Now that we have introduced the concept of a ring we can define the ideal of
a ring, which becomes relevant when considering homomorphisms and algebra
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morphisms due to theorem 8.2.2 where the relation between ideals and kernels
of homomorphisms is stated.

Definition 8.2.1 (Ring Ideal [99]).
Let R be a ring. An ideal a in R is a subset such that

(i) a is a subgroup of R regarded as a group under addition.

(ii) a ∈ a, r ∈ R =⇒ ra ∈ a

For an arbitrary ring (R,+, ·), where (R,+) is the underlying additive group
and I a subset, we call I a two-sided ideal (or simply an ideal) if it is an addi-
tive subgroup of R that "absorbs multiplication by elements of R". A subset
S of R can generate an ideal as the intersection of all ideals a containing S.
The ideal consists of elements of the form

∑
risi

with
ri ∈ R, si ∈ S.

Consider now two ideals a and b in R, then the set

{a+ b|a ∈ a, b ∈ b}

is an ideal written as
a + b.

In the same way the set
{ab|a ∈ a, b ∈ b}

is an ideal denoted by
ab.

Note that
ab ⊂ a ∩ b.

Next to these properties of ideals we also have that the kernel of a homo-
morphism A→ B is an ideal in A!.
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Theorem 8.2.1: Kernel is a subring

Let
φ : (R1,+1, ◦1)→ (R2,+2, ◦2)

be a ring homomorphism. Then the kernel of φ is a subring of R1.

proof 8.2.1

From the fact that a ring homomorphism of addition is a group homo-
morphism and the fact that the Kernel is a Subgroup we have

(ker (φ) ,+1) ≤ (R1,+1) ,

where ≤ denotes subgroup. Let now x, y ∈ ker (φ), then we can write

φ (x ◦1 y) = φ (x) ◦2 φ (y) = 0R2 ◦2 0R2 = 0R2

Thus
x ◦1 y ∈ ker (φ)

and the conditions for a subring are fulfilled, hence ker (φ) is a subring
of R1.

Theorem 8.2.2: Kernel is an Ideal

Let
φ : (R1,+1, ◦1)→ (R2,+2, ◦2)

be a ring homomorphism. Then the kernel of φ is an ideal of R1.

proof 8.2.2

By theorem 8.2.1, ker (φ) is a subring of R1. Let

s ∈ ker (φ) ,

such that
φ (s) = 0R2 .
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Suppose x ∈ R1, then we have

φ (x ◦1 s) = φ (x) ◦2 φ (s)
= φ (x) ◦2 0R2 as s ∈ ker (φ)
= 0R2

and similarly for φ (s ◦1 x) from which the theorem follows.

Definition 8.2.2 (Cokernel).
Let

f : A→ B

be an R-module homomorphism. The cockerel is then defined as the
quotient group B/Im(f). Thus f is injective iff its kernel is 0 and sur-
jective iff its cockerel is 0.

Consider now the diagram in figure 16, where C is the kernel of the homo-
morphism f and i is the inclusion map. Let now

f ◦ g = 0,

this means that there exists a unique module homomorphism

h : D → C

such that g can be written as
i ◦ h.

Since the set C contains essentially the same information as the kernel one
could instead think of the kernel as the morphism i. In this view any map g
that is mapped to 0 by f can be factored through

i : g = i ◦ h.

This "factorization" will be essential to understand the diagrams that we will
use to define algebraic paths (see 12). Interesting is that when the arrows in
figure 16 are reversed we get the corresponding diagram for cokernels (figure
17). The map p is such that

C = B/im(f).



114 algebra

C A B

D

i

h
0g

f

Figure 16: Kernel setup

C B A

D

p

h
0

g

f

Figure 17: Cokernel setup

If now
g ◦ f = 0,

then g can factored through h as

g = h ◦ p.

Definition 8.2.3 (Prime Ideal [99]).
Let R be a ring. An ideal p of R is prime if

p 6= R

and
ab ∈ p⇒ a ∈ p

or
b ∈ p.

Note that this also means that p is prime iff R/p is nonzero and has the
property

ab = 0, b 6= 0 =⇒ a = 0

which means that R/p is an integral domain (see definition 8.2.8).

Definition 8.2.4 (Maximal Ideal [99]).
An ideal m in R is maximal if it is maximal among the proper ideals,
that is among the ideals that are strictly smaller than the whole ring R.
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Thus m is maximal iff A/m is nonzero and has no proper nonzero ideals,
and thus m is a field.

Remark that if m maximal =⇒ m prime. We point out for further use that
ideals of A×B are always of the form a× b and that if a, b are ideals in R
with a + b = R we call them coprime.

Definition 8.2.5 (Zero Divisor).
A zero divisor a of a ring R is en element of R such that a is a left and
right zero divisor :

∃ b 6= 0 ∈ R : a.b = 0 Left zero divisor
∃ c 6= 0 ∈ R : c.a = 0 Right zero divisor

Definition 8.2.6 (Non-zero divisor).
a ∈ R (ring) is a nonzero divisor if ab 6= 0 for all b 6= 0 otherwise a
zero divisor. a is a unit if there is a b such that ab = 1.

Definition 8.2.7 (Domain).
A non-zero ring R is a domain if every non-zero element is a non-zero
divisor and a field if every non-zero element is a unit. Clearly a field is
a domain.

Definition 8.2.8 (Integral Domain).
An integral domain is a commutative ring that has no zero divisors.

Theorem 8.2.3: Chinese Remainder [99]

Let a1, · · · , an be ideals in a ring R. If ai is coprime to aj whenever
i 6= j, then the canonical map A → A/a1 × · · · × A/an is surjective
with kernel ∏ ai = ⋂

ai.
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Definition 8.2.9 (Noetherian Ring [99]).
A ring R is called Noetherian if it satisfies the following equivalent
conditions:

(i) every ideal in R is finitely generated

(ii) every ascending chain of ideals

a1 ⊂ a2 ⊂ · · ·

eventually becomes constant, i.e. for some m

am = am+1 = · · ·

(iii) every nonempty set of ideals in R has a maximal element (i.e. an
element not properly contained in any other ideal in the set)

Definition 8.2.10 (Local Ring [99]).
A ring R is said to be local if it has exactly one maximal ideal m.

Corollary 8.2.1: Property maximal ideals in Noetherian ring [99]

Let R be a Noetherian ring with maximal ideal m, then regarding m as
an R-module, the action of R on m/m2 factors through k = R/m.
The elements a1, · · · , an of m generate m as an ideal iff their residues

modulo m2 generate m/m2 as a vector space over k. In particular, the
minimum number of generators for the maximal ideal is equal to the
dimension of the vector space m/m2.

Definition 8.2.11 (Height and Krull dimension [99]).
Let R be a Noetherian ring.
(i) The height ht(p) of a prime ideal p in R is the greatest length d

of a chain of distinct prime ideals p = pd ⊃ pd−1 ⊃ · · · ⊃ p0
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(ii) The Krull dimension of R is sup{ht(p)|p ⊂ R, p prime}

Note that a field has Krull dimension 0 and conversely an integral domain
(definition 8.2.8) of Krull dimension 0 is a field.

Definition 8.2.12 (Regular Local Noetherian Ring [99]).
A local Noetherian ring R of Krull dimension d is said to be regular if
its maximal ideal can be generated by d elements.

Lemma 8.2.1

In a Noetherian ring, every set of generators for an ideal contains a finite
generating subset.

8.3 algebras

Definition 8.3.1 (Ring Algebra).
An algebra over a commutative ring is a generalization of the concept of
an algebra over a field, where the base field k is replaced by a commuta-
tive ring R. So let R be a commutative ring. An R-algebra is an R-module
M together with a binary operation called the M -multiplication [·, ·]

[·, ·] : M ×M →M

that satisfies bi-linearity ∀a, b ∈ R,∀x, y, z ∈M :

[ax+ by, z] = a[x, z] + b[y, z] and [z, ax+ by] = a[z, x] + b[z, y]

An alternative definition is given by definition 8.3.2.

Definition 8.3.2 (k-Algebra).
A k-algebra is a k-vector space A together with two linear maps

m : A⊗k A→ A and u : k → A
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such that the maps are unital (see definition 8.3.3) and associative
together with the conditions that both diagrams in figure 18 (the figure
represent the diagrammatic statement of associativity and unit as is
common in category theory [100, Chapter 1]) are commutative (where
s represents the scalar multiplication) and the unit element in A is
obtained as 1A = u(1k).

A⊗A⊗A A⊗A

A⊗A A

m⊗ 1A

1A ⊗m

m

m k ⊗A

A⊗A

A⊗ k

A

u⊗ 1A

s

m

1A ⊗ u

s

Figure 18: k-algebra commutative diagrams

Definition 8.3.3 (Unital Algebra).
Let (AR,m) be an algebra over the ring R. Then (AR,m) is a unitary
algebra if it has an identity element 1A called a Unit of Algebra for m

∃ 1A ∈ AR : ∀a ∈ AR : m(a, 1A) = m(1A, a) = a.

The unit is usually denoted 1 when there is no source of confusion
with the identity elements of the underlying structures of the algebra.
Another commonly used term is unital algebra.

Definition 8.3.4 (Graded Ring).
A graded ring A is a ring that has a decomposition into (abelian)
additive groups:

A =
⊕

n∈N
An = A0 ⊕A1 ⊕A2 ⊕ · · ·

such that the ring multiplication satisfies:

(i) x ∈ As, y ∈ Ar =⇒ xy ∈ As+r
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(ii) AsAr ⊆ As+r.

Elements of any factor An of the decomposition are known as homo-
geneous elements of degree n. An ideal or other subset a ⊂ A is
homogeneous if every element a ∈ a is the sum of homogeneous ele-
ments that belong to a. For a given a these homogeneous elements are
uniquely defined and are called the homogeneous parts of a. Equivalently,
an ideal is homogeneous if for each a in the ideal, when

a = a1 + a2 + · · ·+ an

with all ai homogeneous elements, then all the ai are in the ideal. If I
is a homogeneous ideal in A, then A/I is also a graded ring, and has
decomposition

A/I =
⊕

n∈N
(An + I)/I.

Any (non-graded) ring A can be given a gradation by letting A0 = A,
and Ai = 0 for i > 0. This is called the trivial gradation on A.

Definition 8.3.5 (Graded Module).
A graded module is a left module M over a graded ring A such that

(i) M = ⊕
i∈NMi,

(ii) AiMj ⊆Mi+j .

Graded modules may be considered over non-graded rings by giving the trivial
gradation to the ring. This allows one to consider a sequence of modules as a
single graded module. This is used in homological algebra to extend to chain
complexes some module constructions like direct sum or tensor product.

Definition 8.3.6 (Graded Algebra).
An algebra A over a ring R is a graded algebra if it is graded as a ring.
In the usual case where the ring R is not graded (in particular if R is
a field), it is given the trivial grading (every element of R is of grade
0). Thus R ⊆ A0 and the Ai are R-modules. In the case where the
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ring R is also a graded ring, then one requires that AiRj ⊆ Ai+j and
RiAj ⊆ Ai+j .

Example 8.3.1 (Graded algebras).

• Polynomial rings. The homogeneous elements of degree n are ex-
actly the homogeneous polynomials of degree n.

• The tensor algebra T (V ) of a vector space V. The homogeneous
elements of degree n are the tensors of rank n, Tn(V ).

• The exterior algebra ∧V and symmetric algebra SV are also
graded algebras.

• The cohomology ring H in any cohomology theory is also graded,
being the direct sum of the Hn.

Definition 8.3.7 (k-Algebra Homomorphism).
Given k-algebras A and B, a k-algebra homomorphism is a k-linear
map f : A→ B such that

f(xy) = f(x)f(y),∀x, y ∈ A.

The space of all k-algebra homomorphisms is frequently written as

Homk(A,B).

A k-algebra isomorphism is then a bijective k-algebra morphism.

Let now U and B be two commutative unitary k-algebras. Then the notation

Alg(U,B) = Algk(U,B)

is used for the totality of k-algebra morphisms from U to B which take
the unit element of U into the unit element of B. Next to having an
algebra structure we sometimes have extra structure that is captured by the
co-algebra.
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Definition 8.3.8 (Associative Coalgebra).
A k-coalgebra is a k-vector space C together with two linear maps

∆ : C → C ⊗ C and ε : C → k

called the co-multiplication and co-unit respectively. Again we have ax-
ioms which are now referred to as co-associativity and co-unit giving rise
to commutative diagrams as shown in figure 19 (in categorial language
this is just the dual of the axioms of an algebra, where the arrows of
the diagrams in figure 18 are reversed) such that

(i) (1⊗∆) ◦∆ = (∆⊗ 1) ◦∆

(ii) (1⊗ ε) ◦∆ = (ε⊗ 1) ◦∆

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

∆ ⊗ 1C

1C ⊗ ∆

∆

∆ k ⊗ C

C ⊗ C

C ⊗ k

C

ε⊗ 1C

1k ⊗−

∆

1C ⊗ ε

−⊗ 1k

Figure 19: k-coalgebra commutative diagrams

8.4 hopf algebra

In this section we discuss the concept of Hopf algebras, where the construction
of such an algebra is based on combining an algebra and co-algebra into a
bi-algebra.

Definition 8.4.1 (Bialgebra).
A bialgebra A is a k-vector space

A = (A,m, u,∆, ε)
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where (A,m, u) is an algebra and (A,∆, ε) is a co-algebra such that

(i) ∆ and ε are algebra homomorphisms

(ii) m and u are coalgebra homomorphisms

Assume we have two k-algebras A and B, then A⊗B is also a k-algebra with
the multiplication defined by

(a⊗ b)(c⊗ d) = ac⊗ bd

such that

A⊗B ⊗A⊗B 1A⊗τ⊗1B−→ A⊗A⊗B ⊗B mA⊗mB−→ A⊗B

where
τ : B ⊗A→ A⊗B

is a flipping operation. The unit of A⊗B is defined as

uA⊗B : k ∼= k ⊗ k uA⊗uB−→ A⊗B
uA⊗B(1k) = uA⊗B(1k ⊗ 1k) = 1A ⊗ 1B = 1A⊗B

and in the same way for the co-algebra we have

C ⊗D ∆C⊗∆D−→ C ⊗ C ⊗D ⊗D 1C⊗τ⊗1D−→ C ⊗D ⊗ C ⊗D

where τ is again the flipping function with the co-unit now defined as

C ⊗D εC⊗εD−→ k ⊗ k ∼= k

εC ⊗ εD(1C ⊗ 1D) = ε(1C)⊗ ε(1D) = 1k ⊗ 1k = 1k

We have a special case of the above when A = B and C = D. Notice that a bi-
algebra morphism is both an algebra and co-algebra homomorphism.

Definition 8.4.2 (Bi-ideal).
If

f : A→ B

is a bi-algebra homomorphism then ker f is called a bi-ideal, meaning
that ker f is both an ideal and a co-ideal.

I ⊂ A



8.4 hopf algebra 123

is a co-ideal when
ε(I) = 0

and
∆(I) ⊆ C ⊗ I + I ⊗ C.

Definition 8.4.3 (Hopf Algebra).
Given a commutative ring R, an R-algebra H is a Hopf algebra if it
has additional structure given by R-algebra homomorphisms:

(i) comultiplication ∆ : H → H ⊗R H

(ii) counit ε : H → R

(iii) (antipode) R-module homomorphism λ : H → H

satisfying

(iv) coassociativity: (I ⊗∆)∆ = (∆⊗ I)∆ : H → H ⊗H ⊗H

(iiv) counitarity : m(I ⊗ ε)∆ = I = m(ε⊗ I)∆

(iiiv) antipode : m(I ⊗ λ)∆ = ıε = m(λ⊗ I)∆

where I is the identity map on H,

m : H ⊗H → H

is the multiplication in H, and

ı : R→ H

is the R-algebra structure map for H, also called the unit map.

The symbol ⊗R stresses that the product is R equivariant, meaning that if
either of factors is multiplied with a scalar (an element of R, since we are
considering R-algebras), it can be taken out of the product symbolized by ⊗.
Summarizing this symbolically we have

a ∈ R, h1, h2 ∈ H : ∆(ah1, h2) = a∆(h1, h2).
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Lemma 8.4.1

When I is a bi-ideal of a bi-algebra A, then the operations on A induce
the structure of a bi-algebra on A/I, such that the bi-algebraic structure
is preserved when projecting A on A/I.

Example 8.4.1 (Bialgebras).

(i) Group Algebras : Let G be any group and kG the group algebra.
Defining

∆ : kG→ kG⊗ kG
by

∆(g) = g ⊗ g,∀g ∈ G
and

ε(g) = 1,∀g ∈ G
makes it into a bi-algebra.

(ii) Tensor Algebras: Let V be a vector space and T(V) its tensor
algebra

(T (V ) =
⊕

n≥0
(V ⊗n)),

then defining

∆(V ) = v ⊗ 1V + 1V ⊗ v ∈ T (V )⊗ T (V )

and
ε(v) = 0, ∀v ∈ V

makes into a bi-algebra.

(iii) Universal enveloping algebra U of a Lie Algebra g is a vector space
over a field k with a bilinear, anti-symmetric and "Jacobi Identity"
obeying operation

[·, ·] : g× g→ g.
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The universal enveloping algebra U of g is the factor algebra of
the tensor algebra T (g) by the ideal

I(g) = 〈[x, y]− xy + yx : x, y ∈ g〉

Note that there is a bijection between the left U(g)-modules and
the representations of the Lie Algebra g, i.e. the Lie Algebra ho-
momorphisms

ρ : g→ End(V )

for k-vector spaces V.
• Let

n ≥ 1, g =
n∑

i=1

⊕kxi

with
[xi, xj ] = 0, ∀i, j

then
U(g) ∼= k[x1, · · · , xn]

the commutative polynomial algebra.
• Let n ≥ 2 and sl(n, k) the space of n × n matrices of trace

0, sl(2, k) is 3-dimensional with the usual basis

e =


0 1

0 0


 , f =


0 0

1 0


 , h =


1 0

0 −1




for which
[h, e] = 2e, [h, f ] = −2f, [e, f ] = h

such that we have for the ideal

I(sl(n, k)) = 〈he− e(h+ 2), hf − f(h− 2), ef − fe− h〉

Now it is easy to see that {eif jht : i, j, t ≥ 0} forms a k-basis for
U(sl(n, k)).

Example (iii) above is a special case of the Poincaré-Birkhoff-Witt theorem
(8.4.1), which we state below for completeness.
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Theorem 8.4.1: Poincaré-Birkhoff-Witt

If g is a Lie Algebra with k-basis {x1, · · · , xn} then U(g) has a k-basis
{xt11 , · · · , xtnn : ti ≥ 0}.

As we will see in the construction of GLS, a specific ideal will play a prominent
role in its realization. One of the reasons that this ideal will turn out to be so
important can be explained by some remarks on universal enveloping algebras
of Lie algebras and their representations. Remember that a representation ρ
assigns to any element x of a Lie algebra a linear operator ρ(x). Due to this
linearity these operators not only form a Lie algebra but also an associative
algebra allowing the consideration of products like ρ(x)ρ(y). In general the
result of this product can depend on the chosen representation, but some
properties seem to hold for any representation. The introduction of the uni-
versal enveloping algebra is then a way to single out these universal properties
and study them. It should now be clear that U(g) is a bi-algebra for all Lie
Algebras g with

∆(x) = 1⊗ x+ x⊗ 1
and

ε(x) = 0, ∀g ∈ g.

We then have that
U(g) = T (g)/I(g)

and
T (g)

are bi-algebras with the same definitions for the co-unit and co-multiplication.

Definition 8.4.4 (Opposite Algebra and Co-algebra).
The opposite algebra Aop of a k-algebra A is the same vector space as
A but now with multiplication defined as

∀a, b ∈ A : m′(a, b) := m(b, a).

In the same way we have for the co-algebra C,Cop which is defined on
the same vector space but with

∆Cop := τ ◦∆C
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with τ the flipping operation as defined before in the discussion below
definition 8.4.1.

Definition 8.4.5 (Co-commutative).
A co- or bi-algebra A is called co-commutative if

Aop = A

or thus
∆ = τ ◦∆.

To reduce notations further down this chapter we introduce the Sweedler
notation. Take C a co-algebra and introduce the notation

c ∈ C : ∆(c) =
∑

c1 ⊗ c2.

Considering the associativity axiom we have that

(1⊗∆) ◦∆(c) = (1⊗∆)(
∑

c1 ⊗ c2)

=
∑

c1 ⊗ c21 ⊗ c22

=
∑

c11 ⊗ c12 ⊗ c2

which we could write as ∑
c1 ⊗ c2 ⊗ c3.

In the same way we can continue for more factors

∆n−1 : C → C⊗n.

Using this notation and the right diagram in figure 19 it is easy to see that

c =
∑

ε(c1)c2 =
∑

c1ε(c2)

and that C is co-commutative iff

∆(c) =
∑

c1 ⊗ c2,∀c ∈ C.
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Definition 8.4.6 (Antipode).
We start from the bi-algebra

A = (A,m, u,∆, ε).

A linear endomorphism
S : A→ A

is called an antipode if the diagram in figure 20 commutes (see also
definition 8.4.3 of a Hopf Algebra). Expressed in Sweedler notation this
statement becomes

∀a ∈ A, ε(a) =
∑

a1S(a2) =
∑

S(a1)a2.

A Hopf algebra is then a bi-algebra with an antipode. Hopf algebra
morphisms are then antipode preserving bi-algebra morphisms.

A⊗A A A⊗A

A⊗A A A⊗A

m m

1A ⊗ S u ◦ ε

∆ ∆

S ⊗ 1A

Figure 20: Hopf commutative diagram

Example 8.4.2.
Let G be a group and k any field. Then kG is a Hopf algebra if we define

S(g) = g−1,∀g ∈ G.

Since S is assumed linear by definition this translates in the Sweedler
notation as

1 = ε(g) = gg−1 = g−1g,∀g ∈ G
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Definition 8.4.7 (Convolution Product).
Let

A = (A,m, u)

be an algebra and
C = (C,∆, ε)

a co-algebra over k. Then we can define [101] the convolution product
"∗" over

Homk(C,A)

as
f, g ∈ Homk(C,A), c ∈ C : (f ∗ g)(c) =

∑
f(c1)g(c2).

Proposition 8.4.1

(Homk(C,A), ∗, u ◦ ε)
is an algebra.

The easiest way to see this is by noticing that

m ≡ ∗ : Homk(C,A)→ Homk(C,A),

and
u ◦ ε : Homk(C,A)→ Homk(C,A),

an identity map. Now putting C = A this becomes a bi-algebra with

(Endk(A), ∗, u ◦ ε)

and for a bi-algebra we then have that the antipode S for A is an inverse of
1A in

(Endk(A), ∗, u ◦ ε)
which is uniquely determined due to the uniqueness of inverses.

Corollary 8.4.1

Let
C = (C,∆, ε)
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be any k-co-algebra, then

C∗ = Homk(C, k)

is an algebra with

(f ∗ g)(c) =
∑

f(c1)g(c2),

making C∗ to be commutative if and only if C is co-commutative (8.4.5).

Theorem 8.4.2

Let
H = (H,m,∆, u, ε, S)

be a Hopf algebra, making S a bi-algebra homomorphism from H to
Hopcop

(i) S(m(x, y)) = m(S(y), S(x)), S(1) = 1

(ii) (S ⊗ S) ◦ ∆ = S, ε ◦ S = ε ←→ ∀x, y ∈ H,S(x2) ⊗ S(x1) =∑(Sx)1(Sx)2.

Definition 8.4.8 (Anti-Homomorphism).
An anti-homomorphism of rings is defined by the fact that if R,S are
rings such that

θ : R→ S

satisfies
θ(rt) = θ(t)θ(r)

(notice the change of order !).

Corollary 8.4.2: S : A→ Aop is antipode

Let A be a bi-algebra and S be the map

S : A→ Aop,
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an algebra homomorphism. Then S is an antipode for A.

Example 8.4.3 (Hopf Algebra).
Let g be a Lie Algebra and recall that

U(g) := T (g)/I(g)

then we see that

∀x, y ∈ g : S([x, y]− xy + yx) = −[x, y]− (−y)(−x) + (−x)(−y)
= −([x, y]− xy + yx) ∈ I(g). (57)

S is an anti-automorphism of U(g) making it into a Hopf algebra.

Definition 8.4.9 (Restricted Dual of a k-algebra).
Let A be any k-algebra, then the finite or restricted dual of A is defined
by the set

A◦ = {f ∈ A∗ : f(I) = 0 for some I / A, dimk(A/I) <∞},

where I / A indicates that I is an ideal of A.

We now extend the concept of a module over a ring to a module over a k-
algebra and a k-coalgebra introducing also the concept of a co-module.

Definition 8.4.10 (Module over a k-algebra [101]).
The left module M over a k-algebra A is a k-vector space M with a
k-linear map

λ : A⊗M →M

such that the diagrams shown in figure 21 commute, where again s is the
scalar multiplication, u the algebra unit andm the algebra multiplication
in A.
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A⊗A⊗M A⊗M

A⊗M M

1A ⊗ λ

m⊗ 1M

λ

λ

k ⊗M A⊗M

M

u⊗ 1M

s λ

Figure 21: Module over a k-algebra

Definition 8.4.11 (Comodule [101]).
Starting with a k-coalgebra C, then a right co-module M over C is a
k-vector space M with a k-linear

ρ : M →M ⊗ C,

such that the diagrams in figure 22 commute. Again ∆ represents the
co-algebra multiplication in C.

M M ⊗ C

M ⊗ C M ⊗ C ⊗ C

ρ

ρ

ρ⊗ 1C

1M ⊗ ∆

M ⊗ k M ⊗ C

M

ρ

−⊗ 1
1M ⊗ ε

Figure 22: Comodule over a k-coalgebra

Proposition 8.4.2: Duality

1. Let M be a right co-module for the co-algebra C. Then M is a
left module for

C∗ = Hom(C, k).
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2. Let A be an algebra and M a left A-module. Then M is a right
A◦-comodule if and only if

∀m ∈M, dimk(Am) <∞.

Definition 8.4.12 (Rational Module).
An A-module M with dimk(Am) <∞,∀m ∈M is called rational.

We end this chapter with some comments on tensor products of modules and
co-modules. Next to this we also briefly comment on homomorphism between
modules.

Example 8.4.4 (Modules).

• Tensor products of modules.
Let A be a bi-algebra, and let V and W be left A-modules. Then

V ⊗W

is a left A-module through

a · (v ⊗ w) =
∑

a1v ⊗ a2w.

If we now consider a third A-module X then co-associativity as-
sures that

(V ⊗W )⊗X ∼= V ⊗ (W ⊗X).

In the specific case of the trivial left A-module k (a·v = ε(a)v, a ∈
A, v ∈ k) it is clear that

V ⊗ k ∼= V ∼= k ⊗ V,

as left modules. If A is co-commutative then we also have that

V ⊗W ∼= W ⊗ V,

as left modules with the isomorphism given by the flip function

τ : v ⊗ w → w ⊗ v.
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• Homomorphism of modules.
Let H be a Hopf algebra and V,W left H-modules. Then

Homk(V,W )

is a left H-module with the action

(h · f)(v) =
∑

h1f((Sh2)v), h ∈ H, f ∈ Homk(V,W ).

• Tensor products of comodules.
If B is a bi-algebra and V,W are right B-comodules, then

V ⊗W

is a right co-module with

v ⊗ w 7→
∑

v0 ⊗ w0 ⊗ v1w1.

This concludes our introduction to algebra theory, in the next chapter we
will study algebras that also carry a topological structure forming topological
algebras.



9
TOPOLOG ICAL ALGEBRAS

The following definitions and theorems can be found in [102, 103], where
much more information is available. Here we just state the definitions and
properties relevant for the introduction of GLS (18).

9.1 topological algebra, C ∗ -algebras and banach al-
gebras

Definition 9.1.1 (Topological Algebra).
A topological algebra is an algebra endowed with a non-trivial topology
τ which is compatible with its linear structure such that the map

X × X → X, (x, y) 7→ xy,

is continuous.

Definition 9.1.2 (Normed Algebra).
An algebra A equipped with a norm is called a normed algebra if the
norm is sub-multiplicative

‖ab‖ ≤ ‖a‖ ‖b‖ ∀a, b ∈ A.

A norm gives rise to a metric and from chapter 6 we know that this can
be used to introduce a topology so if A is a normed algebra then the norm
induces a metric on A which in its turn then induces the norm topology on
A .

Lemma 9.1.1: Continuity in Normed Algebras

If A is a normed algebra, then all the algebraic operations are continuous
in the norm topology on A.

135
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proof 9.1.1

Let us for example consider the sub-multiplicativity of the norm, then
we have that

‖xy − ab‖ ≤ ‖xy − xb‖ + ‖xb − ab‖
≤ ‖x‖‖y − b‖ + ‖x − a‖‖b‖, (58)

from which it clearly follows that multiplication is continuous from

A × A → A.

The same goes for addition and scalar multiplication.

Definition 9.1.3 (Involution on an Algebra).
An involution on an algebra α is a map

∗ : A→ A|a 7→ a∗

satisfying

(i) Conjugate linear

(za+ z′b)∗ = za∗ + z′b∗

(ii) Order reversing
(ab)∗ = b∗a∗

(iii) Involutive
(a∗)∗ = a

for all
a, b ∈ α, z, z′ ∈ C.

An algebra with involution is called an ∗−algebra.

Equipping a Banach algebra with an involution allows for the definition of a
so-called C∗−algebra.
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Definition 9.1.4 (C∗−algebra).
A C∗−algebra A is a Banach algebra (Definition 9.1.6) equipped with
an involution that satisfies the compatibility condition between the in-
volutive and metrical structure

‖a∗a‖ = ‖a‖2

A Banach space is a vector space X over the field of real numbers R or
complex numbers C which is equipped with a norm and which is complete
with respect to that norm. Formally, the definition of a Banach space is

Definition 9.1.5 (Banach Space).
A normed space X is said to be a Banach space if for every Cauchy
sequence

{xn}∞n=1 ⊂ X,
there exists an element x ∈ X such that

lim
n→∞

xn = x.

Notice that the completeness refers to the existence of a limit for every Cauchy
sequence such that this limit is an element of the space X. A little remark on
the difference between norms and metrics. In metric spaces, the completeness
is a property of the metric. It is not a property of the topological space itself.
If you move on to an equivalent metric (that is a metric which induces the
same topology), the completeness property can get lost. For norms on the
other hand we have that two equivalent norms on a normed vector space,
where one of them is complete, the other one is also complete. Therefore, in
the case of normed vector spaces, the completeness is a property of the norm
topology, which does not depend on the specific norm. In this sense the norm
is a stronger concept than a metric.

Definition 9.1.6 (Banach Algebra).
A normed algebra which is complete in the metric induced by the norm
is called a Banach Algebra.
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9.2 nuclear multiplicative convex hausdorff algebras
and the gel’fand spectrum.

In the above context a topological algebra isomorphism is an algebra mor-
phism which is also a homeomorphism. This allows for huge structures to be
built on such isomorphisms, of which we introduce some and discuss their
properties.

Definition 9.2.1 (Filter Basis).
A non-empty subset F of a partially ordered set (P,≤) is a filter if the
following conditions hold:

(i) For every x, y ∈ F , there is some element z ∈ F such that z ≤ x

and z ≤ y. (F is a filter base, or downward directed)

(ii) For every x ∈ F and y ∈ P, x ≤ y implies that y ∈ F . (F is an
upper set, or upward closed)

(iii) A filter is proper if it is not equal to the whole set P. This is
sometimes omitted from the definition of a filter.

Definition 9.2.2 (Bases for compatible topologies).
The filter basis B in the algebra X determines a basis at 0 for a com-
patible topology for X iff

(i) B is a neighborhood base at 0 for a topology which is compatible
with X’s linear structure.

(ii) For each V ∈ B there exists a B ∈ B such thata BB ⊂ V
a BB represents the product of two B’s

The following type of induced topology will be very important in the topolo-
gization of the shuffle algebra.

Definition 9.2.3 (Initial Topology).
Let X be an algebra, Y a topological algebra with neighborhood filter
V (0) at 0. Take

A : X → Y
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to be a homomorphism. Then the filter

A−1(V (0))

defines a topology compatible with X’s linear structure. To see that it
is compatible with the algebraic structure as well, we first note that for
any

V ∈ V (0)

there is a
B ∈ V (0)

such that
BB ⊂ V.

Hence
A−1(B)A−1(B) ⊂ A−1(BB) ⊂ A−1(V ).

The topology determined by

A−1(V (0))

is called the initial (inverse image, weak) topology induced by the ho-
momorphism A.

Definition 9.2.4 (Final Topology).
Suppose X is a topological algebra with filter of neighborhoods of 0
denoted by V (0), Y an algebra, and

A : X → Y

a homomorphism. It is easy to see that the collection B of subsets U of
Y such that

A−1(U) ∈ V (0)

forms a base at 0 for a topology compatible with X’s linear structure.
For any U ∈ B we may select B ∈ V (0) such that

BB ∈ A−1(U).
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Thus
A(B)A(B) = A(BB) ⊂ A(A−1(U)) ⊂ U.

Since
A−1(A(B)) ⊃ B ∈ V (0)

it follows that
A−1(A(B)) ∈ V (0)

i.e. that
A(B) ∈ B

so that B is a base at 0 for a topology which is compatible with Y ’s alge-
braic structure. The topology generated by 0 is called the final topology
for Y determined by the homomorphism A.

Suppose V is a vector space over k, a field or subfield of the complex numbers.
A locally convex space is then defined either in terms of convex sets, or
equivalently in terms of semi-norms.

Definition 9.2.5 (Convex space using convex sets).
A subset C in V is called

(i) Convex if for each

x, y ∈ C, tx+ (1− t)y ∈ C,∀t ∈ [0, 1].

In other words, C contains all line segments between points in C.

(ii) Circled if
∀x ∈ C, λx ∈ C

with
|λ| = 1.

If the underlying field k is the real numbers, this means that C
is equal to its reflection through the origin. For a complex vector
space V , it means for any x ∈ C, C contains the circle through x,
centered on the origin, in the one-dimensional complex subspace
generated by x.

(iii) A cone if for every x ∈ C and 0 ≤ λ ≤ 1, λx ∈ C.
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(iv) Balanced if
∀x ∈ C, λx ∈ C

with |λ| ≤ 1. If the underlying field k is the real numbers, this
means that if x ∈ C, C contains the line segment between x

and −x. For a complex vector space V , it means for any x ∈
C, C contains the disk with x on its boundary, centered on the
origin, in the one-dimensional complex subspace generated by x.
Equivalently, a balanced set is a circled cone.

(v) Absorbent or absorbing if the union of tC over all t > 0 is all of
V , or equivalently for every x ∈ V, tx ∈ C for some t > 0. The set
C can be scaled out to absorb every point in the space.

(vi) Absolutely convex if it is both balanced and convex.

More succinctly, a subset of V is absolutely convex if it is closed under
linear combinations whose coefficients absolutely sum to ≤ 1. Such a
set is absorbent if it spans all of V.
A locally convex topological vector space is a topological vector space

in which the origin has a local base of absolutely convex absorbent
sets. Because translation is (by definition of "topological vector space")
continuous, all translations are homeomorphisms, so every base for the
neighborhoods of the origin can be translated to a base for the neigh-
borhoods of any given vector.

Definition 9.2.6 (Convex space using semi-norms).
A semi-norm on V is a map p : V → R such that

(i) p is positive or positive semidefinite

p(x) ≥ 0.

(ii) p is positive homogeneous or positive scalable

p(λx) = |λ|p(x)

for every scalar λ. So, in particular, p(0) = 0.
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(iii) p is subadditive. It satisfies the triangle inequality

p(x+ y) ≤ p(x) + p(y).

If p satisfies positive definiteness, which states that if p(x) = 0 then
x = 0, then p is a norm. While in general semi-norms need not be
norms, there is an analogue of this criterion for families of semi-norms
defined below.
A locally convex space is then defined to be a vector space V along

with a family of semi-norms {pα}α∈A on V. The space carries a natural
topology, the initial topology (9.2.3) of the semi-norms. In other words,
it is the coarsest (weakest) topology for which all mappings

x→ pα(x− x0), x0 ∈ V, α ∈ A,

are continuous. A base of neighborhoods of x0 for this topology is ob-
tained in the following way, for every finite subset ”B” of ”A” and every
ε > 0 let

UB,ε(x0) = {x ∈ V : pα(x− x0) < ε, α ∈ B}.

That the vector space operations are continuous in this topology follows
from properties (ii) and (iii) above. The resulting TVS (Topological
Vector Space) is locally convex because each UB,ε(0) is absolutely
convex and absorbent.

Definition 9.2.7 (Multiplicative Convexity (m-convex)).
A subset U of an algebra X is called multiplicative (idempotent) if

U2 = UU ⊂ U.

It is called multiplicatively-convex or m-convex if it is convex and mul-
tiplicative, absolutely m-convex if it is balanced and m-convex.



9.2 gel’fand spectrum 143

Example 9.2.1 (Multiplicative Convexity).
An immediate example of multiplicative sets is afforded by the spheres,
open or closed, of radius

1/n, n ∈ N

about 0 in any normed algebra. As is apparent, each such sphere is
absolutely m-convex as well.

Definition 9.2.8 (Multiplicative Semi-norm).
A semi-norm p on an algebra X is multiplicative if

p(xy) ≤ p(x)p(y), ∀x, y ∈ X.

We note that for a multiplicative semi-norm p to be non-trivial on an
algebra X, it is necessary and sufficient that p(e) be non-zero. The
trivial semi-norm (i.e. identically zero) is multiplicative and generates
the trivial topology.

Definition 9.2.9 (Locally m-convex Algebras and Fréchet Algebras).
A topological algebra (X, τ) is a locally m-convex algebra (LMC algebra)
if there is a basis of m-convex sets for V (0). We also say that τ is locally
m-convex or is an LMC- topology. X is a locally convex algebra if X is a
topological algebra which carries a locally convex linear space structure.
If, in addition to being locally m-convex, τ is Hausdorff, we say that X
is an LMCH algebra, and τ to be LMCH. An LMC algebra which is a
complete metrizable topological space is a Fréchet algebra.

Proposition 9.2.1

A topological algebra X is locally m-convex iff its topology is generated
by a family of multiplicative semi-norms.

Using the above definitions we can extend the concept of real manifolds, mod-
eled on Rn to spaces that are modeled on Banach, Hilbert or Fréchet spaces
instead. We will discuss this in more detail when considering the Fréchet
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derivative on GLS. We just state here the definition for completeness.

The following space is a generalization of a Banach space, that is locally
convex and complete with respect to a translation invariant metric. However
the metric does not need to arise from a norm (a semi-norm suffices).

Definition 9.2.10 (Fréchet space 1).
A topological vector space X is a Fréchet space if it has the following
properties:

(i) X is Hausdorff

(ii) The topology on X can be induced by a countable family of semi-
norms

‖.‖k , k = 0, 1, 2, · · · .
This means that an open U ⊂ X is open if and only if

∀u ∈ U,∃K ≥ 0, ε > 0 : {ν : ‖ν − u‖k < ε,∀k ≤ K}

is a subset of U .

(iii) X is complete with respect to the family of semi-norms.

Definition 9.2.11 (Hilbert Space).
In order to have a Hilbert space X we need:

(i) A positive definite, sesquilinear form (the inner product) on the
complex linear space X

〈·, ·〉 : X ×X → C

such that
a) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 iff x = 0.
b) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉
c) 〈x, λy〉 = λ〈x, y〉
d) 〈x, y〉 = 〈y, x〉

This makes X into a pre-Hilbert space.
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(ii) A collection of vectors (xn) is said to be orthonormal iff 〈xm, xn〉 =
δmn

Definition 9.2.12 (Compact operator).
An operator L on a Hilbert space H:

L : H → H

is said to be a compact operator if it can be written in the form

L =
N∑

n=1
ρn〈fn, ·〉gn, 1 ≤ N ≤ ∞

where
f1, . . . , fN and g1, . . . , gN

are (not necessarily complete) orthonormal sets. Here,

ρ1, . . . , ρN

are a set of real numbers, the singular values of the operator, obeying
ρn → 0 if N →∞. The bracket 〈·, ·〉 is the scalar product on the Hilbert
space; the sum on the right hand side must converge in the norm.

Definition 9.2.13 (Singular Values of a Compact Operator).
The singular values, or s-numbers of a compact operator

T : X → Y

acting between Hilbert spaces X and Y , are the square roots of the
eigenvalues of the non-negative self-adjoint operator

T ∗T : X → X

(where T ∗ denotes the adjoint of T ).
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Definition 9.2.14 (Nuclear Operator).
An operator that is compact as defined above is said to be nuclear or
trace-class if ∞∑

n=1
ρn <∞

Proposition 9.2.2: Trace of Nuclear Operator on Hilbert Space

A nuclear operator on a Hilbert space has the important property that
its trace may be defined so that it is finite and is independent of the
basis. Given any orthonormal basis {ψn} for the Hilbert space, one may
define the trace as

Tr L =
∑

n

〈ψn,Lψn〉

since the sum converges absolutely and is independent of the basis. Fur-
thermore, this trace is identical to the sum over the eigenvalues of L
(counted with multiplicity).

Proposition 9.2.3: Trace of Nuclear Operator on Banach Space

Let A and B be Banach spaces, and A∗ be the dual of A, that is, the
set of all continuous or (equivalently) bounded linear functionals on A
with the usual norm. Then an operator

L : A→ B

is said to be nuclear of order q if there exist sequences of vectors

{gn} ∈ B

with
‖gn‖ ≤ 1,

functionals
{f∗n} ∈ A∗

with
‖f∗n‖ ≤ 1
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and complex numbers {ρn} with

inf
{
p ≥ 1 :

∑

n

|ρn|p <∞
}

= q,

such that the operator may be written as

L =
∑

n

ρnf
∗
n(·)gn

with the sum converging in the operator norm (see Definition 17.2.1).
With additional steps, a trace may be defined for such operators when A
= B. Operators that are nuclear of order 1 are called nuclear operators:
these are the ones for which the series ∑ ρn is absolutely convergent.
Nuclear operators of order 2 are called Hilbert-Schmidt operators.
More generally, an operator from a locally convex topological vector

space A to a Banach space B is called nuclear if it satisfies the condition
above with all f∗n bounded by 1 on some fixed neighborhood of 0 and
all gn bounded by 1 on some fixed neighborhood of 0.

Definition 9.2.15 (Weak Topology).
The collection of all unions of finite intersection of sets of the form

f−1
i (Oi)

for
f : X → Y

where i ∈ I and Oi is an open set in Yi is a topology. It is called the
weak topology on X generated by the

(fi)i∈I

and we denote it by
σ(X, (fi)fi∈I).

By definition, the functions (fi)i∈I are continuous for this topology.
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Definition 9.2.16 (Weak-∗ Topology).
The weak-∗ topology on X is the topology

σ(X, (f)f∈X∗).

For convenience, it is simply denoted σ(X,X∗).

Definition 9.2.17 (Vanish at infinity).
If X is a locally compact Hausdorff space, then a continuous function
f on X is said to vanish at infinity if

{x ∈ X : |f(x)| ≥ ε}

is compact for all ε > 0. The collection of all such f is denoted by
C0(X).

Definition 9.2.18 (Gel’fand Space or Spectrum).
Let A be a commutative Banach algebra, then we write 4(A) (or 4)
for the collection of nonzero complex homomorphisms

h : A→ C.

Elements of the Gel’fand space are called characters.

Note that definition 9.2.18 does not contain any reference to continuity or
any other assumption on h.

Theorem 9.2.1

Suppose A is a commutative unital Banach Algebra.

(i) 4 6= ∅

(ii) J is a maximal ideal in A if and only if J = ker h for some h ∈ 4

(iii) ‖h‖ = 1,∀h ∈ 4

(iv) ∀a ∈ A : σ(a) = {h(a) = h ∈ 4}
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Lemma 9.2.1

If A is a unital Banach algebra, then every proper ideal is contained in
a maximal ideal and every maximal ideal is closed.

Theorem 9.2.2: Gelfand-Mazur Theorem

A unital Banach Algebra in which every nonzero element is invertible
(that is, a division ring) is isometrically isomorphic to C.

Definition 9.2.19 (Gel’fand Transform).
Let A be a commutative Banach algebra with 4(A) nonempty. The
Gel’fand transform of a ∈ A is the function:

â : 4(A)→ C
∣∣h 7→ â(h) := h(a)

The space4(A) is then called the spectrum of A and if it has an identity
is also called the maximal ideal space of A.

Definition 9.2.20 (Gel’fand topology).
The Gel’fand topology on 4(A) is the smallest topology making each
â continuous.

Lemma 9.2.2: Gel’fand topology

The Gelfand topology on 4(A) is the relative topology on 4(A) viewed
as a subset of A∗ with the weak-∗ topology.

9.3 remarks on gel’fand representations

In this section we try to explain in a bit more detail the importance of the
Gel’fand definitions and theorems, not only because of their relevance in the
rest of this thesis but also because of their importance as a way to generalize
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the space concept which is in some sense an algebraic extension. We men-
tion that extensions of these concepts are now used in a categorial setting
to attempt to re-investigate the foundations (axioms) of quantum mechan-
ics, QFT, computer science and even mathematics itself through either topos
theory or homotopy type theory. We refer the interested readers to [104, 105]
and references therein.

9.3.1 Commutative Banach Algebras

Starting from a commutative Banach algebra A, over the field of complex
numbers we defined in the previous section the characters as the non-zero
algebra homomorphism

φ : A→ C

and wrote4A for the set of these characters of A. It can be shown that every
character on A is automatically continuous, making it a subset of the space
A’s dual space A∗ of continuous linear functionals. Providing the characters
with the relative weak-* topology, 4A is also locally compact and Hausdorff
(Banach-Alaoglu theorem). If the algebra A is now also unital the local com-
pactness property generalizes to compactness. The above definition of 4A
and the topology on it ensures that â (from Definition 9.2.19) is continuous
and vanishes at infinity, furthermore it ensures that a 7→ â defines a norm-
decreasing, unit-preserving algebra homomorphism from A to the continuous
linear functionals on A.
Using the Gel’fand-Mazur theorem (Theorem 9.2.2) one can then demon-

strate that there is a bijection between 4A and the set of maximal proper
ideals in A.

Example 9.3.1.

• A = L1(R), the group algebra of R, then 4A is homeomorphic
to R and the Gel’fand transform of f ∈ L1(R) is the Fourier
transform f̃ .

• A = L1(R+), the L1-convolution algebra of the real half-line, then
4A is homeomorphic to {z ∈ C : Re(z) ≥ 0}, and the Gel’fand
transform of an element f ∈ L1(R+) is the Laplace transform.
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9.3.2 C∗-algebras

Things get very interesting in the case that A is not just a commutative
algebra, but a C∗-algebra. Consider as an example A = C0(X). In this
case one can show that we may identify 4A with X, not just as sets but
as topological spaces. The Gel’fand representation is then an isomorphism!.
Put differently we turned the algebra in a topological space, which has very
nice properties we described in the commutative algebra case. If now A is a
separable C∗-algebra, the weak-* topology is metrizable on bounded subsets.
It then follows that the spectrum of a separable commutative C∗-algebra can
be regarded as a metric space. So the topology can be characterized via
convergence of sequences. It will be exactly this kind of construction we will
need to define GLS.
The above statement can also be translated into a categorial setting where

for C∗-algebras with unit, the spectrum map gives rise to a contra-variant
functor from the category of C∗-algebras with unit and unit-preserving con-
tinuous *-homomorphisms, to the category of compact Hausdorff spaces and
continuous maps.
We do not go deeper into this subject here, but we hope we have convinced

the reader of the importance of the Gel’fand theorems.





10
CATEGOR IES , FUNCTORS AND D I FFERENT IAT IONS

10.1 category

Although this chapter will at first seem a bit out of place, it will become very
relevant when considering shuffle products (see Chapter 11) and their algebra
allowing us to prove some strong properties.

Definition 10.1.1 (Category).
A category C consists of:

(i) a class ob(C) of objects

(ii) a class Hom(C) of morphisms that one can interpret as arrows or
maps between the objects. The morphism f has a unique source
object a and target object b with

a, b ∈ ob(C)|f : a→ b.

(iii) a binary operation

Hom(a, b)×Hom(b, c)→ Hom(a, c)

called composition of morphisms

such that we have:

(iv) (associativity) if f : a → b, g : b → c and h : c → d then
h · (g · f) = (h · g) · f

(iiv) (identity) ∀x ∈ ob(C), ∃ 1 ∈ ob(C)| 1x : x 7→ x

With these properties it is easy to show that there is a unique identity
map.
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10.2 functors

Definition 10.2.1 (Functor).
Let C and D be categories. A functor F from C to D is a mapping
with the following properties

(i)
∀ X ∈ C,∃ Y ∈ D|F : X 7→ Y = F (X)

(ii)
∀ f : X 7→ Y ∈ C,∃ F (f) : F (X) 7→ F (Y ) ∈ D

for a covariant functor and

∀ f : X 7→ Y ∈ C,∃ F (f) : F (Y ) 7→ F (X) ∈ D

for a contravariant functor.

such that the identity and composition of morphisms are preserved i.e.:

(a)
C 3 1C 7→ F (1C) = 1D ∈ D

(b)
F (f ◦ g) = F (f) ◦ F (g)

for a covariant functor or

F (f ◦ g) = F (g) ◦ F (f)

for a contravariant functor.

A functor
F : C → D

is full (resp. faithful, fully faithful) if, for all objects a and b of C, the
map

Hom(a, b)→ Hom(F (a), F (b))

is surjective (resp. injective, bijective).



10.3 differentiations 155

Definition 10.2.2 (Forgetful Functor).
Let C and D be categories such that the object c ∈ C can be regarded
as an object of D by ignoring some of the mathematical structure of c.
A functor U : C → D which in its operation forgets about any imposed
mathematical structure is called a forgetful functor.

Example 10.2.1 (Forgetful Functor).
The following are examples of forgetful functors:

• U : Grp→ Set takes groups into their underlying sets and group
homomorphisms to set maps.

• U : Top → Set takes topological spaces into their underlying
sets and continuous maps to set maps.

• U : Ab → Grp takes abelian groups to groups and acts as
identity on arrows.

10.3 differentiations

Definition 10.3.1 (k-module differentiation).
A differentiation of a k-module U is a morphism of k-modules U,Ω

d : U→ Ω

where Ω is also a U-module such that d obeys the Leibniz rule

∀f, g ∈ U : d(fg) = gdf + fdg.

Definition 10.3.2 (Category of k-module differentiations).
Let U and U′ be k-algebras,

d : U→ Ω
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a differentiation of U and

d′ : U′ → Ω′

a differentiation of U′. Define

Diff(d, d′)

as the totality of pairs
(φ̃, φ̂)

with
φ̃ ∈ Alg(U,U′)

and
φ̂ ∈ Homk(Ω,Ω′)

such that
d′φ̃ = φ̂d,

which makes the diagram representing these maps a commutative dia-
gram, and

f ∈ U, w ∈ Ω⇒ φ̂(fw) = (φ̃f)φ̂w.

We write D for the category of differentiations of commutative unitary
k-algebras with the category morphisms defined as above.

Definition 10.3.3 (Pointed Differentiation).
A pointed differentiation is a pair (d, p) where

d : U→ Ω

is a differentiation and
p ∈ Alg(U, k).

Write PD for the category of pointed differentiations where the mor-
phisms

(d, p)→ (d′, p′)

are given by a pair
(φ̃, φ̂) ∈ Diff(d, d′)
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such that
p = p′φ̃

and write for this category Diff(d, p; d′p′). The category morphisms
then define equivalences of differentiations.

When we will consider paths the fact that

p = p′φ̃,

will guarantee the uniqueness of the initial point of the path.

Definition 10.3.4 (Surjective Pointed Differentiation).
We call a pointed differentiation (d, p) is surjective if d is surjective.

Definition 10.3.5 (Exact sequence [106]).
A sequence of homomorphisms of k-modules

A
f→ B

g→ C

is said to be exact at B if

Im f = ker g.

A sequence of homomorphisms

A0
f0→ A1

f1→ A2
f→ · · · fn−1→ An

is called an exact sequence if every term except the first and the last
are exact. A five term exact sequence

0→ A→ B → C → 0

is said to be short exact.
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Remark 10.3.1 ([106]).

(i) When A = 0, the sequence

0 f→ B
g→ C

is exact iff
ker g = Im f = 0

i.e., g is injective.

(ii) Similarly, when C = 0, the sequence

A
f→ B

g→ 0

is exact iff
Im f = ker g = B.

Definition 10.3.6 (Splitting Pointed Differentiation).
We call the pointed differentiation (d, p) splitting if as a k-module:

U = ker d⊕ ker p

which means that (d, p) is only splitting if and only if

ker d ∩ ker p = 0.

(d, p) is splitting and surjective if and only if

0→ k
u→ U

d→ Ω→ 0

is a short exact sequence (u is the map k → A from the definition of
an algebra A, see Definition 8.3.2). We write SPD for the subcategory
of splitting surjective differentiations of the category PD.

Writing this explicitly gives some intuition on how this works.

up ∈ ker p, ud ∈ ker d :




d(up ⊕ ud) = d(up) = d(p−1(0k))
p(up ⊕ ud) = p(ud) = p(d−1(0Ω))
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We already mention here that these differentiations were used by Chen [107]
to introduce a generalization of the intuitive paths and loops in a manifold
to algebraic paths and loops. These algebraic paths generalize the intuitive
paths much like distributions generalize functions in real calculus. The fact
that a mathematical consistent structure defining these algebraic paths exists
is essential in the construction of GLS.





Part III

GENERAL I ZED LOOP SPACE

The general accepted mathematical model to describe gauge the-
ories are principal fibre bundles, where the gauge fields (or po-
tentials) are identified with sections of a connection one-form in
the gauge bundle. The gauge potentials give rise to a parallel
transport equation in the gauge bundle that can be solved by
using product integrals, first introduced by Volterra. In this part
we shall demonstrate that the solution of the parallel transport
equation can be presented as a Wilson line. We will also demon-
strate its relation to the standard covariant derivative in gauge
theories.
An alternative way to construct a gauge theory is to use the
holonomies in the gauge bundle instead of the gauge potentials.
This approach is allowed by the Ambrose-Singer theorem that
claims that the holonomies contain the same information as the
gauge potential curvatures. However, in this setting there are is-
sues with over-completeness, re-parametrization invariance and
additional algebraic constraints coming from the matrix represen-
tation of the Lie algebra associated with the gauge group. These
issues make straightforward application of the standard loop space
approach to gauge field theories impossible. An interesting (par-
tial) solution to these problems arises if one extends this setting to
so-called generalized loops, first proposed by Chen and further
studied by Gambini et al and Tavares [16, 108, 109]), thus intro-
ducing the GLS approach. We will follow the framework developed
by these authors in our exposition of GLS.





11
THE SHUFFLE ALGEBRA

11.1 introduction

For the moment it is sufficient to describe an n-dimensional manifold as
a topological space, in which a neighborhood of each point is equivalent
(strictly speaking, homeomorphic) to the n-dimensional Euclidean space. The
fundamental geometrical object in a manifold we will be concerned about is a
path. One has a natural intuitive idea of what a path or a loop in a manifold
is. Mathematically one usually defines a path γ in a manifold M as the map

γ : [0, 1]→M, t 7→ γ(t).

For closed paths, which are called loops, one just adds the extra condition
that the initial and final points of the path coincide

γ(0) = γ(1) ∈M.

The notions of paths and loops can be generalized to the so-called algebraic
d-paths, where the d-paths are algebraic objects constructed in such a way
to possess certain desirable properties. The resulting algebraic structure can
then be equipped with a topology, turning it into a topological algebra.
The topology is used to complete the algebraic properties with analytic ones,
allowing one to introduce the necessary differential operators1.
The previous part reviewed some mathematical concepts that we will now

use and extend to introduce and study the above mentioned generalizations
of paths and loops.

11.2 shuffle algebra

Generalization of the concepts of paths and loops require a new algebra, the
shuffle algebra. This algebra is constructed from a new product, the shuffle
product, that is defined through the notion of (k, l)−shuffles. Let us start
with defining these shuffles.

1 Most of the material in this Chapter is based on the original works by Chen [107, 108,
110, 111], where the proofs to a number of the stated theorems can also be found. We skip
those proofs which do not bring more insight than needed into the subject of this text.
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Definition 11.2.1 ((k,l)-Shuffle).
A (k, l)-shuffle is a permutation σ of the k + l letters such that

σ(1) < · · · < σ(k)

and
σ(k + 1) < · · · < σ(k + l).

These shuffles can be traced back to shuffling cards and can also be used in
the definition of the wedge product [106]

f ∧ g (v1, · · · , vk+l) =
∑

σk,l

(sgnσ)f(vσ(1), · · · , vσ(k))g(vσ(k+1), · · · , vσ(k+l)).

Using these (k, l)-shuffles we define a new type of product called the shuffle
multiplication, symbolically represented by "•".

Definition 11.2.2 (Shuffle Multiplication).
Using the notations

ω1 · · ·ωk = ω1 ⊗ · · · ⊗ ωk ∈
k⊗ 1∧

M , k ≥ 1

and
ω1 · · ·ωk = 0 for k = 0.

the shuffle multiplication is given by

ω1 · · ·ωk • ωk+1 · · ·ωk+l =
∑

σk,l

ωσ(1) · · ·ωσ(k+l)

where ∑
σk,l

denotes the sum over all (k, l)-shuffles and ∧1 is the set of

one-forms defined on the manifold M .

The examples below are quite instructive if one is not familiar with the shuffle
product.

Example 11.2.1 (Shuffle Multiplication).
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• Two objects:
ω1 • ω2 = ω1ω2 + ω2ω1

• Three objects:

ω1 • ω2ω3 = ω1ω2ω3 + ω2ω1ω3 + ω2ω3ω1

• Four objects:

ω1ω2 • ω3ω4 = ω1ω2ω3ω4 + ω1ω3ω2ω4 + ω1ω3ω4ω2

+ ω3ω1ω2ω4 + ω3ω1ω4ω2 + ω3ω4ω1ω2 (59)

The shuffle product •, defined as multiplication on the set of forms of a
manifold, can be considered as the symmetric version of the wedge product.
Now let M be a manifold and

Ω =
1∧
M

be the set of one-forms on M . We interpret Ω as a k-module, where for the
moment we assume that k is a general ring of scalars with a multiplicative
unity. Introducing the shuffle product on a k-module Ω defines the shuffle
k-algebra, which is an alternative algebra to the tensor algebra, defined by
the tensor product ⊗.

Definition 11.2.3 (Shuffle k-Algebra).
Let Ω be a k-module (8.1.5) and let T (Ω) be the regular tensor algebra
over k based on Ω. T r(Ω) represents the degree r components of the
algebra (note that T 0(Ω) = k). Changing the regular tensor multiplica-
tion for the shuffle multiplication defined in definition 11.2.2 one gets
a new algebra which is called the shuffle k-algebra Sh(Ω) based on the
k-module Ω.

In this algebra the multiplication m (See Definition 8.3.2) is identified with
the shuffle product such that we can write

m = • : Sh→ Sh

and the algebra unit map u is defined by

u : k → Sh,1k 7→ 1Sh.
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We can now extend the algebraic structure of the k-shuffle algebra by intro-
ducing the k-linear maps ε,∆.

Definition 11.2.4 (Co-unit and Co-multiplication).

ε ∈ Alg(Sh(Ω), k) :




ε(1) = 1 r = 0
ε(ω1 · · ·ωr) = 0 r > 0

(60)

∆ : Sh(Ω)→ Sh(Ω)⊗ Sh(Ω) :





∆(1) = 1 r = 0
∆(ω1 · · ·ωr) =

r∑
i=0

(ω1 · · ·ωi)⊗ (ωi+1 · · ·ωr) r > 0

(61)

The map ∆ is an associative co-multiplication

(1⊗∆)∆ = (∆⊗ 1)∆,

but can also be considered as a k-module morphism. By defining the above
operations on the k-shuffle algebra we have equipped it with a co-algebra
structure, turning it into a bi-algebra (See Definitions (8.3.8) and (8.4.1)).
This bi-algebra becomes a Hopf-algebra after introduction of the antipode
map J , defined as

Definition 11.2.5 (Antipode).
The shuffle algebra antipode is a k-linear map

J : Sh→ Sh

such that
J(ω1 · · ·ωr) = (−1)rωr · · ·ω1. (62)

It is easy to demonstrate that the antipode J has the following properties

• ◦ (J ⊗ 1) ◦∆ = • ◦ (1⊗ J) ◦∆ = η ◦ ε
J(u1 • u2) = J(u2) • J(u1)

J(1) = 1 , J2 = 1 , ε ◦ J = ε

τ ◦ (J ⊗ J) ◦∆ = ∆ ◦ J (63)
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∀u1,u2 ∈ Sh ,

where
• : Sh⊗ Sh→ Sh

denotes shuffle multiplication and

η : k → Sh

the unit map (to avoid confusing with u ∈ Sh). The map

τ : Sh⊗ Sh→ Sh⊗ Sh

is called the transposition map or flipping operation defined as

τ(u1 ⊗ u2) = u2 ⊗ u1 . (64)

Therefore, we have the following Theorem

Theorem 11.2.1: Sh(Ω) is Hopf

The shuffle algebra Sh(Ω) is a Hopf k-algebra with comultiplication ∆
and counit ε as defined in (60) and (61) .

Having now discussed the algebraic structure of the shuffle algebra we can
change our focus to study the algebra morphisms Alg(Sh(Ω), k).

Definition 11.2.6 (Group Multiplication on Alg(Sh(Ω), k)).
Let

αi ∈ Alg(Sh(Ω), k)

be algebra homomorphisms and let us define a multiplication on them

α1α2 ∈ Alg(Sh(Ω), k)

by
α1α2 := (α1 ⊗ α2)∆.

For this multiplication we have

εα1 = α1ε = α1
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and

α1(α2α3) = (α1 ⊗ α2 ⊗ α3)(1⊗∆)∆
= (α1 ⊗ α2 ⊗ α3)(∆⊗ 1)∆
= (α1α2)α3.

We can represent this multiplication diagrammatically as shown in Fig. 23.

Sh(Ω) Sh(Ω) ⊗ Sh(Ω)

k ⊗ k ∼= k

∆

α⊗ β
A
lg(Sh(Ω

), k)

Figure 23: Multiplication of algebra
morphisms.

Sh(Ω)

Sh(Ω) ⊗ Sh(Ω)

k ⊗ Sh(Ω) ∼= Sh(Ω)

k ∼= k ⊗ k

∆

α⊗ 1

β

α⊗ β

Figure 24: Multiplication of algebra
morphisms.

Proposition 11.2.1

The multiplication defined in Definition 11.2.6 turns Alg(Sh(Ω), k) into
a group.

Considering a categorial interpretation we have the following proposition:

Proposition 11.2.2

The map
Sh : Ω→ Sh(Ω)

can be considered as a covariant functor to the category of Hopf k-
algebras on the category of k-modules.

So far we have discussed algebra morphisms of the type Alg(Sh(Ω), k). Let us
now move on to consider morphisms of the type Alg(Sh(Ω), Sh(Ω)). To this
end, we define such a morphism which might look strange for the moment
but will allow us to demonstrate the translational invariance of the group
structure of GLS.
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Definition 11.2.7 (L-operator).
For

α ∈ Alg(Sh(Ω), k)

define
L̃α = (α⊗ 1)∆ ∈ Alg(Sh(Ω), Sh(Ω)) (65)

and
L̂α = L̃α ⊗ 1 ∈ Hom(Sh(Ω)⊗ Ω, Sh(Ω)⊗ Ω). (66)

Proposition 11.2.3: L-operator composition

For
β ∈ Alg(Sh(Ω), k)

we have by Definition 11.2.6 that

βL̃α = αβ

(see also figure 24) and

(L̃αβ, L̂αβ) = (L̃βL̃α, L̂βL̂α).

proof 11.2.1: L-operator compostion

The above proposition is easily demonstrated by

L̃αβ
def= (αβ ⊗ 1)∆
def= ((α⊗ β)∆⊗ 1)∆
= (α⊗ β ⊗ 1)(∆⊗ 1)∆
= (α⊗ β ⊗ 1)(1⊗∆)∆
= (α⊗ L̃β)∆
= L̃β(α⊗ 1)∆
= L̃βL̃α

such that also
L̂αβ = L̃αβ ⊗ 1 = L̂βL̂α
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Note that L̃ε and L̂ε are identity morphisms on Sh(Ω) and Sh(Ω)⊗Ω
respectively.

11.3 shuffle differentiations

In the next Chapter we shall discuss the generalized or algebraic paths and
loops, which are based on shuffle algebra morphisms. Because we are ulti-
mately interested in the mathematically consistent formalism for variations
of these paths and loops, we need the differentiations, introduced in Section
10.3, to be well-defined. To this end we study the application of the k-module
differentiations to the shuffle algebra. Applying definition 10.3.1 with

U = Sh(Ω)

and k-module Ω we get the following map

Sh(Ω) d→ Sh(Ω)⊗ Ω

where Ω now also is a Sh(Ω)-module (shown explicitly in the map above)
and the module conditions (Definition 8.1.5) can be written as:

(i) ω(w1 +Ω w2) = ωw1 +Ω ωw2

(ii) (ω1 +Sh(Ω) ω2)w = ω1w +Ω ω2w

(iii) (ω1 • ω2)w = ω1w ·Ω ω2w

(iv) 1Sh(Ω)w = w,

with
ωi ∈ Sh(Ω),∀i

and
wi ∈ Ω, ∀i.

Definition 11.3.1 (Surjective Shuffle Module Differentiation).
Considering now the k-module

Sh(Ω)⊗ Ω
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as a Sh(Ω)-module

u • (v ⊗ w) = (u • v)⊗ w, u, v ∈ Sh(Ω), w ∈ Ω (67)

we define the surjective differentiation (Definition 10.3.6)

δ ∈ Hom(Sh(Ω), Sh(Ω)⊗ Ω)

as

δ(1) = 0
δ(uw) = u⊗ w

where
u ∈ Sh(Ω) and w ∈ Ω.

The example below of a shuffle product of tensor products is very instructive
and will be used to prove that δ is a differentiation.

Example 11.3.1 (Shuffle product of tensor products).
Let

u1, u2 ∈ T 1(Ω)

and
w1, w2 ∈ T 1(Ω)

such that we have

(u1w1) • (u2w2) = u1w1u2w2 + u1u2w1w2

+ u1u2w2w1 + u2u1w2w1

+ u2w2u1w1 + u2u1w1w2

= (u1w1 • u2)w2 + (u2w2 • u1)w1 (68)

Theorem 11.3.1

δ is a differentiation.
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proof 11.3.1

Let
u1, u2 ∈ T (Ω)

and
w1, w2 ∈ T 1(Ω)

so that we have

(u1w1) • (u2w2) = (u1w1 • u2)w2 + (u2w2 • u1)w1

by the properties of the shuffle multiplication as is discussed above.
Applying δ results in

δ ((u1w1) • (u2w2)) = (u1w1 • u2)⊗ w2 + (u2w2 • u1)⊗ w1

= (u1w1 • (u2 ⊗ w2) + (u2w2 • (u1 ⊗ w1) by definition (11.3.1)
= (u1w1) • δ(u2w2) + (u2w2) • δ(u1w1) (69)

Thus δ obeys the Leibniz rule showing that δ is indeed a differentiation,
according to (Definition 10.3.1).

k Sh(Ω) Sh(Ω)⊗ Ω

k U Ω′

ε δ

p d

θ̃ θ̂

Figure 25: Splitting pointed differential.

For such differentiations we have the following Lemma.

Lemma 11.3.1: Splitting pointed differentiation homomorphism

Let (d, p) be a splitting pointed differentiation (Definition 10.3.6) and
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let there be a commutative diagram of k-module morphisms as shown
in rigure 25 (the double line between the k’s indicates that their values
are equal, and the double arrow heads indicate that the differentiations
are surjective). Defining

θ̃(1) = 1

and
θ̂(u⊗ w) = (θ̃u)θ̂(1⊗ w), ∀u ∈ Sh(Ω), w ∈ Ω

we obtain
(θ̃, θ̂) ∈ Diff(δ, ε; d, p).

Let now
θ ∈ Hom

(
Ω,Ω′

)
,

from which we have an induced homomorphism between the tensor algebras
T (Ω) and T (Ω′) respectively, written symbolically as T (θ). Since the ten-
sor algebra morphism is shuffle product preserving, we can also write it as
Sh(θ). Considering the category of k-modules we can define the following
functor.

Definition 11.3.2 (Covariant Functor to SPD).
Write ∆f for the covariant functor (Definition 10.2.1) to the category
of Splitting Pointed Differentiations (Definition 10.3.6) on the category
of k-modules such that

∆f (Ω) = (δ, ε) = (δ(Ω), ε(Ω))

and for
θ ∈ Hom(Ω,Ω′) : ∆f (θ) = (Sh(θ), Sh(θ)⊗ θ).

Important here is to keep track of the (possibly) confusing notations. Here
Sh(θ) is the image of a morphism in the category of k-modules in the category
of splitting pointed differentiations defined on that k-module under the functor
∆f , thus Sh(θ) is the first part of the morphism (Sh(θ), Sh(θ) ⊗ θ) in the
category of splitting pointed differentiations. A schematic representation of
the above definition is shown in Fig. 26.
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k-module Category

Ω (as k-module)

Ω′ (as k-module)

θ
∈

H
o
m

(Ω
,Ω

′ )

SPD Category

k Sh(Ω) Sh(Ω)⊗ Ω

k U Ω′

ε δ

p d

θ̃
=

S
h

(θ
)

θ̂
=

S
h

(θ
)
⊗
θ

(θ̃, θ̂) = ∆f (θ) = (Sh(θ),Sh(θ)⊗ θ) ∈ Diff(δ, ε; d, p)

∆f

Figure 26: Covariant functor to the category of SPD.

Theorem 11.3.2: Uniqueness

Let Ω be a k-module and (d′, p′) a splitting surjective pointed differen-
tiation with

d′ : U → Ω′

then given
θ ∈ Hom(Ω,Ω′),

there exists a unique

(θ̃, θ̂) ∈ Diff(δ, ε; d′, p′)

such that
∀w ∈ Ω : θ̂(1⊗ w) = θw.

This shows that ∆f is an adjoint to the forgetful functor (Definition 10.2.2) to
the category of k-modules on the category of Splitting Pointed Differentiations
which assigns to each (d, p) the k-module Ω and to each

(φ̃, φ̂) ∈ Diff(d, p; d′, p′)

the morphism φ of k-modules. Taking it one step further by using the fact
that

Sh(Ω)⊗ Sh(Ω)⊗ Sh(Ω)
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is a
Sh(Ω)⊗ Sh(Ω)

module and that
ε⊗ ε ∈ Alg(Sh(Ω)⊗ Sh(Ω), k)

we arrive at the following Lemma.

Lemma 11.3.2

The morphism of k-modules

1⊗ δ : Sh(Ω)⊗ Sh(Ω)→ Sh(Ω)⊗ Sh(Ω)⊗ Ω

is a differentiation, and
(1⊗ δ, ε⊗ ε)

is a splitting surjective pointed differentiation.

We end our treatment of shuffle algebras and their differentiations with prop-
erty of the L-operator, defined in 11.2.3, with respect to the category of
differentiations on the shuffle algebra.

Proposition 11.3.1

(L̃α, L̂α) is an equivalence in the category D (= differentiations), i.e.

L̂αδ = δL̃α.

11.4 summary

In this chapter we used the concepts introduced in the mathematical prelimi-
naries part of this text to first introduce an new product, the shuffle product
and then derive some of its algebraic properties. In the last part we have stud-
ied the behavior of the algebraic structure generated by the shuffle product
under application of some differentiations. These differentiations will be used
in the next chapter to define d-paths and d-loops.
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12.1 introduction

In this chapter we introduce the so called d-paths as discussed by Chen in
[107]. These algebraic paths are a generalization of the usual paths

p : [0, 1]→ γ ⊂M

in a manifold M . Naturally d-loops are the generalization of the usual loops.
As before we only included proofs of Lemmas and Theorems that we consider
to add some insight into the subject.

12.2 algebraic paths

The whole concept of the d-paths is captured in Figure 27, where the prop-
erties of the shuffle product and algebra on the k-module of one-forms on
a manifold M are combined into a consistent mathematical structure that
allows for the generalization of paths on M , algebraic paths or d-paths.
We first give a brief overview of the maps shown in Fig. 27 and a brief

discussion on how they generate the d-paths. After this overview we will
discuss their properties in more detail.
The essential part of this structure is a given pointed differentiation (d, p),

which is mapped to the pointed differentiation (δ, ε) by the equivalence of
differentiations we introduced in Definition 10.3.3. The δ in the Figure is the
differentiation introduced in Definition 11.3.1, and ε is the co-unit from the
co-algebra structure on Sh(Ω). The existence of the ideal I = I(d, p) for
Sh(Ω), which we will discuss below, and (δ1, ε1) the pointed differentiation
induced by (δ, ε) after dividing out this ideal will allow us to factorize d-paths
through this ideal (See the discussion of Figures 16 and 17). χ̃0 and χ̂0 are
the k-module morphisms as defined in Lemma 11.3.1 such that

χ̃0f = pf + df

and
χ̂0w = 1Sh ⊗ w.

177
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k U Ω

k Sh(Ω) Sh(Ω) ⊗ Ω

k Sh(Ω)/I Sh(Ω) ⊗ Ω/δI

p d

χ̃

χ̃0

ε δ

ρ̃

χ̂0

χ̂

ρ̂

ε1 δ1

Figure 27: Path diagram.

ρ̃ and ρ̂ are canonically induced by dividing out the ideal. The maps in the
diagram defined as above, allow to define a d-path from p as a k-algebra
morphism

Sh(Ω)→ k

that can be factored through Sh(Ω)/I (or more correctly through ρ̃). From
the diagram the importance of the ideal I(d, p) should be clear. Before dis-
cussing this ideal in more detail we need to introduce one more type of
differentiation that is defined using an ideal.

Definition 12.2.1 (d-closed differentiation).
Let

d : U→ Ω

be a differentiation. An ideal J of U is called d-closed if dJ is a U-
submodule of Ω and if

JΩ ⊂ dJ.
If J is a d-closed ideal for U, then d induces a differentiation

dJ : U/J → Ω/dJ . (70)
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Let us explain this definition in more detail. The set U is a k-module, such that
(U,+) is an Abelian group and we can use elements of k as "scalars" (see Def-
inition 8.1.5) which we can multiply with elements of U. This multiplication
can be written as the map

k × U→ U.

Similarly (Ω,+) is an abelian group but also a U-module such that the ele-
ments of U now act as "scalars". The differentiation d then takes the ideal J
to a subset of Ω making it a U-(sub)module

U× dJ → Ω.

The term "closed" refers then to the fact that

JΩ ⊂ dJ in Ω

where we the elements of J act as "scalars" being multiplied to the elements
of Ω.
We have seen before that kernels of homomorphism generate ideals. The

next proposition relates the d-closed ideal to a homomorphism so that the
ideal itself is generated by the kernel of the morphism.

Proposition 12.2.1

Let (d, p) and (d′, p′) be pointed differentiations such that (d, p) is sur-
jective and (d′, p′), splitting. If

φ̃, φ̂ ∈ Diff(d, p; d′, p′)

then
ker φ̃

is a d-closed ideal of U.

Therefore J is generated by ker φ̃.

12.3 chen iterated integrals: introduction

Having discussed ideals and their relation to homomorphisms, we would like
to investigate the structure of such ideals. To study these ideals in more detail
we need an extension of the definition of line integrals, which were introduced
by Chen and thus are often referred to as Chen Iterated Integrals.



180 algebraic paths

Definition 12.3.1 (Chen Iterated Integrals).
The line integral along the path γ parametrized by s is given by

Ii(γ) =
b∫

a

dxi(s) = xi(b)− xi(a), (71)

which we now extend recursively for

p ≥ 2

by

Ii1···ip(γ) =
b∫

a

dxip(t) Ii1···ip−1(γt), (72)

where γt represents the part of the path γ, for which the path parameter
s runs from 0 to t (or, equivalently, the coordinates along the path vary
from the point a to the point γ(t)).

However, this definition is coordinate dependent, which is not always de-
sired. Therefore let us give an alternate definition that does not refer explicitly
to coordinates, but only to the variable that parametrizes the path along which
the integrals are evaluated.

Definition 12.3.2 (Chen Iterated Integrals without Coordinates).
Let M be a smooth n-dimensional manifold and write PM for the set
of piecewise smooth paths in M

γ : I →M

where
I = [0, 1]

and
ω1, · · · , ωr ∈

1∧
M
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are real-valued one-forms (respectively complex or GL(n,C) valued).
Using the notations

ω1 ⊗ · · · ⊗ ωr = ω1 · · ·ωr,

ωk(t) ≡ ωk(γ(t)) · γ̇(t),

and
γt : I →M, γt(s) ≡ γ(ts)

the iterated line integrals are defined in an inductive way:

∫

γ
ω1 =

1∫

0

ω1(t)dt

∫

γ
ω1ω2 =

1∫

0




t∫

0

ω1(s)ds


ω2(t)dt

· · ·
∫

γ
ω1 · · ·ωr =

1∫

0

(∫

γt
ω1 · · ·ωr−1

)
ωr(t)dt (73)

The following Proposition claims that the Chen integrals are multiplication
preserving, such that they can be interpreted as homomorphisms. Therefore
we will be able to construct an ideal in the shuffle algebra Sh(Ω) by consid-
ering the kernel of the homomorphism

ω1 · · ·ωn →
∫

γ
ω1 · · ·ωn.

Proposition 12.3.1: Chen Iterated Integrals preserve multiplication

Let γ be a piecewise linear path in the manifold M , i.e.

γ : [0, 1]→M.

Let Ω be the set of real-valued (respectively complex or GL(n,C) val-
ued) one-forms on M . If we define γ as the map

γ : T (Ω)→ R(C, GL(n,C)),
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ω1 · · ·ωn →
∫

γ
ω1 · · ·ωn,

then this map preserves multiplication:
∫

γ
ω1 · · ·ωk

∫

γ
ωk+1 · · ·ωk+l =

∫

γ
ω1 · · ·ωk • ωk+1 · · ·ωk+l. (74)

In the case the one-forms are taking values in C or in GL(n,C), the shuffle
multiplication in the r.h.s. is replaced by the matrix multiplication, but where
the multiplication of the matrix entries get multiplied by means of the shuffle
multiplication. Notice that if we choose to represent a Lie algebra by a sub-
algebra of the algebra of GL(n,C) matrices, Chen integrals can be taken
along horizontal lifts of paths inM when studying gauge theories in a principal
fibre bundle setting (See Chapter 14). This will ultimately allow us to write
down an expression for the parallel transporter in gauge theory.
Before continuing with the derivation of the shuffle ideal, let us give some

examples of the above Proposition.

Example 12.3.1.
∫

γ
ω1

∫

γ
ω2 =

∫

γ
ω1 • ω2

=
∫

γ
ω1ω2 + ω2ω1 (75)

∫

γ
ω1

∫

γ
ω2ω3 =

∫

γ
ω1 • ω2ω3

=
∫

γ
ω1ω2ω3 + ω2ω1ω3 + ω2ω3ω2 (76)

Let us now continue with the derivation of the ideal. To this end consider the
map from Proposition 12.3.1

γ : [0, 1]→M

and let f ∈ U. From the definition of a line integral we can then write

f(γ(t)) = f(γ(0)) +
t∫

0

df = pf +
t∫

0

df,

where we defined the point evaluation map

pf ≡ f(γ(0)).
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Using this result and partial integration we can derive the following line inte-
gral

∫

γ
fω1 =

∫

γ


pf +

t∫

0

df


ω1 =

∫

γ
df ω1 + pf

∫

γ
ω1.

Adding one more ω results in

∫

γ
ω1(fω2) =

1∫

0




t∫

0

ω1

t∫

0

df


ω2(γ(t))dt+ pf

1∫

0




t∫

0

ω1


ω2(γ(t))dt

=
∫

γ
(ω1 • df)w2 + pf

∫

γ
ω1ω2,

where the integrals in the last line are Chen integrals. Extending this procedure,
adding more and more one-forms, we arrive at the general expression

∫

γ
ω1 · · ·ωi−1(fωi)ωi+1 · · ·ωn =

∫

γ
((ω1 · · ·ωi−1) • df)ωi · · ·ωn

+ pf

∫

γ
ω1 · · ·ωn, (77)

where the integrals are again Chen iterated integrals as defined in Definition
12.3.2. Allowing for not only real-valued one-forms and also considering the
line integrals from the endpoint γ(1) we have the following Proposition.

Proposition 12.3.2

∀f ∈ C∞M(resp., C∞M ⊗GL(n,C))

and
ω1, · · · , ωr ∈

1∧
M
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(resp., ∈ ∧1M ⊗GL(n,C)):
∫

γ
df · ω1 · · ·ωr =

∫

γ
(f · ω1)ω2 · · ·ωr − f(γ(0)) ·

∫

γ
ω1 · · ·ωr

∫

γ
ω1 · · ·ωr · df =

(∫

γ
ω1 · · ·ωr

)
· f(γ(1))−

∫

γ
ω1 · · ·ωr−1 · (ωr · f)

∫

γ
ω1 · · ·ωi−1 · (df) · ωi+1 · · ·ωr =

∫

γ
ω1 · · ·ωi−1 · (f · ωi+1) · ωi+2 · · ·ωr

−
∫

γ
ω1 · · · (ωi−1 · f) · ωi · · ·ωr

∫

γ
ω1 · · ·ωi−1 · (f · ωi) · ωi+1 · · ·ωr =

f(γ(0)) ·
∫

γ
ω1 · · ·ωr +

∫

γ
((ω1 · · ·ωi−1) • df) · ωi · · ·ωr

In Chapter 13 we will investigate more properties of these Chen integrals, but
the above definitions and properties are enough to allow for the construction
of the shuffle ideal. From Proposition 12.3.1 we know that the map

γ : T (Ω)→ R

is a homomorphism. Moving all the terms in Eq. 77 to the LHS, the RHS
becomes zero. In this way the new LHS becomes an element of the kernel of
the homomorphism γ. Proposition 8.2.2 now states that this homomorphism
generates an ideal on T (Ω) and hence also on the shuffle algebra Sh(Ω)
according to Proposition 12.3.1. This indicates that we have the ideal

Definition 12.3.3 (Shuffle Ideal).
Let

p ∈ Alg(U, k)

and set
I = I(d, p)

the k-submodule of Sh(Ω) spanned by all

u(fw)v − (u • df)wv − (pf)uwv (78)

for
u, v ∈ T (Ω), w ∈ T 1(Ω), f ∈ U.
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The following Lemma proves that this is indeed an ideal of the k-algebra
Sh(Ω).

Lemma 12.3.1

The k-submodule I(d, p) is an ideal of the k-algebra Sh(Ω).

See [107] for the proof. Note that 1 /∈ I such that the factor algebra Sh(Ω)/I
is again a commutative unitary k-algebra. Having now the ideal I(d, p) on
the shuffle algebra, we can define Chen’s d-path [107]

Definition 12.3.4 (d-Path).
A d-path γ from p is an element of Alg(Sh(Ω), k) such that

γI(d, p) = {0}.

In other words a d-path is an algebra morphism from the shuffle algebra to
the k-algebra that vanishes on the shuffle ideal. Returning for a moment to
Chen integrals, it is clear from their relation to the shuffle algebra’s ideal
that if one takes such an integral over an element of the ideal I(d, p), this
will return zero. This not only demonstrates the link with the ideal being the
kernel of the map ∫

γ

but that Chen integrals are also consistent with the definition of a d-path γ
where one needs to have

γ(I(d, p)) =
∫

γ
(I(d, p)) = 0.

In other words, Chen integrals can be considered as d-paths. We shall come
back to this point in Chapter 13.
Since homomorphisms preserve algebraic structure (shuffle algebra), the

morphisms induced by the Chen iterated integrals can thus be considered as
algebra morphisms. We write Ap for the resulting algebra. This leads us to
the following remark, that will become relevant when introducing GLS.
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Remark 12.3.1.
The kernel of the algebra map

Sh(Ω)→ Ap,

when considering closed d-paths (i.e. loops), does not only contains the
ideal of the shuffle algebra but also

dC∞(M)

that we denote by
〈dC〉.

This generates a new ideal in Sh(Ω) when considered on the space of
closed paths at p

Jp = Ip + 〈dC〉
such that for d-loops we have the isomorphism

Sh(Ω)/Jp ∼= Ap.

In Definition 12.2.1 we introduced the concept of a d-closed ideal. The next
Proposition shows that the shuffle algebra ideal I(d, p) is the least d-closed
ideal.

Proposition 12.3.3: Least δ-Closed Ideal

I is the least δ-closed ideal of Sh(Ω) which is contained in ker ε and
contains all

fw − dfw − (pf)w for f ∈ U, w ∈ Ω.

A proof of this Proposition can be found in [107].
We now introduce the following notation for the canonical morphisms:

δI = δ1 = δ1(d, p) : Sh(Ω)/I → (Sh(Ω)⊗ Ω)/δI
ρ̃ : Sh(Ω)→ Sh(Ω)/I
ρ̂ : Sh(Ω)⊗ Ω→ (Sh(Ω)⊗ Ω)/δI (79)

Since εI = 0, ε has a unique factorization through the ideal (See Figure 28,
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I(d, p) Sh(Ω) Sh(Ω)/I(d, p)

k

i

0 ε1ε

ρ̃

Figure 28: Factorization

where i is the inclusion map)

ε = ε1ρ̃, ε1 ∈ Alg(Sh(Ω)/I, k).

Clearly,
ker δ1 ∩ ker ε1 = 0

such that
(δ1, ε1) = (δ1(d, p), ε1(d, p))

is a splitting surjective pointed differentiation and

(ρ̃, ρ̂) ∈ Diff(δ, ε; δ1, ε1) .

The above combined with the definitions displayed in Figure 27 for χ̃0, χ̂0
shows that

δχ̃0 = χ̂0d

which in general is not the case:

(χ̃0, χ̂0) /∈ Diff(δ, ε; δ1, ε1).

This indicates that we will need an extra condition, which is given by the
Theorem below.

Theorem 12.3.1

Let (d′, p′) be a splitting pointed differentiation, and let

(θ̃, θ̂) ∈ Diff(δ, ε; δ1, ε1)

then
(θ̃χ̃0, θ̂χ̂0) ∈ Diff(d, p; d′, p′)



188 algebraic paths

if and only if
I ⊂ ker θ̃.

Identifying (θ̃, θ̂) with (ρ̃, ρ̂) in diagram 27, it is clear that

I(d, p) ⊂ ker ρ̃

such that the conditions of the above Theorem are satisfied. This is demon-
strated by the next two Corollaries turning diagram 27 into a consistent math-
ematical construct for d-paths.

Corollary 12.3.1

If
χ̃ = ρ̃χ̃0

and
χ̂ = ρ̂χ̂0,

then
(χ̃, χ̂) ∈ Diff(d, p; δ1, ε1).

Corollary 12.3.2

If (d′, p′) is a splitting pointed differentiation and if

(θ̃, θ̂) ∈ Diff(δ, ε; d′, p′)

such that
(θ̃χ̃0, θ̂χ̂0) ∈ Diff(d, p; d′, p′),

then there exists a unique

(Θ̃, Θ̂) ∈ Diff(δ1, ε1; d′, p′)

with
(Θ̃χ̃, Θ̂χ̂) = (θ̃χ̃0, θ̂χ̂0).

Using the ideal I(d, p) of the shuffle algebra any d-path γ starting at p can
be factorized through (see Figure 29)

γ′ ∈ Alg(Sh(Ω)/I, k)
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as
γ = γ′ρ̃.

With the aid of this factorization we obtain

q = γχ̃0 = γ′χ̃ ∈ Alg(U, k).

We call p and q the initial and terminal points of γ with γ being the d-path
from p to q. If γ is a d-path from p to q, then

γ(df) = γ(χ̃0f − pf) = qf − pf

that follows from the factorization through the ideal I(d, p).

I(d, p) Sh(Ω) Sh(Ω)/I(d, p)

k

i

0 γ′γ

ρ̃

k U
p

χ̃χ̃0

q

Figure 29: Factorization d-path

Proposition 12.3.4: Unique initial point

If k is an integral domain(8.2.8), then the initial point of a d-path

γ 6= ε

is unique.

proof 12.3.1

Let γ be a d-path from p as well as from p′. Assuming

γ 6= ε
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there exist
w ∈ T 1(Ω), v ∈ T (Ω)

for which
γ(vw) 6= 0

Let now f be an element of U, we then have

γ((fw)v) = γ(dfwv) + (pf)γ(wv) = γ(dfwv) +
(
p′f
)
γ(wv)

From this it follows that
pf = p′f

such that we indeed have a unique initial point for the d-path γ.

From the exposition above one might be inclined to think that the algebraic
structure might depend on the initial point p ∈ M . The following Lemma
shows that this it not the case, i.e. the algebraic structure is preserved under
translation of the path to another initial point.

Lemma 12.3.2

If γ is a d-path from p to q, then

L̃γI(d, p) = I(d, q) (80)

proof 12.3.2

We know from Proposition 11.3.1 that (L̃γ , L̂γ) is an equivalence in the
category of differentiations D, such that L̃γI(d, p) is indeed a δ-closed
ideal of Sh(Ω). Hence

L̃γ(fw − df w − (pf)w) = (γ ⊗ 1)∆(fw − df w − (pf)w)



12.3 chen integrals 191

and we obtain

∆(fw) = fw ⊗ 1 + 1⊗ fw
(γ ⊗ 1)∆(fw) = γ(fw) + fw

∆(df w) = 1⊗ df w + df w ⊗ 1 + df ⊗ w def ∆
(γ ⊗ 1)∆(df w) = df w + γ(df w) + γ(df)w

∆(pf w) = pf w ⊗ 1 + 1⊗ pf w
(γ ⊗ 1)∆(p fw) = (pf)γ(w) + pf w

summing all the above and using that γ is a d-path we get

L̃γ(fw − dfw − (pf)w)
= γ(fw) + fw − dfw − γ(dfw)− γ(df)w − (pf)γ(w)− pfw
= fw − γ(fw − dfw − pfw)− qfw − dfw + pfw − pfw
= fw − dfw − (qf)w,

where we used
γ(I) = 0,

such that by Proposition 12.3.3

I(d, q) ⊂ L̃γI(d, p).

Applying the same reasoning to L̃γ−1 we obtain

I(d, p) ⊂ L̃γ−1I(d, q)

such that
L̃γI(d, p) ⊂ I(d, q) .

This shows that
I(d, p) ≡ I(d, q)

This Lemma now gives an interpretation of the L-operator we introduced in
Definition 11.2.3: it is the operator, associated to a path γ from p to q, that
translates the algebra ideal I(d, p) at p to the algebra ideal I(d, q) at q, the
endpoint of the d-path γ.
Having defined d-paths as the algebra morphism Alg(Sh(Ω), k) that vanish

on the ideal I(d, p), we can wonder about the composition and inverses of
these d-paths. The composition of paths can be interpreted as a multiplication
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in the space of d-paths where this multiplication is given by Definition 11.2.6
for

γ1, γ2 ∈ Alg(Sh(Ω), k).
As this multiplication turned the algebra homomorphisms into a group the
same will also be true for d-loops, for d-paths this will turn out to be a
semi-group1.

Theorem 12.3.2

If γ1 is a d-path from p to q and if γ2 is a d-path from q to q′, then
γ1γ2 is a d-path from p to q′, and γ−1

1 is a d-path from q to p.

proof 12.3.3

Since
γ1γ2I(d, p) = γ2L̃γ1I(d, p) = γ2I(d, q) = 0 (81)

γ1γ2 is a d-path from p. For

f ∈ U

(γ1γ2)(df) = γ1(df) + γ2(df) = q′f − pf, (82)

meaning that q′ is the end point of γ1γ2. Next to this we also have

γ−1
1 I(d, q) = γ−1

1 L̃γ1I(d, p) =
(γ−1

1 γ1)I(d, p) = (ε)I(d, p) = 0 (83)

and

γ−1
1 (df) = −γ1(df) = pf − qf (84)

Hence γ−1
1 is a d-path from q to p.

12.4 connectedness

In the previous Sections we have formally introduced Chen’s generalization
of the intuitive idea of paths in a given space. Naturally, similarly to the case

1 This is due to the fact that the endpoint and initial points of two d-paths need not to
coincide.
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of paths in a topological space, we can wonder when a space is connected
with respect to these d-paths. Spaces that turn out to be connected with
respect to these d-paths are referred to as d-connected as compared to the
path connected ones.

Definition 12.4.1 (d-Connectedness).
If

∀p, q ∈ Alg(U, k)

there always exists a d-path from p to q, then U is called d-connected.

In topology continuous maps transform path connected spaces to path con-
nected spaces, can we make a similar statement for d-connected? The answer
is provided by the following Proposition

Proposition 12.4.1: Maps Between d-Connected Spaces

Let
(φ̃, φ̂) ∈ Diff(d, d′) .

If U′ is d′-connected and if φ̃ induces a surjective map from Alg(U′, k)
onto Alg(U, k) then U is d-connected.

d-paths are defined by means of a differentiation (d, p) that then returns the
ideal I(d, p) on which the d-path vanishes. Not surprisingly we have that if
two points are points in a d-connected space, i.e. they can be connected by
a d-path, their differentiations are in the same equivalence class.

Proposition 12.4.2: Equivalence of Differentiations

If U is d-connected, then

∀p, q ∈ Alg(U, k)

the differentiations δ1(d, p) and δ1(d, q) are equivalent.

Having defined d-connectedness, we can introduce d-discrete points.
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Definition 12.4.2 (d-Discrete Point).
Any

p ∈ Alg(U, k)

is said to be a d-discrete point if there exists no d-path

γ 6= ε from p.

From the definition of d-discrete points we can derive when

w ∈ Ω

is trivial.

Definition 12.4.3 (P-trivial).
Let

P ⊂ Alg(U, k)

contain at least one d-nondiscrete point. We say that

w ∈ Ω

is P -trivial if, for any d-path γ from any p ∈ P and for any

u1, u2 ∈ T (Ω) , f ∈ U , γ(u1(fw)u2) = 0.

We call
f ∈ U

P -trivial if df is P -trivial and if fw is P -trivial for any

w ∈ Ω.

Notice that not every point of Ω is P -trivial, otherwise P would only consist
of d-discrete points. Moreover, we see that

1 ∈ U

is not P -trivial.
Let UP be the quotient k-algebra of U over the ideal of the P -trivial el-

ements of U and let ΩP be the quotient of the U-module of Ω over the
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U-submodule of the P -trivial elements of Ω. Obviously ΩP , is also an UP -
module. The differentiation d maps the ideal of the P -trivial elements of U
into the submodule of the P -trivial elements of Ω and therefore induces the
following differentiation:

Definition 12.4.4 (P-trivial differentiation).
dP : UP → ΩP

Let
π̃P ∈ Alg(U,UP )

and let
π̂P ∈ Hom(Ω,ΩP )

be canonical projection homomorphisms. Then

πP = (π̃P , π̂P ) ∈ Diff(d, dP ).

Observe that UP ,ΩP and πP depend only on the d-nondiscrete points of P .
The projection π̃P induces an injective map

Alg(UP , k)→ Alg(U, k).

Proposition 12.4.3

Let k be an integral domain (See Definition 8.2.8). The totality of the
d-non-discrete points of P is contained in the image of the injective
map

Alg(UP ,K)→ Alg(U, k).

Being only interested in non-trivial elements, we introduce reduced spaces
that only contain non-trivial elements.

Definition 12.4.5 (d-reduced).
U is called d-reduced if Alg(U, k) contains at least one d-non-discrete
point and if the only Alg(U, k)-trivial element of U is zero.
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Theorem 12.4.1

Let
Alg(U, k)

be the disjoint union of P and Q satisfying the following conditions:

(i) Each of P and Q contains at least one d-non-discrete point.

(ii) There exists no d-path from any p ∈ P to some q ∈ Q.

Let
θ̃ ∈ Alg(U,UP ⊕ UQ)

be given by
θ̃f = π̃P f + π̃Qf, (85)

If U is d-reduced, then θ̃ is injective, i.e. Alg(U, k) is a sub-direct sum
of UP and UQ.

The above concepts assures the mathematical consistency of the concept of
path reduction that will be introduced in the next chapter.

12.5 d-loops

Before discussing the Chen iterated integrals in more detail we make a few
comments on d-loops. Generalized loops or d-loops can be naturally defined
as d-paths where the initial and end points coincide, but in this case the ideal
on which they vanish needs to be extended with

{dU}.

This is obvious when we interpret Chen integrals as d-paths since they return
zero over this set, such that the set

{dU}

needs to be added to the algebra ideal I (d, p)2.

2 See also Remark 12.3.1
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Definition 12.5.1 (d-loop).
A d-path from p to p will be called a d-loop from p. Then

{dU}

stands for the ideal of Sh(Ω) generated by

dU ⊂ T 1(Ω).

Then
γ ∈ Alg(Sh(Ω), k)

is a d-loop from p if and only if γ annuls the ideal

I (d, p) + {dU} , of Sh(Ω).

To reduce notations we introduce

Definition 12.5.2 (Shc(d, p)).
We define

Shc(d, p)

to be the quotient k-algebra

Sh(Ω)/(I + {dU}),

where
I = I(d, p).

The shuffle algebra Shc(d, p) is unitary and commutative with respect to the
shuffle product. After introduction of the multiplication from Definition 11.2.6
and taking Theorem 12.3.2 into account we have that d-loops also form a
group. In the Section 11.2 we have shown that Sh(Ω) is a Hopf-algebra,
which induces a Hopf algebra structure on Shc:

Theorem 12.5.1

Shc(d, p) is a Hopf k-algebra with a co-multiplication ∆c, a co-unit εc
and antipode Jc , respectively, induced by ∆, ε and J .
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When considering loops in topology, this is usually associated to the funda-
mental group, which is independent of the base point of the loops. In the case
of d-loops we have similar properties, namely that the Hopf-algebra structure
and the group structure of Shc is independent of the base point of the loops.
Therefore we have the Proposition

Proposition 12.5.1

If γ is a d-path from p to q, then the Hopf k-algebras Shc(d, p) and
Shc(d, q) are isomorphic.

From this proposition we naturally have

Corollary 12.5.1

If γ is a d-path from p to q, then the group of d-loops from p is isomor-
phic with the group of d-loops, from q.

12.6 summary

In the previous Sections we have introduced Chen’s d-paths and d-loops as
algebra morphisms. We discussed some of their properties, emphasizing on
the importance of the ideals of algebra morphisms, relating ideals and algebra
morphism kernels. The shuffle algebra ideal was constructed from Chen’s gen-
eralization of line integrals. In the next Chapter we shall discuss the relation
between d-paths and Chen integrals in more detail.



13
CHEN ITERATED INTEGRALS

13.1 introduction

In this chapter we will revisit Chen’s iterated integrals, following the papers
by Chen [107, 108, 110, 111] and Tavares [16]. We will discuss in more detail
how they can be interpreted as d-paths and d-loops.

13.2 d-loops and chen iterated integrals

In this Section we present some of the properties of Chen iterated integrals
that will be used for introducing the group of generalized loops.
Before we do this, we start with explaining in more detail the relation-

ship between Chen’s integrals and the previously defined d-loops. Remark
12.3.1 demonstrated that the integral algebra Ap is isomorphic to the alge-
bra Shc(d, p). A d-loop γ is then an algebra morphism Alg(Sh(Ω), k)
that vanishes on the ideal

I (d, p) + {dU}.

As we have discussed in the previous section, this ideal is also an ideal of the
algebra of Chen iterated loop integrals Ap, by definition. The fact that this
is an isomorphism of algebras allows for the identification of a d-loop with an
element of A∗p, the dual space of Ap formed by the real (complex,GL(n, C))
valued linear functionals on Ap, such that we have

Alg(Shc(d, p), k) 3 γ →
∮

γ
∈ A∗p . (86)

The interesting part about this identification will emerge when we discuss the
relation between Chen’s integrals and the solution of the parallel transport
equation in gauge theory (see Section 16). Keeping a principal fibre bundle
setting in mind, we shall assume the one-forms, used in the functionals

ω1 · · · ωr → X ω1 ···ωr =
∫
ω1 · · · ωr

199
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to be Lie algebra-valued, where the integral is a Chen integral. Put differently,
we shall assume

ωi ∈
1∧
M ⊗ gl(g),

where gl is a matrix representation (i.e., an element of GL(n,C)) of the Lie
algebra g, which explains the presence of

ωi ∈
1∧
M ⊗GL(n,C)

in many of the previous and following definitions and properties of Chen
iterated integrals.

13.3 chen iterated integrals: properties

In Chapter 12 we introduced Chen iterated integrals (Definitions 12.3.1 and
12.3.2) discussing some of their properties. The main goal of this section is
to extend them with properties that are relevant with respect to GLS.
We start by considering several elementary properties concerning the be-

havior of the Chen integrals, similar to the properties of regular line integrals.
Firstly we investigate the behavior of these integrals with respect to interme-
diate points along the path of integration. The result is the following Lemma

Lemma 13.3.1: Intermediate Points

For

a ≤ c ≤ b , γc ∼
c∫

a

, and γc ∼
b∫

c

we have

Ii1···ip(γ) = Ii1···ip(γc) + Ii1···ip−1(γc)Iip(γc)
+ Ii1···ir(γc)Iir···ip(γc) + · · ·+ Ii1···ip(γc) (87)

proof 13.3.1

The Lemma can be proved by induction. It is clear that

Ii(γ) = Ii(γc) + Ii(γc)
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Using the induction hypotheses that Equation (87) is valid for p− 1 we
can derive

Ii1···ip(γ) =
∫ c

a
Ii1···ip−1(γt)dxip(t) +

∫ b

c
Ii1···ip−1(γt)dxip(t)

= Ii1···ip(γc) +
∫ b

c

(
Ii1···ip−1(γc) + Ii1···ip−2(γc)Iip−1(γtc)

+ · · ·+ Ii1···ip−1(γtc)
)
dxip(t)

= Ii1···ip(γc) + Ii1···ip−1(γc)Iip(γc)
+Ii1···ir(γc)Iir···ip(γc) + · · · Ii1···ip(γc)

Secondly we can ask how these integrals transform under a re-parametrization,
which is answered by the Proposition

Proposition 13.3.1: Re-parametrization
∫

γ
ω1 · · ·ωn

is invariant under orientation preserving re-parametrizations.

Remark 13.3.1.
I would like to point out at this point that there are approaches where
one does not use a re-parametrization equivalence relation [112], mean-
ing that in this case parametrizing a path with a parameter t ∈ [0, 1] is
not equivalent to the same path parametrized by a parameter q ∈ [0, 2]
for instance.

Having the above properties we consider Chen integrals over a composition
of paths. Let therefore α and β be two paths with the endpoint of α equal
to the starting point of β (let us call this point c). Composing these paths
we form the path αβ (that means β after α). Applying Lemma 13.3.1 to this
composite path αβ with the point c taken as an intermediate point we have
the Lemma

Lemma 13.3.2: Combining paths
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Ii1···ip(αβ) = Ii1···ip(α) + Ii1···ip−1(α)Iip(β)
+ Ii1···ir(α)Iir···ip(β) + · · ·+ Ii1···ip(β) (88)

Using the notations of Definition 12.3.2, this can be rewritten as

Proposition 13.3.2: Composition of Paths

If
α, β ∈ PM,

the space of paths in the real smooth manifold M , i.e.

α, β : [0, 1]→M

with
α(1) = β(0),

then we can compose the paths using Equation (87) . When composing
the paths, the Chen integrals change in the following way (where we
introduced the notion of an inverse path):

∫

α·β
ω1 · · ·ωr =

r∑

i=0

∫

α
ω1 · · ·ωi ·

∫

β
ωi+1 · · ·ωr (89)

∫

α−1
ω1 · · ·ωr = (−1)r

∫

α
ωr · · ·ω1 (90)

for
ω1, · · · , ωr ∈

1∧
M

and with the convention that
∫

γ
ω1 · · ·ωr = 1, if r = 0.

When applied to

ω1, · · · , ωr ∈
1∧
M ⊗GL(n,C)

(i.e. general linear group complex matrix-valued one-forms), Eq. (90) is
replaced by ∫

α−1
ω1 · · ·ωr = (−1)r

∫

α
[ωTr · · ·ωT1 ]T (91)



13.3 chen iterated integrals: properties 203

with ωT the transpose of the matrix ω (associated with the matrix
function).

The matrix valued one-forms in the Proposition are matrix functions, which we
will define in Section 15.2. Again considering a principal fibre bundle approach
to the formulation of gauge theories (Section 14) we shall identify the gauge
potentials Aµ with such one-forms, where the matrices stem from a GL(n,C)
representation of the Lie algebra.
We introduce now the following notation to avoid overloading of equations

in what follows

Xω1···ωr : PM→ C, Xω1···ωr(γ) =
∫

γ
ω1 · · ·ωr = γ(ω1 · · ·ωr), (92)

where
∫
γ is interpreted as a d-path and we considered the one-forms ωi to be

complex-valued,

ωi ∈
1∧
M ⊗ C.

PM represents here the space of d-paths. An extension to complex matrix
valued one-forms, and thus to Lie algebra valued one-forms as well is straight-
forward. The example below might be instructive to understand the notation
92.

Example 13.3.1.

Xω1ω2(α) =
∫

α
ω1ω2,

where
ω1, ω2 ∈

1∧
M ⊗GL(n,C)

are matrices of one-forms on M , is a matrix in GL(n,C) with the
elements given by:

(∫

α
ω1ω2

)i

j
=
∫

α
(ω1)ik ⊗ (ω2)kj (93)

Considering Chen integrals as d-paths and d-loops, we can derive some extra
notions related to d-paths from the above properties.
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Definition 13.3.1 (Elementary Equivalent Paths).
Two paths are called elementary equivalent if

αββ−1γ = αγ.

This equivalence induces an equivalence relation on the d-paths and
thus also induces equivalence classes of paths [αγ].

Definition 13.3.2 (Piecewise Regular Paths).
A piecewise regular path is a path in PM with non-vanishing tangent
vectors.

Definition 13.3.3 (Reduced Paths).
A path is called a reduced path if it is a piecewise regular path, which
does not belong to the type

∀β, αββ−1γ.

Combining these Definitions with Equations (89) and (90) allows to demon-
strate that the functionals X defined in (92) depend only on the equivalence
class and not on the specific path representing the class. As an example it
is clear that γ and γββ−1 are representatives of the same class. From the
composition of paths property and inverses of the Chen integrals we derive

Xω1···ωn(γ) = Xω1···ωn(γββ−1).

This is often graphically represented in the literature on loop spaces as in
Figure 30, with functions X having the property

Xω1···ωn(γ) = Xω1···ωn(γββ−1)

sometimes referred to as Stokes functionals. The above properties allow
us to demonstrate that if we have a reduced piecewise regular path γ there
always exist one-forms such that the functionals Xω1···ωr(γ) are not zero.
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γ γ

β β−1

≡

Figure 30: The property of path reduction.

Lemma 13.3.3: Non-Vanishing Chen Integrals

If
γ 6= ε

(identity, co-unit), a reduced piecewise regular path in PM, then one
can find one-forms

ω1, · · · , ωr ∈
1∧
M,

1∧
M ⊗GL(n,C),

for r ≥ 1, such that
Xω1···ωr(γ) 6= 0

More importantly, this Lemma is used to prove that the functional Xω1···ωr

can be used to separate points in the space of d-paths and d-loops.

Theorem 13.3.1: Separation property theorem

Two piecewise regular paths α, β are equivalent if and only if

Xω1···ωr(α) = Xω1···ωr(β) (94)
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for any one-forms

ω1, · · · , ωr ∈
1∧
M , r ≥ 1

In other words d-paths, defined by Chen integrals, are equivalent to exactly
one reduced path and these paths can be distinguished from each other by the
functionals Xω1···ωr . Chen demonstrated in [108] the following Theorem, that
states that if the d-paths of α and β respectively return the same value for the
exponential homomorphism Θ, then α and β only differ by parametrization
and left translation (Lie) provided they are reduced (see Definition 13.3.3):

Theorem 13.3.2

Let Θ be the (formal) exponential homomorphism:

Θ(α) = 1 +
∞∑

p=1

∑∫

α
ωi1 · · ·ωipXi1 · · ·Xip , (95)

where the Xj are non-commutative indeterminates with respect to a
base

ω1, · · · , ωm
of the Maurer-Cartan forms (g−1dg) of a real Lie group G, and Θ(α)
is in an element of the G. Then one of two irreducible piecewise regu-
lar continuous paths α and β can be obtained from the other by left
translation and change of parameter if and only if

Θ(α) = Θ(β).

Identifying the exponential homomorphism with the parallel transporter or
Wilson line, the above theorem strengthens the equivalence relation on d-
paths and d-loops induced by path reduction from Definition 13.3.3. In other
words the parallel transporter can be used to distinguish or separate d-paths
and d-loops, a fact that will be quite helpful when topologizing the algebra
Ap.
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13.4 summary

We have successfully made the connection between the shuffle product and
the Chen Iterated Integrals, showing that there exists an algebra morphism
between them that conserves the algebraic structures of the shuffle algebra.
Applying the last theorem to loops shows the first and second step in the
construction of the equivalence class that will deal with the over-completeness
of loop space, while preserving the desired algebraic and differential structures.
The first step was done by introducing re-parametrization equivalence and the
second by identifying loops that have an equal exponential homomorphism.





14
GAUGE F I E LDS AS CONNECT IONS ON A PR INC IPAL
BUNDLE

A mathematical point of view on Quantum Field Theory suggests that the
fundamental interactions between matter fields can be conveniently expressed
in a geometrical setting by using principal fibre bundles. This Chapter intro-
duces some of the basic concepts of fibre bundle theory, which will be used
to derive the parallel transport equation. At a later stage in this text we will
link the solution of this equation to the concept of Wilson lines. We comment
that principal fibre bundles are not the only method to provide a geometrical
description of physical interactions. Depending on the point of view of the
user, other approaches, which in some sense are closer to the ideas of Quan-
tum Mechanics, are provided by (Lie) algebroids (see for instance [113]) and
non-commutative geometry (see for instance [114]).
Note that the exposition below is far from complete and much more detail

can be found in the standard references [115–118] which we used as a basis
for this section.

14.1 principal fibre bundle, sections and associated
vector bundle.

We start with the definition of a principal (Yang-Mills) fibre bundle.

Definition 14.1.1 (Yang-Mills principal fibre bundel).
A Yang-Mills principal fibre bundle

P (M4, G, π)

consists of the following elements:

1. A differentiable manifold P , which is called the total space

2. A Minkowskian manifold M4, referred to as the base space

3. A gauge (Lie) group G , which is called the fibre

209
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4. A surjective map
π : P →M4,

referred to as the projection, and its inverse image

π−1(x) ≡ Gx ∼= G,

the fibre at x.

This geometrical structure has the following properties

(i) A Lie group G (in Yang-Mills theories it is SU(N)), called the structure
group, acts on the fibres from the left

(ii) An open cover {Ui} of M4 together with the diffeomorphisms

φi : Ui ×G→ π−1(Ui)

such that
(π ◦ φi)(x, g) = x.

The φi are referred to as the local gauge or local trivialization since φ−1
i

maps π−1(Ui) onto the direct product Ui ×G

(iii) Using the notation
φi(x, g) = φi,x(g)

the map
φi,x : G→ Gx

is a diffeomorphism. On
Ui ∩ Uj 6= ∅,

it is required that

Sij(x) ≡ φ−1
i,xφj,x : G→ G

is an element of the structure group G. Both maps φi and φj are related
by a smooth map

Sij : Ui ∩ Uj → G

such that
φj(x, g) = φi(x, Sij(x)g).

We refer to the Sij as the transition functions or passive gauge trans-
formations.
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In such a principle fibre bundle the structure group is isomorphic to the fibre,
inducing a right action of G on the fibre that does not depend on the local
gauges1. This right action of G on π−1(Ui) is defined by

φ−1
i (pg) = (x, gig)

or
pg = φi(x, gig) , ∀g ∈ G

and
p = π−1(x).

To see that this is independent of local gauges, let us consider an

x ∈ Ui ∩ Uj ,

for which:
pg = φj(x, gjg) = φj(x, Sjigig) = φi(x, gig), (96)

demonstrating that it indeed does not depend on the choice of local gauge. In

M4

P

π

G

Ui

p

pg

gi

gig
φi

Figure 31: Right action of G on a fibre.

these principal fibre bundles we will define a kind of inverse of the projection
maps called sections

1 Actually a fibre bundle is an equivalence class on the fibers.



212 gauge fields

Definition 14.1.2 (Section).
A section is a smooth map

s : M4 → P

such that
π ◦ s = 1M4 .

Clearly sections and local gauges are intimately related, as such given a
section si(x) over Ui, one can reconstruct the corresponding local gauge φi.
To this end, let us consider

p ∈ π−1(x), x ∈ U,

for which there exists a unique element

gp ∈ G

such that
p = si(x)gp.

Now we define φi through its inverse

φ−1
i (p) = (x, gp).

Notice that in this specific gauge we get

si(x) = φ(x, e),

where e is the identity element in the structure group G, often referred to as
the the canonical local trivialization or local gauge.
The gauge potentials, used in gauge theory exist naturally in these prin-

cipal fibre bundles that form a well-defined geometrical space. In this way
we have a geometrical representation of the gauge potentials, of course we
will also need a geometrical representation of the matter fields ψ(x). This
geometrization of matter fields however, requires an additional mathematical
structure called the associated vector bundle

E(M4, G, V, P, πE).
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This vector bundle E is constructed from a k-dimensional vector space V on
which the gauge group G (from the principal fibre bundle) acts from the left.
This left action is defined in the following way

g ∈ G, (p, v) ∈ P × V : (p, v) 7→ (pg, ρ−1(g)v) (97)

with ρ is the k-dimensional unitary representation of G.
The vector bundle

E(M4, G, V, P, πE)

is then an equivalence class
P × V/G,

such that
(p, v) ≡ (pg, ρ−1(g)v).

Notice that the action of ρ−1(g) is from the left on elements of the vector
space. The bundle E now also has a fibre bundle structure

E = P ×ρ V

where
πE : E →M4, πE(p, v) = π(p)

with local trivialization

Φi : Ui × V → π−1
E (Ui).

Similar to the principal fibre we have again transition functions, which are
now ρ(Sij(x)) and where the Sij are transition functions on P .
A local section si on P then do not only determine a local gauge on P ,

but also on E:

φ−1
i,x ◦ si(x) = 1G (98)

Φ−1
i,x ◦ si(x) = 1V , (99)

with
Φ−1
i,x : π−1

E (x)→ V, x ∈ Ui.

This associated vector bundle

E(M4, G, V, P, πE)

can be used to geometrize the matter fields.
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Definition 14.1.3 (Matter field).
A matter field of type (ρ, V ) is defined as a section

ψ : M4 → E.

Being expressed in a gauge-independent way, it yields:

Definition 14.1.4 (Gauge Independent Definition Matter Field).
A matter field of type (ρ, V ) is defined as a map

ψ̃ : P → V

that is equivariant under the structure group

G : ψ̃(pg) = ρ(g−1)ψ̃(p), ∀p ∈ P, ∀g ∈ G.

where any explicit reference to points in M4 have disappeared.

P

π

M4

si

G
φi

V
Φi

E

πE

M4

ψ

ψ̃

Figure 32: Definition matter field

14.2 gauge potential as a connection

In general it is agreed that in a gauge theory the gauge fields (or potentials)
can be introduced as Lie algebra-valued one-forms on the principal fibre bundle
associated to the gauge theory2.

2 Let us emphaze that the identification of fields, as defined in quantum field theory in
physics, with sections of the principal (gauge) fiber bundle is only valid in the perturbative
sector. In the non-perturbative regime the situation becomes much more involved, see [119]
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In this Section we will discuss this identification. A gauge field Aµ (also
referred to as gauge potential) transforms under a gauge transformation U(x)
as

Aµ → U(x)Aµ(x)U †(x)∓ i

e0
∂µU(x)U †(x),

with e0 the coupling constant. This differs from the transformation law for
vectors and looks more like the transformation of a connection

ω → g−1ωg + g−1∂µg.

This is the initial motivation to the search for a connection that might be
identified somehow with the gauge fields. Before we can look for such an iden-
tification we of course first need to know what a connection is. Therefore we
will first define connections by giving two equivalent definitions of connection,
the first of which is more used by mathematicians, while the second one is
more favored by physicists.

Definition 14.2.1 (Connection (math)).
Let P

(
M4, G, π

)
be a principal fibre bundle, then a connection on P

is a unique separation of the tangent space TpP into the vertical space
VpP and the horizontal subspace HpP , such that

(i)
TpP = HpP ⊕ VpP

(ii) A smooth vector field X on P can be split in

XH ∈ HpP

and
XV ∈ VpP,

such that
X = XH +XV

(iii) HpgP = Rg∗HpP for p ∈ P, g ∈ G

for a discussion on this subject. Sometimes one runs into problems of uniqueness, even in
the perturbative sector. An example of this is, for instance, the U(1)-bundle of the sphere
S2 [115].
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In this Definition the vertical space is considered to be tangent to the fibre Gx
at p, which we shall discuss in more detail below. The last statement in the
Definition says that the horizontal spaces HpgP and HpP on the same fibre
are related by a linear transformation induced by the right action of the gauge
group G. To many people it is not immediately clear what these horizontal
and vertical space are, therefore many physicist prefer the definition of a
connection one-form due to Ehresmann. This definition requires some facts
about Lie groups and Lie Algebras, so before giving the second definition of
a connection we briefly revise some of these facts.
Consider a Lie group G to which we can associate a left (Lg) and a right

action (Rg) defined respectively as

Lgh = gh

and
Rgh = hg

for g, h ∈ G. The left action Lg generates the map (push-forward, see Defi-
nition 7.2.12)3

Lg∗ : Th(G)→ Tgh(G)

between tangent spaces at different points in the Lie group G. By requiring
that

Lg∗X|h = X|gh.
we can define a left-invariant vector field X . These left-invariant vector fields
generate a Lie algebra of G, which we write as g. Now

X ∈ g

is specified by its value at the Lie groups unit element e, and vice versa. This
means there exists a vector space isomorphism between the Lie algebra g and
the tangent space of G at the unit element, i.e.,

g ∼= TeG.

From Lie theory we learn that the Lie algebra g has a set of generators {Tα}
that also define the structure constants

fγαβ : [Tα, Tβ] = fγαβTγ .

3 Notice that this map is well-defined due to the fact that this action is an automorphism of
G.
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Next to the left and right action we can also define an adjoint action on
Lie groups

ad : G→ G, h 7→ adgh ≡ ghg−1,

which in its turn generates the adjoint map

Adg : Th(G)→ Tghg−1(G)

between tangent spaces. By choosing h ∈ G in the adjoint map to be the
unit element e, we immediately see that Adg maps

Te(G) ∼= g

onto itself.
The above facts about Lie groups and algebras, will now allow us to un-

derstand how to construct the vertical subspace VpP , defined in Definition
14.2.1, of the tangent space of the principal fibre bundle TpP . Let

A ∈ g

and p ∈ P , then the right action:

Rexp [tA]p = pe[tA], (100)

defines a curve through p parametrized by t. Observe that

π(p) = π
(
pe[tA]

)
= x

implies that the curve lies in Gx, the fibre above

x ∈M4.

Using an arbitrary smooth function

f : P → R

we define the vector
A] ∈ TpP

as
A]f(p) = d

dt
f
(
pe[tA]

)
|t=0. (101)
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This vector is tangent to P at p and by definition thus also tangent to G
such that we have

A] ∈ VpP.
Constructing such an A] at each point of P , builds a vector field also noted as
A] referred to as the fundamental vector field generated by A. We obtain,
therefore, the isomorphism

] : g→ VpP : A 7→ A],

and identify the complement of VpP with HpP from Definition 14.2.1.
We are now in a ready to define the Ehresmann connection one-form:

Definition 14.2.2 (Ehresmann Connection One-Form).
A connection one-form

ω ∈ T ∗P ⊗ g

is a projection of TpP onto the vertical component

VpP ∼= g,

the Lie algebra of G. This one-form possesses the following properties:

(i)
ω(A]) = A

with
A ∈ g

(ii)
R∗gω = Adg−1ω

or
X ∈ TpP : R∗gωpg(X) = ωpg(Rg∗X) = g−1ωp(X)g

From this Definition, the horizontal subspace HpP can be identified with the
kernel of ω. Recall that the goal of this chapter is to relate Aµ to a Lie
algebra-valued one-form. Now we have constructed a one-form, so the next
question is how to relate the gauge fields Aµ and the Ehresmann connection
one-form.
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Take an open covering {Ui} ofM4 and let si be a local section on each Ui.
Using the Ehresmann connection ω define the Lie algebra-valued one-form Ai
on Ui by4:

Ai ≡ s∗iω ∈
1∧

(Ui)⊗ g. (102)

This shows how to get the gauge fields from the connection one-form. The
inverse is also possible, given a gauge field and a section

si : Ui → π−1(Ui),

we can reconstruct a connection one-form ω by the following Theorem

Theorem 14.2.1

Given a g-valued one-form Ai on Ui and a local section

si : Ui → π−1(Ui) ,

there exists a connection one-form ω whose pull-back by

s∗i is Ai

Remark that the connection one-form ω can be defined globally, while the
Lie algebra-valued one-form Ai cannot due to the local sections si. Theorem
14.2.1 is an existence Theorem for a connection one-form ω under a given
gauge potential Ai in Ui but it does not say whether it is unique. The unique-
ness requires an extra condition, called the compatibility condition. The
condition follows from the fact that we need to accommodate that

ωi = ωj , on Ui ∩ Uj

with
ωi = ω|Ui .

This restriction clearly has something to do with the transition function associ-
ated to the change from Ui to Uj , so we can expect a statement that restricts
the transition functions. The explicit form of this condition can derived by ap-
plying the connection one-form ω to Equation (103) in the following Lemma

4 The indices i refer to the covering and not to the space-time indices µ that accompany
each Ai in Ui for a specific i.
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Lemma 14.2.1

Let P (M4, G) be a principal fibre bundle and si, sj local sections over
Ui and Uj , respectively, such that

Ui ∩ Uj 6= ∅.

For
X ∈ TpM

with
p ∈ Ui ∩ Uj , si∗X, sj∗X

satisfy
sj∗X = Rtij∗(si∗X) +

(
t−1
ij dtij(X)

)]
, (103)

where
tij : Ui ∩ Uj → G

is the transition function.

After application of ω to Equation (103), and using the identity

ω(sj∗) = s∗jω

together with the second property of Definition 14.2.2, we obtain

Aj = t−1
ij Aitij + t−1

ij dtij . (104)

Now identifying the Aj with gauge potentials , we have for the components

A2µ = g−1(p)A1µ(p)g(p) + g−1(p)∂µg(p), (105)

which is identical to a gauge transformation in gauge theory. In local coordi-
nates it reads

Ai =
(
−igAaµtadxµ

)
i
, (106)

where g is now the coupling constant and ta are the Lie algebra generators.

14.3 horizontal lift and parallel transport

In the previous section we found that the tangent space TP of the principal
fibre bundle P

(
M4, G, π

)
can be split in a horizontal and vertical part. This

splitting allows us to define the so-called horizontal lift of a curve in the
base manifold M4.
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Definition 14.3.1 (Horizontal lift).
Let P

(
M4, G, π

)
be a principal fibre bundle and

γ : [0, 1]→M4

a curve in M4. Then a curve

γ̃ : [0, 1]→ P

is said to be a horizontal lift of γ if the tangent vector to

γ̃(t) ∈ Hγ̃(t)P.

From this Definition we derive the following Theorem

Theorem 14.3.1

Let
γ : [0, 1]→M4

be a curve in M4 and let

p ∈ π−1(γ(0)).

Then there exist a unique horizontal lift γ̃(t) in P such that

γ̃(0) = p

and corollary:

Corollary 14.3.1

Let γ̃′ be another horizontal lift of γ such that

γ̃′(0) = γ̃(0)g.

Then
γ̃′(t) = γ̃(t)g, ∀t ∈ [0, 1]

The last statement of the Corollary makes the global gauge symmetry appar-
ent, a global right action does not change the connection on the principal
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γ(t)

p0

γ̃(t)

p1p0g

γ̃(t)g

p1g

Figure 33: Horizontal lifts of a curve.

fibre. Let X be the tangent vector of γ(t) at γ(0), using the horizontal lift
we have that

X̃ = γ̃∗X

is tangent to γ̃ at p = γ̃(0). Given that this lifted tangent vector is horizontal
by definition, we get

ω(X̃) = 0.
Using the fact that the transition functions are elements of G, Equation (103)
can be rewritten as

X̃ = g−1
i (t)si∗Xgi(t) +

(
g−1
i (t)dgi(X)

)]
. (107)

Application of the one-form ω to this result returns

0 = ω(X̃) = g−1
i (t)ω(si∗X)gi(t) + g−1

i (t)dgi(t)
dt

, (108)

the parallel transport equation. Expressing this result with gauge potentials
by using

ω(si∗X) = s∗iω(X) = Ai(X)
in Eq. (108) it follows that the parallel transport equation in the local form
reads

dgi(t)
dt

= −Ai(X)gi(t) (109)
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14.4 summary

After introducing principal fibre bundles and noticing that the gauge fields
transform like a connection, we investigated the possibility of identifying
gauge fields with such a connection. As it turns out this is possible, if we
identify the gauge potentials with the pull-backs of sections of the Ehres-
mann one-form. Although this one-form is defined globally, i.e. the gauge
symmetry applies all over the base manifold M4, the gauge potentials can
only be written down locally due to their dependence on the existence of
local sections. As a second major result in this chapter we were able to use
this relation between the gauge fields and sections of one-forms to derive the
gauge theory variant of a parallel transport equation. In the next chapter we
will introduce the mathematical tools that will eventually allow us to find, at
least locally, a solution of this equation.





15
SOLV ING MATR IX D I FFERENT IAL EQUAT IONS BY
CHEN ITERATED INTEGRALS

15.1 introduction

In the previous chapter we have derived the parallel transport equation in
gauge theory. Choosing a matrix representation for the Lie gauge group gen-
erators turns this equation into a matrix differential equation. The question
then arises how to solve such an equation. Finding an answer to this question
is the subject of this chapter. We will see that Chen iterated integrals play an
important role in the set of solutions, moreover if the solution of the parallel
transport equation is expressed with these integrals the Wilson line emerges
which we will demonstrate explicitly in the next chapter.

15.2 derivatives of a matrix function

Assuming the reader is familiar with basic matrix theory, we will only define
the derivative and product integral of a matrix function

A : [a, b]→ Rn×n,

which is just a matrix-valued function. For now we restrict ourselves to real-
valued matrices, but most definitions and properties can be straightforwardly
extended to complex matrices.
If we want to define the derivative of a matrix function we first need to

define what we mean with the differentiability of a matrix function.

Definition 15.2.1 (Differentiablility of a matrix function).
A matrix function

A : [a, b]→ Rn×n

is called differentiable at a point x ∈ (a, b) if all its entries

aij , i, j ∈ 1, ..., n

225
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are differentiable at x ∈ [a, b], where the entries are considered to be
real-valued functions

aij : [a, b]→ R .

If the matrix function A is differentiable we use the notation:

A′(x) =
{
a′ij

}n
i,j=1

. (110)

Having a differentiable matrix function A we can now define not one, but two
derivatives.

Definition 15.2.2 (Left and Right derivative of a matrix function).
Let

A : [a, b]→ Rn×n

be a differentiable and regular (single-valued and analytic) matrix func-
tion at x ∈ (a, b) then we define the left derivative of A at x as

d

dx
A(x) = A′(x)A−1(x) =

lim
∆x→0

A(x+ ∆x)A−1(x)− I
∆x , (111)

and similarly the right derivative as:

A(x) d
dx

= A−1(x)A′(x) =

lim
∆x→0

A−1(x)A(x+ ∆x)− I
∆x . (112)

Similar to the case of scalar real valued functions the derivatives at the end-
points of the interval [a, b] are defined1 by using the matrix entries aij . Both,
the left and right derivatives of a matrix function share many properties with
the common derivatives of functions, but care must be taken in some cases.
To demonstrate this we just mention the application to a product.

Theorem 15.2.1

1 Here the left and right refer to approaching the endpoints of the interval from the left or
the right and not to the derivatives of the matrix function.
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Let
A1, A2 : [a1, a2]→ Rn×n

be differentiable and regular matrix functions at

x ∈ (a1, a2).

Hence one gets

d

dx
(A1A2) = d

dx
A1 +A1

(
d

dx
A2

)
A−1

1 = A1

(
A1

d

dx
+ d

dx
A2

)
A−1

1

(113)

(A1A2) d
dx

= A2
d

dx
+A−1

2

(
A1

d

dx

)
= A−1

2

(
A1

d

dx
+ d

dx
A2

)
A2.

(114)

Theorem 15.2.2

Let
A1, A2 : [a, b]→ Rn×n

be differentiable and regular matrix functions at

x ∈ (a, b),

such that:
d

dx
A1 = d

dx
A2, (115)

then there exists a constant matrix A3 ∈ Rn×n such that

A2(x) = A1(x)A3, ∀ x ∈ {a, b}.

15.3 product integral of a matrix function

Naturally, after having defined the derivatives of a matrix function, we are
now interested in integrals of matrix functions. Let

A : [a, b]→ Rn×n

be a matrix function and D a partition of the interval [a, b] defined as

D : a = t0 ≤ ξ1 ≤ t1 ≤ ξ2 ≤ · · · ≤ tm−1 ≤ ξm ≤ tm = b, (116)
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Next we introduce the notations:

∆ti = ti − ti−1, i = 1, ...,m (117)
ν(D) = max

1≤i≤m
∆ti, (118)

and:

P (A,D) =
1∏

i=m
(I +A(ξi)∆ti) =

(I +A(ξm)∆tm) · · · (I +A(ξ1)∆t1) (119)

P ∗(A,D) =
m∏

i=1
(I +A(ξi)∆ti) =

(I +A(ξ1)∆t1) · · · (I +A(ξm)∆tm). (120)

Volterra [120] then defined the left and right integral of the matrix function
A as:

b∫

a

{aij} = lim
ν(D)→0

P (A,D), Left integral (121)

{aij}
b∫

a

= lim
ν(D)→0

P ∗(A,D), Right integral, (122)

where
lim

ν(D)→0
M(D) = M, (123)

is defined as
∀ ε > 0, ∃δ > 0,

such that
|M(D)ij −Mij | < ε

for every partition D of [a, b] as defined in Eq. (116). Starting from Volterra’s
definition for the integrals we can now define the left and right product inte-
grals

Definition 15.3.1 (Left and Right Product Integrals).
Let

A,B : [a, b]→ Rn×n



15.3 product integral of a matrix function 229

be a matrix function. If the limits

lim
ν(D)→0

P (A,D) =
b∏

a

(I +A(t)dt), (124)

lim
ν(D)→0

P ∗(A,D) = (I +A(t)dt)
b∏

a

(125)

exist then they are called respectively the left and right product integral
of A over [a, b].

The relation with the usual Riemann integrals, becomes clear by noticing
that a matrix function A is Riemann integrable if its matrix entries aij are
Riemann integrable functions on [a, b]. In this case one has

b∫

a

A(t)dt =





b∫

a

aij(t) dt





n

i,j=1

. (126)

Assuming Riemann integrability we can expand the integrals of a matrix
function which will allow us to relate them to the Chen iterated integrals.
This expansion is given by the following Theorem:

Theorem 15.3.1

Let
A : [a, b]→ Rn×n

be a Riemann integrable matrix function, then the left and right product
integrals exist and are given bya

x∏

a

(I +A(t)dt) = I +
∞∑

k=1

x∫

a

tk∫

a

· · ·
t2∫

a

A(tk) · · ·A(t1)dt1 · · · dtk,

(127)

(I +A(t)dt)
x∏

a

= I +
∞∑

k=1

x∫

a

tk∫

a

· · ·
t2∫

a

A(t1) · · ·A(tk)dt1 · · · dtk,

(128)

where the series converge absolutely and uniformly for

x ∈ [a, b].
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a Notice the ordering of the matrix functions under the integral signs.

The following Theorem 15.3.1 can then be proven

Theorem 15.3.2

Let
A : [a1, b]→ Rn×n

be a Riemann integrable matrix function, and let

Y1(x) =
x∏

a

(I +A(t)dt), (129)

Y2(x) = (I +A(t)dt)
x∏

a

, (130)

then
∀ x ∈ [a1, b]

they satisfy the integral equations

Y1(x) = I +
x∫

a

A(t)Y1(t) dt (131)

Y2(x) = I +
x∫

a

Y2(t)A(t) dt. (132)

15.4 continuity of matrix functions

In order to continue towards our goal of finding solutions to the type of
differential matrix equation that was generated in the derivation of the parallel
transport equation in gauge theory we need to define the continuity of matrix
functions. Similarly to the differentiability of the matrix function we define
continuity through the matrix entries aij .

Definition 15.4.1. Let

A : [a, b]→ Rn×n
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be a matrix function, then we call A continuous if the entries aij of A
are continuous functions on [a, b].

This definition now permits us to write down the types of differential equations
we require, which are obtained by differentiating the integral equations of
Theorem 15.3.2.

Theorem 15.4.1

Let
A : [a, b]→ Rn×n

be a continuous matrix function, then

∀ x ∈ [a, b]

the product integrals

Y1(x) =
x∏

a

(I +A(t)dt), (133)

Y2(x) = (I +A(t)dt)
x∏

a

(134)

satisfy the conditions

Y ′1(x) = A(x)Y1(x), (135)
Y ′2(x) = Y2(x)A(x). (136)

Using the symbolic notations for the left and right derivatives defined in
section 15.2 the Equations (135) and (136) can be rewritten as

d

dx

x∏

a

(I +A(t)dt) = A(x),

(I +A(t)dt)
x∏

a

d

dx
= A(x). (137)

Moreover, we have

Corollary 15.4.1

A function
Y : [a, b]→ Rn×n
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is a solution of the equation:

Y ′(x) = A(x)Y (x), x ∈ [a, b] (138)

and satisfies
Y (a) = I

if and only if Y solves the integral equation

Y (x) = I +
∫ x

a
A(t)Y (t)dt, x ∈ [a, b] (139)

From the above it is now evident that solutions of Eqs. (135) and (136)
respectively can be written as

Y1(x) = I +
∞∑

k=1

∫ b

a

∫ xk

a
· · ·
∫ x2

a
A(xk) · · ·A(x1)dx1 · · · dxk, (140)

Y2(x) = I +
∞∑

k=1

∫ b

a

∫ x1k

a
· · ·
∫ x2

a
A(x1) · · ·A(xk)dx1 · · · dxk, (141)

which will be compared to the expressions given in Example 15.5.1.
All the above properties and theorems can by readily extended to matrix

functions
A : [a, b]→ Cn×n,

such that this is not an obstacle when considering matrix representations of
gauge groups such as, for example, SU(N).

15.5 iterated integrals and path ordering

In this Section we relate the product integrals from the previous Section
with Chen’s iterated integrals which will also make the link with Wilson lines
apparent. To this end we start with an example from Chapter 4 of the book
by Peskin and Schroeder [19]

Example 15.5.1.
Consider the Schrödinger equation for a quantum evolution operator
(recall the discussion in the first Chapter) in the interaction representa-
tion

i∂tU(t) = H(t)U(t), U(0) = 1 (142)
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where H(t) is the interaction Hamiltonian, an operator function acting
on Hilbert space. This unitary operator can be treated as well as a
complex-valued scalar matrix function

U(t) : [0, t]→ C.

The iterated integrals which contribute to the solution of Eq. (142) can
be rewritten as

∫ t

0

∫ t1

0
· · ·
∫ tl−1

0
H(t1) · · ·H(tl)dt1 · · · dtl =

1
l!

∫ t

0
dt1 · · · dtlT{H(t1) · · ·H(tl)}, (143)

where T indicates the time-ordering operation for the Hamilton operator
H(t). That is this operator orders the H(t)...H(t′) in time.
The previous expression then allows for the formal notation for the

unitary operator U(t)

Uτ (t) ≡ P exp
[
−i
∫ t

0
dt′H(t′)

]
, (144)

which could be interpreted as a parallel propagator along a path through
the time axis

τ = [0, t].

Consider now the matrix function

A : [0, 1]→ Cn×n,

so that A can be written as
A = S ◦ φ

where
φ : [0, 1]→M

t 7→ φ(t) = xµ(t)

and
S : M → Cn×n

xµ 7→ S(xµ) = A(x(t)).
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Applying the same reasoning as in Example 15.5.1, we see that the equation

Y ′(t) = A(t)Y (t), (145)

has a unique solution

Y (t) = T exp
[∫ t

0
dt′ A(t′)

]
= P exp

[∫ y

0
dx S(x)

]
(146)

given the initial condition
Y (0) = 1

and where the time-ordering is now replaced with path-ordering, which orders
the operators S(x) along the path in the manifoldM . In this case the variable
that parametrizes the path acts as the time parameter t from the example.
We will return to this type of equations in the next Chapter, after a brief

discussion on the relation between product integrals and the Chen integrals
from Chapter 13.
Returning to Eq. (73), it is easy to see that the operators ωi are ordered

under the integral sign. So one might as well rewrite this as:
∫ 1

0

(∫

γt
ω1 · · ·ωr−1

)
ωr(t)dt = P

{∫

γ
· · ·
∫

γ
ω1 · · ·ωr

}
, (147)

where we considered the integrals between the braces as ordinary integrals
and not as a Chen Iterated integrals. Using this result we can rewrite the
function Y (t) from equation (146) with Chen iterated integrals:

Y (t) = P exp
[∫ y

0
dx S(x)

]
= exp

[∫

γ
S

]
, (148)

if one identifies the operator S(x) dx (interpreted as a form) with the forms

ω = ω1 = · · · = ωr

from (73). Some care is necessary with this last statement about the ωi. We
can indeed all identify them with ω, which will still depend the coordinates
xµ after having chosen a coordinate chart. Consider the simple example

ω1ω2 7→ ω(x1)ω(x2)

to clarify this statement.
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15.6 summary

Starting from the properties of the derivatives and integrals of matrix func-
tions we were able to express the solution of a matrix differential equation
of the type to which also the parallel transport equation belongs with Chen
iterated integrals. We showed that, considering such solutions, path-ordering
naturally emerges and is not introduced by hand. In the next chapter we will
apply this acquired knowledge to write down (locally) an explicit solution for
the parallel transport equation.





16
WILSON L INES , PARALLEL TRANSPORT AND
COVAR IANT DER IVAT IVE

16.1 introduction

This Chapter is devoted to showing the link between the local solution of
the parallel transport equation and Wilson lines. Furthermore we will discuss
how the covariant derivative follows from the parallel transport equation, also
explicitly demonstrating the link with Wilson lines during that process. The
relation between the field strength tensor and the curvature of the gauge
potentials will be discussed. We end with defining the holonomy group, and
stating the Ambrose-Singer theorem that ultimately allows for the gauge the-
ory to be expressed in a loop space setting.

16.2 parallel transport and wilson lines

Returning to the parallel transport equation in gauge theory Eq. (109)

dgi(t)
dt

= −Ai(X)gi(t), (149)

where Ai is a Lie algebra-valued (i.e. a complex matrix when considering ma-
trix representations for the Lie algebra) one-form. Given the initial condition

gi(0) = e,
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where e is the unit element in the gauge group G, a solution can be expressed
using product integrals or Chen integrals, yielding (locally) the formal solution
in the form of a functional of an arbitrary path γ(t)

gi[γ(t)] = P exp


−

t∫

0

Aiµ(x(t))dx
µ

dt
dt



γ

(150)

= P exp


−

γ(t)∫

γ(0)

Aiµ(x)dxµ



= exp


−

∫

γ

Ai


 (151)

where
Aiµ = igAai µta

with horizontal lift
γ̃(t) = si[γ(t)]gi[γ(t)]. (152)

In Eq. (151) the integrals are interpreted as Chen iterated integrals. More
specifically we find that if

g0 ∈ π−1[γ(0)],

then
g1 ∈ π−1[γ(1)]

is the parallel transport of g0 along the curve γ

Γ(γ̃) : π−1[γ(0)]→ π−1[γ(1)], g0 7→ g1.

Introducing a coordinate chart we can thus write locally:

g1 = si(1) P exp


−

1∫

0

Aiµ
dxµ

dt
dt


. (153)

The relation with Wilson lines is now straightforward when considering Eq.
(150). Put differently, a Wilson line along a path γ is the trace of the parallel
transporter along this path, this explains the term gauge link we used in the
introduction. Using the properties of the principal fibre bundle formalism we
obtain

RgΓ(γ̃)(g0) = g1g
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and
Γ(γ̃)Rg(g0) = Γ(γ̃)(g0g),

which together with the fact that γ̃(t)g is the horizontal lift through g0g and
g1g returns that Γ(γ̃) commutes with the right action. We also mention the
following properties for the parallel transporter, which are easily proved from
the properties of Chen iterated integrals

(i) Inverses:
Γ(γ̃−1) = (Γ(γ̃))−1.

(ii) Composition: Let
γ1,2 : [0, 1]→M,

be two curves such that

γ1(1) = γ2(0),

then
Γ(γ̃1γ2) = Γ(γ̃2) ◦ Γ(γ̃1).

16.3 directional derivative, wilson line and covari-
ant derivative

Having an expression for the parallel transporter, a covariant derivative can be
defined in the usual way. To show how the Wilson line generates the covariant
derivative consider the so-called directional derivative of a matter field ψ(x)
which transform under a local symmetry transformation U(x) as

ψ(x) 7→ U(x)ψ(x).

The directional derivative along a vector V µ is given by

V µ∂µψ(x) = lim
∆→0

(ψ(x+ ∆ · V )− ψ(x))
∆ . (154)

It is immediately clear that this derivative is not well-defined due the fact that
we consider matter fields at different space-time points which transform dif-
ferently because gauge transformations are local transformations depending
on the space-time point. This issue also emerges in general relativity when
comparing vector or tensor fields at different space-time points on a curved
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background. In the case of general relativity this is solved by parallel trans-
porting the fields by using the Levy-Civita connection. We can now do the
same thing in gauge theory, where the gauge fields themselves act as connec-
tions, as we have discussed in the previous sections. Therefor we can use the
gauge version of the parallel transporter, the Wilson line, to transport one of
the fields in Eq. (154) to the location of the other field. To demonstrate this
explicitly, we start from the Wilson line

Uγ [x, y] = P exp
[
ig

∫ y

x
Aµ(z)dzµ

]

γ
,

where γ is the path along which one parallel transports between the space-
time points x and y, again P denotes to the path ordering operator. From
the above expression for the Wilson line it is easy to see that it transforms
under gauge transformations generated by U(x) as

Uγ [x, y] 7→ U(y)Uγ [x, y]U−1(x),

such that the parallel transported Dirac field Uγ [x, y]ψ(x) now transforms
exactly as ψ(y). This makes it now possible to ‘compare’ the matter fields
defined at different points, which in its turn allows us adapt the directional
derivative to a well-defined derivative. The adapted directional derivative is
given by

V µDµψ(x) = lim
∆→0

(ψ(x+ ∆ · V )− U (x+ ∆ · V ;x)ψ(x)), (155)

where we dropped the path γ which now is an infinitesimal straight line along
the vector Vµ. Expanding the parallel transporter and the field at x + εn to
first order in ε we have

U [x+ ∆ · V ;x] = 1 + igεV µAµ(x) +O(∆2) (156)
ψ(x+ ∆ · V ) = ψ(x) + ∆V µ∂µψ(x) +O(∆2). (157)

Inserting this result in (155) we finally arrive at

V µDµψ(x) = V µ(∂µψ(x)− igAµ(x)ψ(x)), (158)

which is nothing more than the covariant derivative.
The above derivation can be physically interpreted in a way, similar to

the situation in general relativity. The parallel transporter takes into account
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the interactions with the background, here a gauge field background1. Not
surprisingly one will often find drawings in the literature that look like figure
34, where the double line is the Wilson line representing the interactions with
a background gauge field as shown in the figure on the right. In Deep Inelastic
Scattering for instance the source of this background field will originate from
the nucleon on which we scatter with a lepton.

≡

· · ·

Figure 34: Graphical representation of a Wilson line associated with a quark.

16.4 holonomy, curvature and the ambrose-singer the-
orem

16.4.1 Holonomy

In the previous Section we have discussed the relation between Wilson lines,
the parallel transport and how to construct a covariant derivative using these
concepts. Turning our attention to Wilson loops, naturally the concept of
holonomy and holonomy group surfaces.
Let P (M,G) again be a fibre bundle and let γ1 and γ2 be two curves in

M , such that
γ1(0) = γ2(0) = p0

and
γ1(1) = γ2(1) = p1.

If we consider the horizontal lifts of these curves for which

γ̃1(0) = γ̃2(0) = u0,

then we do not necessarily get

γ̃1(1) = γ̃2(1).

1 Field strength tensor resembles gauge curvature Fµν ∼ curvature in general relativity.
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This means that if we consider a loop γ in M , i.e.,

γ(0) = γ(1),

then, in general, the horizontal lift does not yield unavoidably

γ̃(0) 6= γ̃(1).

The loop γ thus induces a map

τγ : π−1(p)→ π−1(p)

on the fibre at p. In the previous Section we have discussed that the horizontal
lift Γ(γ̃) commutes with the right action such that we can write

τγ(ug) = τγ(u)g.

Considering now loops with fixed base-point in the manifold M , denoted by
Cp(M), τγ can only reach certain elements of G, combining them with a
gauge transformation2 we can reach all elements of G. The set of elements
that can be reached starting from the point (p, u) in the principal fibre bundle
form a subgroup of the structure group G and generate the holonomy group
at u, where π(u) = p

Φu = {g ∈ G|τγ(u) = ug, γ ∈ CpM}.

An interesting fact is that
τγ−1 = τ−1

γ

inducing
gγ−1 = g−1

γ .

Since holonomy elements are generated by parallel transport around a loop,
we have by the previous section that we can rewrite them as

gγ = P exp
[
−
∮

γ
Aiµ(x)dxµ

]
.

2 This fact determines that when we try to reconstruct the gauge potential from Wilson loops,
we will only be able to determine them up to a gauge transformation.
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16.4.1.1 Curvature

Having the picture of parallel transport around a loop on a curved space-time
manifold in mind, naturally the idea of curvature follows. So let us introduce
curvature in a principal fibre bundle setting. The previous Sections explained
how the covariant derivative arises in gauge theory from parallel transport
but, to introduce the curvature two-form we need the covariant derivative to
be described in a more rigorous way.

Definition 16.4.1 (Covariant Derivative).
Let V be a vector space of dimension k, and let {eα} be a basis in V .
Let

φ ∈
r∧

(P )⊗ V
that is

φ : TP ∧ · · · ∧ TP→ V

and
X1, · · · , Xr+1 ∈ TuP .

The covariant derivative acting on

φ =
k∑

α=1
φα ⊗ eα

is then defined as:

Dφ(X1, · · · , Xr+1) ≡ dPφ
(
XH

1 , · · · , XH
r+1

)
,

with
dPφ ≡ dPφα ⊗ eα,

where dP is the exterior differential for the fibre bundle P .

The curvature follows from this Definition:
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Definition 16.4.2 (Curvature two-form).
The curvature two-form Ω is the covariant derivative of the Ehresmann
connection one-form ω

Ω ≡ Dω ∈
∧2

P ⊗ g.

Again considering a right action, the result of this action on curvature is
expressed by the Proposition

Proposition 16.4.1

The curvature transforms under right action of an element of the struc-
ture group of the fibre bundle as

R∗gΩ = g−1Ωg, g ∈ G. (159)

In gauge theory notations this becomes

R∗gFµν = g−1Fµνg,

where Fµν is the gauge-covariant field strength. The curvature is better known
in its form expressed by Cartan’s structure equation which will also be
familiar when expressed with field strength tensors.

Theorem 16.4.1: Cartan’s Structure Equation

Let
X1, X2 ∈ TuP.

Therefore the curvature Ω and the Ehresmann connection ω satisfy the
Cartan structure equation

Ω(X1, X2) = dPω(X1, X2) + [ω(X1), ω(X2)], (160)

which can also be written as:

Ω = dPω + ω ∧ ω. (161)

Using this equation the gauge curvature or field strength tensor Fµν is defined
as:

Fµν = dPAµν +Aµ ∧Aν = ∂µAν − ∂νAµ + [Aµ, Aν ] (162)
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which should look more familiar.
Having defined the holonomy and curvature we are now ready to discuss

the Ambrose-Singer Theorem.

16.4.2 The Ambrose-Singer theorem.

The connection of Wilson loops with holonomies is assumed to allow one,
in principle, to recast gauge theory in the space of generalized loops. The
Ambrose-Singer theorem forms the core of this program.

Theorem 16.4.1: Ambrose-Singer

Let P (M,G) be a principal fiber bundle with connection ω, and curva-
ture form Ω. Let Φ(u) be the holonomy group with reference point

u ∈ P (M,G)

and P (u) the holonomy bundle of ω through u. Then the Lie algebra
of Φ(u) is equal to the Lie sub-algebra of g, generated by all elements
of the form Ωp(v1, v2) for p ∈ P (u) and v1, v2 horizontal vectors at p,
where g is the Lie algebra of G

In other words, this theorem states that all the information contained in the
curvatures at a point in the principal fibre bundle P with connection ω can
also be found in the holonomy group Φ(u) at that point. This means that, in
principal, it should be possible to express all physical observables as functions
of the holonomies, instead of as functions of the gauge potentials. Assuming
the structure group G is sufficiently well-behaved, such that any element of
G can be reached from an element of Φ(u) by a gauge transformation (right
action of G onto itself), we can express all physical observables as functions
of the holonomies3. Notice that the holonomy group is not invariant under
gauge transformation such that real observables will need to be described
by gauge invariant functions of these holonomies. In the next Chapters and
Sections we will assume that Wilson Loop Functionals (see below) can play
the role of these gauge invariant functions of the holonomies.

3 This should always be the case, otherwise there are elements of G or thus elements in the
fibre that can not be reached by a gauge transformation which was the whole point of
considering gauge theories.
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16.4.2.1 Wilson Loop Functional.

For the last part of this Chapter we will summarize some of the properties of
Wilson lines and loops from a gauge theory point of view and we introduce
the gauge invariant Wilson loop functionals, which in the next Sections will
be used to introduce and study GLS. Wilson lines are essentially solutions of
the parallel transport equations which for a curve or open path is given by

Uγ = P exp
[∫

γ
Aµ

]
, (163)

where we also introduced the commonly used notation for a Wilson line or
loop Uγ . If γ is a loop this becomes

Γγ ≡ Uγ = P exp
[∮

γ
Aµ

]
. (164)

Important to notice is that this infinite series, when one expands the exponen-
tial, converges (absolutely, see [16]) to an element g ∈ G. Since the parallel
transporter acts as an operator on Hilbert space, due to this convergences
becomes a bounded operator such that it will also make sense to introduce
it’s Trace (Definition 9.2.2). As we discussed before the gauge link is not
gauge invariant but transform as

Ugγ = g−1
y Uγgx, (165)

for a path γ from x to y or as

Ugγ = g−1
x Uγgx, (166)

when γ is a loop with base point

x = γ(0).

Since observables are by definition gauge invariant, and as we will see, the
advantage of using generalized loop space is its gauge invariance, we define
the gauge invariant Wilson path/loop functional

W : LM→ C

by:

W (γ) = 1
N

Tr Uγ , (167)
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where LM represents the space of all loops in M . By continuity of the trace
and the expansion of the exponential in Chen integrals we get

W (γ) = 1
N

∑

r≥0
Tr
∫

γ
ωω · · ·ω︸ ︷︷ ︸

r

(168)

with as before the convention that
∫

γ
ωω · · ·ω︸ ︷︷ ︸

r

= Id,

if r = 0. Expressed with the gauge potentials Aµ this Wilson loop can be
written as

Wγ = 1
N

Tr P exp
[∫

γ
Aµ

]
, (169)

for open paths and
Wγ = 1

N
Tr P exp

[∮

γ
Aµ

]
, (170)

for loops. Both expressions are now gauge invariant, due to the traces. In
terms of d-paths these Wilson loop functionals are complex-valued d-paths

Wγ ∈ Alg(Sh(Ω),C),

i.e. they vanish on the ideal I(d, p) defined in Chapter 12.
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17.1 introduction

In the next Chapter we shall introduce the space of generalized loops. This
space, as we will demonstrate, carries a manifold like structure, but not ex-
actly. It differs from the common manifold in the sense that it is not locally
homeomorphic to a Euclidean space Rn, but to a Banach space. The goal
of this chapter is to extend the manifold concept to such spaces, which are
now allowed to be infinite dimensional. Having such a generalization of
manifolds we can also extend the concept of derivatives, one such generaliza-
tion is the Fréchet derivative that will turn out to be very useful for doing
variational calculus on generalized loop space. This brief introduction is based
on the works [97, 102, 121–123] where much more information is available.
Here we restricted to the bare minimum for understanding the structures on
generalized loop space.

17.2 manifold: fréchet derivative and banach manifold

The definition of generalized manifolds as discussed in the introduction of this
Chapter, requires the Fréchet derivative. So let us first discuss and define this
derivative. This derivative is defined on Banach spaces and can be interpreted
as a generalization of the derivative of a one parameter real-valued function to
the case of a vector-valued function depending on multiple real values which
is what we will need to define derivatives on the generalized loop space and is
actually necessary to define the functional derivative in this space as we will
see.
To give the definition of the Fréchet derivative we need a bounded linear

operator, which is defined as

Definition 17.2.1 (Bounded Linear Operator).
A bounded linear operator is a linear transformation L between normed
vector spaces X and Y for which the ratio of the norm of L(v) to that

249
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of v is a bounded by the same number, over all non-zero vectors v ∈ X.
Therefore

∃ M > 0,

such that
∀ v ∈ X : ‖L(v)‖Y ≤M‖v‖X .

The smallest M is called the operator norm

‖L‖op of L.

A bounded linear operator is generally not a bounded function, which would
require that the norm of L(v) be bounded for all v, which is not possible
unless Y is the zero vector space. In other words, a bounded linear operator
is a locally bounded function. Recall, with respect to continuity, that a linear
operator on a metrizable vector space is bounded if and only if it is continuous.
Having defined bounded linear operators we can now introduce the Fréchet

derivative.

Definition 17.2.2 (Fréchet Derivative).
Let X1, X2 be Banach spacesa, and

U ⊂ X1

an open subset. Then a function

F : U → X2

is called Fréchet differentiable at

x ∈ U

if there exists a bounded linear operator

Ax : X1 → X2

such that

lim
∆→0

‖F (x+ ∆)− F (x)−Ax(∆)‖X2

‖∆‖X1

= 0, (171)
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where the limit is defined as in the usual sense. If this limit exist, then

DF (x) = Ax

stands for the Fréchet derivative.
We call the function F , C1 if

DF : U → B(X1, X2) ; x 7→ DF (x) = Ax, (172)

is continuousb, B here highlights the fact that this is the space of
bounded linear operators.

a Complete vector spaces with norm.
b Note the difference with the continuity of DF (x).

Notice that the usual derivative is included in this definition. To demonstrate
this, let us take

F : R→ R,

such that DF (x) is the function

t 7→ t F ′(x).

The Fréchet derivative can be extended to arbitrary Topological Vector Space
(TVS)s. Where TVSs are vector spaces with a topology that makes the addition
and scalar multiplication operations continuous, i.e. the topology is consistent
with the linear structure of the vector space.

Definition 17.2.3 (Fréchet Derivative for Topological Vector Spaces).

Let now X1, X2 be Topological Vector Spaces with

U ∈ X1

an open subset that contains the origin and given a function

F : U → X2

preserving the origin
F (0) = 0.
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To continue it is necessary to explain what it means for this function to
have 0 as its derivative. We call the function F tangent to 0 if for every
open neighbourhood

W ⊂ X2, of 0X2 ,

there is an open neighbourhood

V ⊂ X1, of 0X1 ,

together with a function
H : R→ R

such that
lim
∆→0

H(∆)
∆ = 0

and
∀∆ : F (∆)V ⊂ H(∆)W.

This somewhat strange constraint can be removed by defining f to
be Fréchet differentiable at a point

x0 ∈ U

given that there exists a continuous linear operator

λ : X1 → X2,

such that
F (x0 + ∆)− F (x0)− λ∆,

considered as a function of ∆, is tangent to 0.

It can further be demonstrated that if the Fréchet derivative exists, then it
is unique. Similarly to the usual properties of differentiable functions we find
that

• if a function is Fréchet differentiable at a point it is necessarily contin-
uous at this point;

• sums and scalar multiples of Fréchet differentiable functions are differ-
entiable.

Hence we conclude that the space of Fréchet differentiable functions at
some point x form a subspace of the functions that are continuous at that
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point x. Both the chain and Leibniz rule hold whenever Y is an algebra and
a topological vector space in which multiplication is continuous. This will
turn out to be exactly the case for the space of generalized loops, where
the algebra multiplication is the shuffle product. Using the above generaliza-
tion of derivative we can extend the manifold concept to that of a Banach
manifold

Definition 17.2.4 (Banach Manifold).
Let X be a set. An atlas of class

Cr, r ≥ 0, on X

is defined as a collection of pairs (charts)

(Ui, φ′i), i ∈ I,

such that

(i) for each
i ∈ I, Ui ⊂ X,

⋃

i

Ui = X

(ii) for each i ∈ I, φi is a bijection from Ui onto an open subset φi(Ui)
of some Banach space Ei and

∀ i, j : φi(Ui ∩ Uj)

is open in Ei.

(iii) The crossover map

φj ◦ φ−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

is a smooth function r-times continuously differentiable function

∀i, j ∈ I

meaning that the r-th Fréchet derivative

Dr(φj ◦ φ−1
i

)
: φi(Ui ∩ Uj)→ Lin (Eri ;Ej)
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exists and is a continuous function with respect to the Ei-norm
topology on subsets of Ei and the operator norm topology (i.e.,
the topology induced by a norm on the space of bounded linear
operators, Definition (17.2.1)) on the space of linear operators

Lin (Eri ;Ej) ,

where Eri represents the fact that the r-times iterated application
of the linear operator defines the r-th Fréchet derivative.

It can be shown there is a unique topology on X such that ∀i ∈ I, Ui is
open and ∀i ∈ I, φi is a homeomorphism. This topological space is assumed
to be a Hausdorff space in most cases, but this is not necessary from the
point of view of the formal definition.
If all the Ei are equal to the same space E, the atlas is called an E-atlas.

However, it is not necessary that the Banach spaces Ei be the same space, or
even isomorphic as topological vector spaces. But, if two charts (Ui, φi) and
(Uj , φj) are such that

Ui ∩ Uj 6= ∅ ,
it clearly follows from the derivative of the crossover map

φj ◦ φ−1
i :

φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)
that

Ei ∼= Ej

thus they are isomorphic as topological vector spaces. It is important to realize
that the set of points x ∈ X, for which there is a chart

(Ui, φi) : x ∈ Ui

and Ei isomorphic to a given Banach space E, is both open and closed. Hence,
one can assume that, on each connected component of X, the atlas is an
E-atlas for some fixed E.
Similar to the usual differentiable manifolds, a new chart (U, φ) is called

compatible with a given atlas

{(Ui, φi|i ∈ I}
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if the crossover map

φi ◦ φ−1 : φ(U ∩ Ui)→ φi(U ∩ Ui)

is an r-times continuously differentiable function ∀i ∈ I. Two atlases are
compatible when each chart in one atlas is compatible with the other atlas.
Compatibility of atlases defines an equivalence relation on the class of all
possible atlases on X.
As with real smooth manifolds, a Cr-manifold structure on X is defined as

a choice of an equivalence class of atlases on X of class Cr. If all the Banach
spaces Ei are isomorphic as topological vector spaces (as is guaranteed to be
the case if X is connected), then an equivalent atlas can be found for which
they are all equal to some Banach space E. X is then called an E-manifold,
or one says that X is modeled on E.
We end this discussion by making the remark that a Hilbert manifold is

a special case of a Banach manifold in which the manifold is locally modeled
on Hilbert spaces.

17.2.1 Fréchet Manifold

A possible next step in the generalization of manifolds are Fréchet spaces,
which are a special kind of topological vector spaces. Fréchet spaces are
locally convex spaces which are complete with respect to a translation
invariant metric and their metric does not need to be generated by a
norm. Notice that this means that not every Fréchet space is a Banach space,
which requires a norm. Typical examples are spaces of infinitely differentiable
functions.
Fréchet spaces can be defined in two different ways, by translational invari-

ant metrics or by a family of semi-norms, both are given below. We start with
the definition via translational invariant metrics.

Definition 17.2.5 (Fréchet Spaces: via Translation-Invariant Metrics).

A topological vector space X is a Fréchet space if and only if it satisfies
the following three properties:

(i) there is a local basis for its topology at every point, i.e., it is locally
convex
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(ii) its topology can be induced by a translation invariant metric, mean-
ing that a subset

U ⊂ X
is open if and only if

∀u1 ∈ U, ∃ε > 0|{u2 : d(u2, u1) < ε} ⊂ U.

(iii) it is a complete metric spacea

a Notice the difference with Banach space, for which a norm is required.

The second definition is build on a family of semi-norms.

Definition 17.2.6 (Fréchet Spaces via Family of Semi-Norms).
A topological vector space X is a Fréchet space if and only if it satisfies
the following three properties:

1. it is a Hausdorff space

2. its topology may be induced by a countable family of semi-norms

‖ · ‖l, l = 0, 1, 2, · · · .

This means that a subset

U ⊂ X

is open if and only if

∀u1 ∈ U,∃ K ≥ 0,

ε > 0 |{u2 : ‖u2 − u1‖l < ε,∀l ≤ K} ⊂ U.

3. it is complete with respect to the family of semi-norms
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A sequence
(xn) ∈ X

converges to x in the Fréchet space defined by a family of semi-norms
if and only if it converges to x with respect to each of the given semi-
norms.

Note that every Banach space is a Fréchet space, as the norm induces a
translation invariant metric and the space is complete with respect to this
metric.
The following examples demonstrate how to build a family of semi-norms

that can be used to topologize a space by semi-norms, turning it into a Fréchet
space.

Example 17.2.1.
The vector space of infinitely differentiable functions C∞([0, 1])

F : [0, 1]→ R

becomes a Fréchet space with the semi-norms

|F |(l) = sup
{∣∣∣∣∣

dl

dxl
F (x)

∣∣∣∣∣ : x ∈ [0, 1]
}
,∀ N 3 l ≥ 0.

A sequence (Fn) of functions converges to

F ∈ C∞([0, 1])

if and only if
∀ N 3 l ≥ 0,

the sequence (F (l)
n ) converges uniformly to F (l), where

F (l) = dl

dxl
F (x).

Example 17.2.2.
The space C∞(R) of infinitely differentiable functions

F : R→ R
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turns into a Fréchet space with the semi-norms ∀ N 3 k, n ≥ 0

|F |k,n = sup
{∣∣∣∣∣

dk

dxk
F (x)

∣∣∣∣∣ : x ∈ [−n, n]
}
.

Example 17.2.3.
The vector space Cm(R) of all m-times continuously differentiable func-
tions

f : R→ R

becomes a Fréchet space with the semi-norms:

|f |k,n = sup{|f (k)(x)| : x ∈ [−n, n]}, ∀ N 3 n ≥ 0, k = 0, · · · ,m.

Example 17.2.4.
Let H be the space of entire (everywhere holomorphic) functions on the
complex plane. Then the family of semi-norms:

|f |n = sup{|f(z)| : |z| ≤ n} ,

makes H into a Fréchet space.

Example 17.2.5.
Let H be the space of entire (everywhere holomorphic) functions of
exponential type τ . Then the family of semi-norms:

|f |n = sup
z∈C

exp
[
−
(
τ + 1

n

)
|z|
]
|f(z)|,

makes H into a Fréchet space.

Example 17.2.6.
The set C∞(M,B) of infinitely differentiable functions, where M is a
compact manifold and B is a Banach space,

f : M → B
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becomes a Fréchet space with semi-norms to be the suprema of the
norms of all partial derivatives.

Example 17.2.7.
LetM be a compact C∞-manifold and V a vector bundle overM . Take

C∞(M,V )

the space of smooth sections of V over X. Choose Riemannian metrics
and connections, which are guaranteed to exist, on the bundles TX and
V . If s is a section, denote its j-th covariant derivative by Djs. Then

|s|n =
n∑

j=0
sup
x∈M
|Djs| ,

(where | · | is the norm induced by the Riemannian metric) is a family
of semi-norms making

C∞(M,V )

into a Fréchet space.

It is now easy to get confused when considering derivatives of maps between
Fréchet spaces. Let X1, X2 be Fréchet spaces, then the set of all continuous
linear maps L(X1, X2)

X1 → X2

is not a Fréchet space in any natural manner.
At this point the theory of Banach spaces and that of Fréchet spaces

strongly deviate and need a different definition for continuous differentiability
of functions defined on Fréchet spaces, the Gâteaux derivative

Definition 17.2.7 (Gâteaux Derivative).
Let X1, X2 be Fréchet spaces,

U ⊂ X1

open, and
P : U → X2
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a function,
x ∈ U, and V ∈ X1.

We say that P is differentiable at x in the direction V if the following
limit exists

DV [P (x)] = lim
∆→0

(
P (x+ V∆)− P (x)

)

∆ . (173)

Then P is called continuously differentiable in U if

D[P ] : U ×X1 → X2, (174)

is continuous.

Since the product of Fréchet spaces is again a Fréchet space, we can then
differentiate D[P ] and define the higher derivatives of P in this fashion. The
derivation operator

P : C∞([0, 1])→ C∞([0, 1])

defined by
P (x) = x

is itself infinitely differentiable. The first derivative reads

DV [P (x)] = V ′ (175)

for any two elements
x, V ∈ C∞([0, 1]).

This is an important advantage of the Fréchet space C∞([0, 1]) as compared
to the Banach space Ck([0, 1]) for finite k. If

P : U → X2

is a continuously differentiable function, then the differential equation

x′(t) = P (x(t)), x(0) = x0 ∈ U, (176)

need not have any solutions, and even if it does, the solutions need not be
unique, in strong contrast to the situation in Banach spaces1.

1 We emphasise that the inverse function theorem does not hold in Fréchet spaces. A partial
substitute to it is the Nash-Moser theorem, which extends the notion of an inverse function



17.2 fréchet 261

One can now define Fréchet manifolds as spaces that locally look like
Fréchet spaces, and one can then extend the concept of Lie groups to these
manifolds, leading to a Fréchet Lie group . Such a Lie group is a group G
which is also a manifold, but now a Fréchet manifold (infinite dimensional)
such that the map:

G×G→ G, (g, h) 7→ gh−1 (177)

is continuous. This is useful because for a given (ordinary) compact C∞-
manifold M , the set of all C∞ diffeomorphisms

f : M →M

forms a generalized Lie group in this sense, and this Lie group captures the
symmetries of M . Some of the relations between Lie algebras and Lie groups
remain valid in this setting, which will be used when studying the group
structure and Lie algebra structure of generalized loop space. For a discussion
on this see for instance [124].

from Banach spaces to a class of Fréchet spaces. In contrast to the Banach space case,
in which the invertibility of the derivative (where the derivative is interpreted as a linear
operator) at a point is sufficient for a map to be locally invertible, the Nash-Moser theorem
requires the derivative to be invertible in a vicinity of a point. The theorem is widely used
to prove local uniqueness for non-linear partial differential equations in spaces of smooth
functions.





18
THE GROUP OF GENERAL I ZED LOOPS AND ITS L I E
ALGEBRA

18.1 introduction

In the previous Chapters we have already demonstrated that Shc(d, p) forms
a group with the multiplication introduced in Definition (11.2.6) and that
this algebra is isomorphic to the (Chen) integral algebra Ap generated by all
functionals Xω1···wr , such that d-loops can be identified with elements of the
algebra morphisms Alg(Ap, k). From now on we set

k ≡ C.

The algebra Shc(d, p) can be supplied with a topology turning it into a topo-
logical algebra1, more specifically into a locally multiplicative convex (LMC)
algebra. This topology is built from semi-norms, a construction that is due
to Tavares [16]. The topologizing of this algebra is an extensive process that
we will explain in detail, to not get lost along the way we also provided a
diagrammatic overview which can be read as a map of the different steps in
this construction.
Equipped with such a topology Shc(d, p) turns into a Fréchet space and

combined with the fact that the generalized loops form a group this will also
return a Fréchet Lie group with an associated Lie algebra.
The algebraic properties combined with the differential operations from

Chapter 11 and the fact that limits are well-defined in this new space allows
us to extend differential calculus on manifolds to the generalized manifolds
discussed in the previous Chapter. Several differential operators will be intro-
duced in Section 19.2, which generate variations of the loops.

1 By the Gel’fand duality between a topological space and its algebra of functions any unital
C∗−algebra describes a topological space. Furthermore this duality can be expanded to give
an algebraic description of the geometry of a space.

263
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18.2 the shuffle algebra over Ω = ∧1 M , as a nlmc
hopf algebra

The main advantage of d-paths is that they can be considered as algebraic
paths, in the sense that they have a rich algebraic structure that can be used
to derive many interesting properties which will be discussed in more detail
in this Section.
We start by restating the co-multiplication and co-unit of the shuffle al-

gebra and a summary of their properties with respect to the shuffle algebra
operations:

∆(ω · · ·ωr) =
r∑

i=0
ω1 · · ·ωi ⊗ ωi+1 · · ·ωr

ε(ω1...ωr) = 0, if r ≥ 1
= 1, if r = 0 (178)

Properties of the co-multiplication and co-unit are the following:

(∆⊗ 1) ◦∆ = (1⊗∆) ◦∆ (Coassociative law)
(1⊗ ε) ◦∆ = (ε⊗ 1) ◦∆ = 1 (counitary property)

∆(u • v) = ∆(u) •∆(v) (∆ is an algebra morphism)
ε(u • v) = ε(u) • ε(v) (ε is an algebra morphism)

∀u, v ∈ Sh.
A completeHopf algebra structure is given by a multiplication (the shuffle

product), a unit, a co-multiplication, a co-unit and an antipode. The antipode
was defined in 11.2.5 as k-linear map

J : Sh→ Sh

and is restated here for convenience

J(ω1 · · ·ωr) = (−1)rωr · · ·ω1, (179)

with the following operational properties:

s ◦ (J ⊗ 1) ◦∆ = s ◦ (1⊗ J) ◦∆ = η ◦ ε
J(u1 • u2) = J(v) • J(u)

J(1) = 1, J2 = 1

ε ◦ J = ε

τ ◦ (J ⊗ J) ◦∆ = ∆ ◦ J (180)
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∀u1, u2 ∈ Sh, where
s : Sh⊗ Sh→ Sh

denotes shuffle multiplication and

η : k → Sh

the unit map. The map

τ : Sh⊗ Sh→ Sh⊗ Sh

is called the transposition map or flipping operation defined by

τ(u1 ⊗ u2) = u2 ⊗ u1

The above properties can be used to prove the following Proposition

Proposition 18.2.1

Let
ωi ∈

1∧
M

(respectively
1∧
M ⊗GL(n,C),

ε be a co-unit as in Definition 178 and • denote the shuffle multiplication.
We then have

r∑

i=0
(−1)iωi · · ·ω1 • ωi+1 · · ·ωr =

r∑

i=0
(−1)r−iω1 · · ·ωi • ωr · · ·ωi+1

= ε(ω1 · · ·ωr)

These definitions and properties describe the Hopf algebra structure of Sh(Ω),
which can now be transferred to Ap, the algebra generated by the functionals
Xω1···ωr , see Eq. (92). This transfer of the Hopf algebra structure is accom-
modated by use of Proposition 12.3.1 which turns the surjective map

Sh(Ω)→ Ap,

defined by
1 7→ 1, and ω1 · · ·ωr 7→ Xω1···ωr
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into a homomorphism of algebras. We know that algebra morphisms pre-
serve the algebraic structures by definition, such that indeed Ap inherits a
Hopf algebra structure from Sh(Ω).
Proposition 12.3.2 and Theorem 8.2.2 imply that the kernel of this mor-

phism contains the ideal I(d, p), which was given by

ω1 · · ·ωi−1(fωi)ωi+1 · · ·ωr − f(p)ω1 · · ·ωr − ((ω1 · · ·ωi−1) • df)ωi · · ·ωr,
(181)

or in a reduced symbolic notation

u1(fω)u2 − (u1 • df)ωu2 − f(p)u1ωu2 (182)

where
u1, u2 ∈ Sh, ω ∈

∧1
M, f ∈ C∞M.

It now follows that d-paths can be identified with elements of the set of
algebra morphisms

Alg(Ap,C)

that is a d-path is an algebra morphism

γ ∈ Alg(Ap,C)

where
γ : Ap → C

vanishes on the ideal I(d, p) by definition. In the case of d-loops, however,
we need to extend the ideal to include dC∞(M). However, in the integral
algebra this is included by definition since

∫

γ
df = 0

for
γ ∈ LM

and thus
dC∞(M) ∈ ker (Sh(Ω)→ Ap).

As before we denote this ideal by Jp

Jp = I(d, p) + 〈dC〉, (183)
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where I(d, p) is the shuffle algebra ideal associated to the pointed differentia-
tion (d, p). We have already discussed that this new ideal induces the algebra
isomorphism

Sh(Ω)/Jp ' Ap (184)

for d-loops.
We mentioned already that the algebra Ap inherits a Hopf algebra structure

through the algebra morphisms, where the unit and multiplication follow from
Proposition 12.3.1 and the co-multiplication, co-unit and antipode follow from
these operations on Sh(Ω) as

∆(Xω1···ωr) =
r∑

i=0
Xω1···ωi ⊗Xωi+1···ωr

ε(Xω1···ωr) =





0 r ≥ 1
1 r = 0

J(Xω1···ωr) = (−1)rXωr···ω1 . (185)

This explains the Hopf algebra structure, but the integral algebra can be
equipped with a much richer structure, namely that of a Nuclear Locally
Multiplicative-Convex (NLMC) algebra. This structure is induced from a
topology, which we will discuss below, giving it the structure of a Fréchet space
(Definition 17.2.4). Fig. 35 gives a diagrammatic overview of how different
topologies are constructed on the involved algebras. We start with deriving a
topology on the algebra

r⊗ 1∧
M,

which can be used to obtain a topology on Sh(Ω) consistent with its linear
structure. We write

Ω =
1∧
M

as before. The construction of the topology will give us more than just a
topology, it will endow Sh(Ω) with the structure of a Nuclear Locally Multi-
plicative Convex (NLMC) TVS, or Fréchet space, that is also Hausdorff, Banach
and Hopf. We stress the Banach property, which will restrict the Fréchet Lie
group of generalized loops to a Banach Lie group which is much better be-
haved [124].
The Riemannian metric and connection onM are the starting point for our

topologizing process. The connection allows us to define a covariant derivative
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M (U, x) (Uk)k∈N
{
KU

m

}
m≥1

Atlas Basis for Topology on M Nested compacts

|·| Dp ω ∈ ∧1
Uk, ω =

∑n
i=1 ωi dx

i ‖ωi‖m,p = sup
x∈KU

m

(|Dpωi(x)|)

R
iem

a
n

n
ia

n
m

etric

O
n

e
fo

rm
s

S
em

i-N
o
rm

p-th covar der

∧1
M i∗k :

∧1
M → ∧1

Uk ik : Uk →M

NU
m(ω) = max

1≤i≤n
ρUm(ωi), ω ∈

∧1
U

ρUm(ωi) = sup
|p|≤m

(
sup

x∈KU
m

|Dpωi(x)|
)

O
n
e

form
s

S
em

i-N
o
rm

F
a
m

ily

Inclusion map
Pull-back

Initial

Topology

∧1
Ukj

Okj

r⋂
j=1

(i∗kj
)−1(Okj ) pk,m,l(ω) = max1≤j≤lN

Ukj
m

(
i∗Ukj

ω
)

L
oc

al
C

h
ar

ts

Topology described by Semi-norms

Local Basis Local Topology Basis Semi-Norm Family

⊗r∧1
M N

(2)
k,m,l(u) = inf

n∑
i=1

pk,m,l(ω
i) · pk,m,l(η

i)

with inf over u =
∑n

i=1 ω
i ⊗ ηi

T
en

so
r

p
ro

d
u

ct
s

Se
m

i-N
or

m
Fam

ily

P
ro

je
ct

iv
e

T
en

so
r Pro

duct
Topology

Two tensor example

⊕
r≥0(

⊗r∧1
M)

T (
∧1

M) Sh(Ω)

Nk,m,l(u) =
∑

rN
(r)
k,m,l(ur)

u =
∑

r ur, with ur ∈
⊗r∧1

M

D
ir

ec
t

S
u
m Semi-Norm

Fam
ily

Commutative NLMCH AlgebraHopf

Projective Tensor Product Topology + Completion (Banach)

LM
C

algebra

Banach, Hausdorff, Nuclear

Figure 35: Topology on Sh(Ω).

D and the metric induces a norm |·|. On the other hand, we know M as a
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manifold has a topology induced from its Riemannian metric. Combining this
with the atlas of M we get local basis for this topology

(Uk)k∈N.

Using this local basis it is possible to construct a sequence of nested compacts
{
KU
m

}
m≥1

in a local coordinate chart (U, x), such that
⋃

m≥1
KU
m = U.

We can then define a first family of semi-norms on (U, x) by using the Rie-
mannian metric induced norm and covariant derivative

‖ωi‖m,p = sup
x∈KU

m

(|Dpωi(x)|), (186)

where
ωi ∈ C∞U

defined by the vectors

ω =
n∑

i=1
ωi dx

i ∈
1∧
M.

Dp denotes the p-th covariant derivative with respect to the (Riemannian)
connection. A second family of semi-norms is now constructed from the first
family of semi-norms

‖ω‖m,p
by

NU
m(ω) = max

1≤i≤n
ρUm(ωi), ω ∈

∧1
U,

where
ρUm(ωi) = sup

|p|≤m

(
sup
x∈KU

m

|Dpωi(x)|
)
.

As a result we obtain a family of semi-norms on the local coordinate chart
(U, x). The next step is to extend this to the entire manifold M . This is
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realized by the inclusion map on the local basis for the (Riemannian) topology
on M . To see this consider again the local basis

{Uk}k∈N

which can now also be interpreted as local charts. Define the map

ik : Uk →M

as the inclusion map, which embeds the local basis into M . The linear pull-
back maps

i∗k :
∧1

M →
∧1

Uk

now define a map between the one-forms on this local basis and the same
one-forms but now considered on M . Endowing

∧1
M

with the initial topology defined by these maps, successfully equips it with
a topology induced by semi-norms. Notice that by definition this topology is
the weakest topology for which all the maps i∗k are continuous, and a local
topology basis consists of sets of the form

r⋂

j=1
(i∗kj )

−1(Okj ),

where the sets Okj run over a local basis of
∧1

Ukj .

In this way ∧1
M

becomes a Nuclear Locally-Convex topological vector space (Fréchet
space), whose topology can be described by the family of semi-norms

pk,m,l(ω) = max
1≤j≤l

N
Ukj
m

(
i∗Ukj

ω
)

From elementary calculus one learns that the definition of a differentiation
depends on taking limits, which in its turn is defined by the convergence
of a sequence. Given that we eventually will be interested in well-defined
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derivatives let us briefly consider convergence with the above family semi-
norms. With such a family of semi-norms a sequence only converges if it
converges with respect to all semi-norms in the family. In other words, a
sequence of one-forms

(ωk)k≥1, in
∧1

M

converges to zero if and only if, in a neighborhood of each point of M , each
derivative of each coefficient of ωk converges uniformly to zero. The tensor
powers

r⊗∧1
M

now get a topology by the projective tensor product topology and becomes
a Banach space when we also complete this space with respect to the semi-
norms that describe this tensor topology. In other words, this topology is
described by the semi-norms N (r)

k,m,l which are the tensor product of the above
ones. To make this explicit, consider the example where r = 2.

Example 18.2.1. Let

u ∈
∧1

M ⊗
∧1

M

for which we have

N
(2)
k,m,l(u) = inf

n∑

i=1
pk,m,l(ωi) · pk,m,l(ηi), (187)

where inf is taken over all expressions of the element u in the form

u =
n∑

i=1
ωi ⊗ ηi.

Extending now to elements in

⊕

r≥0

(
r⊗∧1

M

)
,

which are finite sums

u =
∑

r

ur, with ur ∈
r⊗∧1

M,
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we get the semi-norms

Nk,m,l(u) =
∑

r

N
(r)
k,m,l(ur) (188)

inducing a Nuclear Locally-Convex topology on

T
(∧1

M
)
.

Due to the fact that all above topologies are consistent with the linear struc-
tures of the algebras, the shuffle product is a continuous map in this last
topology. Moreover, the shuffle product is commutative so that Sh(Ω) inher-
its the structure of a commutative LMC algebra from

T
(∧1

M
)

that also is Hopf, Banach and Hausdorff. We continue to write Sh(Ω) for
this algebra.
We end this Section with the remark that the integral algebra Ap inherits

the same structure through the isomorphism Eq. (184).

18.3 the group LMp of loops

The set of piecewise smooth loops with base point p, form a semi-group with
respect to the product

γ1 · γ2 , for γ1 , γ2 ∈ LMp

which also forms a loop space LMp. Introducing the equivalence relation
from Eq. (94), this semi-group can be turned into a group by defining a
product LMp/∼ by

[γ1 ] ∗ [γ2 ] = [γ1 · γ2 ],

where the square brackets denote the equivalence classes under ∼. The in-
verses of elements

[γ ] ∈ LMp/∼
are clearly given by

[γ ]−1 = [γ−1 ]

and the unit element is given by

ε = [p],
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the class of the constant loops equal to the point p. The group

(LMp/∼, ∗),
now a group of loops on the manifold M based at p, is symbolically repre-
sented by

LMp .

18.4 the group L̃Mp of generalized loops

In this Section we will use the algebraic paths and loops introduced by Chen to
generalize the group of loops LMp to the Group of Generalized Loops,
equivalent to the space of d-loops as the algebra morphisms from Sh(Ω)
to C that vanish on the ideal Jp. In previous sections we showed that the
algebra Shc(d, p) is equivalent to the algebra Ap, such that to introduce the
space of Generalized Loops we start by extending our study of this algebra.
The main concept that we need in this extension is that of a spectrum
on a commutative Banach algebra2 (Definition 9.2.18). Considering the
algebra3 Ap, writing 4p for the spectrum, we notice that

φ ∈ 4p

is also an element of the dual space A∗p (the space of complex valued linear
functionals) of Ap. In Section 18.2 we constructed a topology on Sh(Ω),
inducing a topology on Ap. We would now like to have a topology on A∗p.
Consider the dual space A∗∗p of the dual space A∗p, then the following map

x 7→ Φx : Φx (φ) = φ(x)

allows us to embed the original space Ap in A∗∗p . The maps Φx can now be
used to define a coarsest topology on A∗p such that all the Φx are continuous
maps

A∗p 7→ C.

This topology is referred to as the weak-∗ topology, in which the characters
are now continuous by definition.
As mentioned before, we know from Section 18.2 that Ap inherits a semi-

norm structure from Sh(Ω) such that by the Banach-Alaoglu theorem Ap
is reflexive

A∗∗p ≡ Ap .
2 Where the commutative refers to the shuffle product.
3 For the moment considering the one-forms to be complex valued.
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It follows that every bounded sequence has a weakly converging subsequence,
similar to the case in regular calculus. We remark that a sequence

φn ∈ A∗p

converges in the weak-∗ topology iff

φn(x)→ φ(x), ∀x ∈ Ap.

This convergence is sometimes referred to as the point-wise convergence of
linear functionals. The Hausdorff property of Ap can be understood from
the separation property (13.3.1) of the functionals Xω1···ωr , but is a direct
consequence of the Gel’fand-Mazur Theorem (Theorem 9.2.2). It follows that
the d-loops

γ̃ : Sh(Ω)→ C

can be identified with elements of A∗p.
In the above discussion we restricted ourselves to complex valued one-forms,

but in a gauge theory setting, and using the principal fibre bundle formalism,
we will need to deal with Lie algebra valued one-forms. Choosing a matrix
representation for the Lie algebra, the algebra elements form a sub-algebra
of GL(n,C). Therefore let us consider GL(n,C) valued one-forms. The fact
that the Sh(Ω) algebra is of the nuclear or trace class (NLMC), the traces
of the matrices do not spoil the algebraic or topological structures such that
convergence is still well-defined. Thus by adding the trace operator to the
integrals in the functionals of Ap in the case of matrix valued one-forms we
get again a set of continuous characters (complex valued!).
Notice that the nuclear property also assures that their exists a well-defined

trace operator on the linear bounded operators used to define the Fréchet
derivative in Definition 17.2.2. Moreover, it also assures that this trace is
finite.
We can now safely identify the d-loops with the spectrum of Ap with the

remark that if the
ω ∈

1∧
M

are GL(n,C) valued, we need to take the trace to reduce the GL(n,C) −
valued matrix to an element of C. Let us now extend the previously intro-
duced equivalence relation 13.3.1 on d-loops to

Wγ1 = Tr Uγ1 = Tr Uγ2 =Wγ2 , (189)
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for two d-loops
γ1, γ2 ∈M

with U and W defined in Eqs. (163) and (167), respectively.
By the continuity of the trace these form a subset of the d-loops, and also of

the generalized loops (see below), that are still separable by Theorem 13.3.2.
Weak-∗ convergence is also still applicable due to the fact that convergence
requires convergence for all elements in Ap. We are now ready to define the
Generalized Loops.

Definition 18.4.1 (Generalized Loop).
A Generalized Loop based at

p ∈M

is a character of the algebra Ap or, equivalently, a continuous complex
algebra homomorphism

γ̃ : Sh(Ω)→ C

that vanishes on the ideal Jp.

Important, for later purposes, is that convergence in the space of General-
ized Loops is defined by the weak-∗ topology convergence, as we discussed
above. Having defined Generalized Loops we can ask how these are related
to the (naive) loops from the previous section. The answer is provided by an
embedding, called the Dirac map

δ : LMp →4p, [γ] 7→ δ[γ] (190)

defined by
δ[γ](Xω1···ωr) = Xω1···ωr([γ]), (191)

where
[γ] ∈ LMp.

This embedding is injective due to Theorem 13.3.1. Identifying LMp with its
image, under δ, in 4p, it also inherits an induced topology.
Naturally we will want to be able to compose generalized loops like we

combine normal loops in a manifold. The composition is realized by a multi-
plication, introduced as a convolution multiplication

α̃ ? β̃
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of the two elements
α̃, β̃ ∈ 4p

defined by
α̃ ? β̃ = (α̃⊗ β̃) ◦∆,

which gives 4p a group structure and where we used

k ⊗ k ' k, C⊗ C ' C.

The inverse in the group of
α̃ ∈ 4p,

is given by
α̃ ◦ J

that is
α̃−1(ω1 · · ·ωr) = (−1)rα̃(ωr · · ·ω1),

where one takes ε (co-unit) as the unit element. This defines the Group of
Generalized Loops. Writing this out explicitly with the definition of ∆ from
Eq. (185) we have

α̃ ? β̃(Xω1···ωr) =
r∑

i=0
α̃(Xω1···ωi) · β̃(Xωi+1···ωr). (192)

For loops in LMp, the Dirac map allows us to write Eq. (192) explicitly as
r∑

i=0
α̃(Xω1···ωi) · β̃(Xωi+1···ωr) =

r∑

i=0
α(Xω1···ωi) · β(Xωi+1···ωr)

=
r∑

i=0
(Xω1···ωi)(α) · (Xωi+1···ωr)(β)

=
r∑

i=0

∫

α
ω1 · · ·ωi ·

∫

β
ωi+1 · · ·ωr

=
∫

α·β
ω1 · · ·ωr, (193)

which also shows that the convolution product defined on GLS makes sense
as a composition of d-loops. Notice that this product is in general not com-
mutative.
In Section 18.2 we discussed the topological structure on Sh(Ω), which

induced a topology on the algebra Ap that in its turn by the weak-∗ topology



18.4 the group L̃Mp of generalized loops 277

induced one on the spectrum. Since elements of the spectrum for loops vanish
by definition on the ideal Jp we identified them with generalized loops, such
that the group of generalized loops can also be considered as a topological
group.

Definition 18.4.2 (Generalized Loop Space as Topological Group).

α̃ ? β̃, α̃−1 and ε

are generalized loops based at p, i.e., they are continuous characters on
the algebra Ap, or equivalently, continuous characters on the algebra
Sh(Ω) that vanish on the ideal Jp. Moreover, (4p, ?) has the structure
of topological (Hausdorff and completely regular or Tychonoff) group.

Definition 18.4.3 (Group of Generalized Loops).
We call the above mentioned topological group

(∆p, ?),

the group of generalized loops of M based at

p ∈M,

and we denote it by
L̃Mp.

From the fact that the Dirac map preserves group operations, we conclude
that LMp is a topological subgroup of L̃Mp. The above discussion clearly
shows that the naive loops are a subset of generalized loops, but they are
not the same. To emphasize the difference we consider the following exam-
ple.

Example 18.4.1.
Let

M = S1.
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Then it is easy to see that

LS1
p = Z.

However,
L̃S

1
p = R.

In fact, since
H1(S1,R) = R,

any one-form
ω ∈ S1

is equal to a constant multiple of

ω0 ≡ dθ

(the usual volume form in S1), modulo an exact form

ω = cω0 + df, c ∈ R.
∧1

S1 = Rω0 ⊕ dC∞(S1). (194)

From this fact, we can prove that Ap is isomorphic, as an Hopf algebra,
to R[t], the polynomial ring in one variable

t↔ Xω0

(see [107]). The Hopf operations on R[t] are:

∆(t) = 1⊗ t+ t⊗ 1, J(t) = −t, ε(t) = 0

Then
L̃S

1
p = R

follows from Example 4.1 in [125]

In the above we have only discussed the generalization of loop, but a similar
generalization applies to paths.
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Remark 18.4.1 (Generalized Paths).
Consider the path space PMp of paths based at

p ∈M,

and the algebra Bp generated by all the functions Xω1···ωr , considered
now as functions on PMp. Similarly to the previous case, there exists
an algebra isomorphism

Sh(Ω)/Ip ' Bp,

which allows to consider Bp as an LMC algebra and define generalized
paths, based at p, as continuous characters on Sh(Ω) that vanish on
Ip. These generalized paths, however, do not form a group but only a
semi-group.

18.5 generalized loops and ambrose-singer theorem

As we have discussed in Section 16 the Ambrose-Singer theorem indicates that
there exists a formulation of gauge theory that can be expressed in gauge-
invariant variables and that a natural choice for these variables are Holonomies
or Wilson Loops (without the trace!). Unfortunately the information in all
Wilson loops is abundant, making a naive loop space over-complete. It follows
that the variables will need to be constrained if one wants to be able to
reconstruct the gauge potentials Aµ from the information in these gauge
invariant variables. In this Section we will discuss these constraints based on
Giles paper from 1981 [126].
The first constraint is an algebraic one and originates from the composition

of parallel transports (Wilson lines/loops)

Uγ [[x, y] ◦ [y, z]] = Uγ [x, y]Uγ [y, z]. (195)

The second constraint comes from smoothness requirements. Put differently,
the loops used in the functions of the gauge-invariant formulation of gauge
theory need to be sufficiently smooth such that the reconstructed gauge po-
tentials are finite. Expressed mathematically we require the paths and loops
to be representable by a piecewise differential function zµ(t) such that for

Uγ [x, y]
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zµ(0) = x and zµ(1) = y.

Furthermore if we have a piecewise differential function vµ with

vµ(0) = vµ(1) = 0

then the homotopic path

z(ε, t) = zµ(t) + εvµ(t)

is such that
Uγ [x, y](ε) = Uγ [x, y] +O(ε2). (196)

Also if the path between the points x and y is straight we have from the
expression for the gauge link that

Uγ [x, y](ε) = 1 + (xµ − yµ)Aµ +O
(
(xµ − yµ)2

)
. (197)

For closed loops this becomes

Uγ [x, x](ε) = Uγ [x, x] + εµ[Uγ [x, x], Aµ] +O(ε2), (198)

which is now a constraint on translated loops. The reconstruction of the gauge
potential can then be done from infinitesimal straight paths, that approximate
the original path and are equal to it in taking the length of the infinitesimal
paths to zero

Uγ [x, y] = lim
M→∞

Uγ [x, xM−1] · · ·Uγ [x1, y]

= lim
M→∞

[
1 +

(
xµ − xµM−1

)
Aµ(x)

]
· · · [1 + (xµ1 − yµ)Aµ(x1)].

Notice the structure of this last equation when comparing it with the expres-
sions for the product integrals in Chapter 15. We also point out that for loops
the gauge potential can only be determined up to gauge transformations. To
see this let us consider the Wilson Loop

Uγ [x],

from which we first determine the open path phase-factors or Wilson lines.
Assign to each open path πxy

Uγ [x, y]
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from x a phase-factor
Φ(y) ≡ U(πyx).

Consider a random path Py,z such that

π−1
yx ◦ Py,z ◦ πzx

is a loop at x with corresponding phase-factor

U(Py,z) = Φ(y)Uγ [π−1
yx ◦ Py,z ◦ πzx]Φ−1(z).

This phase-factor clearly satisfies the constraint shown in Eq. (195). The
reason that the open phases are not uniquely determined follows from the
freedom of choice for the paths πyx and πzx to form the loop

π−1
yx ◦ Py,z ◦ πzx.

Choosing another path π′yx for πyx, it is easy to show that the with this new
path associated open phase-factor for the path Py,z is related to the original
one by a factor

φ(y) = Φ′(y)Uγ [π′−1
yx ◦ πyx]Φ−1(y),

a gauge transformation. Due to the equivalence of fundamental groups at
different points x, y in topological spaces we have that the closed-loop phases
at each point describe the gauge-invariant content of field configurations, but
the relation between the descriptions at different points is non-canonical. The
equivalence of the holonomies at different points is non-canonical because for
phase-factors each different choice for a path between the points x and y

leads to a different equivalence, although the holonomy groups are related by
an isomorphism.
Including now the traces in the Wilson Loops we change to the Wilson

Loop Variables
W (γx) = 1

N
Tr Uγ [x]

which is now gauge invariant. Naturally W (γx) is determined by Uγ [x] in a
unique way. The inverse problem is quite more involved, where again we have
constraints but now on W (γx). We need algebraic constraints that are the
counterparts of the constraint in Eq. (195), where the first set of these is
generated by the cyclicity of the Trace

W (γ1 ◦ γ2) = W (γ2 ◦ γ1).
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A second set of constraints comes from the need for the complex values to
be traces of some SU(N) matrix. These constraints are highly non-linear and
a description of them can be found in [127], where it is also demonstrated
that in the classical case the equivalence relation from Theorem 13.3.2 is
equivalent to the above set of constraints. The introduction of this equivalence
relation has thus reduced the infinite dimensional holonomy algebra to a finite
dimensional matrix algebra.
Formally this construction can be extended to the quantum field theory

case by use of

Wn(C1, · · · , Cn) =
∫

µ
dWε−S(W )W (C1) · · ·W (Cn),

where S(W ) is an (unknown) action on loop space and µ is over the char-
acters of the representations of the loop group. This is a formal expression
since no measure has been identified on µ, which has much to do with the
complications of quantization of this loop space. Therefor this suggests that
the Mandelstam constraints are sufficient to determine the (quantized) gauge
potentials up to gauge transformation, but it is not a definite proof.
Notice also that, assuming that the above can be proved, we have ex-

changed gauge invariance for path dependence. This dependence has its own
problems, but is manageable in some cases. For instance considering paths
on the light cone in a certain light cone direction has only one option for a
path such that the path dependence is not a real obstacle. In the general case
however non-trivial phenomena might arise, an example of such an effect is
the Aharanov-Bohm effect.

18.6 the lie algebra of the group L̃Mp

In Section 18.4 we explained that the space of generalized loops forms a
topological group. Now we investigate the associated Lie algebra.
As we know from Section 14.1, Lie algebras have a close connection with

right/left invariant vector fields. With this in mind we repeat here the defini-
tion of a left invariant derivation (respectively, right invariant derivation)
on Ap.
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Definition 18.6.1 (Left Invariant Derivation).
A k-linear map

D : Ap → Ap
is called a left invariant derivation (respectively, right invariant deriva-
tion) on Ap if D satisfies the following two conditions

D(Xu1Xu2) = Xu1D(Xu2) +D(Xu1)Xu2 (199)
∆ ◦D = (1⊗D) ◦∆. (200)

(respectively, ∆ ◦D = (D ⊗ 1) ◦∆), for all

u1,u2 ∈ Sh.

Using the topological group property of L̃Mp and the above invariant
derivations we have the following definition from the general theory of affine
k-groups

Definition 18.6.2 (Lie Algebra of L̃Mp).
We define the Lie algebra of the group L̃Mp as the k-linear space ˜lMp

of all continuous left invariant derivationsa on Ap. With the Lie bracket
defined as

[D1, D2] = D1D2 −D2D1. (201)

a These are actually the left invariant vector fields on L̃Mp.

Similarly to the situation with regular Lie groups it is possible to demonstrate
that this Lie algebra is isomorphic the tangent space at the unit element
L̃Mp, i.e. with

TεL̃Mp at ε.

To justify this isomorphism and make the derivations more explicit, let us
consider the convolution product

f1 ? f2

of two elements
f1, f2 ∈ A∗p,
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the topological (weak) dual of Ap

f1 ? f2(Xω1···ωr) = (f1 ⊗ f2) ◦∆(Xω1···ωr)

=
r∑

i=0
f1(Xω1···ωi) · f2(Xωi+1···ωr). (202)

The convolution product can be used to define left- and right-invariant endo-
morphisms on A∗p.

Lemma 18.6.1

(A∗p, ?) is a topological k-algebra, isomorphic (resp., anti-isomorphic)
to the topological algebra EndLL(Ap) (respectively, EndRL(Ap)) of all
left (or right) invariant k-linear endomorphisms of Ap (i.e., k-linear
morphisms

σ : Ap → Ap
that satisfy the left (right) invariance condition):

∆ ◦ σ = (1⊗ σ) ◦∆ (203)

and, respectively,
∆ ◦ σ = (σ ⊗ 1) ◦∆,

endowed with the topology of point wise convergence (weak-∗). More-
over, each element of

EndLL(Ap)
commutes with each element of

EndRL(Ap).

Some instructive examples are given below.

Example 18.6.1.
Let

α ∈ LMp

and
δα ∈ A∗p
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be the Dirac map as defined before. Then Ψδα is the automorphism

Xu → α ·Xu

corresponding to the action of α, on LMp from the righta. In fact, the
right action of LMp on itself, through right translations

rα1 : α2 7→ α2 · α1,

induces a left action of LMp on Ap by

(α1 ·Xu)(α2) ≡ Xu(α2 · α1) (204)

By the identification
α1 → δα1 ,

we can write the RHS of the above equation in the form:

Xu(α2 · α1) = δα2·α1(Xu) = δα2 ? δα1(Xu)

= δα2((1⊗ δα1)∆Xu) = δα2

(
Ψδα1

(Xu)
)

(205)

while the LHS is simply
δα2(α1 ·Xu),

which allows the above mentioned identification

Ψδα1
' α1 ·Xu.

In the same way we can prove that Λδα1
is the automorphism

Xu → Xu · α1

corresponding to the action of α1, on LMp from the left.
a Xu(β) → α ·Xu(β) =

∫
βα
Xu note the order change of the paths which makes it

into a right action on LMp although it is written as a product from the left.

Taking now the σ, defined in the Lemma 18.6.1, to be a left invariant deriva-
tion

σ = D,

we can write
Φ(D) = fD = ε ◦D ∈ A∗p
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with:

fD(Xu1Xu2) = εD(Xu1Xu2)
= ε(Xu1DXu2 +DXu1Xu2)
= ε(Xu1)fD(Xu2) + fD(Xu1)ε(Xu2), (206)

demonstrating that the Lie algebra ˜lMp is isomorphic, as k-linear space, to
the subspace of A∗p consisting of the pointed derivations (Definition 10.3.3)
at ε

˜lMp
∼= {δ ∈ A∗p : δ(Xu1Xu2) = ε(Xu1)δ(Xu2) + δ(Xu1)ε(Xu2)}.

The tangent space at ε
TεL̃Mp,

is considered to be this k-linear space of pointed derivations at ε, just as
desired. To motivate why we call this space the tangent space, consider α̃∆,
a curve of generalized loops such that

α̃0 = ε

lim
∆→0

α̃∆ = ε

lim
∆→0

α̃∆ − ε
∆ = δ ∈ A∗p

where the limits are taken in the weak (topology) sense

lim
∆→0

α̃∆(Xu) = ε(Xu), ∀u ∈ Sh(Ω)

in the weak-∗ topology. As such δ is a tangent vector to this curve of loops.
Applying this δ to XuXv returns:

δ(Xu1Xu2) = lim
∆→0

α̃∆(Xu1Xu2)− ε(Xu1Xu2)
∆

= lim
∆→0

(
α̃∆(Xu1) α̃∆(Xu2)− ε(Xu2)

∆ + α̃∆(Xu1)− ε(Xu)
∆ ε(Xv)

)

= ε(Xu1)δ(Xu2) + δ(Xu1)ε(Xu2),

where we used the property that the Chen integrals preserve multiplicity
(Proposition 12.3.1)

α̃t(XuXv) = (XuXv)(α̃t) = Xu(α̃t)Xv(α̃t) = (α̃t)(Xu)(α̃t)(Xv),
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showing that δ is a pointed derivation at ε. We thus have a k-linear isomor-
phism:

TεL̃Mp
∼= ˜lMp,

given by
δ → Dδ = (1⊗ δ) ◦∆.

The Lie bracket of
TεL̃Mp

for the pointed differentiations is defined by

[δ, η] ≡ ε ◦ [Dδ, Dη] = δ ? η − η ? δ. (207)

Notice that for any pointed derivation δ, at ε

δ(Xω1···ωrXωr+1···ωr+s) = 0, ∀r ≥ 1,∀s ≥ 1,

which stems from the product properties of the Xu and the definition of
ε(Xu) that show up when taking the δ of a product (see Proposition 12.3.1,
Eqs. (185) and (207)). Combining these properties with the above we can
conclude that

δn(Xω1···ωr) = 0, ∀n > r ≥ 0, (208)
where

δn ≡ δn−1 ? δ, ∀n ≥ 1.

As with usual Lie theory we can define an exponential map

exp [δ]

for each tangent vector
δ ∈ TεL̃Mp

∼= ˜lMp

by
exp [δ] ≡ ε+

∑
n≥1

δn

n!
such that the map

Xω1···ωr → exp [δ(Xω1···ωr)]

is given by (
ε+

∑
n≥1

δn

n!

)
(Xω1···ωr),

which is of course only valid under the assumption that the series converges.
This is the case since by Eq. (208) this series is finite, such that exp δ is well
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defined. Again, similar to the case in regular Lie theory, exp [δ] represents a
generalized loop. Moving on to the opposite case where we now have a given
generalized loop

α̃ ∈ L̃Mp,

an Lie algebra element can be associated through the definition

log α̃ ≡
∑

n≥1
(−1)n−1

n
(α̃− ε)n, (209)

where
(α̃− ε)n ≡ (α̃− ε)n−1 ? (α̃− ε), ∀n ≥ 1.

Again from the properties of the Hopf algebra operations we have that

(α̃− ε)n(Xω1···ωr) = 0, ∀n > r ≥ 0,

such that log α̃ is well-defined and is an element of

TεL̃Mp
∼= ˜lMp.

Continuing, similar to the reasoning in real calculus, expansion in formal power
series allows to define

exp [k log α̃] = α̃k, ∀k ∈ Z
log [exp δ] = δ,

which can be extended to define for each

∆ ∈ k

α̃∆ ≡ exp [∆ log α̃]

It is now not so hard to show that

∆ 7→ α̃∆

is a one-parameter subgroup of L̃Mp, generated by log α̃, i.e.,

α̃0 = ε

α̃∆ ? α̃∆′ = α̃∆+∆′

lim
∆→0

α̃∆ − ε
∆ = log α̃ = δ,
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such that
α̃∆ = exp [δ],

a generalized loop and where in the last line the limit is taken in the weak
(topology) sense.

Now that we have introduced the left- and right-invariant derivations, dis-
cussed their relation with the pointed derivations defined on the shuffle alge-
bra and having defined a Lie algebra we can move on in the next Chapter to
differential calculus on GLS.

18.7 summary

In this chapter we have introduced the concept of a generalized loop, demon-
strated that it is a topological group and introduced its associated Lie alge-
bra. We also discussed the equivalence relation that can be introduced on
this space by the Wilson Loop Variables, still accommodating the separa-
tion of points, but reducing the infinite dimensional Lie algebra to a finite
dimensional one. The relation between the Mandelstam constraints and this
equivalence relation was highlighted and discussed. The next chapter will deal
with differential calculus on GLS.





19
LOOP CALCULUS

19.1 introduction

In this Chapter we will introduce differential operators defined on general-
ized path and loop space. More specifically we will discuss the path and area
derivative that were used by Makeenko and Migdal to derive their loop equa-
tions. Finally we discuss the Fréchet derivative, introduced in Chapter 17, with
respect to smooth diffeomorphisms and investigate it’s link with Polyakov’s
infinitesimal loop variation.

19.2 path derivatives

The first class of differential operators we wish to introduce can act on both
generalized paths and loops. These operators act on specific locations along
the paths and loops, depending on if they operate at the initial or terminal
point of the contours they are referred to as the initial- and terminal end-point
derivatives. We point out that this class of derivatives depends on a (local)
vector field, which for the terminal end-point derivative is assumed to exist in
a neighborhood U of the terminal point q = γ(1) of the generalized path γ
(and in a neighborhood of the initial point for the initial end-point derivative).
Writing

V (γ(1)) = v ∈ Tγ(1)M

for the vector field at q this local vector field v generates a local integral
curve, starting at

q = γ(1), s = 0

which we symbolically write as

ηVs = ΦV (s)(q).

We will write
γs = γ · ηVs

291
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for the new path composed of the combination of the original path γ followed
by the local integral curve induced by v and

qs = γs(1)

for the varying end point of the combined path, this is graphically represented
in the left panel of Fig. 36. The right panel shows that extending the original
path

γ → γs

returns a different path, i.e. a different point in the path space PM, from
which it is clear that the end point derivatives are actually directional deriva-
tives in PM. The direction of this directional derivative is determined by
the local vector v, inducing a tangent vector δv in the path space PM which
can be interpreted as the direction of derivation. Notice that we implicitly as-

•
γ(0)

•
γ(1) = q

v

ηVs

γ

PM

δv

γs
•

s = 0

Figure 36: γs = γ · ηVs and qs = γs(1)
.

sumed a re-parametrization such that the parameter that describes the curve
is still in the interval [0, 1]. Due to the identification between Chen integrals
and generalized paths and loops, this re-parametrization invariance is natu-
rally included. One could also introduce the invariance explicitly by dividing
out the equivalence relation for paths that only differ by re-parametrization.
In a quantum setting, using the path-integral formalism [128], this results in
integrating over all re-parametrizations which gives rise to a constant factor.
This factor then divides out if one divides by the vacuum diagrams in the
calculation of an expectation value in quantum field theory1. With these no-

1 Notice that not in all path or loop spaces described in the literature this re-parametrization
invariance is assumed (see for instance [112] for such an example).
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tations and parametrizations we can now give the definition of the terminal
covariant endpoint derivative.

Definition 19.2.1 (Terminal Covariant Endpoint Derivative).
Let Uγ be a path functional on PM, with values in R (or C;GL(n,C)).
We define the terminal covariant endpoint Derivative

∇TV (qs)Uγ

of Uγ , at γ, in the direction of V , as the limit:

∇TV (qs)Uγ = lim
∆→0

Uγs+∆ − Uγs
∆ . (210)

Replacing γs by
γs = (ηVs )−1 · γ,

where V is now a vector at the initial end point of the original path γ,
defines the initial covariant endpoint derivative

∇IV (qs)Uγ .

This is only well defined in a neighborhood of the endpoint

q = γ(1)

or better at
qs = γs(1),

and moreover depends on the vector field V , which gives it the directional
derivative like behavior. In the special case that s = 0, we can define the
Terminal Endpoint Derivative.

Definition 19.2.2 (Terminal Endpoint Derivative).
Let Uγ be a path functional on PM, with values in R (or in C;GL(n,C)).
We define the terminal endpoint derivative

∂Tv Uγ

of Uγ , in the direction of

v ∈ Tγ(1)M,
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as the limit:
∂Tv Uγ = lim

∆→0

Uγ∆ − Uγ
∆ (211)

provided this limit exists independently of the choice of the vector field

V ∈ XM,

such that
V (γ(1)) = v.

The following example is instructive to understand the above definition.

Example 19.2.1.
Consider smooth function

F ∈ C∞M

and define a path functional UF , by

UF [γ] = F [γ(1)].

Applying the terminal covariant endpoint derivative returns

∇TV (qs)UF [γ] = V · F [qs] = dF [Vqs ]. (212)

For the terminal endpoint derivative this reduces to

∂Tv UF [γ] = V · F [γ(1)] = dF [v] (213)

which depends only on the vector v, and not on the particular extension
V .

Inspired by this example one can also introduce the concept of a marked path
functional, where the marked refers to the fact that it is determined by the
evaluation of some function at a certain point along the path. Note that here
it might make a difference if one assumes re-parametrization invariance or
not!!!
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Definition 19.2.3 (Marked Path Functional).
Let Uγ be a path functional and

F ∈ C∞M.

We define the marked path functional F � Uγ , by:

(F � Uγ)[γ] = F [γ(1)] Uγ . (214)

The following Lemma shows that the introduced endpoint derivatives are
actual derivatives

Lemma 19.2.1: Leibniz Rule

Suppose that Uγ is a path functional for which the limit in Eq. (210)
exists, and has the ‘continuity condition’

lim
∆→0

Uγs+∆ = Uγs , ∀s ≥ 0.

The covariant endpoint derivative then obeys the Leibniz rule:

∇TV (qs)
(
F � Uγ

)
(γ) = V · F (qs)Uγs + F [qs]∇TV (qs)Uγ

= ∇TV (qs)F [γ]Uγs + F [γs]∇TV (qs)Uγ (215)

where we have put
qs = γs(1).

In particular, if
∂Tv Uγ

exists in the sense of Definition 19.2.2, then we have at the terminal
endpoint

q = γ(1)

that
∂Tv
(
F � Uγ

)
[γ] = ∂Tv F [γ]Uγ + F [γ]∂Tv Uγ (216)

which depends only on the vector v, and not of the particular extension
V .

Next we would like to investigate the application of the endpoint derivatives
to the path functional Xω1···ωr . We start from the following lemma:
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Lemma 19.2.2

Let
ηx = ηVx .

Then:

lim
∆→0

∫
η∆
ω

∆ = ω(v)

lim
∆→0

∫
η∆
ω1 · · ·ωr

∆ = 0 ∀r ≥ 2

where
ω, ω1, · · · , ωr ∈

∧1
M.

Respectively,
ω, ω1, · · · , ωr ∈

∧1
M ⊗GL(n,C).

This lemma is easy to prove after introducing local coordinates

ω = Aµ(x) dxµ.

proof 19.2.1

lim
∆→0

∫
ηs
ω

s
= lim

∆→0

∫
ηs
Aµ(x)dxµ

∆

= lim
∆→0

∆∫
0

(
Aµ(x(t))dxµdt

)
dt

∆

= lim
∆→0

∆∫
0

(Aµ(x(t))vµ(t)) dt

∆
= Aµ(x(0))vµ(0) = ω(v), (217)

which is valid under the assumption that there are no divergences in the
kernel of the integral.
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Returning to Lemma 19.2.2 and Eq. (89) with

α1 · α2 = γ · ηs

where γ is the path from γ(0) to γ(s)) for

r ≥ 1

returns a more useful expression for the covariant endpoint path derivative

∇TV (qs)Xω1···ωr(γ) = Xω1···ωr−1(γs) · ωr(Vqs) (218)

which for the terminal endpoint derivative ∂Tv reduces to

∂Tv X
ω1···ωr(γ) = Xω1···ωr−1(γ) · ωr(v), ∀r ≥ 1.

Equivalent expressions for the initial terminal point derivatives can be derived

∇IV (qs)Xω1···ωr(γ) = −ω1(Vqs) ·Xω2···ωr(γs), ∀r ≥ 1

and
∂IvX

ω1···ωr(γ) = −ω1(v) ·Xω2···ωr , ∀r ≥ 1

where again the form are considered to be

ω1, · · · , ωr ∈
∧1

M

or
ω1, · · · , ωr ∈

∧1
M ⊗GL(n,C).

Keeping QFT in mind we can consider the commutator of two endpoint deriva-
tives. Applying the commutator to Xω1···ωr returns the following result

[
∂Tu1 , ∂

T
u2

]
Xω1···ωr(γ) = Xω1···ωr−2(γ) · (ωr−1 ∧ ωr)(u1 ∧ u2). (219)

This can be demonstrated by direct application of Eq. (218) combined with
the Leibniz rule and the definitions of the Marked Path Functionals. The
above results clearly show that

∇TV (qs)Xω1···ωr(γ)

given by Eq. (218), is a marked path functional, as defined in Definition
19.2.3 with

F = ωr(V ).
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It then follows that when we consider two vector fields U1, U2, locally defined
around

q = γ(1),

we can apply the Leibniz rule (Lemma 19.2.1) and the identity ([116, Theorem
4.25])

dω(U1, U2) = U1 · ω(U2)− U2 · ω(U1)− ω([U1, U2]),

to derive that at q we get
[
∇TU1(q),∇TU2(q)

]
Xω1···ωr(γ) = Xω1···ωr−1(γ) · dωr(u1 ∧ u2)

+Xω1···ωr−2(γ).(ωr−1 ∧ ωr)(u1 ∧ u2).
(220)

Clearly only the dependence on the local vectors u, v matters, and not on the
particular extensions U1, U2 such that we can write

[∇Tu1 ,∇Tu2

]
Xω1···ωr(γ).

In the previous Chapters we discussed the equivalence relation on generalized
loop space induced by the Wilson loops. In this context we want to know the
effects of the endpoint derivatives on a Wilson loop and Wilson line. Therefore
we consider the gauge link as a path functional

Uγ : PM→ GL(p)

which was introduced in Eq. (163). Application of the terminal endpoint
derivative returns

∂Tu2Uγ = Uγ · ω(u2), (221)

and for the initial endpoint derivative it returns:

∂Iu2Uγ = −ω(u2) · Uγ . (222)

These results may seem not so spectacular at the moment, but their relevance
will become clear when discussing the area derivative in the next Section.
Especially the result of the application of the commutator of two endpoint
derivatives to the gauge link, which is given by

[∇Tu1 ,∇Tu2

]
Uγ = Uγ · (dω + ω ∧ ω)(u1 ∧ u2)

= Uγ · Ω(u1 ∧ u2), (223)
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where Ω is the curvature of the connection one-form ω in Eq. (161), will
become important. In a more familiar QFT notation this becomes

[
∇Tu1 ,∇Tu2

]
Uγ = Uγ · Fµν(uµ1 ∧ uν2), (224)

We finish this Section by explaining the covariant part in the derivatives. The
example below explicitly demonstrates where the name covariant endpoint
derivative has its origin.

Example 19.2.2.
Given a path

λ ∈ PMp

and a function
F ∈ C∞M

and, respectively,
F ∈ C∞M ⊗GL(n,C),

we define a (marked) path functional through:

Zω1···ωr
(i) (λ;F ) ≡ Xω1···ωi(λ)F (λ(1))Xωi+1···ωr(λ−1)

where
ω1 · · ·ωr ∈

∧1
M

or
ω1 · · ·ωr ∈

∧1
M ⊗GL(n,C).

Applying the Leibniz rule returns

∇Tv Zω1···ωr
(i) (λ;F ) =Xω1···ωi(λ) · dFq(v)Xωi+1···ωr(λ−1)

+Xω1···ωi−1(λ) · ωi(v) · F (q) ·Xωi+1···ωr(λ−1)
−Xω1···ωi(λ) · F (q) · ωi+1(v) ·Xωi+2···ωr(λ−1),

(225)

where
q = λ(1)
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Finally let us define, for a connection one-form ω, a (marked) path
functional Ψ through

Ψ(λ;F ) ≡ Uλ · F (q) · Uλ−1

where
q = λ(1)

U is the parallel transport operator of the connection ω and

F ∈ C∞M ⊗GL(n,C).

Then, using Eq. (225), we compute that

∇Tv Ψ(λ;F ) = Uλ ·
(
dFq(v) + [ω, F ](v)

) · Uλ−1

= Uλ ·Dω
q F (v) · Uλ−1 (226)

where
Dω
q F (v) ≡ dFq(v) + [ω, F (v)]

stands for the usual covariant derivative of F . This explains the name
of the operator ∇Tv , as terminal endpoint covariant derivative.

19.3 area derivative

Having discussed path variations in the previous Section we now turn our
attention to the area derivative, graphically represented in Fig. 37. To be able

•

•q
•
• �(U,V )

∆

•

v

u

Φv
∆

Φu
∆

λ

λ−1

γ γ

LM

δu∧v

λ∆ = λ ·�(U,V )
∆ · λ−1

λ∆ · γ•

Figure 37: ∆λ;u1∧u2(q)Xω1···wr (γ)
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to define this area derivative we first need to define the area variation that we
will consider, therefore we introduce the infinitesimal area extension.

Definition 19.3.1 (Ininitesimal Area Extension).
Consider a loop

γ ∈ LMp,

a point
q ∈M

and a path
λ ∈ PMp,

going from
p to q = λ(1).

Given an ordered pair (u1, u2) of tangent vectors

u1, u2 ∈ TqM,

we extend them by two commuting vector fields

U1, U2 ∈ XU ,

defined in a small neighborhood U of

q = λ(1)

which is always possible for a smooth manifold. The infinitesimal area
variation is then defined by the infinitesimal loop

�(U1,U2)
∆ ,

based at q, defined by the local flows Φ

�(U1,U2)
∆ = ΦU2(−∆)ΦU1(−∆)ΦU2(∆)ΦU1(∆)(q) (227)

where ΦU1,U2 is the local flow of U1, U2.

We write λ∆ for the (∆-dependent) loop, see Fig. 37, where in the right panel
we now have a curve of loops in LM generated by the infinitesimal loop,

λ ·�(U1,U2)
∆ · λ−1
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for which we obtain, due to the path reduction property (Definition 13.3.3),

lim
∆→0

λ∆ = ε,

where ε is the unity in the group LMp (of equivalence classes) of loops based
at

p ∈M.

In the classical case one can write

lim
∆→0

λ∆(Xu) = lim
∆→0

Xu(λ∆) = ε(Xu), ∀u ∈ Sh(Ω). (228)

Given that
λ∆ · γ

represents an infinitesimal deformation of the loop γ, in the topology of LMp,
the area derivative can be defined as follows

Definition 19.3.2 (Area Derivative).
Given a loop functional

Uγ on LMp,

with values in R (respectively, C;GL(n,C)), we define its area deriva-
tive, denoted by

∆λ;(u1,u2)(q) · Uγ ,
as the limit

∆λ;(u1,u2)(q)Uγ = lim
∆→0

Uλ∆·γ − Uγ
∆2 (229)

provided this limit exists independently of the choice of the vector fields

U1, U2 ∈ XU .

Similar to the endpoint derivatives, the area derivative can be interpreted as
a directional derivative but now in generalized loop space. The "direction" of
derivation is now the loop space tangent vector δu∧v (see figure 37) of which
the exponential map

exp [δu∧v],

defined as in the previous Chapter, corresponds to the infinitesimal loop

λ ·�(U1,U2)
∆ · λ−1.
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We will see that also for the area derivative we can define an initial and
terminal version.
With the goal of applying the area derivative to Wilson Loop variables (for

SU(N) gauge theory)2

Wγ =
〈

0
∣∣∣∣

1
N

Tr P exp
[
ig

∮

γ
Aµ(x)dxµ

]∣∣∣∣ 0
〉
, (230)

we investigate the application of this derivative to the Chen iterated integrals

Xω1···ωr : LMp → R

(respectively, C;GL(n,C)). Similar to the path derivative, we can show that
the area derivative of the functionals Xω1···ωr is well-defined considering that
the kernels of the integrals in the following Lemma do not contain any diver-
gences.

Lemma 19.3.1

Write �∆ for
�(U1,U2)

∆

as before.

lim
∆→0

∫
�∆

ω

∆2 =
∫

V
dω = dω(u1 ∧ u2) (231)

lim
∆→0

∫
�∆

ω1ω2

∆2 = (ω1 ∧ ω2)(u1 ∧ u2) (232)

lim
∆→0

∫
�∆

ω1 · ωr
∆2 = 0, ∀r ≥ 3 (233)

where
ω, ω1, · · · , ωr ∈

∧1
M

or
ω, ω1, · · · , ωr ∈ C;

∧1
M ⊗GL(n,C).

Introduction of coordinates, together with using Stokes’ Theorem it is easy
to proof this Lemma. However, one does need to make a remark with respect

2 Where we assume the transition from classical to quantum case is allowed, in other words
the expectation values can be taken in a consistent way.
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to the goal of applying the area derivative to the Wilson loop variables from
Eq. (230). One subtle point can be highlighted by considering the integral in
Eq. (232), but rewritten in a more familiar gauge theory notation:

∫

�t
ω1ω2 =

∫

�t
AµAν ,

where Aµ, Aν are the gauge potentials. This integral is well-defined in the
classical case but will become problematic in a field theory setting when tak-
ing vacuum expectation values, even when considering both one-forms to be
locally constant the vacuum expectation value will give rise to a (divergent)
tadpole. Fortunately this tadpole can be taken care of by a convenient regu-
larization scheme such that in some cases we can deal with this problem. But,
in the general case, more specifically in the case where the Wilson loops are
lying entirely on the light cone, where we have additional light cone divergen-
cies, one will not be able to resolve this issue. The question is then if one can
interchange the integrals and the vacuum expectation values as one usually
does.
For the remainder of this text we will assume that the integrals in Lemma

19.3.1 are well-defined and use the values shown there. Notice that the above
defined area derivative introduces extra cusps along the contour, which is the
main cause of divergencies of the integrals in Lemma 19.3.1 in a QFT setting.
In the next Section we will discuss an alternative area derivative that in a
sense avoids the introduction of extra cusps.
Again motivated by the gauge links, we are interested in the effects of the

area derivative on the functionals Xω1···ωr . To investigate this we first define
the following derivation

Definition 19.3.3.
For

u1 ∧ u2 ∈
∧2

TqM

define a derivation
Du1∧u2(q),

in the algebra of iterated integrals, by

Du1∧u2(q)Xω1···ωr = Xω1···ωr−1 · dωr(u1 ∧ u2) (234)
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From the (algebraic) commutator
[
∂Tu1 , ∂

T
u2

]

of two terminal endpoint derivatives at q, we also define the derivation

Du1∧u2(q)

according to:

Du1∧v2(q) = Du1∧u2(q) +
[
∂Tu1 , ∂

T
u2

]
, (235)

for which we formulate the Lemma below, establishing its relationship to the
area derivative

Lemma 19.3.2

Let
∆λ;(u1,u2)(q)

be as introduced in Definition 19.3.2. Then

∆λ;(u1,u2)(q)Xω1···ωr(ε) =
r∑

i=1
(Du1∧u2(q)Xω1···ωi(λ))

(
Xωi+1···ωr(λ−1)

)

(236)
where

ω1 · · ·ωr ∈
∧1

M,

or, respectively,

ω1 · · ·ωr ∈ C,
∧1

M ⊗GL(n,C).

We introduce the notation

∆(λ;u1∧u2)(q)Xω1···ωr(ε),

to emphasize that the derivative only depend on u1 ∧ u2 of the local vectors.
The proof of this Lemma can be obtained by combining the properties of
the Chen iterated integrals for products of loops in Definition 19.3.2 and
comparing the resulting expression with the results of applying the derivative,
Definition 19.3.3, to the functionals Xω1···ωr .
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Example 19.3.1.

∆(λ;u1∧u2)(q)Xω(ε) = dω(u1 ∧ u2)
∆(λ;u1∧u2)(q)Xω1ω2(ε) = dω1(u1 ∧ u2)Xω2(λ−1)

+Xω1(λ) · dω2(u1 ∧ u2)
+ (ω1 ∧ ω2)(u1 ∧ u2)

and, more generally

∆(λ;u1∧u2)(q)Xω1···ωr(ε) =
r∑

i=1
Xω1···ωi−1(λ) · dωi(u1 ∧ u2)Xωi+1···ωr(λ−1)

+
r∑

i=2
Xω1···ωi−2(λ) · (ωi−1 ∧ ωi)(u1 ∧ u2) ·Xωi+1···ωr(λ−1).

(237)

Keeping in mind that
lim
∆→0

λ∆ = ε,

still assuming that the integrals in Lemma 19.3.1 are well-defined, one can
show that

lim
∆→0

λ∆ − ε
∆ = 0

by introducing local coordinates. At the same time we find that

lim
∆→0

λ∆ − ε
∆2

exists and is actually the area derivative. We write now

δ(λ;u∧v)

for the operator in the algebra of iterated integrals Ap, defined through the
derivations from Eqs. (234) and (235):

δ(λ;u1∧u2)X
u ≡ ∆(λ;u1∧u2)(q)Xu(ε)

= (λ⊗ λ)((Du1∧u2(q)⊗ J) ◦∆)Xu, ∀u ∈ Sh, (238)
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where in the last line J is the antipode and ∆ co-multiplication of the Hopf
algebra structure on Ap.
The last equality can be demonstrated from combining the definitions of

the operators written in the last line of Eq. (238) with the left action of a
loop on the space of generalized loops. Since this is a topological group as
we have seen in the previous Section, this action is well-defined. In a similar
way it is possible to show that

δ(λ;u1∧u2)

is a pointed derivation at ε, such that we have

δ(λ;u1∧u2)(Xu1Xu2) = δ(λ;u1∧u2)(Xu1)ε(Xu2) + ε(Xu1)δ(λ;u1∧u2)(Xv),

∀u1, u2 ∈ Sh(Ω).
From Eq.(238) we see that

δ(λ;u1∧u2) : Ap → k

is a linear map.
In Section 18.6 of the previous Chapter we described the Lie algebra on the

generalized loop space and derived that the tangent space TεLMp, to the
group LMp, at ε, is the k-linear subspace of A∗p. Here we will demonstrate
that this space is generated by all the

δ(λ;u1∧u2).

We start by considering a loop

γ ∈ LMp

and evaluate the area derivative (Fig. 38),

4(λ;u1∧u2)(q)Xω1···ωr(γ).

With these definitions we have the following Lemma

Lemma 19.3.3

Let
γ ∈ LMp,

λ ∈ PMp
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•
p = γ(0)

•q

•

• �(U,V )
∆

•

v

u

Φv
∆

Φu
∆

λ

λ−1

γ

Figure 38: 4λ;u1∧u2(q)Xω1···wr (γ)

and
u1 ∧ u2 ∈

∧2
Tλ(1)M.

Then

4(λ;u1∧u2)(q)Xω1···ωr(γ) =
r∑

i=1
4(λ;u1∧u2)(q)Xω1···ωi(ε)Xωi+1···ωr(γ)

= γ ◦ (δ(λ;u1∧u2) ⊗ 1) ◦∆(Xω1···ωr)

with
(δ(λ;u1∧u2) ⊗ 1) ◦∆

the right invariant derivation on the algebra Ap, which is associated to
the tangent vector

δ(λ;u1∧u2).

This Lemma allows us to use the notation

4R
(λ;u1∧u2) : LMp → A∗p,

given by
4R

(λ;u1∧u2)(γ) ≡ γ ◦ (δ(λ;u1∧u2) ⊗ 1) ◦∆
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as its designation as the right invariant ‘vector field’ on LMp, determined
by

δ(λ;u1∧u2).

In the special case that
λ = ε,

we call
4(ε;u1∧u2)(p),

similar to the path derivatives, the initial endpoint area derivative and
denote it by

4I
(ε;u1∧u2)(p),

as visualized in Fig. 39. In this situation the area derivative reduces to

•p = γ(0)

Φv
∆

Φu
∆

γ

Figure 39: 4I(ε;u1∧u2)(p)

4I
(ε;u1∧u2)(p)Xω1···ωr(γ) = dω1(u1 ∧ u2) ·Xω2···ωr(γ)

+ (ω1 ∧ ω2)(u1 ∧ u2) ·Xω3···ωr(γ).

Another possibility, similar to the path derivatives, is to consider

λ = γ · η,

γ ∈ LMp,

η ∈ PMp,
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and
u1 ∧ u2 ∈

∧2
Tη(1)M.

In this case, Fig. 40,

λt · γ ≡ (λ ·�(U1,U2)
t · λ−1) · γ = γ · η ·�(U1,U2)

t · γ · η−1 · γ
= γ · (η ·�(U1,U2)

t · η−1) ≡ γ · ηt,

such that we refer to this area derivative as the terminal endpoint area
derivative which we write symbolically as

4E
(η;u1∧u2)(q).

An explicit equation for this derivative applied to the functionals Xω1···ωr is
given by

4E
(η;u1∧u2)(q)Xω1···ωr(γ) =

r∑

i=1
Xω1···ωi(γ)4(η;u1∧u2)(q)Xωi+1···ωr(ε)

= γ ◦ (1⊗ δ(η;u1∧u2)) ◦∆(Xω1···ωr) (239)

• p = γ(0)

•q

•

• �(U,V )
∆

•

v

u

Φv
∆

Φu
∆

η

η−1

γ

Figure 40: 4E(η;u1∧u2)(q)



19.3 area derivative 311

Similar to the right invariant derivations, we can also introduce the left
invariant derivation

(1⊗ δ(η;u1∧u2)) ◦∆
associated to δ(η;u1∧u2). Naturally

4L
(η;u1∧u2) : LMp → A∗p,

given by
4L

(η;u1∧u2)(γ) ≡ γ ◦ (1⊗ δ(η;u1∧u2)) ◦∆, (240)
now referred to as the left invariant “vector field”, on

LMp,

determined by
δ(η;u1∧u2).

As for the path derivatives we have the special case

•p = γ(0)

Φv
∆

Φu
∆

γ•η(0) = η(1)

η

Figure 41: 4I(ε;u1∧u2)(p)

η = ε

(see Fig. 41), such that the above formula simplifies to

4E
(ε;u1∧u2)(p)Xω1·ωr(γ) = Du1∧u2(p)Xω1···ωr

= Xω1···ωr−1(γ) · dωr(u ∧ v)
+Xω1···ωr−2(γ) · (ωr−1 ∧ ωr)(u1 ∧ u2).

(241)
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As indicated in the previous Section, this last case is particularly interesting
because we can relate the area derivative to the Lie bracket of terminal end
point path derivations, Eq. (220)

4(ε;u1∧u2)(q)Xω1···ωr(γ) =
[
∇Tu ,∇Tv

]
Xω1···ωr(γ),

an interesting result. If, in this specific case, we consider not the functionals
Xω1···ωr but the holonomy Uγ instead, we obtain

4E
(ε;u1∧u2)(p)Uγ = Uγ · (dω + ω ∧ ω)(u1 ∧ u2)

= Uγ · Ω(u1 ∧ u2) (242)

where again Ω is the curvature of the connection ω. The fact that Ap is of
trace class, we can apply this derivation to the Wilson loop W :

4E
(ε;u1∧u2)(p)W (γ) = Tr((dω + ω ∧ ω)(u1 ∧ u2) · Uγ)

= Tr(Ω(u1 ∧ u2) · Uγ). (243)

where these last equations are also referred to as the Mandelstam formulas.
Since we are dealing with Lie algebras, it is not a surprise that we also have
a Bianchi identity

Theorem 19.3.1: Bianchi Identity

∑

cycl{u1,u2,u3}
∇Tu1(λ(1))δ(λ;u2∧u3) = 0, (244)

where ∑

cycl{u1,u2,u3}

stands for the sum over the cyclic permutations of the vectors u1, u2, u3.

Analogous to the path derivative case we can again consider the commutator
of two area derivatives, which as elements of the Lie algebra, will allow the
formal determination of the structure constants of this algebra
[
δ(λ;a1∧a2), δ(η;u1∧u2)

]
= δ(λ;a1∧a2)?δ(η;u1∧u2)−δ(η;u1∧u2)?δ(λ;a1∧a2). (245)
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Using the definitions, introduced in this Section, of the area derivative this
can be written as:

[δ(λ;a1∧a2), δ(η;u1∧u2)]Xω1···ωr =
r∑

i=0

i∑

k=0
(Da1∧a2(λ(1))Xω1···ωk(λ))

(
Xωk+1···ωi(λ−1)

)
δ(η;u1∧u2)(Xωi+1···ωr)

−
r∑

i=0

i∑

k=0
(Du1∧u2(η(1))Xω1···ωk(η))

(
Xωk+1···ωi(η−1)

)
δ(λ;a∧b)(Xωi+1···ωr).

(246)

With this we end our introduction of the area derivative and move on to the
variational derivative.

19.4 variational calculus

In the previous Section we have introduced the area derivative, which de-
pends on two independent local vector fields. A crucial problem with these
derivatives in the context of QFT, while calculating perturbative matrix ele-
ments, vacuum expectation values etc., is that they may introduce extra cusps
(angle-like obstructions) in the contours and, consequently, may generate ex-
tra singularities in the perturbative expansion. To handle this problem we
need a derivative, that does not introduce extra singularities. In this Section,
following Tavares [16], we shall introduce such a derivative, that is derived
from area variations that are generated by diffeomorphisms, which can be
related to the Fréchet derivative, a differential operator situated, in a sense,
between the path- and an area-derivatives.
To introduce this derivative we start by considering Diff(M), the diffeo-

morphism group of M . Let now

ϕ ∈ Diff(M)

be a diffeomorphism of M and

γ ∈ PM

a path in M . Then we have
ϕ · γ
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for the image of the path γ under the diffeomorphism ϕ. From elementary
manifold theory we see that the action of the diffeomorphism ϕ on the func-
tionals Xω1···ωr is given by

Xω1···ωr(ϕ · γ) = Xϕ∗ω1···ϕ∗ωr(γ) (247)

where, as before,
ω1, · · · , ωr ∈

∧1
M

or
ω1, · · · , ωr ∈ C;

∧1
M ⊗GL(n,C)

and ϕ∗ωi are the pull-backs of ωi under the map ϕ. We now restrict our-
selves to the diffeomorphisms that form a one-parameter group, infinitesimally
generated by

Y ∈ XM,

a vector field on M . This vector field generates a one parameter group of
active diffeomorphisms ψ(t) by the identification

ψYt (p) := cYp (t), (248)

where
t→ cYp (t)

is the maximal integral curve in M starting at p ∈M with tangential vector
field Y at each point of the curve. The situation is similar to the integral curves
associated with directional derivatives. For a composition of diffeomorphisms
we have

ψYt (p) ◦ ψYs (p) = ψYs+t(p),

such that Diff(M) is indeed a group. The existence of a local form for the
above vector field allows us to define a Lie derivative for any tensor field by
the identification [116, Chapter 4]

(LY (T ))(p) :=
(
d

ds

∣∣∣
s=0

(
ψYs

)∗
T

)
(p), (249)

which being applied to Eq. (247) results in

DVX
ω1···ωr(γ) ≡ d

ds

∣∣∣
s=0

Xω1···ωr(ϕs · γ)

=
r∑

i=1
Xω1···ωi−1(LY ωi)ωi+1···ωr(γ), (250)
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where
ω1, · · · , ωr ∈

∧1
M

or
ω1, · · · , ωr ∈ C;

∧1
M ⊗GL(n,C)

and LV ω refers to the Lie derivative of the one-form ω, in the direction of V .
From manifold theory we have Cartan’s formula for the Lie derivative

LY = ιY d+ dιY , (251)

where
ιY ω

n(v2, · · · , vn) := ωn(Y, v2, · · · , vn)

is the interior product (Definition 7.2.7). Using this in Eq. (250) it reduces
to3

DVX
ω1···ωr(γ) =

r∑

i=1
Xω1···ωi−1·(ιY dωi)·ωi+1···ωr(γ)

+
r∑

i=2
Xω1···ωi−2·ιY (ωi−1∧ωi)···ωi+1···ωr(γ)

+ ωr(V (1))Xω1···ωr−1(γ)− ω1(V (0))Xω2···ωr(γ).
(252)

From Chapter 17 we know that, the Fréchet derivative applied to the path
functionals Xω1···ωr is given by the linear map

DVX
ω1···ωr(γ) : TγLM→ C

or respectively to GL(n,C) defined by

DVX
ω1···ωr(γ) ≡ d

ds

∣∣∣
s=0

Xω1···ωr(γs).

In this way
DVX

ω1···ωr(γ) associated with V

is now a Fréchet derivative of

Xω1···ωr at γ,

3 Note the different limits of the summations.
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in the direction of the tangent vector

V = Y ◦ γ ∈ γ∗TM,

as introduced in Definition 17.2.2.
Restricting ourselves to the pointed diffeomorphism group Diffp(M), the

diffeomorphisms ϕ that fix the point p, and keeping in mind that this is also
a topological group, we can consider it’s ‘Lie algebra’ Xp(M). By definition
this algebra consists of the vector fields Y that vanish on p. The action of
the elements of this algebra on the algebra Ap can be naturally defined by
making use of the pull-backs of the one-forms ωi:

(ϕ,Xω1···ωr) 7→ ϕ ·Xω1···ωr

≡ Xϕ∗ω1···ϕ∗ωr . (253)

Diffeomorphisms do not change the algebraic structure of the one-forms, thus
it preserves the Hopf algebra structure and as such ϕ is an Hopf algebra
automorphism, written explicitly

ϕ · (XuXv) = (ϕ ·Xu) · (ϕ ·Xv)
∆ ◦ ϕ = (ϕ⊗ ϕ) ◦∆. (254)

As a direct result ϕ induces an automorphism of L̃Mp, through the identifi-
cation:

ϕ · α̃(Xω1···ωr) ≡ α̃(ϕ ·Xω1···ωr)
= α̃(Xϕ∗ω1···ϕ∗ωr) (255)

where now ϕ, as an element of

Aut(L̃Mp),

has a differential (which maps the tangent space of the domain to the tangent
space of the codomain, in this case to itself)

dϕ : ˜lMp → ˜lMp,

defined as in standard differential geometry by

dϕ(δ)(Xω1···ωr) ≡ δ(Xϕ∗ω1···ϕ∗ωr), (256)
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with δ a tangent vector (or derivation) of L̃Mp. Using the differential

ϕ 7→ dϕ

produces a linear representation of the pointed diffeomorphism group

Diffp(M) on ˜lMp,

similar to the situation with Lie groups where the Lie algebra forms a linear
representation to the considered Lie group. The infinitesimal action of

Y ∈ Xp(M) on δ,

written as Y · δ, can be represented by

(Y · δ)(Xω1···ωr) =
r∑

i=1
δ
(
Xω1···ωi−1·(LY ωi)·ωi+1···ωr

)
, (257)

where we used
Y (0) = 0 = Y (1).

Making use of Cartan’s expression Eq. (251) for the Lie derivative and the
expressions that defined the ideal Jp of Ap, the above result can be reduced
to

(Y · δ)(Xω1···ωr) =
r∑

i=1
δ
(
Xω1···ωi−1·(ιY dωi)·ωi+1···ωr

)

+
r∑

i=2
δ
(
Xω1···ωi−2·ιY (ωi−1∧ωi)·ωi+1···ωr

)
, (258)

where ιY is again the interior product.

19.5 fréchet derivative in generalized loop space

In this Section we discuss the connection between the Fréchet derivative and
diffeomorphisms in more detail, more specifically we will discuss how the
diffeomorphism generating vector field V from the previous section becomes
a variational vector field. Let

γ ∈ PMp

be a path, based at p, with TγPMp the tangent space of PMp at γ as
visualized in Fig. 42. The vector fields along γ are defined throughout the
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γs

•

γ

M PM

TM TPM

•V

V

γs

Figure 42: Diffeomorphism of a path

pull-back bundle γ∗TM. Notice that these vanish at p since this point needs
to stay fixed. Choose such a vector

V ∈ TγPMp.

Now defining
s 7→ γs

as a curve of paths in PMp, starting at γ, in s = 0, with velocity V , we can
write:

γ0 = γ (259)

V (t) = ∂

∂s

∣∣∣
s=0

γs(t) (260)

V (0) = 0. (261)

The map
s 7→ γs

is the variation of γ = γ0, with associated variational vector field V . In the
special case that the variation γs is induced by a diffeomorphism, like in the
previous Section

γs = ϕs ◦ γ,
and the vector field is the diffeomorphism generator

V = Y ◦ γ
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we can determine the Fréchet derivative of the path functionals Xω1···ωr , at

γ ∈ PMp.

This derivative was defined in Definition 17.2.2 as is the linear map

DV ·Xω1···ωr(γ) : TγLM→ R

(respectively, C, GL(n,C)). In the previous Section we concluded that in the
case we are considering here it can be written as

DVX
ω1···ωr(γ) ≡ d

ds

∣∣∣
s=0

Xω1···ωr(γs)

The demonstration of this result depends on the following Lemma (see also
[129, Chapter 12] or [116, Chapter 4])

Lemma 19.5.1

Let N be a manifold (in our case, N will be I or S1),

γ : N →M

an immersion (Definition 7.2.13), and ω a differential form inM . Assume
that

Γ : N × [0, ε]→M

is a smooth variation of γ, with variational vector field V . That is,
putting

γs(t) = Γ(t, s),

∀(t, s) ∈ N × [0, ε],

we have
γ0 = γ

and
V (t) = ∂

∂s

∣∣∣
s=0

Γ(t, s) = Γ∗(t,0)

(
∂

∂s

∣∣∣
(t,0)

)
,

∀t ∈ N.
Then, as differential forms on

N = N × {0}
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we have:
d

ds

∣∣∣
s=0

γs
∗ω = γ∗(ιV dω + d(ιV ω))

= γ∗(ιV dω) + d(γ∗(ιV ω)). (262)

In this Lemma ιV (t)ω is the interior product of the form ω(γ(t)) with

V (t) ∈ Tγ(t)M

and d is the usual differential operator. Consider now the case where

γ : I →M

is an immersed (Definition 7.2.13) path, based at p and γs a variation of this
path generated by the variational vector field V . The Fréchet derivative then
becomes

d

ds

∣∣∣
s=0



∫

γs

ω


 = d

ds

∣∣∣
s=0



∫

I

γs
∗ω


 =

∫

I

γ∗(ιV dω + d(ιV ω))

=
∫

I

γ∗(ιV dω) +
∫

∂I

γ∗d(ιV ω)

=
∫

I

γ∗(ιV dω) + ω(V (1))− ω(V (0))

=
∫

γ

ιV dω + ω(V (1)) (263)

where we used the above Lemma (see [116, Eq. 4.33]) and where in the last
equality we have used the identity

∫

γ
ιV dω =

∫

I
γ∗(ιV ω).

Applying this result to a loop

γ ∈ LMp

and using the fact that
V (0) = 0 = V (1)

results in
DVX

ω(γ) = XιV dω(γ) =
∫

γ
ιV dω (264)
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for the functional Xω. Lemma 19.5.1 combined with an induction procedure
results in the following expression for a general functional Xω1···ωr

DVX
ω1···ωr(γ) =

r∑

i=1

∫

γ
ω1 · · ·ωi−1 · ιV (dωi) · ωi+1 · · ·ωr

+
r∑

i=2

∫

γ
ω1 · · ·ωi−2 · ιV (ωi−1 ∧ ωi) · ωi+1 · · ·ωr

+
( ∫

γ
ω1 · · ·ωr−1

)
· ωr(V (1)), (265)

which is the equivalent to Eq. (252). For an immersed (Definition 7.2.13)
loop

γ ∈ LMp,

we have only to consider variations V , that keep the base point p fixed

Vp ≡ {V ∈ γ∗TM : V (0) = 0 = V (1)} (266)

Let us mention that any solution Ψ of the equation:

DγΨ(V ) = 0,
∀V ∈ Vp (267)

is called a relative homotopy invariant of the loop γ, which has its own in-
teresting properties for instance in Chern-Simons theories or in String Theory.
Returning to our motivation for introducing the Fréchet derivative, we

now see that if we consider smooth diffeomorphisms the number of cusps
is preserved and we still have an area variation. In the next part, we will be
only interested in the subgroup of diffeomorphisms that also preserve angles,
i.e. the locally conformal diffeomorphisms. Despite this striking difference
between the area derivative and the Fréchet derivative they are still very well
related to each other. To make this relation explicit we define an element of
˜lMp by

Θ(γ;V ) ≡
∫ 1

0
δ(γto;V (t)∧γ̇(t))(γ(t))dt (268)

where
V ∈ Vp

and γt0 stand for the part of γ, from γ(0) to γ(t). Using the operator from
Definition 268 on the functionals

Xu, u ∈ Sh(Ω)
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results in
Θ(γ;V )(Xu) ≡

∫ 1

0
δ(γto;V (t)∧γ̇(t))(γ(t))(Xu)dt (269)

if, of course, this is well defined. Tavares [16] demonstrated that:

DVX
u(γ) =

∫ 1

0
4(γto;V ∧γ̇)(γ(t))Xudt (270)

= (γ ◦ (Θ(γ;V )⊗ 1) ◦∆) Xu. (271)

This result shows that the Fréchet derivative associated with the variational
vector field V can be considered as an integral along the path of area deriva-
tives. This means that if one considers area variations induced by the area
derivatives as little squares along the path, and integrate over them, we get a
smooth area variation. The fact that this is possible is due to the overlapping
sides of the little squares which are traversed in opposite direction such that
they disappear due to the path reduction property and inverses. This cancel-
ing effectively eliminates the cusps introduced by every square such that in
the end we have not introduced any new cusp and the result is a smoothly
varied contour. Fig. 43 represents this idea graphically.

Naturally we are interested in the application of this result not only to the
functionals

Xu, u ∈ Sh(Ω)

but also to the holonomy or Wilson loop

U : LMp → GL(n,C)

of a connection ω. The result for the holonomy can be written as

DV Uγ = Uγ ·
(∫ 1

0
Uγt0Ωγ(t)(V (t) ∧ γ̇(t)) · U(γt0)−1

)
, (272)

a formula that is also known as the Non-Abelian Stokes theorem, which
for Wilson loop variables becomes (making use of the nuclear or trace class
property)

δ(λ;u∧v) 〈0 |Tr Uλ| 0〉 = 〈0 |Tr{Uλ · Fµν(λ(1))(uµ ∧ vν) · Uλ−1}| 0〉 . (273)

Similar computations show that:

δ(λ;u1∧u2)Uλ = Uλ · F (λ(1))(u1 ∧ u2) · Uλ−1 , (274)
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The above discussion shows that the Fréchet derivative induces a smooth
variation of the (Wilson) loops that can be used to generate equations of
motion in GLS (Fig. 44 shows such a variation, the effect on the holonomy
and on the spectrum). In the next Part we will focus, as mentioned before,
to angle preserving diffeomorphism. Of course we could also consider smooth
diffeomorphisms, that still preserve the number of angles, but do not preserve
the angle sizes. Investigation of such variations have not been done yet as far
as we know, opening the door to extend contour variations to a bigger class
of transformations.

V

γ̇
γ′

δ(λ;γ̇∧V )

Path reduction

Figure 43: Variation induced by Fréchet derivative.

19.6 fréchet derivative and polyakov derivative

We end our exposition with a brief remark on the connection between the
Fréchet derivative and the Polyakov derivative. Polyakov proposed an area
variation similar to area derivative but with two extra paths attached. What
he effectively introduced was the infinitesimal version of the Fréchet derivative

Uγ ·
(
Uγt0Ωγ(t)(V (t) ∧ γ̇(t)) · U(γt0)−1

)
, (275)
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γ(t)

γ′(t)γ̃(t)

γ̃′(t)

e

g′ = U(γ̃′)

g = U(γ̃)

C

Tr
1 = Tr(e)

Tr(g)

Tr(g′)V

Figure 44: Loop variation and its effects on the holonomy and on the spectrum.

in the sense that his variation is the one induced by the integral kernel of the
Fréchet derivative. Interestingly the Fréchet derivative unites two different
derivatives that were heavily debated in the past, the area derivative preferred
by Makeenko and Migdal contrasted with the Polyakov derivative. Here we
clearly show that these are actually aspects of the same derivative, the Fréchet
derivative.

19.7 summary

This Chapter introduced different differential operators that are well-defined
on the generalized loop space. We started with the path- and area-derivative,
used by Makeenko and Migdal in their loop equations (see next Part), and are
well-known to most people in the field. Less known is the Fréchet derivative
which, if related to a variational vector field generating a diffeomorphism
in generalized loop space, introduces variations of the type that are shown
in figure 43. Similar to the area-derivative the Fréchet derivative generates
area variations, but of a completely different type as the area-derivative. It
is exactly this difference that will allow us to resolve some issues associated
with the area derivative, and ultimately will be used to demonstrate that
the evolution equation we introduced in [48] has a well-defined mathematical
basis.



Part IV

W I LSON LOOPS ON THE L IGHT CONE

In the previous part we have defined GLS and introduced differen-
tial operators that are well-defined on this space. These operators
generate geometric variations of the loops which in this Part will
be used to derive an evolution equations. In order to discuss the
MM equation we start by reviewing second quantization, path-
integrals and introduce the SD equations, which we then use in
combination with the differential operators from the previous Part
to rederive the MM equations. Unfortunately these equations are
only valid for contours without cusps, the contours we are mainly
concerned with, which eventually forced us to define a different
differential operator on loop space. This operator later turned out
to be a special case of the Fréchet derivative, associated to cer-
tain diffeomorphisms of the base manifold. Restricting to smooth,
angle preserving (conformal) diffeomorphisms, this "new" deriva-
tive in combination with the usual renormalization mass derivative
allowed us to construct an evolution equation for some specific
Wilson Loops. Applying this derivative then to gauge links show-
ing up in PDFs and FF allows to derive evolution equations for
TMDs.





20
PATH - INTEGRALS , SECOND QUANT IZAT ION AND
SCHWINGER -DYSON EQUAT IONS

20.1 introduction

The goal of this section is to introduce the SD equations for pure Yang-Mills
and QCD which in the next chapter will be used to derive the MM equations.
In order to be able to derive the SD equations we will quickly review some
aspects of the path-integral formalism where we follow the approach from
[128].

20.2 operator calculus

20.2.1 Free Scalar Theory : propagator

In the operator formalism the propagator of the free field

G(x− y) = 〈0 |T (φ(x)φ(y))| 0〉 ,

with T the time-ordering operator, obeys the Klein-Gordon equations

(−∂2 −m2)φ(x)
∣∣∣ 0
〉

= 0
〈

0
∣∣∣(−∂2 −m2)φ(x) = 0, (276)

together with the canonical equal-time commutation relations
[
χ(t,x), φ̇(t,y)

]
= iδd−1((x)− y)

[χ(t,x), φ(t,y)] = 0.

such that
(−∂2 −m2)G(x− y) = iδd(x− y), (277)

where d is the number of space-time dimensions. Fourier transforming Eq.
(277) returns

G(x− y) =
∫

dnk

(2π)n e
ik(x−y) i

k2 −m2 + iε
,

327
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the well-known Feynman propagator associated to the Klein-Gordon equa-
tions. In Eq. (276) we already made use of the the bra and ket notation
[130] introduced by Dirac in 1939 (see appendix A.4). Using this bra and ket
notation a linear operator O this can be written as

〈g |O| f〉 =
∫
ddx

∫
ddy g(y)Of(x), (278)

where we also have that

〈y |1|x〉 = 〈y |x〉 = δd(x− y), (279)

such that we can write for the operator O:

〈y |O|x〉 = O δd(x− y), (280)

where O operates on x. Considering the Green function G(x − y) as the
resolvent of the operator (−∂2 − m2) it can be expressed as the matrix
element of the inverse operator, which in Dirac notation becomes

G(x− y) =
〈
y

∣∣∣∣
i

∂2 −m2

∣∣∣∣x
〉
. (281)

Wick rotating Eq. (277) by introducing t = −ix4 results in the Euclidean
version

(−∂2 +m2)G(x− y) = δd(x− y). (282)
where the Green Function solution now is

G(x− y) =
∫

ddk

(2π)d e
ik(x−y) 1

k2 +m2 . (283)

Using a Wick rotation we are able to go to a Euclidean formulation of the
QFT under consideration, where the path-integrals are well-defined. Note how-
ever that from a non-perturbative point of view there is no reason why the
Minkowskian and Euclidean formulation should always be equivalent.
Before moving on to a discussion on the ordering of operators we have a

quick look at theDirac γ-matrices in the Euclidean formulation. In Minkowski
space we have that the anti-commutator of the γ-matrices returns

{γµM , γνM} = 2gµνI,

making γ0 Hermitian and the spacial γ-matrices Anti-Hermitian. In Euclidean
space on the other hand we have:

{γµE , γνE} = 2δµνI,
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now making all the γ-matrices Hermitian. Given the explicit representation:

γ4 = γ0 =


I 0

0 −I




γj =


 0 −iσj
iσj 0


 , (284)

of the γ-matrices the Euclidean version of the Dirac equation becomes
(
/∂ +m

)
ψ = 0,

or in momentum space: (
/p+m

)
ψ = 0,

with
p = (−i∂x,−i∂4) .

20.2.2 Path-ordering and the Path-integral

Formally Eq. (282) can be expressed as

OG(x− y) = δd(x− y),

inverting the operator then results in

G(x− y) = O−1δd(x− y)

= 1
−∂2 +m2 δ

d(x− y)

= 1
2

∫ ∞

0
dt e

1
2 t(∂

2−m2)δd(x− y)

= 1
2

∫ ∞

0
dte−

1
2m

2tPe
1
2

∫ t
0 ds∂

2(s)δd(x− y)

= 1
2

∫ ∞

0
dte−

1
2m

2t
∫

zµ(0)=xµ

Dzµ(t)e−
1
2

∫ t
0 dsż

2
µ(s) · Pe

∫ t
0 dsżµ∂µ(s)δd(x− y)

(285)

where P now defines the path ordering of the operators along the path finding
its origin in the fact that eA+B 6= eAeB when [A,B] 6= 0 leading to

eA+B = Pe

1∫
0
dσ′A(σ′)

e

1∫
0
dσB(σ)

= eA +
1∫

0

dσe(1−σ)ABeσA + · · ·
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(see [131] for the details). In the last line1 of Eq. (285) we integrate over all
the trajectories starting at x and where

∂µ(t)żν = d

dt
δµν = 0.

We now recognize this integral over zµ(t) as the path integral. Further sim-
plification comes from the fact that

Pe

t∫
0
dsżµ(t)

is a shift-operator

Pe

t∫
0
dsżµ(t)∂µ(t)

= e(zµ(t)−xµ) ∂
∂xµ

Pe

t∫
0
dsżµ(t)∂µ(t)

δd(x− y) = δd(z(t)− y). (286)

Hence for the propagator expressed with the path-integral we finally get

G(x− y) = 1
2

∞∫

0

dt e−
1
2 tm

2
zµ(t)=yµ∫

zµ(0)=xµ

Dzµ(t) e
− 1

2

t∫
0
dsż2

µ(s)
. (287)

20.2.3 Re-parametrization invariance

This is a good place to make a side note on re-parametrization invariance,
since we have this property in the GLS. Note that Eq. (287) is NOT invariant
under re-parametrization, to take this into account one also needs to inte-
grate over the re-parametrization group which leads to a group-volume
factor, due to the parametric invariance of the exponent. In general consider-
ing vacuum expectation values one divides out the vacuum bubble diagrams
i.e.

〈0 |O| 0〉 :=

〈
0
∣∣∣
∫ DΦ Oe−S

∣∣∣ 0
〉

〈0 |∫ DΦ e−S | 0〉 ,

such that this volume factor cancels in the numerator and denominator.
1 The equivalence between the last line and the previous can be shown by filling in zµ(t)→

z′µ(t) = zµ(t) +
t∫

0
dt′ ∂µ(t′) in the Gaussian integral of the last line.
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20.2.4 Propagator in external field and parallel transporter

Introducing an external field is the same as introducing a field Aµ(x) such
that we need to replace the partial derivative by the covariant one, i.e.

∂µ → Dµ = ∂µ − ieAµ.

This changes expression (285) to:

G(x, y;A) ≡
〈
y

∣∣∣∣∣
1

−D2
µ +m2

∣∣∣∣∣x
〉

= 1
2

∞∫

0

dt e−
1
2 tm

2
z(t)=y∫

z(0)=x

Dz(t) e
− 1

2

t∫
0
dt ż2(t)+ie

t∫
0
żµ(t)Aµ(z(t))

=
′∑

Γyx
e

ie
∫

Γyx

dzµ Aµ(z)

, (288)

where
′∑

Γyx
=
∑

Γxy
e−Sfree[Γyx].

This is indeed a very interesting result, because it says that the transition
amplitude (i.e. propagator) of a quantum particle in a classical electro-
magnetic field is a sum over paths of the Abelian phase factor

U [Γys] = e

ie
∫

Γyx

dzµAµ(z)

. (289)

As we have seen before, this is the parallel transporter associated to the gauge
potentials Aµ(z), here the electro-magnetic (gauge) field. This shows that
the phase factor depends on the specific path taken by the particle unless the
field is a pure gauge field, or put otherwise, the field strength Fµν(z) vanishes
along the possible paths. Due to the simply connectedness (Section 6.4) of
space-time this is usually the case, but sometimes some regions of space are
unavailable for paths such that the path dependence of the phase-factor can
have a physical effect. An example of such an effect is the Aharanov-Bohm
effect, which we will not discuss further here.
Having quickly reviewed the relation between path-integrals, propagators

and operator we turn our attention in the next Section to Second Quantiza-
tion.
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20.3 second quantization

20.3.1 Introduction

So far we have only considered first quantization where the coordinates and
momentum were operators. Formulating this in a path-integral formalism,
first quantization is related with integrals over trajectories in coordinate
space. In second quantization the fields become the operators. Naturally
one then wonders what is the associated integration in the path-integral for-
malism. The next Section shows that the path-integral will now integrate
over field configurations instead of over trajectories in coordinate space.

20.3.2 Partition function with fields

Inspired by statistical mechanics let us introduce the partition function, de-
fined for scalar fields, in the following way:

Z =
∫
Dφ(x)e−S , (290)

with S the free action for the field φ

Sfree[φ] = 1
2

∫
ddx

(
(∂µφ)2 +m2φ2

)
.

The measure of the integral in Eq. (290) can be defined as

∫
Dφ(x) · · · =

∏

x

∞∫

−∞

dφ(x) · · ·

with x running all over space and the measure dφ is the Lebesgue measure
[132]. Using the above definitions the Green function G(x, y) is given by

G(x, y) = 〈φ(x)φ(y)〉 , (291)

and a general average is defined by2:

〈F [φ]〉 = Z−1
∫
Dφ(x)e−S[φ]F [φ]. (292)

2 Note that here the square brackets are a sign of functional dependence!
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From the Gaussian structure of the free action we have

G(x− y) =
〈
y

∣∣∣∣
1

−∂2 +m2

∣∣∣∣x
〉
. (293)

Remark that Perturbation Theory is well defined on Minkowski-space be-
cause of the definition of the Gaussian path integral

∫
DφeiS =

∫
Dφei

∫
ddx φDφ, (294)

such that the identity is valid

〈φxφy〉 =
〈
y

∣∣∣∣
1
iD

∣∣∣∣x
〉
. (295)

We again point out that this does not need to be true in the non-perturbative
region which is due to the presence of the complex weighting factor, possibly
making the integrals divergent.
Until now we have only considered scalar/bosonic fields, we now wish to

extend the treatment to fermionic fields. To this end we introduce Grass-
mann variables obeying the anti-commutation relations:

{ψy, ψx} = 0, {ψ̄y, ψ̄x} = 0, {ψ̄y, ψx} = 0,

from which it follows that these variables are nilpotent of order two

ψ2
x = ψ̄2

x = 0. (296)

This leads to the following path-integrals for fermi fields
∫
Dψ̄Dψe−

∫
ddxψ̄Dψ = det D, (297)

and for complex Bose fields:
∫
Dφ†Dφe−

∫
ddxφ†Dφ = (det D)−1. (298)

With the above we have that:
〈
ψ(x)ψ̄(y)

〉
=
〈
y
∣∣∣D−1

∣∣∣x
〉
. (299)

using
det D = eSp lnD

for fermions and similar for bosons we have

(det D)−1 = e−Sp lnD

generating the minus sign that shows up in the logarithm of the partition
function when considering closed fermion loops.



334 schwinger-dyson

20.3.3 Schwinger-Dyson equations

The SD equations can be interpreted as the quantum version of the classical
equations of motion, that generate the Feynman diagrams by iterated appli-
cation. To derive the SD equations we consider the following field variation

φ(x)→ φ(x) + δφ(x)

which is allowed because the path-integral measure is invariant under such
variations. This immediately implies that the change in the path-integral
should be zero, hence :

∫
ddxδφ(x)

∫
Dφ e−S[φ]

[
− δS[φ]
δφ(x)F [φ] + δF [φ]

δφ(x)

]
= 0,

where F [φ] is for now an arbitrary functional. It immediately follows, due to
the arbitrariness of δφ(x), that

δS[φ]
δφ(x) = ~

δ

δφ(x) ,

where the explicit dependence on ~ is written. This last equation is said to be
valid in the weak sense which means it is valid under the assumption that
one takes averages of both sides of the equation leading to the functional
equality 〈

δS[φ]
δφ(x)F [φ]

〉
= ~

〈
δF [φ]
δφ(x)

〉
. (300)

As a simple example let us apply this to the free scalar field with F [φ] = φ(y).
In this case Eq. (300) becomes

(−∂2 +m2) 〈φ(x)φ(y)〉 = ~
〈
δφ(y)
δφ(x)

〉
= ~δn(x− y), (301)

where the left hand side originates from

δSfree
δφ(x) = (−∂2 +m2)φ(x).

The derivative on the right hand side serves as the conjugate momentum in
the operator formalism.
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Remark 20.3.1.
It is important to notice that taking this variational derivative in Eu-
clidean space is the same as differentiating the T-product and applying
the commutation relations in Minkowski space.

〈F [φ]〉 = Z−1
∫
Dφ(x)e−S[φ]F [φ]↔ 〈0 |TF [φ]| 0〉

In the classical limit ~→ 0 Eq. (301) reduces to

(−∂2 +m2) 〈φ(x)φ(y)〉 = 0
δS[φ]
δφ

= 0, (302)

the classical equation of motion for the field φ. To allow the introduction
of a graphical representation of the SD equations, consider now the scalar
interacting theory with action

S[φ] =
∫
d4x

(1
2(∂µφ)2 + 1

2m
2φ2 + λ

3!φ
3
)
,

Applying the SD approach with F [φ] = φ(y) results in

(−∂2 +m2) 〈φ(x)φ(y)〉︸ ︷︷ ︸
propagator

+λ

2
〈
φ2(x)φ(y)

〉

︸ ︷︷ ︸
vertex

= ~δn(x− y). (303)

Let us first consider the vertex term. Introducing the 3-point Fourier-
transformed Green functions

G3(p, q,−p− q) =
∫
d4x d4ye−ipx−iqy 〈φ(x)φ(y)φ(0)〉 , (304)

and the notation
G0(p) = 1

p2 +m2 , (305)

for the free propagator. Expanding Eq. (304) and writing only the lowest order
term we have

G3(p, q,−p− q) = −λG0(p)G0(q)G0(p+ q) + · · · . (306)
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From this expansion we derive the truncated part, i.e. we truncate the external
legs, also known as the vertex function which is given by

Γ(p, q,−p− q) = G3(p, q,−p− q)G−1(p)G−1(q)G−1(p+ q)

= −λ− λ3
∫

dnk

(2π)nG0(k − p)G0(k)G0(k + q) + · · · ,

(307)

where we wrote the first terms of the perturbative expansion in the second
line. A graphical representation of this expansion is shown in figure 45, where
the bold dot represents the exact vertex. Applying a similar reasoning to

= + + · · ·

Figure 45: DS Vertex expansion

the Fourier-transformed of the propagator term leads to an expansion that is
diagrammatically represented in figure 46 where now the bold line is the exact
propagator. Combining the expressions for the exact vertex and propagator

= + + +

+ + · · ·

Figure 46: DS Propagator expansion

results in the graphical equation shown in figure 47, where the thick lines
represent exact propagators and the dot on the right vertex is exact. The thin
lines are the bare propagator G0(p). Analytically we have:

G0(p)−G−1(p) = −λ2

∫
dnq

(2π)nG(q)Γ(−q, p, q − p)G(p− q). (308)
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If we multiply this with G(p) and use the above definitions we get the Fourier
transform of equation Eq. (303). It should now be clear that this equation is
not closed, it relates the 2-point function to the 3-point function. Choosing
now F [φ] = φ(x2) · · ·φ(xn) and apply the SD equations this results in

(−∂2 +m2)Gn(x, x2, · · · , xn) + λ

2Gn+1(x, x, x2, · · · , xn) =
n∑

j=2
δn(x− xj)Gn−2(x2, · · · , x̂j , · · · , xn), (309)

where the hat of x̂j means that this parameter is omitted.

G0(p)−G0(p)G
−1(p)G0(p) =

Figure 47: Graphical DS representation

20.3.4 QCD : Schwinger-Dyson Equations

20.3.4.1 Pure Yang-Mills Theory

The free QCD (or pure Yang-Mills) Lagrangian, without fermions, can be
rewritten as [19]

LQCD
free = −1

2Tr
[(
F aµν

λa

2

)2]

= −1
2
(
F aµν

)2
Tr

[
λa

2
λa

2

]

= −1
2
(
F aµν

)2 1
2

= −1
4
(
F aµν

)2

where we have neglected the ghosts and gauge-fixing terms since they
cancel anyway (see [128] for a proof of this statement). This expression allows
an easier variation of the Lagrangian with respect to the fields.



338 schwinger-dyson

20.3.4.2 Variation of the gauge field - SD equations

The goal is to derive the SD equations for QCD. To this end we consider a
variation of the gauge field, also inducing a variation in the derivative of the
gauge field

Aµ → Aµ + δAµ

∂νAµ → ∂νAµ + δ∂νAµ. (310)

With these variations we can determine
δS

δAµ
,

derive the Euler-Lagrange equations for the free QCD Lagrangian and the
SD equations. The detailed calculations can be found in appendix B.5 where
we find for the Euler-Lagrange equations

∂νF
µν,i + g f ijk Fµν,kAjν = 0, (311)

where g is the coupling constant, f ijk are the structure constants, Ajν the
gauge potentials and Fµν,i the "colored" (index i) field strength tensors (or
curvatures of the gauge potentials). The SD equations (where the equalities
are weak3) are given by
(
∂νF

µν,i + gf ijkFµν,kAjν

)
F [A] = Dab

ν F
µν,b(x)F [A] = ~

δ

δAaν(x)F [A],
(312)

where F [A] is the functional depending on the gauge fields andDab
µ represents

the covariant derivative in the adjoint representation. Important to note
here is that we have excluded the interaction with fermions, the motivation
for the moment being that if we consider only the lowest order interactions on
a quark Wilson loop we have no fermion couplings. The fermion couplings
only emerge here at the second order where a gluon splits in a quark pair (i.e.
gluon propagator correction). If one introduces the coupling with fermions
Eqs. (510) and (511) get an extra contribution

g
λa

2 ψ̄γ
µψ,

which needs to be taken into account in the higher order contributions. So at
lowest order, or suppressing fermion interactions, we can write formally

〈
Dab
ν F

µν,b(x)F [A]
〉

= ~
〈

δ

δAaν(x)F [A]
〉
. (313)

3 They are only valid under taking averages.
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20.4 summary

In this Chapter we have introduced the path-integral formalism at first quan-
tization level after reviewing some of the definitions and notations from the
operator formalism. With this formalism we had a short look at propagators
and more specifically studied the propagator in an external field where the
parallel transporter emerged as a phase-factor. We then moved on to the sec-
ond quantization where the path-integral formalism turned out to be useful
in deriving a set of quantum equations known as the Schwinger-Dyson equa-
tions. At the end of the chapter we applied these equations to pure Yang-Mills
theory to derive Eq. (511) that we will use in the next chapter to derive the
MM equations.





21
MAKEENKO -M IGDAL LOOP EQUAT IONS

21.1 introduction

After a short discussion on Fierz identies and an introduction to multi-color
QCD we will use the SD equations derived in the previous chapter to derive
the Makeenko-Migdal loop equations.

21.2 generalized fierz identities

In the next section we will need to make use of a Fierz-type of identity to derive
the MM equations. Here we will go through some of derivations demonstrated
in [133] to derive general Fierz identities.
We start from an N -dimensional vector space V with orthonormal basis
{ei} and inner product (·, ·) such that

(ei, ej) = δij .

In the canonical representation of these basis vectors we have that

(ei)j = δij .

Orthogonality can thus be represented as

eTi ej = δij

and completeness by
N∑

i

ei=1e
T
i = 1,

which is invariant under O(N) respectively U(N) transformations of the basis
vectors. It should now be clear that the set of real or complex N×N matrices
form a N2-dimensional vector space with canonical basis {eij} given by

(eij)kl = δikδ
j
l , (314)

such that any matrix M can be written as

M = Mije
ij . (315)

341
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One can now define the following inner product on this vector space

(A,B) ≡ Tr (ABT ) (316)

for which the canonical basis satisfies:

Tr [eijeklT ] = δikδjl. (317)

Note that in the complex case the transposition operation ·T needs to be
replace by the hermitian conjugation operation ·†. If we drop the transposi-
tion (hermitian conjugate) in Eq. (316) we have instead defined a bilinear
function on the N × N matrices. Using this bilinear we can define a dual
basis

{eij} : eij ≡ eji = eij
T
,

in other words this bilinear function can be interpreted as a metric that
can be used to raise or lower indices or to move between basis and dual basis

Mij = Tr [Meij ].

Inserting this in Eq. (315) this results in

(eij)kl(e
ij)nm = [(eij)T ]klδinδjm = δilδ

j
kδ
i
nδ
j
m = δkmδnl. (318)

This represents an identity in the space of general linear transformations over
MN (R). A transformation in the general linear transformations on MN (R)
can be written as

M → (A⊗B)M ≡ AMBT = (A)ij(B)lk(M)jkeil.

Combining
(eij ⊗ eij)M = (eij ⊗ eij)M = M,

with Eq. (318) will generate Fierz type identities. We will focus here on
SU(2) and SU(3) algebras, represented respectively by the Pauli and Gell-
Mann matrices which form vector spaces with orthogonality relations1

Tr [σiσj ] = 2δij , (i, j ∈ [0, 3] ∩ N)
Tr [λaλb] = 2δab, (a, b ∈ [0, 8] ∩ N). (319)

1 They are already orthogonal and hermitian



21.2 generalized fierz identities 343

As we know from matrix theory the three Pauli matrices augmented with the
unit matrix form a basis for the vector space M2(C) allowing us to write

M = M01 +Miσ
i, σi = σi, (320)

where
M0 = 1

2Tr (M) and Mi = 1
2Tr (Mσi).

Expressed with individual elements this becomes

Mij = 1
2Mkkδij + 1

2Mlk(σm)kl(σm)ij , (321)

from which we read off the coefficients for the Mlk element

δilδjk = 1
2δlkδij + 1

2(σm)kl(σm)ij .

Note that for Weyl spinors2 this becomes

(σµ)ij(σ̃
µ)kl = 2δilδkj ,

where
σµ = (1,σ) and σ̃µ = (1,−σ).

The equivalent expression of Eqs. (321) for SU(3) becomes

δilδjk = 1
3δlkδij + 1

2(λm)kl(λm)ij . (322)

Generalizing these equations, with completeness relations

Tr [TaTb] = Cδab

we finally get the general Fierz identities for SU(N)

δilδjk = 1
N
δlkδij + 1

C
(Ta)kl(Ta)ij . (323)

This last equation will be used to derive the MM equations in Section 21.4.

2 Using Minkowski to raise and lower indices!!
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21.3 large Nc expansion : multi-color qcd

21.3.1 Introduction

In 1974 Gerard t’Hooft [134, 135] found a new perspective on QCD, instead
of expanding the theory in the coupling constant to do perturbation theory
he expanded the theory in terms of the number of colors Nc. This effec-
tively rearranges the Feynman diagrams according to their topology where
the Leading Order (LO) of this expansion is topologically a sphere and is
given by planar diagrams, simplifying calculations as will be explained be-
low. Note that this topological expansion is equivalent to the expansion in
the string coupling in string models for the strong interaction. Actually,
when expanding in the number of colors, one can take two different limits
for Nc → ∞, the first is referred to as t’Hooft limit where the number of
quark flavors Nf is kept constant [134] (and will lead to an effective expan-
sion in 1

N 2
c
if no internal quark lines are considered) and the second is known

as the Veneziano limit [136] where now Nf
Nc

is kept fixed. We will mainly
focus on the t’Hooft limit, and although this limit introduces infinite dimen-
sional matrices the theory is simplified, not only due to the reduction of
number graphs in the leading order contribution3 but also due to the fact
that correlators of gauge invariant operators factorize. The purpose of this
section is to give a motivation for the study of Wilson loops and how they are
related to QCD, as such we will not go through the full details but give more
or less an overview of how things work where I mainly follow Makeenko’s
lectures [128] on this subject.

21.3.2 Matrix-Field representation : introducing Index-Ribbon graphs

Most readers are for sure familiar with this type of graphs but we will re-
introduce them here for completeness and we will use them to explain some
of the statements we made in the introduction. We start from the matrix-
field representation of the gauge fields

[
Aijµ (x)

]
=
∑

a

Aaµ(x) [ta]ij , (324)

3 The number of planar graphs grows exponentially with the number of vertices instead of
factorially.
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where the matrix in the LHS is Hermitian and differs from the one t’Hooft
uses

Aijµ (x) = igAijµ (x).

Using this notation and applying the normalization

Tr
[
tatb

]
= 1

2δ
ab

(i.e. C from Eq. (323) is 1
2) we have for the matrix-field propagator

〈
Aijµ (x)Aklµ (y)

〉
= 1

2

(
δilδkj − 1

Nc
δijδkl

)
Dµν(x− y), (325)

with in Feynman gauge the propagator parametrized as

Dµν(x− y) = 1
4π2

gµν
(x− y)2 .

In the limit Nc → ∞ the second term vanishes reducing the matrix propa-

j

i

k

l

Figure 48: Matrix-field propagator

gator to 〈
Aijµ (x)Aklµ (y)

〉
∼ δilδkj , (326)

which can graphically be represented by the diagram in Figure 48. Notice the
relation between the direction of the arrows and the order of the indices on
the delta functions in Eq. (326), which is due to the fact that Aijµ is Hermitian
and the off-diagonal elements are each others complex conjugate so that we
can choose as independent fields

Aijµ ∈ C, i > j and Aiiµ ∈ R

with
Ajiµ =

(
Aijµ

)∗
.

The three gluon vertex in the matrix-field representation is shown diagram-
matically in figure 49 and similar drawings can be made for the four-gluon
vertex (but are not shown here). Keeping in mind that a three-gluon vertex
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−

i1

j3

i3j2

i2

j1 i1

j3

i3j2

i2

j1

∼ g
(
δi1j3δi3j2δi2j1 − δi3j1δi1j2δi2j3

)

Figure 49: Ribbon graphs for three-gluon vertex

∼ g, a four-gluon vertex ∼ g2 and that when we have a closed index loop
in the ribbon graph we get a factor Nc due to the sum over the indices,
we can now analyze some graphs to demonstrate the advantage of using the
large Nc expansion. Consider as a first example the one-loop correction to

Figure 50: 1-loop correction matrix-field propagator

the matrix-field propagator, graphically represented in figure 50. In this di-
agram we have two three-gluon vertices resulting in a g2 factor and one index
loop contributing with a factor Nc, such that the diagram is proportional to

g2Nc.

If we want this diagram to have a non-trivial contribution in the large Nc

limit it follows that
g2 ∼ 1

Nc
,

where g is now the bare coupling constant. In a pure SU(Nc) theory g2 is
given by the asymptotic-freedom formula (also known as the QCD β-function)

g2 = 24π2

11Nc ln
(

Λ
ΛQCD

) , (327)

where Λ is a UV cut-off parameter and ΛQCD is the energy scale parame-
ter from QCD renormalization. Eq. (327) is indeed consistent with what we
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wanted for the one-loop diagram in figure 50 such that this diagram is of
order O(1) and thus has a non-trivial contribution in the Nc →∞ limit. To
further demonstrate the advantage of the large Nc expansion we will now
compare a planar and a non-planar diagram. The diagram in figure 51 is an

Figure 51: Planar diagram

example of a more complicated planar graph of which we would like to know
the order of in the 1

Nc
expansion. We now have eight three-gluon vertices and

four closed index loops resulting in a total contribution proportional to

(g2Nc)4 ∼ 1,

showing that this graph contributes to the LO. If one now wants to add a
loop and keep the diagram planar it is clear that one will also need to add
two three-gluon vertices such that for a planar graph with n loops its order
of contribution will go like (g2Nc)n ∼ 1 showing that planar graphs all add
at LO. Consider now the diagram shown in figure 52 as an example of a

Figure 52: Non-planar diagram

non-planar diagram, where the dashed lines represent lines that go out of
the plane. This diagram has now six three-gluon vertices and one closed index
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loop4, which give a contribution order of g6Nc ∼ 1
N2
c
, a NLO contribution in

the t’Hooft limit if we discard virtual quark loops, which will be introduced
below. Also notice that restricting to the LO would give you an accuracy that
is expected to be about the same as the meson widths, i.e. about 10-15
percent [128].
Before introducing the virtual quark loops to the game first a few comments.

A first remark is on the topology of the graphs. The non-planar diagram
from figure 52 can be drawn without crossing, not on a plane or a
sphere, but on a sphere with a handle or torus. In general we have that
a genus n diagram has a contribution order of

( 1
N2
c

)n
.

This should make it more clear that moving from an expansion in the coupling
constant to an expansion in 1

Nc
reshuffles the Feynman diagrams according

to their topology, this is the reason t’Hooft’s expansion is sometimes referred
to as a topological or genus expansion. This topology can be shown to
be equivalent to the topology of the quantized dual string with quarks at
the end [134]. A second, and final remark, is on the different contributions
of the three-gluon vertex (Figure 49). If one closes the external legs of
the diagrams (see figure 53) in a cyclic way, which adds a trace of Non-
Abelian phase factors, it is clear that the two diagrams contribute at a
different order in the t’Hooft expansion5. The cyclically closed diagram on
the left in figure 53 can be drawn as a planar graph while the cyclically
closed diagram on the right hand side will be non-planar, but again can be
drawn without crossing on a torus. As discussed before this shows that they
contribute at different orders. Let us now continue by allowing the virtual
quark loops in the diagrams. The quark propagator

〈
ψiψ̄j

〉
∼ δij ,

is graphically be represented by a single line in the Figures. We can now
determine the order of graphs containing virtual quark loops. As an example

4 To see this just choose a starting point on one of the internal lines and follow the line, you
will notice that after going through both the lines in the plane and out of the plane you will
return to your starting point, so that there is indeed one closed index loop.

5 Physically this corresponds to consider the external legs to be attached to three valence
quarks, represented by single lines in figure 53.
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i1

j3

i3j2

i2

j1 i1

j3

i3j2

i2

j1

Figure 53: Ribbon graphs for three-gluon vertex with cyclic closing

Figure 54: 1 virtual quark loop diagram

consider the diagram in figure 54, where we have two quark-gluon vertices
and no closed index loops, the order of this diagram is thus given by

g2 ∼ 1
NC

making it an NLO diagram. In general a diagram with L quark loops will
be of the order ( 1

NC

)L+2n
,

with n the genus of the graph. If we now also include external boundaries
(i.e. valence quarks, which form the boundary of the Riemann surfaces
generated by the graphs) and normalize the quark operator as

O = 1
NC

ψ̄ψ

to make it a leading order operator in the large Nc-expansion, then diagrams
of genus n with L quark loops and B boundaries contribute at the order

( 1
NC

)2n+L+2(B−1)
.

We end this subsection with the following remarks
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Remark 21.3.1 (Link with Wilson Loop Variables).
Closing the planar graphs (like for example the left diagram in figure 53)
cyclically by adding n boundary (valence) quarks gives rise to n-point
Green’s functions:

G
(n)
µ1···µn(x1, · · · , xn) = (ig)n

Nc
〈Tr [Aµ1(x1) · · ·Aµn(xn)]〉 ,

which also naturally arises in the expansion of the Wilson loop variable:
〈 1
Nc

Tr Pe
∮

Γ dx
µAµ(x)

〉
=

∞∑

n=0

∮

Γ
dxµ1

1

x2∫

x1

dxµ2
2 · · ·

xn−1∫

x1

dxµnn G
(n)
µ1···µn(x1, · · · , xn),

showing the link with these variables.

Remark 21.3.2 (Factorization of white operators).
A very important property of the large Nc-expansion is that the vacuum
expectation values of white operators (singlets with respect to the gauge
group) factorize in this limit (for a derivation see for instance [128]).
Since Wilson loop variables are white (gauge invariant) operators we
can apply this factorization such that in the large Nc-limit one can
write:

〈 1
Nc

Tr Pe
∮

Γ1
dxµAµ(x) · · · 1

Nc
Tr Pe

∮
Γn

dxµAµ(x)
〉

=
〈 1
Nc

Tr Pe
∮

Γ1
dxµAµ(x)

〉
· · ·
〈 1
Nc

Tr Pe
∮

Γn
dxµAµ(x)

〉

21.3.3 Master Field

Let us return to the Yang-Mills partition function

Z =
∫
DAaµe−

∫
d4x 1

4F
a
µνF

a
µν , (328)
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where due to the fact that F aµν is of the order Nc the action is of order N2
c

making it very large in the large Nc-limit. Next to that the entropy is also of
order N2

c due to the N2
c − 1 integrations over Aaµ such that

DAaµ ∼ eN
2
c .

From this it follows that the saddle point equation for Yang-Mills theory
is not the classical saddle point Eq. (329).

δS

δAaµ
= (∇νFµν)a = 0. (329)

The idea to deal with this problem is to rewrite the path integral over Aµ
as one over colorless composite fields Φ(A), similar to the idea in Sigma-
Models [137]. Applying this idea we expect the path integral to be of the
form

Z ∼
∫
DΦ 1

∂Φ(A)
∂Aaµ

e−N
2
c S[Φ], (330)

where the Jacobian is given by

∂Φ(A)
∂Aaµ

≡ e−N2
c J [Φ]

which is related to the old entropy such that we have

J [Φ] ∼ 1.

The original partition function is now given by

Z ∼
∫
DΦ eN

2
c J [Φ]−N2

c S[Φ], (331)

such that the saddle point equation becomes

δS

δΦ = δJ

δΦ (332)
δS

δAaµ
= (∇νFµν)a = δJ

δAaµ
. (333)

Note that the exact expression for J [Φ] depends on the new variable Φ(A).
Witten [138] conjectured the existence of a classical solution Aclµ for multicolor
QCD which was later referred to as the master field by Coleman [139]. But
this solution is only determined up to gauge transformation, so that it is
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better to call the entire gauge orbit a solution, which is often referred to
as being a solution in the strong sense and is necessary to preserve gauge
invariance. If one assumes there is only a single solution then the path integral
is saturated by this single configuration and the vacuum expectation values
of gauge-invariant operators is given by their values at this configuration

〈O〉 = O
(
Aclµ (x)

)
, (334)

such that the factorization property of Remark 21.3.2 is clearly satisfied. Since
the LHS of Eq. (334) is Poincaré invariant so is the RHS such that space-time
transformations can be undone by gauge transformations making the classical
solution space-time independent. Haan [140] pointed out that assuming the
existence of such as solution might be incorrect and indeed the assumption
that there is a single solution seems restrictive. The point is that having
multiple solutions is a tricky matter since one will need an additional averaging
over these solutions. The large Nc-expansion in QCD assumption that the
gauge-invariant objects behave like c-numbers instead of like operators seems
to be incorrect and it would be better to think of Aclµ (0) as an operator in
some Hilbert space. This follows from the fact that the Nc × Nc matrices
become infinite matrices, hence operators on a Hilbert space. A master field
that is operator-valued is often referred to as a master field in the weak
sense. Although this concept of a master field is rather vague until a specific
form for Φ(A) is given it is space-time independent6. A natural candidate for
this composite operator Φ(A) is given by the Wilson loop variable [128, 141]:

W (Γ) := 1
Nc

Tr Pe
∮

Γ dz
µAµ , (335)

where (matrix notation)

[Aµ] = ig
∑

a

Aaµ(x)[ta]ij

and Γ is a closed loop. Notice that the new independent variables are now
the loops.
Unfortunately up until now there has been no success in rewriting QCD in

terms of these Φ(A) for finite Nc, but we would like to point out the paper
[142] by Tsou. In this paper Tsou calculates the CKM and NMS matrices in an
extension of the Standard Model which matches the experimental data quite

6 Notice how much this discussion resembles to problem of degenerate gauge potentials in
the non-perturbative sector.
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well. In his calculation he used Duality Operators, generalizing the Electro-
Magnetic dual operators (Hodge dual) to Non-Abelian theories. The Non-
Abelian dual operators were derived using loop space variables and Polyakov’s
derivative, showing a possible useful application of loop space within the
Standard Model.
Coming back to the reason why we haven’t been able to rewrite QCD in

generalized loop space, this is mainly due to problems with self-intersections
leading to the Mandelstam constraints which are taken into account by the
equivalence relation used to introduce Generalized Loop Space in Chapter 18.
So, the hope is that this formulation of loop space in the future might help
understand and maybe solve this problem. First steps towards this goal will
be discussed in chapter 22. Despite these problems Makeenko and Migdal
were able to derive a reformulation using the (non-perturbative) SD equations
resulting in the loop equations now referred to as the MM equations. In the
next section we will derive these equations.

21.4 sd for wilson loops: makeenko-migdal equations

We remind the reader of the definition of a Wilson loop used by Makeenko
and Migdal [128, 141]:

W (Γ) := 1
Nc

Tr Pe
∮

Γ dz
µAµ , (336)

where (matrix notation)

[Aµ] = ig
∑

a

Aaµ(x)[ta]ij

and Γ is a closed loop. Using Eq. (313) with

F [A] = W (Γ)

and the notation
Fµν = ∂µAν − ∂νAµ − [Aµ,Aν ]

(anti-Hermitian matrix of the Non-Abelian field strength) results in
〈 1
Nc

Tr PDµFµν(x)e
∮

Γ dz
µAµ

〉
=
〈
g2

2Nc
Tr δ

δAν(x)Pe
∮

Γ dz
µAµ

〉

where the Dµ is the covariant derivative in the adjoint representation

Dadj
µ ≡ ∂µ · − [Aµ, ·] . (337)
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The variational derivative on the RHS can be calculated and follows from
(using Tr [tatb] = 1

2δ
ab):

δAaµ(y)
δAbν(x) = δµνδ

n(x− y)δab

= δµνδ
n(x− y)2Tr [tatb]

= δµνδ
n(x− y)21

2

(
δilδjk − 1

Nc
δijδjk

)

= δµνδ
n(x− y)

(
δilδjk − 1

Nc
δijδjk

)
, (338)

resulting in [128]

N2
c Tr

δ

δAν(x)Pe
∮

Γ dz
µAµ = N2

c

∮

Γ
dyν δ

n(x− y)

×
( 1
Nc

Tr P e

∫
yx
dzµAµ 1

Nc
Tr P e

∫
xy
dzµAµ − 1

N3
c

Tr P e
∮

Γ dz
µAµ

)
.

(339)

For the LHS we can use Eq. (243) to rewrite it as

4E
(ε;u∧v)(p)W (Γ) Not=

MM

δ

δσµν(x)

( 1
Nc

Tr P e
∮

Γ dz
µAµ

)

= 1
Nc

Tr P Fµν(x)e
∮

Γ dz
µAµ . (340)

Since the field strength tensor operates at a specific point along the contour
this result is a marked path functional (Definition 19.2.3) on which we
can apply the path derivative. By Eq. (226) this is the same as applying the
covariant derivative in the adjoint representation (Eq. (337)) such that we
have for the LHS

∂xµ

(
δ

δσµν(x)

[ 1
Nc

Tr Pe
∮

Γ dz
µAµ

)]
= 1
Nc

Tr P Dadj
µ Fµν(x)e

∮
Γ dz

µAµ .

(341)
Combining Eqs. (341) and (339) we arrive at the Makeenko-Migdal equa-
tions

1
Nc

Tr P Dadj
µ Fµν(x)e

∮
Γ dz

µAµ = g2N2
c

2Nc

∮

Γ
dyν δ

n(x− y)

×
( 1
Nc

Tr P e

∫
Γyx

dzµAµ 1
Nc

Tr P e

∫
Γxy

dzµAµ − 1
N3
c

Tr P e
∮

Γ dz
µAµ

)
,

(342)
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where the equality is in the weak sense, rewriting this with the expectation
values we have:

〈 1
Nc

Tr P Dadj
µ Fµν(x)e

∮
Γ dz

µAµ
〉

=

g2Nc

2

∮

Γ
dyν δ

n(x− y)
(
〈φ(Γyx)φ(Γxy)〉 −

1
N2
c

〈φ(Γ)〉
)
,

(343)

where we used the notation

φ(Γ) = 1
Nc

Tr P e
∮

Γ dz
µAµ

One of the problems with these equations is that they do not close, therefore
in many cases one takes the large Nc limit such that the second term on the
RHS vanishes and the first term factorizes as discussed in the previous section.
This allows to simplify the Makeenko-Migdal equations, which we will not
further discuss here. Details can be found in [128, 141].

21.5 summary

In this chapter, after reviewing some details on Fierz identities in SU(N)-
theories, we introduced multi-color QCD. The Ribbon graphs where introduced
and their relation with topology and Feynman diagrams was discussed. Using
these graphs we commented on some advantages and properties of multi-color
QCD in the t’Hooft or large Nc-limit. We also explained an approach to this
multi-color QCD that is similar to the one used in Sigma-models, introducing
the master field, and how this might open the door to rewrite QCD in a
loop space representation by changing the variables (fields) in the action to
composite colorless objects. A natural candidate for these composite objects
are Wilson loop variables. Applying the SD equations, discussed in the previous
Chapter, to vacuum expectation values of the Wilson loop variables then
allowed us to re-derive the MM loop equations.





22
WILSON LOOP QUADR I LATERAL ON THE L IGHT CONE

22.1 introduction

In this Chapter we introduce a simple example of a Wilson loop, the quadri-
lateral on the light cone. We study the geometrical properties and behavior
of this loop under the operation of different differential operators and relate
it to its ultraviolet and rapidity divergences. The interesting fact about
this loop is that it is not described by the Makeenko-Migdal loop equations
due to the presence of cusps, as will become clear when we try to apply the
area derivative to this loop. On the other hand, from a field theoretic point of
view the study of these cusps is important to understand the underlying QFT
since cusps are possible generators of anomalies and are related to the cusp
anomalous dimension, an object that seems to be important in any QFT.

22.2 renormalization of loop functionals and the cusp
anomalous dimension

This Section reviews some issues with the renormalization of loop functionals,
which eventually lead to the introduction of the cusp anomalous dimension
[143–148].
In [88] Ivanov, Korchemsky and Radyushkin discuss the renormalization

properties of contour averages or said differently the renormalization proper-
ties of the vacuum expectation value of Wilson loop variables

W (Γ) = Tr
〈

0
∣∣∣∣

1
Nc
Peig

∮
Γ dz

µ Aµ(z)
∣∣∣∣ 0
〉
.

They argue that in the case of a smooth closed contour the renormalization
of such an object reduces to the coupling constant renormalization, but
that this is no longer true when the contour contains singular points.
This singularity can come from two possible scenarios:

(i) At the endpoint of an open contour

(ii) Cusps and Self-Intersections

357
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In [143, 144, 146, 147] it was demonstrated that the first case leads to an
extra multiplicative renormalization of the Wilson loop functional:

W (Γ, g(µ), µ) = ZC

(
µ

µ′
, g(µ′)

)
W (Γ, g(µ′), µ′),

where the µ and µ′ refer to the renormalization parameters. For the second
case it was found in [146, 147] that one needs an additional contribution (at
LO)

Wcusp(Γ) = −αs
π
CF (γcot(γ)− 1) ln

(1
a

)
,

where γ is the cusp angle and a the ultraviolet regularization cut-off
parameter. In [148] it was then shown that together with the higher order
contributions these extra singularities can be rewritten as a multiplicative
factor Zcusp, from which the cusp anomalous dimension is defined as

Γcusp = −∂ lnZcusp
∂ ln µ

,

such that the for the renormalization of this type of Wilson loop functional
one gets

W (Γ, g(µ), µ) = Zcusp

(
γi,

µ

µ′
, g(µ′)

)
ZC

(
µ

µ′
, g(µ′)

)
W (Γ, g(µ′), µ′),

(344)
the γi representing the different cusps in the contour.
An extra set of singularities mixes with the above ones, when parts of

or the entire contour is laying on the light cone [88, 149, 150]. In this case
the singularities stemming from the light cone overlap with the previously
discussed singularities destroying the simple multiplicative renormalization of
Eq. (344). In our papers [48, 151–153], which we will discuss in detail in the
following Sections, we demonstrated that by using a geometrical approach
and combining it with the regular mass scale differential operator

µ
d

dµ

we can write down an evolution equation for contours on the light cone
AND having cusps. From the discussion above it will be no surprise that
the cusp anomalous dimension will play an important role in this equation.
Furthermore we give a simple example of a contour with Self-Intersection
[50], which can be handled by the group structure of generalized loop space,
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•
γ

Figure 55: Simplest diagram with Γcusp

demonstrating that the evolution equation we conjectured is also valid in this
case. We end this section with some details on the two-loop expression of
the cusp anomalous dimension Γcusp. In [154] it was demonstrated that
the cusp anomalous dimension depends only on one parameter, namely the
cusp angle γ. From this fact they calculated the two-loop expression for the
Γcusp using the simplest possible diagram shown in figure 55, where we have
drawn some possible gluon exchanges. For the two loop calculation all two
loop order corrections of the cusp needed to be calculated, which was done
in [154].
The explicit two-loop expansions of the cusp anomalous dimensions for

the case the angle goes to infinity, which is the case for the angle between
two light-cone directions in Minkowski space due to the definition of the angle

cosh γ = x · y√
x2y2 ,

is given by

Γcusp = αs
π
CF +

(
αs
π

)2
CF

(
CA

(67
36 −

1
12π

2
)
− 5

18NF

)
, (345)

where the term (
αs
π

)2
CF

(
CA

(67
36

))

is a (renormalization) scheme dependent term stemming from the regulariza-
tion of the different contributing diagrams to the cusp anomalous dimension
(here MS was used).
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22.3 parametrization of planar quadrilateral wilson
loop

The Wilson loop we first considered is a quadrilateral on the light cone, shown
in figure 56. This loop can be described using the four-vectors vi where we
assume each side of the loop is lying on a light cone direction such that

v2
i = 0, ∀ i.

In order for the loop to be planar we also need to have that v1 = −v3

v1

v2

v3

v4

Figure 56: Loop Parametrization

and v2 = −v4. For further convenience we also introduce the Mandelstam
variables

s = (v1 + v2)2 (346)
t = (v2 + v3)2, (347)

which in this specific case of the quadrilateral reduce to

s = 2v1v2 and t = 2v2v3.

These variables will allow us to write our results in a compact way.

22.4 leading order result

We now want to calculate the vacuum expectation value of the Wilson Loop
variable from Eq. (335):

〈
0
∣∣∣∣

1
Nc

Tr Pe
∮

Γ dz
µAµ

∣∣∣∣ 0
〉
, (348)

at leading order. This means that we will have to calculate the contributions
of the diagrams shown in figure 57, where we also show the parametriza-
tions of the involved segments. In our calculations we adopted the Feynman
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x = v1t, t ∈ [0, 1]

y = v1s, s ∈ [t, 1]

x = v2t, t ∈ [0, 1]

y = v2s, s ∈ [t, 1]

x = v3t, t ∈ [0, 1]

y = v3s, s ∈ [0, 1]

x = v4t, t ∈ [0, 1]

y = v4s, s ∈ [t, 1]

x = v1t, t ∈ [0, 1]

y = v1 + v2s, s ∈ [0, 1]

x = v1 + v2t, t ∈ [0, 1]

y = v1 + v2 + v3s, s ∈ [0, 1]

x = v1 + v2 + v3t, t ∈ [0, 1]

y = v4(1− s), s ∈ [0, 1]

x = v1t, t ∈ [0, 1]

y = v4(1− s), s ∈ [0, 1]

x = v1t, t ∈ [0, 1]

y = v1 + v2 + v3s, s ∈ [0, 1]

x = v1 + v2t, t ∈ [0, 1]

y = v1 + v2 + v3 + v4s, s ∈ [0, 1]

Figure 57: LO contributions

gauge, together with dimensional regularization, such that the coordi-
nate expression for the gluon propagator given by

Dµν(x− y) = (µ2π)ε
4π2 Γ(1− ε)gµνδab

1
(−(x− y)2)1−ε , (349)

was used to evaluate the Wick contractions of the gauge fields. If one
investigates the diagrams in Figure 57 closely then, considering the symme-
tries introduced by our choice of contour and its parametrizing vectors, it is
obvious that we have three classes of diagrams represented by the rows of
diagrams in this Figure. The diagrams in each row are related to each other
by the relations between the parametrizing vectors vi, such that we only need
to calculate one diagram in each row. The first row of diagrams are the Self-
Energy (SE) diagrams which in dimensional regularization all reduce to
zero (see Appendix B.6 for the details of the calculation). An example of the
calculation of a diagram with a cusp is shown in Appendix B.7, and will be
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shown in the total result. The diagrams in the last row of figure 57, although
finite, are less easy to evaluate and eventually give rise to poly-logarithms.
The method to solve this type of integrals emerging in such diagrams is ex-
plained in Appendix B.8, and the actual calculation is done in Appendix B.9.
Combining all the above contributions results in

WLO(Γ�) =1− αsCF
π

(
2πµ2

)ε
Γ(1− ε)




1
ε2

(
−s2

)ε
+ 1
ε2

(
− t2

)ε

︸ ︷︷ ︸
Cusp

−1
2

(
ln2 s

−t + π2
)

︸ ︷︷ ︸
Cross


+O(α2

s), (350)

which we found to be consistent with the results found in [72, 155–157].
Since this Wilson Loop Variable is per definition a gauge invariant object it
can be used to check consistency of different models and theories which was
discussed, next to the prescription dependence of the extra pole emerging in
the gluon propagator in axial gauges of Eq. (350), in [158].

22.5 failure of area derivative

In this Section we investigate the behavior of the area derivative as defined
on GLS in [16] on the dimensionally regularized quadrilateral from the
previous section. From the paper by Tavares [16] it follows that there are two
approaches for calculating this area derivative. One approach is to calculate
the derivative directly in the sense that one calculates

ΦLO(λt · γ)

explicitly in the calculation of

∆4;(u,v)(q)Φ(γ) = lim
t→0

ΦLO(λt · γ)− ΦLO(γ)
t2

, (351)

where
∆4;(u,v)(q)Φ(γ) and λt

are defined as in Chapter 19. Another approach is to make use of the group
properties of GLS by considering the area variated loop as the product of the
original loop with the loop representing the area variation to calculate

ΦLO(λt · γ).
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We used both approaches and found that the results were the same, reconfirm-
ing the validity of the group structure of GLS. Both approaches gave however
a divergent result, when we considered area variations as shown in figure 58,
which is due to the fact that Stokes theorem seems to hold only in the
classical case, i.e. not in the quantum case1. This remark is quite profound
(see also [159] for comments) and we will return to it after having shown that
the result of the area derivative is actually divergent due to the presence of
terms that have factors of the form

1
a2−2εε2

where the limit a → 0 has to be taken indicating the extra divergence not
taken care of by dimensional regularization.

v1

a

a

a

v2

v3

v4

•

•

• •

•

• •

x1

x2
x3

x4

Figure 58: Diagram with infinitesimal area variation.

We also would like to point out that Makeenko and Migdal used this deriva-
tive [141, 160] to derive the loop equations as was demonstrated in chapter
21, making a discussion on the validity of this derivative or more specifically
on the validity of Stokes’ theorem more than relevant. As discussed in Section
19.3 one needs two independent vector fields to have a well defined infinitesi-
mal area variation of the loop. It is easy to see that on the null-plane there are
only two independent directions, the positive and negative light cone direction.
Building an infinitesimal area variation out two such vectors, for which the
local flows are straight paths on the light cone, leads to a diagram as shown
in figure 58, where we have chosen the top left corner of our original diagram
(the point x2 of figure 58) as the point where the differential operator acts
(see the discussion on marked path functionals in 19.2). In the direct calcula-
tion approach, we now get a new path where the double dashed line represents

1 Said differently: Quantum corrections break the application of the Stokes Theorem.
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the part of the path that disappears due to path reduction [16, 50, 107] of
the overlapping paths in the original diagram and the infinitesimal added
"rectangle". The introduction of this area variation combined with the path

a) b) c) d) e)

f) g) h) i) j)

k) l) m) n) o)

Figure 59: Table of generated diagrams.

reduction now generates new diagrams at the one-loop order which are shown
in Figure 59. Direct calculation of these diagrams, for which the calculations
are similar to the ones for the WLO but with different integration boundaries,
and subtracting the one loop contribution of the original loop results in Eq.
(352). To arrive at the derivative we still need to divide by a2 and take the
a→ 0 limit, to be consistent with Eq. (351). The difference between the two
diagrams is given by
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WL.O.(ΓE�)−WL.O.(Γ�) =

F (−s)ε 1
2

(1
ε

)2 (
− (1 + a)εaε + ((−a)ε − 1) (1− aε)− ((a− 1)ε − (−1)ε) ((1 + a)ε − aε)

+ (−a)ε((1− a)ε − (−a)ε)− ((a+ 1)ε − 1)((a− 1)ε − aε) + 1
)

+F (−t)ε
(1
ε

)2 (
2− (1 + a)ε − a2ε − (1− a)ε

)

+F
∫ 1+a

0
dt

∫ a

0
ds

v1v3

(− (2v2v3as+ 2v1v2a(1 + a− t) + 2v1v3s(1 + a− t)))1−ε

+F
∫ 1+a

0
dt

∫ 1

0
ds

v1v3

(−(2v1v2(1− t) + 2v2v3s+ 2v1v3s(1− t)))1−ε

+F
∫ a

0
dt

∫ 1

a

ds
v2v4

(−(2v1v2at− 2v1v4as− 2v2v4st))1−ε

+F
∫ a

0
dt

∫ 1

0
ds

v2v4

(−(2v1v2t(1 + a) + 2v1v4s(1 + a) + 2v2v4st))1−ε

+F
∫ a

0
dt

∫ 1

0
ds

v1v3

(−(2v1v2(t− a)(1− a) + 2v2v3(1− a)s+ 2v1v3(t− a)s))1−ε

+F
∫ 1

a

dt

∫ 1

0
ds

v2v4

(−(2v1v2t+ 2v1v4s+ 2v2v4st))1−ε

−F
∫ 1

0
dt

∫ 1

0
ds

v2v4

(−(2v1v2t+ 2v1v4s+ 2v2v4st))1−ε

−F
∫ 1

0
dt

∫ 1

0
ds

v1v3

(−(2v1v4t+ 2v3v4s+ 2v1v3st))1−ε , (352)

where F represents a constant factor that is irrelevant in our discussion here.
If we now focus on the second term in the sum of Eq. (352) we notice

that the highest power of a is 2ε, therefore contributing with a factor a2−2ε

in the denominator (next to the usual singular term ε2, which is taken care
of by dimensional regularization), leading to extra divergences in the limit
a → 0. This factor makes the area derivative divergent even in the
dimensionally regularized case. This result differs from what one would
expect from the approach taken by Makeenko and Migdal in their derivation
of the Makeenko-Migdal equation.
To understand what is going on we have to discuss the definition of the

area derivative in more detail. Looking back at Eqs. (242), (243) and the
integrals in Lemma 19.3.1 we can ask where the factors involving the wedge
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product of the local vectors u and v come from. In fact they find their origin
in the integrals shown in Eqs. (353-355), restated here for convenience,

lim
a→0

∫
�a ω

a2 =
∫

V
dω = dω(u ∧ v) using generalized Stokes (353)

lim
a→0

∫
�a ω1ω2

a2 = (ω1 ∧ ω2)(u ∧ v) (354)

lim
a→0

∫
�a ω1 · · ·ωr

a2 = 0, ∀r ≥ 3, (355)

where we refer to [16] and Part III of this text for the details on how these
integrals emerge. The results in Eqs. (353-355) are indeed correct in a classical
setting, in the sense that they do not contain any quantum state operators.
But, in our calculation of the area derivative above we have introduced the
vacuum expectation value taking us away from the classical setting into a
quantum one. Introducing the vacuum expectation value is what generates
the diagrams shown in figure 59, which introduces divergences due to the
presence of cusps (in the Feynman gauge). Let us have a look in some more
detail at the calculations to see where things might go wrong if we compare
with the calculations done by Makeenko-Migdal. This investigation is the
most straightforward in the second approach to calculate the area derivative
where we used the group properties of GLS.

In GLS, adding the area variation (λa) at the top left corner, can be seen
as multiplying the original loop (Γ�) with an extra infinitesimally small loop
(λa ·Γ�) at that point (the top left corner becomes the loop space base point,
which is allowed due to translation invariance caused by path reduction). Using
the properties of the product in the topological group of generalized loops
the leading order contribution can then be written as

WLO(λa · Γ�) =
∫

λa

ω1ω2 · 1±
∫

λa

ω1

∫

Γ�

ω2 + 1 ·
∫

Γ�

ω1ω2, (356)

where the ± indicates the two possible relative orientations between the loops.
We will use the plus sign, where the orientations are the same so that the
overlapping part of the loops cancel due to path reduction but choosing any
of the signs will not change the singular structure, so the discussion is also
valid for the minus sign. Subtracting the leading term of the original loop
W (Γ) from Eq. (356) will cancel the last term such that we are only left with
two terms to check for convergence. To introduce the vacuum expectation
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value we will focus on the first term in Eq. (356). There are now two ways to
introduce the vacuum expectation values

〈
0
∣∣∣∣∣ lima→0

∫
λa
ω1ω2

a2

∣∣∣∣∣ 0
〉
, (357)

lim
a→0

∫
λa
〈0 |ω1ω2| 0〉
a2 . (358)

Using the first approach, shown in Eq. (357), in combination with the result
of Eq. (354) leads to a tadpole diagram at the top-left corner of the quadrilat-
eral and can be treated by the usual regularizations schemes like dimensional
regularization (see also comment in [159]). On the other hand in the second
approach, shown in Eq. (358), the integral accumulates an extra divergence
(as also demonstrated in the direct calculation approach of the area deriva-
tive). This can be seen from the fact that the first term in Eq. (356) is the
same as the original loop with the Mandelstam variables s and t rescaled with
a factor a2 leading to the terms

− αsCF
π

(
2πµ2)ε Γ(1− ε)

[
1
ε2

((
−a

2s

2

)ε
+
(
−a

2t

2

)ε)
− 1

2

(
ln2 s

t
+ π2

)]
=

(359)

− αsCF
π

(
2πµ2)ε Γ(1− ε)

[
a2ε

ε2

((
− s2

)ε
+
(
− t2

)ε)
− 1

2

(
ln2 s

t
+ π2

)]
.

(360)

Dividing this result by a2 and taking the limit a→ 0 already shows that this is
divergent since ε is considered small (for sure smaller than 2) but non-zero in
the dimensional regularization scheme we applied here to do the calculations.
Applying a similar calculation to the second term of Eq. (356) gives rise to
terms proportional to (1 + a)ε so that also this term after division by a2

becomes divergent in the a → 0 limit, when taking the vacuum expectation
values as in Eq. (358). In the approach shown in Eq. (357) this would again
return a finite result after the appropriate regularization. As can be seen
from Eq. (243) these integrals appear at any order of the expansion of the
exponential of the Wilson Loop Functional. From the discussion above we
are inclined to conclude that the integral and the vacuum expectation
value does not commute with Stokes’ theorem as is assumed in many
papers. This result is not so unexpected if we take a diffeomorphism
point of view. It is not so hard to see that starting from a loop with let us
say n cusps and deforming it to a loop with n+1 cusps can not by realized by
a smooth diffeomorphism due to the break down of the continuity of the first
order derivative. Introducing the area variation as in figure 58 shows that this
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introduces two more cusps in the loop. If we now follow the generally accepted
idea that the same physics on a manifold can be related by diffeomorphisms,
the fact that the original diagram and the diagram with the area variation
included have a different number of cusps, hint of an idea that maybe loops
with different number of cusps represent different physical objects. To
sketch a picture in the mind (which might be wrong, but this is just to explain
the idea), we could say that a loop with two cusps corresponds to a meson
and one with three to a hadron for example.

22.6 generalized derivative: a new derivative

In the previous Section we showed that there are issues with applying the
area derivative to the Wilson loop quadrilateral on the light cone. To solve
this problem Dr. I. Cherednikov came up with an idea for a new differential
operator which we introduced in our papers [151–153, 161] to derive an
evolution equation conjecture which will be discussed in Section 22.9. Here
we will give the definition of this differential operator.

The geometric operation we are interested in is area variation, which is also
partially motivated by the area law [162] and its relation to confinement. The
main purpose of the new differential operator is to result in an area variation
after application to our quadrilateral loop from the above Sections. Taking
into account that we would like that the resulting loop is still completely on
the light cone the possible variations are quite limited. The only two possible
variations are in the positive and negative light cone directions (see Figure 60).
Considering these variations we can construct the corresponding differential

v1

v2

v3

v4

v1

v2

v3

v4

v1

v2

v3

v4

Figure 60: Two possible area variations on the light cone.
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operators generating these variations:

δσ+− = N+δN− → v2δv1 = 1
2δs , δσ−+ = −N−δN+ → −v1δv2 = 1

2δt ,
(361)

from which we can construct a more general logarithmic differential opera-
tor, where the idea of taking the logarithmic derivation stems from a similar
way of differentiating with respect to the renormalization parameter or mass
scale parameter µ in renormalization schemes. This results in the differential
operator:

δ

δ ln σ ≡ σ+−
δ

δσ+−
+ σ−+

δ

δσ−+
, (362)

which we will relate to the Fréchet derivative (272) in Section 22.11. In the
next Section we will apply this derivative to the quadrilateral loop.

22.7 application to the quadrilateral wilson loop

Applying this new logarithmic differential operator (Eq. (362)) to the ex-
panded logarithm of our LO result from Eq. (350) we get [161]:

δ

δσ
ln [W (Γ)] = −αsCF

π

1
ε

([
sµ2 + i · 0

]ε
+
[
tµ2 + i · 0

]ε)
. (363)

Applying the renormalization derivative

µ
d

dµ
,

followed by the limit ε→ 0 to this result we end up with

µ
d

dµ

δ

δσ
ln [W (Γ)] = −4Γcusp, (364)

Γcusp = αsCF
π

+O(α2
s), (365)

where Γcusp is the cusp anomalous dimension we introduced in Section 22.2.
A very important property of this differential operator is that it lowers the
degree of divergence, which will be used in the next Sections to construct
renormalization group equations for this type of loops.
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N

N−

N

Figure 61: Pi-shaped contour

22.8 application to the Π contour [151–153, 161]

To test [151–153, 161] if some similar equation holds for other loops than
the quadrilateral on the light cone we consider here a Pi-shaped contour
(Figure 61) where the two lines that run to infinity are off the light cone
and the finite segment lays along the negative light cone direction [155]. The
LO contribution of this contour is given by

W (ΓΠ) = 1 + αsNc

2π +
(
−L2(NN−) + L(NN−)− 5π2

24

)
,

where

L(NN−) = 1
2
(
ln
(
µNN− + i · 0)+ ln

(
µNN− + i · 0))2 ,

and where the area is now defined by the product NN− of the non light like
vector N and the light like vector N−. Application of the differential operator
(362) leads to the result

µ
d

dµ

[
δ

δσ
ln [W (ΓΠ)]

]
= −2Γcusp, (366)

a similar result to Eq. (363).

22.9 conjecture : a new evolution equation

Eqs. (363) and (366) seem to indicate that the number of cusps in the loop
determine the exact relation between the cusp anomalous dimension and the
combined operation of the renormalization mass scale and our generalized
area differentiation. This lead us to conjecture [161]

µ
d

dµ

[
δ

δσ
ln [W (Γ)]

]
= −

∑

cusps
Γcusp (367)
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as an evolution equation for contours with cusps. Considering now the SD
equations which we discussed in Section 20.3.3, the application of our new
derivative in this context results in

δ

δσ
〈α|β〉 = i

~

〈
α

∣∣∣∣
δS

δσ

∣∣∣∣β
〉
, (368)

where S is the action operator in loop space that governs the variation of
states. Up until now this action has been unknown, but if our conjecture
would be valid to higher orders it would allow us to reconstruct such an
action. This would open the door for quantum calculations on loop space, an
alternative method to the regular gauge theory calculations. Moreover, the
SD equations are also valid non-perturbatively such that an action in loop
space might give us access to non-perturbative calculations.

22.10 application to a symmetric product of two wil-
son loops

To further explore the application range of the above conjecture we considered
two symmetric extensions of the quadrilateral Wilson loop in our paper [50]
(Shown in Figure 56). In a first case we added a copy of the original loop,
but shifted it to the left resulting in a loop with overlapping paths. Due to
the two possible relative orientations between the two constituting loops this
gives rise to two possibilities which are shown in Figure 62, the dashed lines
indicate that the two vertical paths actually overlap but we have drawn them
separately enabling us to explain the cusp counting (see further). In a second
case we also added a copy of the original loop but now we shifted it left and
down, again taking into account the two possible relative orientations, this
generates loops with a self-intersection shown in Figure 63. The question is
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Figure 62: Overlapping paths

now if our conjecture in Eq. (367) is still valid for these diagrams if we consider
the area variations as shown in Figures 64 and 65. Only these variations were
considered because on one hand if one would vary asymmetrically the results
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Figure 63: Self-intersecting paths

would need more parameters then just the Mandelstam variables s and t

since the diagrams after variation would not be symmetric anymore and on
the other hand some asymmetric variations lead to changes in the structure of
the loops (for instance removal of the self-intersection). Moreover if one would
consider the case where the two loops are not equal in size one would also
need more parameters to describe the loops. Even in more general cases this is
not a problem since formally one can extend the definition of the generalized
derivative to incorporate the generalized Mandelstam variables

sij = (vi + vj)2,

where the vi, vj are the vectors on which the polygonal loops are built. In-
vestigating such cases would be a natural continuation of the research we
discuss in this Section. To calculate the leading order contributions of these

δt

δt

δsδs

Figure 64: Variations of the first case

diagrams we expand the Wilson loop variable of Eq. (348) to first order

W1(Γ) = 1− g2

2!Tr(t
atb)

〈
0
∣∣∣T
∮

Γ
dzµdz′νAaµ(z)Abν(z′)

∣∣∣0
〉
, (369)
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δs

δs

δt

δt

Figure 65: Variations of the second case

The generators and gauge connections in Eq. (369) are ordered along the
loop by the time-ordering operation T , where the “time” is represented by
the path parameter t ∈ [0, 1] such that

dzµ = żµdt.

Now, considering
Γ = Γ1Γ2,

the group structure of GLS [16, 107, 108, 111] allows us to rewrite the integral
in the second term of Eq. (369) as

∮

Γ1Γ2

AµAν =
∮

Γ1

AµAν ±
∮

Γ1

Aµ
∮

Γ2

Aν +
∮

Γ2

AµAν , (370)

where Aµ and Aν are again ordered along the path2 and the ± represents the
two different choices for the relative orientations of the loops where we also
suppressed the integral measures. We now have three contributions (370),
two coming from the loops considered independently, and one coming from
the interference terms.

2 This means we do not need to consider the contribution
∫
Γ1

Aν
∫
Γ2

Aµ.
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As for the Wilson loop quadrilateral we use the dimensionally regularized
gluon propagator in the Feynman gauge such that we can re-use the result
for the single quadrilateral for two of the three contributions [163–166]

W1(Γ1) = W1(Γ2) ≈ 1− CFαsπ
ε

π
Γ[1− ε]

(
1
ε2

(−sµ2)ε + 1
ε2

(−tµ2)ε − 1
2 ln

(
s

t

)2
+ finite

)
+O(α2

s),

(371)

and assumed that Γ1 and Γ2 are equal in size.
The interference terms ask for a bit more work but are also quite straight-

forward to evaluate, a calculation example of one such contribution can be
found in [50]. The results for the interference term for the two diagrams with
the different relative orientations are given below (the indices of the square
brackets number the different possibilities).

[〈
0
∣∣∣∣∣
∮

Γ1Γ2

AµAν

∣∣∣∣∣ 0
〉]

1
≈ Ncαs(πµ2)ε

2π Γ[1− ε] 1
ε2

×
(
(−s)ε + (−t)ε − (2ε − 1) [(−t)ε + (−s)ε]

)
+ finite +O(ε)

(372)

〈

0

∣∣∣∣∣∣
∮

Γ1Γ−1
2

AµAν

∣∣∣∣∣∣
0
〉


2

≈ −Ncαs(πµ2)ε
2π Γ[1− ε] 1

ε2

×
(
(−s)ε + (−t)ε − (2ε − 1) ((−t)ε + (−s)ε)

)
+ finite +O(ε)

(373)



〈

0

∣∣∣∣∣∣
∮

Γ1Γ−1
2

AµAν

∣∣∣∣∣∣
0
〉


3

≈ Ncαs(πµ2)ε
2π Γ[1− ε] 1

ε2

×
(
(−s)ε − 2(−s)ε(2ε − 1) + (−s)ε(2ε − 1)2

)
+ finite +O(ε)

(374)[〈
0
∣∣∣∣∣
∮

Γ1Γ2

AµAν

∣∣∣∣∣ 0
〉]

4
≈ −Ncαs(πµ2)ε

2π Γ[1− ε] 1
ε2

×
(
(−s)ε − 2(−s)ε(2ε − 1) + (−s)ε(2ε − 1)2

)
+ finite +O(ε).

(375)
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Applying now the generalized area variation operator (362) followed by the
logarithmic mass scale operator

µ
d

dµ
,

to the considered loop configurations, and then taking the ε→ 0 limit results
in

lim
ε→0

µ
d

dµ

d ln (W1(Γ))1
d ln σ = −4Γcusp (376a)

lim
ε→0

µ
d

dµ

d ln (W1(Γ))2
d ln σ = −12Γcusp (376b)

lim
ε→0

µ
d

dµ

d ln (W1(Γ))3
d ln σ = −6Γcusp (376c)

lim
ε→0

µ
d

dµ

d ln (W1(Γ))4
d ln σ = −10Γcusp, (376d)

for the LO where
Γcusp ≈

αsCF
π

+O(α2
s). (377)

These results seem rather strange considering that naively counting the num-
ber of cusps in the different configurations yields a total of eight, in each
configuration. If this would be true, the results contradict our conjecture
(367) [161]: indeed, we would expect for all the configurations a value of
−8Γcusp in the RHS. So how can we then interpret the result from Eq. (376)?
To understand this apparent contradiction, we need to take a closer look at
how to count the number of cusps effectively present in the studied loop.
Let us start with the contour shown in the right panel of Figure 62. Due
to path reduction property of GLS [16, 107, 108, 111], this contour can be
reduced to a single quadrilateral such that there are effectively only four
cusps (hence the numbers shown in the right panel of figure 62). The num-
bers in the left hand panel of figure 62 demonstrate how to count for that
contour, where the counting is motivated by the fact that the middle line is
crossed twice in the same direction such that the color flow sees the attached
cusps twice. This then results in a total of two times four cusps for the middle
line3. Similar reasoning applies to the contours of figure 63, where we also
indicated the counting.

3 Four because the cusps left and right of the middle path show up in the calculations of the
interference contribution.
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We have thus shown our conjecture to be valid at LO for the considered
contours and variation, with a caveat on how to count the number of
cusps along the contour.

22.11 generalized derivative is a fréchet derivative

In [49] we showed that the generalized derivative we introduced in [161]
(see Section 22.6) coincides with a special case of the Fréchet derivative
(Definition 17.2.2), at least at LO. From the geometric point of view this is
not really a surprise since they generate the same shape variation of the
contour. The shape variation generated by the generalized derivative is clear,
so that if we want it to coincide with the Fréchet derivative we need to find
the associated diffeomorphism generating vector field. In the case of our
quadrilateral on the light cone this vector field is very easy to find and visualize
(Figure 66). To demonstrate that the generalized derivative indeed coincides

v1

v2

v3

v4

• •

•

Figure 66: Variational vector field associated to the generalized derivative

with the Fréchet derivative associated to the vector field shown in figure 66 we
start from the expression derived in [16] for the Fréchet derivative applied
to the Wilson Loop functional (Eq. (272)) repeated here for convenience

DV U(γ) = Uγ .

(∫ 1

0
dtUγt0Fµν(γ(t))

(
V (t) ∧ γ̇(t)

) · U(γt)−1

)
, (378)

where γt is the part of the contour where the path parameter is between 0
and t. U(γ) can be expanded in the coupling constant g, such that we can
compare the result of the Fréchet derivative with our generalized derivative
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order by order in g. In the case both derivatives give the same result, this
would support our conjectured evolution equation [161] since we have a series
expansion in the coupling constant on the LHS and RHS of Eq. (367) due to
the fact that the cusp anomalous dimension also has a series expansion
in the coupling constant.
To show the LO correspondence we need to extract the terms from Eq.

(272) that contribute to this order. These contributions can written as

DV [Wγ ]LO = 1 ·
1∮

0

dt






t∮

0

Aσ(x(s))dx
σ

ds
ds

× (∂µAν(y(t))− ∂νAµ(y(t))) (V µ(y(t)) ∧ γ̇ν(y(t))) · 1
)

−
(
1 · (∂µAν(y(t))− ∂νAµ(y(t))) (V µ(y(t)) ∧ γ̇ν(y(t)))

×
t∮

0

Aλ(x(u)) dx
λ

du
du






+
1∮

0

Aσ(x)dx
σ

ds
ds ·

1∮

0

dt 1 ·
[

(∂µAν(y(t))− ∂νAµ(y(t)))

× (V µ(y(t)) ∧ γ̇ν(y(t))) · 1
]
,

(379)

where the term with the minus in the first contribution originates from the
inverse path U(γt0)−1 . In order to calculate the vacuum expectation value
of this contribution we need the Wick contractions of the fields, leading to
the propagators. We point out that the partial derivatives in Eq. (379) are
with respect to the coordinate y. It is important to keep this in mind during
the calculations. To simplify our calculations we split the variation generating
vector field up into a sum of two vector fields, each one parallel to one of the
light cone directions

V µ := (v+
1 σ, 0−,0⊥) + (0+, v−2 σ,0⊥) , σ ∈ [0, 1].
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We also redefine the Mandelstam variable s and t we used before in the
following way

S12
δ

δS12
= (2v1 · v2) δ

δ(2v1 · v2) = v+
1

δ

δv+
1

(380)

S23
δ

δS23
= (2v2 · v3) δ

δ(2v2 · v3) = v−2
δ

δv−2
, (381)

with Sij the adapted Mandelstam variables associated with the Wilson loop
(with parametrization shown in figure 66). Restricting now the vector field to
its first term

V µ := (v+
1 σ, 0−,0⊥) , σ ∈ [0, 1]

generates the shape variation we associated in our original paper to δs. With
these notations and definitions we can now start discussing the LO contribu-
tion of the Fréchet derivative.
There are quite some terms in this contribution but as we will now show,

that number can be reduced strongly. First of all path-reduction eliminates
the terms between the square brackets in Eq. (379), such that we only need
to worry about the last term. Secondly the anti-symmetry of the wedge
product further restricts the contributions in this last term

• Along v1:
V µ ∧ γ̇ν = 0,

follows from the asymmetry of the wedge product and the fact that
both vectors are parallel

• Along v2:
V µ ∧ γ̇ν = −v+

1 v
−
2 (∂+ ∧ ∂−),

due to (anti-)linearity of the wedge product

• Along v3:
V µ ∧ γ̇ν = 0,

follows from the asymmetry of the wedge product and the fact that
both vectors are parallel

• Along v4:
V µ ∧ γ̇ν = 0,

because we assume the vector field to be zero along this part of the
path.
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As a result we only need to consider the following Wick contractions

• Aaσ(x(σ))∂µAbν(y(σ′)) = ∂µD
ab
σν(x− y) = δab∂µDσν(x− y)

• Aaσ(x(σ))∂νAbµ(y(σ′)) = ∂νD
ab
σµ(x− y) = δab∂νDσµ(x− y),

with the remark that y is restricted to the top line in the diagram shown in
Fig. 66. Each of these Wick contractions gives rise to four terms, one for each
side of the quadrilateral in Fig. 66, which we will now calculate. To reduce
the amount of typing we introduce the notation

Kε := (µ2π)ε
4π2 Γ(1− ε), (382)

and we use the Feynman gauge, such that we have
〈

0
∣∣∣T [Aaµ(x)Abν(y)]

∣∣∣ 0
〉

= Dab
µν(x− y) = (µ2π)ε

4π2 Γ(1− ε) gµνδ
ab

[−(x− y)2]1−ε
,

(383)
for the propagator.

22.11.1 ∂µDσν(x− y)− ∂νDσµ(x− y) term with x ∈ v1

Parametrizing the paths for x and y as (assuming that x1 = 0):

x = σv1, σ ∈ [0, 1] (384)
y = v1 + σ′v2, σ

′ ∈ [0, 1] , (385)

we have:

dxσ =
(
dxσ

dσ

)
dσ = (v+

1 , 0−,0⊥)dσ

dyν =
(
dyν

dσ′

)
dσ′ = (0+, v−2 ,0⊥)dσ′ = γ̇(σ′)dσ′

x− y = (σ − 1)v1 − σ′v2

(x− y)2 = −2(σ − 1)σ′ (v+
1 v
−
2 ) .
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Calculating this contribution
1∫

0

dσ′ dσ
dxρ

dσ

(
∂

∂yµ
Dρν(x− y)− ∂

∂yν
Dρµ(x− y)

)
[V µ(y) ∧ γ̇ν(y)]

= Kε

1∫

0

dσ′ dσ
dxρ

dσ

[(
dyν

dσ′
2(ε− 1)gρν(x− y)µV µ(σ′)

[−(x− y)2]2−ε

)

−
(
dyν

dσ′
2(ε− 1)gρµ(x− y)νV µ(σ′)

[−(x− y)2]2−ε

)]

= Kε




(1− ε)

2 (−S12)ε
1∫

0

dσ dσ′

σ′1−ε(σ − 1)2−ε




−

(1− ε)

2 (−S12)ε−1(v1)2
1∫

0

dσ dσ′

t1−ε(s)2−ε






= 1
2Kε

Sε12
ε

, (386)

where Sij represents the Mandelstam variable for the pair of vectors vi,j .
Which is exactly the same result as taking the derivative

v1
δ

δv1

of the original integral

v1
δ

δv1
Kε

∮
gµν dx

µ dyν

(−(x− y)2)1−ε = v1
δ

δv1
Kε

∮ (v1v2) dσ dσ′

(−(2v1v2(σ − 1)σ′)2)1−ε = 1
2Kε

Sε12
ε
.

(387)

22.11.2 ∂µDρν(x− y)− ∂νDρµ(x− y) term with x ∈ v2

This term is trivial since it reduces to a Self-Energy on the light-cone which
in dimensional regularization is formally zero [167].

22.11.3 ∂µDρν(x− y)− ∂νDρµ(x− y) term with x ∈ v3

Making use of the symmetry

2v1v2 = −2v2v3 = S23,
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where now S23 is the second Mandelstam variable (usually written as t) we
can write down this contribution immediately

1∫

0

dσ′ dσ
dxρ

dσ

(
∂

∂yµ
Dρν(x− y)− ∂

∂yν
Dρµ(x− y)

)
[V µ(y) ∧ γ̇ν(y)] = 0 .

(388)
which is again the same as taking the derivative

v1
δ

δv1

since the original integral is formally independent of v1 thus resulting in
zero.

22.11.4 ∂µDρν(x− y)− ∂νDρµ(x− y) term with x ∈ v4

This contribution is actually the most tricky to calculate, where the intricacies
of the calculation are hidden in the combination of the integration and deriva-
tives with respect to y. So here we will apply a slightly different approach.
Instead of evaluating the integrals we will keep the integrals and show that
taking the derivative

v1
δ

δv1
results in the same integrals as when we take the Fréchet derivative. Using
the parametrization

x = −(1− σ)v4, σ ∈ [0, 1] , (389)
y = v1 + σ′v2 , σ

′ ∈ [0, 1] , (390)

we start by splitting up the calculations in the contributions

∂µDρν(x− y) and − ∂νDρµ(x− y).

For the first term we proceed as before resulting in
1∫

0

dσ′ dσ
dxρ

dσ

(
∂

∂yµ
Dρν(x− y)

)
[V µ(y) ∧ γ̇ν(y)] =

− 2(ε− 1)
1∫

0

dσ′ dσ
[
v1 · (v1 + σ′v2 + (1− σ)v4)

] (v2 · v4)
(−(−(1− σ)v4 − v1)2)2−ε ,

(391)
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the second term is the tricky one. If we look at the index of the derivative
with respect to y (i.e. ν) one can see that afterwards we integrate again over
dyν , such that we might as well evaluate the original kernel

1
(−(x− y)2)1−ε

between its boundary values as one would do by a normal integration. This
results in

−
1∫

0

dσ′ dσ
dxρ

dσ

(
∂

∂yν
Dρµ(x− y)

)
[V µ(y) ∧ γ̇ν(y)] =

−
1∫

0

dσ(v1 · v4)σ′
[

1
(v1 + v2 + (1− σ′)v4)2(1−ε) −

1
(v1 + σ′v4)2(1−ε)

]
= 0 ,

(392)

where we used

(v2 · v4) = 0 and v1v2 = −v1v4

making the two integrals equal which of course after subtraction results in
the zero. Taking the

v1
δ

δv1

of the original integral results in

v1
δ

δv1

1∫

0

dσ′ dσ
dxσ

dρ

dyµ

dσ
(Dρµ(x− y)) =

− 2(ε− 1)
1∫

0

dσ′ dσ
[
v1 · (v1 + σ′v2 + (1− σ)v4)

] (v2 · v4)
(−(v1 + σ′v2 + (1− σ)v4)2)2−ε ,

(393)

which is the same as Eq. (391) as desired.
Similar calculations with the variational vector field now chosen (0+, v−2 ,0⊥)

and the point y restricted to the side v3 of the quadrilateral (due to the anti-
symmetry of the wedge product) result in the contribution

1
2Kε

Sε23
ε
−2(ε−1)

1∫

0

dσ′ dσ
[
v4 · (v4 + σ′v1 + (1− σ)v3)

] (v1 · v3)
(−(v4 + σ′v1 + (1− σ)v3)2)2−ε ,

(394)
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with
S23 = 2(v2 · v3).

Taking the trace over the color matrices then adds the color factor CF an
using the linearity of the wedge product in the vector field V µ we have the
final result

(
v1

δ

δv1
+ v2

δ

δv2

)
[Wγ ] = DV [Wγ ] ,

with
V µ = V µ

1 + V µ
2 = (v+

1 , v−2 , 0⊥).

Result : Equivalence Fréchet and Generalized Derivative (LO)

Taking into account the renormalization properties of the light-like Wilson
quadrilateral loop [48, 91, 154], we come to our final result of this Section.

µ
d

dµ
DV [Wγ ] = −

∑
Γcusp , (395)

where Γcusp is again the light-cone cusp anomalous dimension 22.2.

Result : Evolution Equation

22.12 makeenko-migdal, polyakov and fréchet: a deriva-
tive connection

In this Section we will show that the connection in loop space Fµ(s, c), in-
troduced by Polyakov in [146] is in fact related to the Fréchet derivative.
We have already demonstrated the relation to the area derivative, used by Ma-
keenko, but we will come back to this to show how the Fréchet derivative
links Polyakov’s approach to the one by Makeenko and Migdal.
Polyakov considers the Wilson loop variable as a chiral field on loop

space and, inspired by the expression for a pure gauge field

Aµ(x) = g−1(x)∂µg(x),

introduces a connection on loop space by

Fµ(s, C) = δU(C)
δxµ(s)U

−1(C). (396)
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Polyakov continues by showing that

Fµ(s, C) =
1∫

0

dsU(s, C)Fµν(x(s))dxν(s)
ds

U−1(s, C) (397)

which can be written as

δU(C)
δxµ(s) = U(C)

1∫

0

dsU(s, C)Fµν(x(s))dxν(s)
ds

U−1(s, C). (398)

If we contract this with the variational vector field Vµ we get the Fréchet
derivative!!! Note that here the infinitesimal variations are not achieved by
attaching some randomly chosen infinitesimal area somewhere around the
contour, but is generated by the variational vector field. This makes the area
variation well defined and thus not introduce additional cusps, in contrast with
the usually introduced infinitesimal "squares" associated with area variation.
Polyakov also demonstrates that the connection he introduced is actually flat

δFµ(s, C)
δxν(s1) −

δFν(s1, C)
δxµ(s) + [Fµ(s, C), Fn(S1, C)] = 0, (399)

and that the Yang-Mills equations can be written in a very simple way using
this connection

δFµ(s, C)
δxµ(s) = 0. (400)

Taking now the functional derivative of this connection results in

δFµ(s, C)
δxµ(s1) +

[
Fµ(s1), Fµ(s)

]
= U(s, C)∇µFµν(x(s))U−1(s, C)dxν(s)

ds
,

(401)
where we clearly recognize the derivatives appearing in the Makeenko-Migdal
equations.
We end this section with a remark for the more mathematical inclined read-

ers. In [168] Zois relates the Hochschild homology of the associative algebra
of differential forms Ω(M) to the de Rham cohomology of the standard loop
space LM (infinite dimensional as we have discussed before) on M . This
allows to re-express the variational derivation of Polyakov in a cohomology
setting, allowing to study certain properties of loop spaces using cohomology.
This approach might be useful when considering a (deformation) quantization
approach to quantize GLS.
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22.13 conjecture at nlo - renormalization group cor-
rection

In this Section we will investigate the validity of our conjecture at the NLO
level for the Pi-shaped contour and quadrilateral contour from before. We
will see that we slightly need to adapt our conjecture to take into account the
running of the coupling constant, ultimately leading to an extra contribu-
tion from the QCD Beta-function. We will also discuss how our conjecture
simplifies for SYM theory where the β-function disappears.

22.13.1 Pi-shaped contour

We start with showing that our conjecture is valid at NLO for the Pi-shaped
contour with the finite part on the light cone, as before, if we take into
account the running of the coupling constant. The fact that we need
to introduce this modification is not surprising, since Γcusp depends on the
coupling constant and hence is sensitive to its renormalization which is
described by the β-function that for QCD at LO is given by

β(g) = −
(11

3 −
2
3NF

)
g3

16π2 . (402)

Taking this renormalization into account we propose our adapted conjecture
(
µ
∂

∂µ
+ β(g) ∂

∂g

)(∑

i

si
δ

δsi

)
lnW (Γ) = −

∑

cusps
Γcusp. (403)

To demonstrate the validity of this conjecture (up to NLO) we use the NLO
result for the Pi-shaped contour from Korchemsky and Marchesini [155].
Without actually realizing it, they already proved Eq. (403) for this contour
in this paper, with a bit of different notation4. We will here repeat part of that
derivation by using their NLO expression for the Pi-shaped contour, the same
strategy will then be followed to demonstrate that our updated conjecture is
also valid for the quadrilateral on the light cone.
The renormalized NLO expression for the Pi-shaped contour is given by

[155]

Wren. =
(
α

π

)
CF

(
−L2 + L− 5

24π
2
)

+
(
α

π

)2
CF
(
BL3 + CL2 +DL+O(L0)

)

(404)
4 See eq. (4.4) in [155] and the discussion below
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where

B = −11
18CA + 1

9Nf ,

C =
( 1

12π
2 − 17

18

)
CA + 1

9Nf ,

D =
(9

4ζ(3)− 7
18π

2 − 55
108

)
CA +

( 1
18π

2 − 1
54

)
Nf ,

L = ln(i(ρ− i0)) + γE,

ρ = (sµ) .

If we now consider the series coefficients of L in this result, after application
of the derivative (

µ
∂

∂µ
+ β(g) ∂

∂g

)(∑

i

si
δ

δsi

)
,

it is easy to see that the coefficients of L3 and L2 are multiplied with powers
of
(
α
π

)
higher than two, due to the presence of the β-function as multiplicative

factor. The coefficients of L on the other hand come from the L2 and L3

term in Eq. (404) by application of
(
µ
∂

∂µ

)(∑

i

si
δ

δsi

)

and from (
β(g) ∂

∂g

)(∑

i

si
δ

δsi

)(
α

π

)
CF (−L2).

Their total contribution becomes

6B − β = −
(11

3 −
2
3NF

)
+
(11

3 −
2
3NF

)
= 0, (405)

where we used the notation

β(g) = β
g3

16π2 .

If our conjecture is now to hold, the constant terms should add up to the
NLO expression for Γcusp (in the associated renormalization scheme). The first
contribution to the constant terms originates from

(
α

π

)
CF
(
−L2

)
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and is given by
(
µ
∂

∂µ

)(∑

i

si
δ

δsi

)(
α

π

)
CF
(
−L2

)
= −2

(
α

π

)
CF = −2ΓLO

cusp. (406)

The second contribution comes from the term
(
α

π

)2
CF
(
CL2

)

which can be written as
(
µ
∂

∂µ

)(∑

i

si
δ

δsi

)(
α

π

)2
CF
(
CL2

)
=

2C
(
α

π

)2
CF = 2

(( 1
12π

2 − 17
18

)
CA + 1

9Nf

)(
α

π

)2
CF . (407)

Finally the third contribution originates from
(
α

π

)
CF (L)

returning (
β(g) ∂

∂g

)(∑

i

si
δ

δsi

)(
α

π

)
CF (L) = 1

2β.

The first contribution already contributes in the correct way to the cusp
anomalous dimension, so we only need to focus on the second and third term.
Adding both contributions and extracting a −2 factor we get

− 2
(
α

π

)2
CF

(
−C − 1

2
1
2β
)

=

− 2
(
α

π

)2
CF

((
− 1

12π
2 + 17

18

)
CA −

1
9Nf

)
+
(11

12 −
2
12NF

)
=

− 2
(
α

π

)2
CF

(
CA

(67
36(− 1

12π
2
)
− 5

18NF

)
= −2 ΓNLO

cusp . (408)

Combining all the contributions shows that indeed Eq. (403) is valid at
NLO for the Pi-shaped contour.
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(
µ
∂

∂µ
+ β(g) ∂

∂g

)(∑

i

si
δ

δsi

)
lnWren(ΓPi) =

− 2
((

α

π

)
CF +

(
α

π

)2
CF

(
CA

(67
36(− 1

12π
2
)
− 5

18NF

))
=

− 2Γcusp (409)

where Γcusp is the light-cone cusp anomalous dimension given in Eq.
(345).

Result : Evolution Equation for Pi-shaped contour at NLO

22.13.2 Quadrilateral

Before investigating the validity of the conjectured evolution equation for the
Quadrilateral in a QCD setting, we start first with a simpler case, namely
the NLO verification in N = 4 SYM theory. To demonstrate the validity of the
equation in this case we start from the discussion and main result in [69]. In
this paper it is explained that the Non-Abelian exponentiation Theorem
for Wilson loops [147, 169, 170], in the case of N = 4 SYM, allows for the
Wilson loop to be expanded as

W (C4) = 1 +
∞∑

n=1

(
g2

4π2

)n
W (n) = exp

[ ∞∑

n=1

(
g2

4π2

)n
c(n)w(n)

]
, (410)

where W (n) are the perturbative corrections to the Wilson loop and
c(n)w(n) are given by the contribution to W (n) with the “maximally non-
abelian” color factors c(n). We know that in lowest orders (n = 1, 2, 3)
these maximally non-abelian color factors are of the form c(n) = CFN

n−1.
Combining this information with Eq. (410) we have

W (1) = CFw
(1) , W (2) = CFNw

(2) + 1
2C

2
F

(
w(1)

)2
, . . . (411)

For a detailed discussion of this we refer the reader to [69] and references
therein.
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Using the above we can write for the (unrenormalized) two-loop expression
of the Wilson loop:

lnW (C4) = g2

4π2CFw
(1) +

(
g2

4π2

)2

CFNw
(2) +O(g6). (412)

From previous calculations we have for w(1)

w(1) = − 1
ε2

[(
−x2

13 µ
2
)ε

+
(
−x2

24 µ
2
)ε]

+ 1
2 ln2

(
x2

13
x2

24

)
+π2

3 +O(ε) , (413)

where
x2
i,i+2 = (xi+2 − xi)2 → (vi + vi+1)2 = si

the Mandelstam variables. In [69] Drummond et al derive that w(2) is given
by

w(2) =
[
s µ2)2ε + (t µ2)2ε

]{
ε−2π

2

48+ε−1 7
8ζ3

}
−π

2

24 ln2
(
s2

t2

)
− 37

720π
4+O(ε) .

(414)
Applying our derivative Eq. (362) results in
(
s
δ

δs
+ t

δ

δt

)
w(2) =

[
s µ2)2ε + (t µ2)2ε

]{
ε−1π

2

24 + 7
4ζ3

}
+ Finite. (415)

If we now apply the mass scale differential operator to this and take the ε→ 0
limit we finally get

µ
δ

δµ

((
s
δ

δs
+ t

δ

δt

))
w(2) = 4 · π

2

12 , (416)

which becomes
CFCA4 · π

2

12
when taking the Non-Abelian color factors into account and explicitly
pulling out a factor 4. Combining this with the one-loop result (413), tak-
ing the correct color factors, we arrive at
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(
s
δ

δs
+ t

δ

δt

)
ln (W (Γ)) = 4·

((
αs
π

)
CF +

(
αs
π

)2
CFCA

π2

12

)
= −4Γcusp,

Result : Evolution Equation for Quadrilateral (SYM) at NLO

consistent with our original conjecture Eq. (367) if one considers Γcusp as in
[69], where one considers pure Yang-Mills (YM) theory (i.e. not considering
fermions or ghost in the gluon Self-Energy corrections or put differently NF =
0 in Eq. (345) ).
We would now like to expand this result to the case of QCD. To this end we

proceed, in the same way as for the Pi-shaped contour, now using the NLO
results for the quadrilateral on the light cone derived by Korchemsky et al
in [156]. In this paper it is shown that using the Non-Abelian exponentiation
Theorem [147, 169, 170] the renormalized quadrilateral Wilson loop can be
written as

W (sµ2, tµ2, g) = exp
(
W one-loop +W two-loop

)
, (417)

where

W one-loop = −αs2πCF
(
L2
(
sµ2

)
+ L2

(
tµ2
))

(418)

W two-loop = −
(
αs
π

)2
CF
[
w1L

3
(
sµ2

)
+ w2L

2
(
sµ2

)

+w3L
(
sµ2

)
L
(
tµ2
)

+ w4L
(
sµ2

)

+(s→ t) + const
]

(419)

and with

L(x) = ln(x)

w1 =
(11

72CA −
Nf

36

)

w2 =
((

67
72 −

π2

12

)
CA −

5
36NF

)

w3 =
(
π2

24CA
)

w4 =
((101

54 −
7
4ζ(3)

)
CA −

7
27NF

)
. (420)
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Eq. (418) is just another way to express our one loop result in renormalized
version. To see how they are related write

(
sµ2

)ε

as

exp
(
ε log

(
sµ2

))
= 1 + ε log

(
sµ2

)
+ 1

2ε
2 log2

(
sµ2

)
+O

(
ε3
)

and remember that this is multiplied with a factor

1
ε2

in the LO result Eq. (350). Subtracting the poles using the MS scheme
[19, 52, 171] returns Eq. (418) if one applies the same transformation to

(
tµ2
)ε
.

We point out that applying our derivative followed by the mass scale
derivative to (418) gives again our conjecture at leading order

µ
δ

δµ

((
s
δ

δs
+ t

δ

δt

)(
W one-loop

))
= −8αs2πCF = −4ΓLO

cusp. (421)

Result : Evolution Equation for Renormalized Quadrilateral (QCD)

For the NLO result Eq. (419) we follow the same strategy as for the Pi-shaped
contour, where again we adapted the conjecture to Eq. (403). Simple calcu-
lation then shows that the L2-terms after application of the generalized
or Fréchet derivative only contribute to higher orders of α

π , i.e. to Next-
to-Next-to-Leading Order (NNLO) terms. Similarly to the Pi-shaped contour
case the terms contributing to the L-terms cancel

1
2β + 2 · 6w1 = −1

2

(11
3 −

2
3NF

)
+ 12

(11
72CA −

Nf

36

)
= 0.
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The total contribution to the constant terms, after application of all the
derivatives, is given by

− 4
(
α

π

)2
CF (2w2 + 2w3) =

− 4
(
α

π

)2
CF

(
2
((

67
72 −

π2

12

)
CA −

5
36NF

)
+ 2

(
π2

24CA
))

=

− 4
(
α

π

)2
CF

((
CA

(67
36 −

1
12π

2
)
− 5

18NF

))
=

− 4ΓNLO
cusp , (422)

which combined with Eq. (421) demonstrates the validity of our adapted
conjecture at the NLO level for the quadrilateral on the light cone. This result
is now a second example where our adapted conjecture is valid beyond the
LO level.

µ
δ

δµ

((
s
δ

δs
+ t

δ

δt

)
(W (ΓQuad))

)
=

− 4
{(

α

π

)
CF +

(
α

π

)2
CF

((
CA

(67
36 −

1
12π

2
)
− 5

18NF

))}
=

− 4Γcusp, (423)

where Γcusp is the light-cone cusp anomalous dimension given in Eq.
(345).

Result : Evolution Equation Renormalized Quadrilateral (QCD) at NLO

22.14 all order confirmation of our conjecture in N =
4 sym theory

In [69] it is discussed that the Wilson loop can be split up in a divergent
and a finite part given by

ln Wn = ln Zn + 1
2 Γcusp (a)Fn + O(ε), (424)
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where the divergences are absorbed into the factor Zn and depends on
the renormalization scale µ, ε and the vectors vi forming the contour. In any
gauge theory ([172–174] and references therein) this factor can be written as

ln Zn = − 1
2

∞∑

l=1
a l
(

Γ(l)
cusp

(lε)2 + Γ(l)

lε

)
n∑

i=1
(−x2

i,i+2 µ
2) lε , (425)

where
Γcusp(a) =

∞∑

l=1
alΓ(l)

cusp

and
Γ(a) =

∞∑

l=1
alΓ(l),

where we have redefined the al to be consistent with the one-loop result. The
term Fn refers to a finite contribution that is parametrized only by the xi.
Using the UV - IR Wilson loop duality, thus interchanging the xi for generalized
Mandelstam variables

x2
i,i+2 → si

results in

lnZn = −1
2

∞∑

l=1
al
(

Γ(l)
cusp

(lε)2 + Γ(l)

lε

)
n∑

i=1
(−si µ2)lε, (426)

Applying the generalized derivative of Eq. (362) to Eq. (424) returns
(∑

si

si
δ

δsi

)
lnWn = −1

2

∞∑

l=1
al
(

Γ(l)
cusp

(lε) + Γ(l)
)

n∑

i=1
(−si µ2)lε +O(ε),

and now taking the mass scale derivative of this result returns

µ
δ

δµ

((∑

si

si
δ

δsi

))
lnWn = −

∞∑

l=1
al
(
Γ(l)

cusp + lεΓ(l)
) n∑

i=1
(−si µ2)lε +O(ε).

(427)
In the limit ε→ 0 we get the final result
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µ
δ

δµ

(∑

si

si
δ

δsi

)
lnWn = −n

∞∑

l=1
al
(
Γ(l)

cusp

)
= −nΓcusp, (428)

demonstrating that in SYM theory our conjecture holds to all orders.

Result : All order Evolution Equation for Quadrilateral in SYM

Of course this result depends strongly on the Non-Abelian exponenti-
ation Theorem and on the behavior of the Sudakov form factor in this
theory. The question if our adapted conjecture holds in QCD for NNLO when
using renormalized Wilson loops remains open for the moment.
We point out that from the results in Section 22.13 we now understand

how to transition from our conjecture for QCD to the one for SYM.
Since the coupling constant does not run in SYM, the β-function is zero,
such that it eliminates all the contributions coming from this term in the
derivative. Clearly this reduces our adapted conjecture to the original one,
which we showed to be valid to all orders in SYM. This fact, combined with
the two loop result gives us confidence that our adapted conjecture for QCD
is also valid beyond the NLO level.

22.15 generalized loop space, renormalization, rapid-
ity and tmds revisited

In our papers [49, 175] we demonstrated the relation between the Fréchet
differentiation and rapidity differentiation. We already briefly explained
this in the introduction, we will repeat this discussion here for the readers
convenience and relate it to the evolution of a new kind to TMD, namely a
TDD.

From the RHS of our adapted conjecture in Eq. (403), keeping the SD ap-
proach in mind, it is clear that the cusp anomalous dimensions can be
interpreted as a fundamental ingredient of an effective quantum action
for the Wilson loops with simple obstructions. This fact demonstrates a re-
lation between the geometrical properties (given in terms of the area/shape
infinitesimal variations and corresponding differential equations) of the GLS,
and the renormalization-group behavior of the Wilson polygons with
conserved angles between the light-like straight lines. Put differently, the
dynamics in loop space is governed by the discontinuities of the path
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derivatives. These obstructions play the role of the sources within the
Schwinger field-theoretical picture. We have shown, that the Schwinger
quantum dynamical principle [176] is helpful in the investigation of certain
classes of elements of the loop space, namely, the cusped Wilson polygons.
It is worth noting that Eq. (403) suggests, in fact, a duality relation be-
tween the rapidity evolution of certain correlation functions and the
equations of motion in the GLS. Rapidities associated with the light-like
vectors N± are, of course, infinite, and are given by

Y ± = 1
2 ln

(
(N±)+

(N±)−

)
= lim

η±→0
±1

2 ln
(
N+N−

η±

)
, (429)

where η± is a cutoff and where we take into account the fact that plus- and
minus- components of a vector aµ are defined as the scalar products

a± = (a ·N∓).

Eq. (429) suggests, clearly, that

d

d ln σ ∼
d

dY
, (430)

that is, the rapidity evolution equation of a certain correlation function
can be set dual to the area variation law of a properly chosen class
of elements of the GLS. In particular, we will argue below that Eq. (403)
can be used to study the evolution of the 3D-parton distribution functions.
To this end, we will focus on the behavior of parton densities in the large
Bjorken-xB approximation.
In this context we will make some assumptions, we assume that some

reasonable TMD-factorization scheme can be formulated, and that an
appropriate operator definition of the TMD quark distribution function
exists that has the same quantum numbers as the correlation function below,
shown in Eq. (431).
We will also be mainly interested in the 3D-correlation functions in the

large-xB limit, this regime is apparently easier to analyze within a simple
factorization scheme and perfectly fits the Jefferson Lab 12 GeV kinematics.
Furthermore, we will argue that the large-xB approximation is an ideal natural
laboratory for the study of applications of the GLS formalism in hadronic and
nuclear physics.
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Let us introduce the following TDD correlation function

F
(
x, b⊥;P+, n−, µ2

)
=
∫
d2k⊥ e−ik⊥·b⊥F

(
x,k⊥; p+, n−, µ2

)
=

∫
dz−

2π
〈
P
∣∣∣ψ̄(z−, b⊥)W †n− [z−, b⊥;∞−, b⊥]W †l [∞−, b⊥;∞−,∞⊥]

×γ+Wl[∞−,∞⊥;∞−,0⊥]Wn− [∞−,0⊥; 0−,0⊥]ψ(0−,0⊥)| P
〉
.

(431)

This correlation function allows us to extract information about the quark
distribution in the longitudinal one-dimensional momentum space (x, P+)
and in the two-dimensional impact-parameter coordinate space (b⊥).
The semi-infinite Wilson lines occurring in the TDD definition are evaluated
along a certain four-vector wµ and are defined as

Ww[∞; z] ≡ P exp
[
−ig

∫ ∞

0
dτ wµ Aµ(z + wτ)

]
, (432)

where now, the vector wµ can be either longitudinal

wµ = (wL,0⊥),

or transverse
wµ = (0L, l⊥).

Notice that the TDD is a partial Fourier transform of the standard TMD
correlator

F
(
x,k⊥;P+, n−, µ2

)
.

The factorization and evolution of the gauge-invariant collinear PDFs in the
large-xB regime has been studied in [155] and here we propose to generalize
this approach to the 3D-PDF of Eq. (431).
The large-xB regime requires some assumptions, for which we refer the

reader to [175], that allow for the following factorization formula

F
(
x, b⊥;P+, n−, µ2

)
= H(µ, P 2)× Φ(x, b⊥;P+, n−, µ2) , (433)
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where the contribution of incoming-collinear partons is summed up into the
x-independent function, while the soft function Φ is given by5

Φ(x, b⊥;P+, n−, µ2) =

P+
∫
dx e−i(1−x)P+z−〈0| W †P [z;−∞]W †n− [z;∞]Wn− [∞; 0]WP [0;∞] |0〉 ,

(434)

with two kinds of Wilson lines

(i) incoming-collinear (non-light-like, P 2 6= 0)

WP ,

(ii) outgoing-collinear ((n−)2 = 0),

Wn− .

The associated rapidity and renormalization-group evolution equations
are given by

µ
d

dµ
lnF

(
x, b⊥;P+, n−, µ2

)
= µ

d

dµ
lnH(µ2) + µ

d

dµ
ln Φ(x, b⊥;P+, µ2) ,

(435)

P+ d

dP+ lnF
(
x, b⊥;P+, n−, µ2

)
= P+ d

dP+ ln Φ(x, b⊥;P+, µ2) , (436)

where the rapidity is introduced via

lnP+

with proper regularization [177]. The RHS of Eq. (435) is, in fact, b⊥-independent
and contains only a single-log dependence on the rapidity [63–67, 178, 179].
As a consequence Eq. (436) corresponds to the Collins-Soper-Sterman
rapidity-independent kernel KCSS.
We are now ready to use of the evolution equation Eq. (403). We

emphasize that the soft function F is a Fourier transform of an element of
the GLS, the Wilson loop evaluated along the path, defined in Eq. (434). This
enables us to consider the shape variations of this path, which are generated by

5 For simplicity, we work in covariant gauges, so that the transverse Wilson lines at infinity
can be ignored.
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the infinitesimal variations of the rapidity variable lnP+. The corresponding
differential operator reads:

d

d ln σ ∼ P
+ d

dP+ , (437)

given that
dP+ = (dP · n−).

Therefore

(
µ
∂

∂µ
+ β(g) ∂

∂g

) (
P+ d

dP+ lnF
)

=
(
µ
∂

∂µ
+ β(g) ∂

∂g

) (
P+ d

dP+ ln Φ
)

=

−
∑

TDD
Γcusp(αs) =

(
µ
∂

∂µ
+ β(g) ∂

∂g

)
KCSS(αs) . (438)

Eqs. (435-438) should now be integrated to give a complete evolution
of the TDD (431) in the large-xB region. A calculation we are still
working on. We end this chapter with pointing out that these evolution
equations can be directly applied to the JLab 12 GeV phenomenology
(see also [180] and references therein), again motivating the research
done in this thesis.

Result : Evolution Equation for TDDs

22.16 summary

In this Chapter we studied the effect of the different differential operators,
defined on GLS, on simple Wilson loops, the quadrilateral on the light cone
and the Pi-shaped contour with a finite part on the light cone. Since the
commonly used differential operators, like the area derivative, did not work
on this quadrilateral we were forced to introduce a new differential operator.
This new operator turned out to be a special case of the Fréchet derivative,
making it mathematically well defined. Applying this "new" operator in com-
bination with the usual renormalization mass scale differential operator to the



22.16 summary 399

Wilson loop quadrilateral resulted in an equation that is quite simple and only
seems to depend on the number of cusps along the contour and on the cusp
anomalous dimension of the underlying theory. As a conjecture we generalized
this result to Wilson loop polygons with n cusps, and tested this conjecture
for a Pi-shaped contour for which it also turned out to be valid. Furthermore
we demonstrated that our conjecture is not only valid at LO but also at NLO
for QCD and to all orders in N = 4 SYM theory where a huge simplification
occurs due to the vanishing of the Beta-Function. We ended the Chapter with
deriving a relation between our conjecture for Wilson loops and the renormal-
ization group equations for a three dimensional parton density correlator, the
TDD correlation function, introducing an evolution equation for them. These
correlators can be immediately applied to the JLab 12 GeV phenomenology,
making our conjecture testable in the upcoming JLab experiments and in
future experiments at the EIC, RHIC and CERN.





23
THES I S SUMMARY AND OUTLOOK

23.1 summary

After giving a short introduction and motivation for the research done in
this thesis in the first Part, we reviewed the basic mathematical concepts
in the second Part. These mathematical concepts are needed to introduce
Generalized Loop Space and its properties. More specifically we investigated
different differential operators that generate different shape variations of the
loops in the Generalized Loop Space.
A natural candidate for such shape variations was the area derivative that

was used by Makeenko and Migdal to derive their famous loop equations.
This operator had some issues with respect to the introduction of extra
cusps, complicating its application to Wilson loops. Fortunately this is not
the only well-defined shape variation inducing differential operator. Another,
more complicated, differential operator is the Fréchet derivative associated
to diffeomorphisms of the underlying base manifold on which the Generalized
Loop Space is built.
The Fréchet derivate was then applied to different Wilson loops, relevant

for TMD phenomenology. This led to our main results, which we summarize
in the section below.

23.2 overview of main results

As a first application of Generalized Loop Space we applied both the area
derivative and the Fréchet derivative to a simple Wilson loop quadrilateral
lying on the light cone, and demonstrated that indeed the area derivative is
ill-defined due to the extra cusps it generates along the contour. It forced us
to define an alternative differential operator that we showed to be equivalent
with the Fréchet derivative associated to a specific diffeomorphism of the base
manifold, at least at leading order. This "new" derivative, in combination with
the well-known renormalization mass scale differential operator, allowed us to
derive an evolution equation for these simple contours.

401
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Inspired by this result we wanted to know if our evolution equation would
also hold for other contours. Therefore we tested the evolution equation at
leading order for the Π-shaped contour and for four contours which are sym-
metric extensions of the original quadrilateral contour.
At the moment our evolution equation seems to hold for all these con-

tours, even for the contours with overlapping paths and self-intersections if
one counts the number of cusps in the correct manner. Furthermore, these
calculations also demonstrated that the group structure of loop space is able
to handle contours with overlapping paths and self-intersections, a fact that
is not so obvious.
Motivated by the above successes we conjectured an evolution equation

for Wilson loops by generalizing the result for the quadrilateral. An important
property of this evolution equation is that it only depends on the number
of cusps along the contour and on the cusp anomalous dimension, a quan-
tity that also shows up frequently when studying three dimensional parton
distributions.
Having only a leading order result we then moved on to check if our conjec-

ture also holds at higher orders (in αs, the coupling constant). We checked
that indeed our conjecture holds for the quadrilateral lying on the light cone
to second order in N = 4 SYM theory and in QCD, with the remark that in
QCD one needs to take into account the running of the coupling constant.
This dependence on running of the coupling constant is represented in our
conjecture formula by an extra term constructed from the derivative with re-
spect to the coupling constant multiplied with the β-Function acting on the
Fréchet derivative of the logarithm of the Wilson loop under consideration.
This is in contrast with our first result at leading order, where the term with
β-function was not present. As a consequence we had to modify our evolution
equation, adding this extra term. In the case of N = 4 SYM this term is not
present, as the coupling constant does not run in this theory, simplifying the
evolution equation to our original conjecture.
As a direct consequence, we were able to show that in this special case

of N = 4 SYM theory our conjecture holds at all orders (under assumption
of the Non-Abelian exponentiation theorem), giving us confidence that our
conjecture also holds for higher orders in QCD.
Having JLab phenomenology in mind as an application for our evolution

equation, we demonstrated a connection between rapidity evolution and the
evolution induced by the Fréchet derivative. Through this connection it was
then possible to propose an evolution equation for the introduced Transverse
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Distance Dependent (TDD) three dimensional correlator, relevant for large xB
phenomenology and testable at the 12 GeV JLab upgrade.
The confidence in our TDD evolution is reinforced by the fact that it is

remarkably similar to the Collin-Soper-Sterman evolution equation, which is
known to be not completely exact. So our hope is that our evolution equation
will do better and give a (more) accurate description for transverse momen-
tum/distance dependent correlators.

23.3 outlook and future research

There are many opportunities to extend the research of this thesis, which are
not necessarily only related to the main results of the thesis but also to the
mathematical techniques and concepts used. We will try to give an overview
of possible future research, splitting it up in research that builds on the results
of this thesis on the one hand and in research that makes use of the concepts
and mathematical techniques on the other.
Let us first consider the research that builds on the results of this thesis. A

natural continuation of the research presented in this text would be to test
our conjecture for different contours. A simple example would be to consider
a quadrilateral with only three of its four sides on the light cone. This is an
interesting case since such contours emerge in the soft factors that appear
in the factorization of TMDs, contributing to the non-perturbative effects.
Another example is the Π-shaped contour with transverse separation, which
appears both as a soft-factor and as a Wilson line structure in TDDs.
In another line of research, one could try to reconstruct a quantum action

on loop space by making use of the SD approach in combination with our
conjecture, opening the door to non-perturbative calculations and to study
an alternative representation of gauge theory. Associated with this, one should
try to find a map between the gauge theory representation for observables
and the loop space representation. Note that this will require some super-
geometrical structure in order to be able to describe fermions.
On the diffeomorphism side, we have only considered angle preserving or

conformal transformations. Extending to non-conformal diffeomorphisms can
give more general evolution equations, where one would also get an additional
evolution with respect to the cusp angles. It would be fascinating to see how
such transformations would affect our conjectured evolution, and how the
cusp anomalous dimensions behave in this situation.
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On a more mathematical side it would be very interesting to study the
cohomology of generalized loop space and how it responds to changes in
topology of the base manifold, which was suggested to us by professor B.
Shoikhet1
As a research topic which uses concepts and techniques from this thesis

we mention the proposal by professor P. Mulders2 to use the shuffle product,
emerging when calculating corrections to the Drell-Yan process, to sum over
all possible configurations to add gluons to interactions between three semi-
infinite Wilson lines.
We also mention that, at the MENU13 conference in Rome, Dr. D.W.

Sivers3 suggested to use the generalized loop space structures to calculate
the anomalous magnetic moment for electrons, and at "High-Energy physics
in the LHC era"-conference in Chile we discussed the possibility of using
generalized loop space to access the non-perturbative sector of the dualized
Standard Model he presented there.
Recently the shuffle product also seems to emerge more often in calculations

of scattering amplitudes in the context of recurrence relations, in the hopes of
reducing the number of Feynman diagrams to be calculated when considering
higher order corrections. Perhaps insights from this thesis might also help in
this area of research.
One issue with Generalized Loop Space that has been haunting us during

the writing of this thesis is the fact that there is no conclusive prove that
the physical content of a gauge theory in a quantum field background can
be recast in a loop space setting. A natural research topic that follows from
this would be to investigate how to quantize Generalized Loop Space, where
as a first attempt we would consider geometric quantization. This suggestion
is motivated by the algebraic structure of Generalized Loop Space, showing
many similarities to situations we encountered in papers on this subject.
As a final future research topic we mention that similar loop spaces have

been used in the study of quantum loop gravity, such that also here there
might be opportunities to explore the power of Wilson loops (see for instance
[8] as a simple example).

1 Mathematics Department University of Antwerp.
2 NIKHEF
3 University of Michigan
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A
NOTAT IONS , CONVENT IONS AND DEF IN IT IONS

a.1 spinors and gamma matrices

Any field with half-integer spin, i.e. a Dirac field, anti-commutes:
{
ψa(x), ψ†b(y)

}
= δ(x− y)δab, {ψa(x), ψb(y)} =

{
ψ†a(x), ψ†b(y)

}
= 0.
(439)

We define gamma matrices by the anti-commutation relations

{γµ, γν} ≡ 2 gµν 1, (440)

with the following additional property

(γµ)† = γ0γµγ0. (441)

Although in particle physics we talk about γ matrices, these object are much
more general as generators of a Clifford Algebra (here the algebra of space-
time). The four-dimensional matrices used in particle physics are just a four
dimensional representation, which can be extended to higher dimensions (see
for instance [181]). A mentionable downside of the matrix representations
for these objects is the fact that the pseudo-scalar of the Clifford Algebra
of three-dimensional space (usually represented by the Pauli sigma matrices)
and four-dimensional space-time are the same

σ1σ2σ3 = γ0γ1γ2γ3,

which cannot be written down explicitly [182] with matrices. This as a side
note. Moving on to the Dirac equation for a particle field ψ

(
i/∂ −m)ψ = 0, (442)

where we also introduced the slash notation for

/p = γµpµ. (443)

We can identify an antiparticle field with ψ̄ if we define

ψ̄ = ψ†γ0, (444)
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which satisfies a slightly adapted Dirac equation:
(
i/∂ +m

)
ψ̄ = 0. (445)

We can expand Dirac fields in function of a set of plane waves:

ψ1(x) = uσ(p) exp [−ip · x] (p2 = m2, p0 > 0), (446)
ψ2(x) = vσ(p) exp [+ip · x] (p2 = m2, p0 < 0), (447)

where σ is a spin-index. If we define

ū = u†γ0, v̄ = γ0v†, (448)

we can find the completeness relations by summing over spin:
∑

s

us(p)ūs(p) = /p+m, (449)
∑

s

v̄s(p)vs(p) = /p−m. (450)

We will identify

• u with an incoming fermion,

• ū with an outgoing fermion,

• v̄ with an incoming anti-fermion,

• v with an outgoing anti-fermion.

If we define

γ5 = iγ0γ1γ2γ3 = − i

4!ε
µνρσγµγνγργσ, (451)

γµν = γ[µγν] = 1
2 (γµγν − γνγµ) , (452)

we can construct a complete Dirac basis:

1, γµ, γµν , γµγ5, γ5. (453)

We will identify

• 1 with a scalar,

• γµ with a vector,
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• γµν with a tensor,

• γµγ5 with a pseudo-vector,

• γ5 with a pseudo-scalar.

Furthermore, γ5 has the following properties:
(
γ5
)†

= γ5,
(
γ5
)2

= 1,
{
γ5, γµ

}
= 0. (454)

Let’s list some contraction identities for gamma matrices in ω dimensions:

γµγµ = ω, (455)
γµγνγµ = (2− ω)γν , (456)

γµγνγργµ = 4 gνρ + (ω − 4)γνγρ, (457)
γµγνγργσγµ = −2γσγργν + (4− ω)γνγργσ. (458)

And some trace identities:

Tr[1] = ω, (459)
Tr[odd number of γ’s] = 0, (460)

Tr[γµγν ] = 4 gµν , (461)
Tr[γµγνγργσ] = 4 (gµνgρσ − gµρgνσ + gµσgνρ) (462)

a.2 light-cone coordinates

In QCD it is common the work with so-called light-cone coordinates which are
defined for a four-vector aµ by

a+ = 1√
2

(
a0 + k3

)
, (463)

a− = 1√
2

(
a0 − k3

)
, (464)

a⊥ =
(
a1, a2

)
. (465)

We will represent the plus-component first, i.e.

aµ =
(
a+, a−,a⊥

)
. (466)

The factor 1√
2 is a normalization factor such that the Jacobian is unity, such

that
d4a = da+da−da⊥. (467)
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Using light cone coordinates the interior product can be expressed as

a · b = a+b− + a−b+ − a⊥ · b⊥, (468)

a2 = 2a+a− −
(
a⊥
)2
. (469)

This implies that the metric becomes off-diagonal

gµνLC =




0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1



. (470)

Next we also define two light-like basis-vectors

nµ+ =
(
1+, 0−,0⊥

)
, (471)

nµ− =
(
0+, 1−,0⊥

)
. (472)

Care has to be taken when lowering the index, since this switches the light-like
components because of the form of the metric

n+µ =
(
0+, 1−,0⊥

)
, (473)

n−µ =
(
1+, 0−,0⊥

)
, (474)

such that they project out the other light-like component of a vector:

a·n+ = a−, a·n− = a+. (475)

Last we can define an anti-symmetric symbol:

εµν⊥ = ε+−µν (476)

=




0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0



, (477)

where we adopt the convention ε0123 = ε+−12 = +1.
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a.3 fourier transforms

Below we give an overview of some useful functions with respect to Fourier
transforms. We start with the Heaviside step function which is defined by

θ(x) =





0 x < 0

1 x > 0
, (478)

and is undefined for x = 0. Next we review the Dirac δ-function, the derivative
of the above step function.

δ(x) = d

dx
θ(x), =⇒

∫
dxδ(x) = 1, (479)

and is zero everywhere, except at x = 0 Fourier transforms in this text are
used in the following way

f(x) =
∫

d4k

16π4 f̃(k) exp [−ik · x], (480)

f̃(k) =
∫
d4xf(x) exp [ik · x]. (481)

a.4 dirac’s bra and ket notation

We just give below a very short overview of some properties of the bra-ket
notation.

xµ |x 〉 = xµ |x 〉 ,∫
ddx |x 〉〈x| = 1,

〈g |x〉 = g(x),
〈x | f〉 = f(x),

|f 〉 =
∫
ddx f(x) |x〉 ,





B
DETA I LED CALCULAT IONS

b.1 proof of lemma 18.6.1 (from [16])

proof B.1.1

It should be clear that (A∗p, ?) is a topological k-algebra. Define now
k-linear maps Φ : Endll(Ap) → A∗p, Ψ : A∗p → Endll(Ap), and Λ :
A∗p → Endrl(Ap) respectivly by:

Φ : σ → Φ(σ) ≡ fσ ≡ ε ◦ σ (482)

Ψ : f → Ψ(f) ≡ σf ≡ (1⊗ f) ◦∆ (483)

and
Λ : f → Λ(f) ≡ ρf ≡ (f ⊗ 1) ◦∆ (484)

Let us verify, for example, that Ψ is well defined and it’s an algebra
morphism. In fact:

(
1⊗Ψ(f)

)
∆ =

(
1⊗ (1⊗ f) ◦∆

)
∆

= (1⊗ 1⊗ f)(1⊗∆)∆
= (1⊗ 1⊗ f)(∆⊗ 1)∆
= ∆(1⊗ f)∆ = ∆Ψ(f) (485)

which proves that Ψ(f) is left invariant. On the other hand, composing
with 1⊗ g, g ∈ A∗p, we obtain:

Ψ(g)Ψ(f) = (1⊗ g)∆Ψ(f)
= (1⊗ g)(1⊗Ψ(f))∆
= (1⊗ gΨ(f))∆
= (1⊗ g ? f)∆
= Ψ(g ? f) (486)

The rest of the proof follows directly from the definitions
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�

b.2 path derivative of chen iterated integral X ω1 ···ωr (γ )

∇T
V (qs )X ω1 ···ωr (γ ) =

lim
s→0

∫
γ ·ηs ω1 · · · ωr −

∫
γ ω1 · · · ωr

s
=

lim
s→0

∑r
i=0

∫
γ ω1 · · · ωi

∫
ηs
ωi+1 · · · ωr −

∫
γ ω1 · · · ωr

s
=

lim
s→0

∫
γ ω1 · · · ωr + ∑r−1

i=0
∫
γ ω1 · · · ωi

∫
ηs
ωi+1 · · · ωr −

∫
γ ω1 · · · ωr

s
=

lim
s→0

∑r−1
i=0

∫
γ ω1 · · · ωi

∫
ηs
ωi+1 · · · ωr

s
=

r−1∑

i=0

∫

γ
ω1 · · · ωi lim

s→0

∫
ηs
ωi+1 · · · ωr

s
=

∫

γ
ω1 · · · ωr−1 · ωr (Vqs ) =

X ω1 ···ωr−1 (γs ) · ωr (Vqs ) (487)

b.3 area derivative as derivatives on the iterated in-
tegral algebra

Let us show that indeed Eq. (238) is valid. We start by restating the left
action of a path

(α · X u )(β ) ≡ X u (β · α)
λ · X u (ε) = X u (λ · ε) = X u (λ), (488)

and the comultiplication on a functional at the group unit:

∆X u (ε) =
r∑

i=0
X ω1 ···ωi (ε) · X ωi+1 ···ωr (ε), (489)

Now applying λ · J on the right part of the comultiplication returns:

λ · J (X ωi+1 ···ωr (ε)) = λ · (−1)r−i−1X ωr ···ωi+1 (ε)
= (−1)r−i−1X ωr ···ωi+1 (λ · ε)
= X ωi+1 ···ωr (λ−1). (490)
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Doing the similar calculation by applying λ · Du∧v (q) to the left part of the
result of the co-multiplication in Eq.(489) we get:

λ · Du∧v (q)X ω1 ···ωi (ε) = λ ·
(
Du∧v (q)X ω1 ···ωi (ε) + [∂Tu , ∂Tv ]X ω1 ···ωi (ε)

)

λ · ∆u∧v (q)X ω1 ···ωi (ε) = λ · X ω1 ···ωi−1 (ε) · dωi (u ∧ v)
= X ω1 ···ωi−1 (λ) · dωi (u ∧ v)

λ[∂Tu , ∂Tv ]X ω1 ···ωi (ε) = λ (X ω1 ···ωi−2 (ε) · (ωi−1 ∧ ωi )(u ∧ v))
= X ω1 ···ωi−2 (λ) · (ωi−1 ∧ ωi )(u ∧ v). (491)

Combining the contributions above demonstrates the validity of (238).

b.4 commutator of area derivative on algebra of it-
erated integrals

[δ(λ;a∧b), δ(η;u∧v)]Xω1...ωr =

ε ◦
((

1⊗ δ(λ;a∧b)
)
∆
(
1⊗ δ(η;u∧v)

)
∆
)
Xω1···ωr

− ε ◦
((

1⊗ δ(η;u∧v)
)
∆
(
1⊗ δ(λ;a∧b)

)
∆
)
Xω1···ωr =

4E
(λ;a∧b)(λ(1))

((
1⊗ δ(η;u∧v)

)
∆Xω1···ωr

)
(ε)

−4E
(η;u∧v)(η(1))

((
1⊗ δλ;a∧b)

)
∆Xω1···ωr

)
(ε) =

4E
(λ;a∧b)(λ(1))

( r∑

i=0
Xω1···ωiδ(η;u∧v)(Xωi+1···ωr)

)
(ε)

−4E
(η;u∧v)(η(1))

( r∑

i=0
Xω1···ωiδ(λ;a∧b)(Xωi+1···ωr)

)
(ε) =

r∑

i=0

i∑

k=0

(Da∧b(λ(1))Xω1...ωk(λ)
)(
Xωk+1···ωi(λ−1)

)
δ(η;u∧v)(Xωi+1···ωr)

−
r∑

i=0

i∑

k=0

(Du∧v(η(1))Xω1···ωk(η)
)(
Xωk+1···ωi(η−1)

)
δ(λ;a∧b)(Xωi+1···ωr),

(492)
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b.5 free qcd euler-lagrange and sdyson equations

In the calculations below we have suppressed the color index to not overload
the notations1. We start by deriving the variations of the pure Yang-Mills
Lagrangian with respect to the derivatives of the gauge field.

∂LQCDfree

∂ (∂µAν) = ∂

∂ (∂µAν) [(∂µAν − ∂νAµ − ig [Aµ, Aν ])

(∂µAν − ∂νAµ − ig [Aµ, Aν ])]

This can be split up in three parts

∂

∂ (∂µAν) ((∂µAν) (∂µAν − ∂νAµ − ig [Aµ, Aν ])) (493)

∂

∂ (∂νAµ) ((−∂µAν) (∂µAν − ∂νAµ − ig [Aµ, Aν ])) (494)

∂

∂ (∂µAν) ((−ig [Aµ, Aν ]) (∂µAν − ∂νAµ − ig [Aµ, Aν ])) (495)

The first part (493) splits up again in two parts when applying the derivative,
the first part is equal to the field strength tensor with upper indices and
color index a : Fµν,a. The second part requires some playing around with the
indices:

(∂µAν) ∂

∂ (∂µAν) (∂µAν − ∂νAµ − ig [Aµ, Aν ]) =

(∂µAν) ∂

∂ (∂µAν) (gµrgνs (∂rAs − ∂sAr − ig [Ar, As])) =

(∂rAs) ∂

∂ (∂µAν) ((∂rAs − ∂sAr − ig [Ar, As]))
s↔ν=
r↔µ

∂µAν − ∂νAµ (496)

Note that the second term in Eq. (496) results from interchanging the role of
µ and ν when applying the derivative. For the second part we have as before

1 they will give rise to δ-function over the color indices
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that the first factor of (494) results again in a Fµν,a term, where the second
factor leads to

(−∂νAµ) ∂

∂ (∂µAν) (∂µAν − ∂νAµ − ig [Aµ, Aν ]) µ↔ν=

(−∂µAν) ∂

∂ (∂µAν) (gνrgµs (∂rAs − ∂sAr − ig [Ar, As])) =

(−∂sAr) ∂

∂ (∂µAν) ((∂rAs − ∂sAr − ig [Ar, As]))
s↔ν=
r↔µ

−∂νAµ − (−∂µAν) (497)

where we again interchanged the roles of µ and ν to get the second term.
Moving on to the third part of the derivative where now the first factor returns
a zero contribution and where we have for the second factor:

(−ig [Aµ, Aν ]) ∂

∂ (∂µAν) ((∂µAν − ∂νAµ − ig [Aµ, Aν ])) =

−ig [Aµ, Aν ] + ig [Aν , Aµ]
−ig [Aµ, Aν ]− ig [Aµ, Aν ] (498)

Now combining all the terms we get the final result (499) where we re-
introduced the color index.

∂LQCDfree

∂ (∂µAν) = −Fµν,a (499)

Now we also need the variation of the Lagrangian with respect the gauge
fields themselves. Since ∂µAν is considered to be independent of Aµ we can
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restrict the calculation to the terms of the free QCD Lagrangian that contain
terms in Aµ.

∂LQCDFree

∂Aµ
=

∂

∂Aµ
[(∂µAν) (−ig [Aµ, Aν ])− (∂νAµ) (−ig [Aµ, Aν ])

+ (∂µAν) (−ig [Aµ, Aν ])− (∂νAµ) (−ig [Aµ, Aν ])
+ (−ig [Aµ, Aν ]) (−ig [Aµ, Aν ])] =

(∂µAν) ∂

∂Aµ
(−ig [Aµ, Aν ])− (∂νAµ) ∂

∂Aµ
(−ig [Aµ, Aν ]) + s (500)

(∂µAν) ∂

∂Aµ
(−ig [Aµ, Aν ])− (∂νAµ) ∂

∂Aµ
(−ig [Aµ, Aν ])− (501)

g2
{

[Aµ, Aν ] ∂

∂Aµ
(AµAν)− [Aµ, Aν ] ∂

∂Aµ
(AνAµ) + (502)

(
∂

∂Aµ
(AµAν)

)
[Aµ, Aν ]−

(
∂

∂Aµ
(AνAµ)

)
[Aµ, Aν ]

}
(503)

Note that as before the contributions with the upper (Eq. (501) and (503))
and lower indices (Eq. (500) and (502)) switched will give the same contribu-
tion after introducing the metric tensor to raise/lower the indices, renaming
of some dummy indices and because:

∂

∂Aµ
(AµAν −AνAµ) [Aµ, Aν ] =

Aν [Aµ, Aν ]−Aν [Aν , Aµ] =
2Aν [Aµ, Aν ] =
2AνAµAν − 2AνAνAµ =
2AνAµAν − 2AµAνAν =
2AνAµAν − 2AµAνAν =
2 [Aµ, Aν ]Aν

(504)

Making the total contribution of Eq. (502) and Eq. (503):

−4g2 [Aµ, Aν ]Aν (505)
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For the other contributions we have:
∂

∂Aµ
((∂µAν) (−igAµAν + igAνAµ)) =

−ig (∂µAν) ∂

∂Aµ
(AµAν) + ig (∂µAν) ∂

∂Aµ
(AνAµ) =

−ig (∂µAν)Aν + ig (∂νAµ) ∂

∂Aµ
(AµAν) =

−ig (∂µAν)Aν + ig (∂νAµ)Aν (506)

− ∂

∂Aµ
((∂νAµ) (−igAµAν + igAνAµ)) =

−ig (∂µAν)Aν + ig (∂νAµ)Aν (507)

So that the total contribution becomes:

4ig ((∂νAµ)− (∂µAν) + ig [Aµ, Aν ])Aν =
4ig (−Fµν)Aν , (508)

taking the factor 1
4 into account this gives us igFµνAν . Now using the fact

that [
λi

2 ,
λj

2

]
= if ijk

λk

2

we can re-introduce the color [19] in Eq. (508)

igFµνAν → gf ijkFµν,kAjν (509)

The Euler-Lagrange equations for the free QCD Lagrangian then become

∂νF
µν,i + gf ijkFµν,kAjν = 0 (510)

And for the SD equations this becomes (where the equalities are weak2)

(
∂νF

µν,i + gf ijkFµν,kAjν

)
F [A] = Dab

ν F
µν,b(x)F [A] = ~

δ

δAaν(x)F [A]

(511)
where F [φ] is the functional as earlier in the derivation of the SD equations
and Dab

µ represents the covariant derivative in the adjoint representation.

2 They are only valid under taking averages.



420 detailed calculations

b.6 self-energy contribution wilson loop quadrilat-
eral on the light-cone

Here we calculate the first SE diagram from figure 57. For this diagram we
have that the coordinates x and y in the gluon propagator (349):

x = v1t, t ∈ [0, 1]
y = v1s, s ∈ [t, 1]. (512)

The total contribution of this diagram then can be written as:

WSE =
∫
dxµ

∫
dyνDµν(x− y)

=
∫
dxµ

∫
dyν

(µ2π)ε
4π2 Γ(1− ε)gµνδab

1
(−(x− y)2)1−ε

=
1∫

0

vµ1 dt

t∫

0

vν1ds
(µ2π)ε

4π2 Γ(1− ε)gµνδab
1

(−(v1(t− s))2)1−ε

= (v2
1)ε (µ

2π)ε
4π2 Γ(1− ε)

( 1
1− 2ε

) 1
2ε(−1)ε

DR= 0, (513)

showing that in the Feynman gauge, with dimensional regularization, these
contributions vanish.

b.7 cusp contribution wilson loop quadrilateral on
the light-cone

Here we calculate the first cusp (CU) diagram from figure 57. For this diagram
we have that the coordinates x and y in the gluon propagator (349):

x = v1t, t ∈ [0, 1]
y = v1 + v2s, s ∈ [0, 1]. (514)
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The total contribution of this diagram then can be written as:

WCU =
∫
dxµ

∫
dyνDµν(x− y)

=
∫
dxµ

∫
dyν

(µ2π)ε
4π2 Γ(1− ε)gµνδab

1
(−(x− y)2)1−ε

=
1∫

0

vµ1 dt

1∫

0

vν2ds
(µ2π)ε

4π2 Γ(1− ε)gµνδab
1

(−(v1(t− 1)− v2s)2)1−ε

=
1∫

0

vµ1 dt

1∫

0

vν2ds
(µ2π)ε

4π2 Γ(1− ε)gµνδab
1

(2v1v2s(t− 1))2)1−ε

= (µ2π)ε
4π2 Γ(1− ε)

(
−1

2S
ε 1
ε2

)
(515)

showing that in the Feynman gauge, with dimensional regularization, has a
double pole stemming from the overlap of a light cone divergence with a UV
divergence.

b.8 wilson loop : polylog integral

This Section reviews some aspects of the Polylog functions followed by the
calculations of a specific integral that we encounter during the calculations
of the vacuum expectation value of a light like quadrilateral Wilson loop.

b.8.1 Summary of the Polylog function

b.8.1.1 Property 1

Li2 [z] = −
∫ z

0

dt

t
ln [1− t] (516)

= −
∫ 1

0

dt

t
ln [1− zt] (517)

b.8.1.2 Property 2

Li2 [z] = −Li2 [1− z]− ln [z] ln [1− z] + π2

6 (518)
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b.8.1.3 Property 3

Li2 [0] = 0 (519)

b.8.1.4 Property 4

Li2 [1] = ζ2 = π6

6 (520)

b.8.1.5 Property 5

Li2 [1 + z] + Li2

[
1 + 1

z

]
= −1

2 ln2 [−z] (521)

b.8.1.6 Property 6
∫ 1

0

lnn [y]
y − 1

z

dy = (−1)n+1 n!Lin+1 (z) (522)

b.8.2 Calculation of the integral

The integral we want to calculate is given by:
∫ 1

0

dxdy (s+ t)
tx+ sy − (s+ t)xy =

−
∫ 1

0
dx

1
x− s

s+t

(
ln
[
s

t

]
+ ln

[1− x
x

])
=

−
∫ 1

0
dx

1
x− s

s+t

(
ln
[
s

t

])
−
∫ 1

0
dx

1
x− s

s+t
(ln [1− x]) +

∫ 1

0
dx

1
x− s

s+t
(ln [x]) =

−
(

ln
[
s

t

](
ln
[

t

s+ t

]
− ln

[
− s

s+ t

]))
−
∫ 1

0
dx

1
x− s

s+t
(ln [1− x]) +

∫ 1

0
dx

1
x− s

s+t
(ln [x])

Now calculating the first remaining integral:

−
∫ 1

0
dx

1
x− s

s+t
(ln [1− x]) =

∫ 1

0
dx

1
1− x+ s

s+t − s+t
s+t

(ln [1− x])

=
∫ 1

0
dx

1
1− x+ s

s+t − s+t
s+t

(ln [1− x])

= −
∫ 0

1
d (1− x) 1

(1− x)− t
s+t

(ln [1− x])

=
∫ 1

0
d (1− x) 1

(1− x)− t
s+t

(ln [1− x])
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Using Eq. (522)

−
∫ 1

0
dx

1
x− s

s+t
(ln [1− x]) = Li2

[
1
t
s+t

]

= Li2

[
s+ t

t

]

= Li2

[
1 + s

t

]

Taking on the second remaining integral:
∫ 1

0
dx

1
x− s

s+t
(ln [x]) = Li2

[
s+ t

s

]

= Li2

[
1 + 1

s
t

]

Combining now the results for these integrals we have:

−
∫ 1

0
dx

1
x− s

s+t
(ln [1− x]) +

∫ 1

0
dx

1
x− s

s+t
(ln [x]) = Li2

[
1 + s

t

]
+ Li2

[
1 + 1

s
t

]

= −1
2 ln2

[
−s
t

]

Taking now a second look at the terms without the integrals:

−
(

ln
[
s

t

](
ln
[

t

s+ t

]
− ln

[
− s

s+ t

]))
= −

(
ln
[
s

t

](
ln
[

t

s+ t

]
− ln

[
exp [ıπ] s

s+ t

]))

= −
(

ln
[
s

t

](
ln
[

t

s+ t

]
− ln

[
s

s+ t

]
− ln [exp [ıπ]]

))

= ln
[
s

t

](
− ln

[
t

s+ t

]
+ ln

[
s

s+ t

]
+ ln [exp [ıπ]]

)

= ln
[
s

t

](
ln
[
s

t

]
+ ıπ

)

= ln2
[
s

t

]
+ ıπ ln

[
s

t

]
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Combining this with the result of the calculations with the integrals
∫ 1

0

dxdy (s+ t)
tx+ sy − (s+ t)xy = ln2

[
s

t

]
+ ıπ ln

[
s

t

]
− 1

2 ln2
[
−s
t

]

= ln2
[
s

t

]
+ ıπ ln

[
s

t

]
− 1

2 ln2
[
exp [ıπ] s

t

]

= ln2
[
s

t

]
+ ıπ ln

[
s

t

]
− 1

2

(
ln
[
exp [ıπ] s

t

])2

= ln2
[
s

t

]
+ ıπ ln

[
s

t

]
− 1

2

(
ıπ + ln

[
s

t

])2

= ln2
[
s

t

]
+ ıπ ln

[
s

t

]
− 1

2

(
−π2 + 2ıπ ln

[
s

t

]
+ ln2

[
s

t

])

= π2

2 + 1
2 ln2

[
s

t

]

= 1
2

(
π2 + ln2

[
s

t

])

b.8.3 Summary

The trick for solving this integral lies in the rewriting of a −1 factor in a
logarithm as:

ln [−a] = ln [exp [ıπ] a]
= ln [a] + ln [exp [ıπ]]
= ln [a] + ıπ

This trick enabled us to calculate the integral and express it in a simple form,
making the squared logarithmic dependence clear.

b.9 cross diagram contribution wilson loop

Here we calculate a crossed (CR) diagram from the last row of figure 57. For
this diagram we have that the coordinates x and y in the gluon propagator
Eq. (349):

x = v1t, t ∈ [0, 1]
y = v1 + v2 + v3s, s ∈ [0, 1]. (523)
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The total contribution of this diagram then can be written as:

WCR =
∫
dxµ

∫
dyνDµν(x− y) =

∫
dxµ

∫
dyν

(µ2π)ε
4π2 Γ(1− ε)gµνδab

1
(−(x− y)2)1−ε =

1∫

0

vµ1 dt

1∫

0

vν3ds
(µ2π)ε

4π2 Γ(1− ε)gµνδab
1

(−(v1(t− 1)− v2s)2)1−ε =

1∫

0

vµ1 dt

1∫

0

vν3ds
(µ2π)ε

4π2 Γ(1− ε)gµνδab

× 1
(2(−v1v2(t− 1) + v2v3s− v1v3s(t− 1)))2)1−ε =

(µ2π)ε
4π2 Γ(1− ε)1

2

(
ln
(
−s
t

)2
+ π2

)
(524)

showing that in the Feynman gauge, with dimensional regularization, this
contribution is finite.
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