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SAMENVATTING

De theorie van de sterke kernkracht, kwantum chromodynamica (QCD), is niet
zo grondig begrepen als we zouden willen, ook al lijkt dit op het eerste zicht
misschien wel het geval. Voor een correcte interpretatie van moderne experi-
menten in de zoektocht naar nieuwe fysica, is een diepgaand inzicht in QCD
noodzakelijk, omdat het het onderliggende mechanisme is van hadronbotsingen
die de basis vormen van deze experimenten. Elke berekening in QCD kan ruw-
weg in twee delen opgesplitst worden: een perturbatief deel dat met behulp van
standaard veldentheorie berekend kan worden, en een deel dat volledig vervat
zit in zogenaamde parton dichtheidsfuncties (PDFs). Deze objecten kunnen niet
berekend worden, maar wel afgeschat (door ze te discretiseren op een rooster)
of gemodelleerd (en gematched met data). Maar bovenal is het mogelijk om
exacte evolutievergelijkingen af te leiden die ons toe staan gemodelleerde data
te extrapoleren van de ene energieschaal naar de andere.
Er bestaan verschillende methodes om het gedrag van PDFs te beschrijven.

Eén van deze is de small-x methode, die vooral probeert om voorspellingen in
diep inelastische verstrooiingsexperimenten te maken die ook geldig blijven bij
hoge energieën en dichtheden. Daarom ligt zijn grootste toepassingsgebied in
nucleaire en zware-ionen fysica. We wijden één hoofdstuk aan een introductie
van dezemethode. Een andere aanpak is het transversale impulsdichtheid (TMD)
formalisme, dat een volledig driedimensionele kijk op de inhoud van het proton
probeert te geven. Dit formalisme haalt nieuwe informatie uit semi-inclusieve
experimenten door extra deeltjes in de eindtoestand waar te nemen. Deze thesis
speelt zich vooral in dit formalisme af, en hoewel het niet zozeer TMDs zelf
behandelt is het volledig opgebouwd rond één van de belangrijkste bestanddelen
van TMDs, namelijk Wilson lijnen.
Wilson lijnen zijn opvallende wiskundige objecten. Als pad-geordende expo-

nenten van de ijkvelden bevatten ze alle kinematische en dynamische informatie
van de ijktheorie. Ze vervangen coördinaten door pad afhankelijkheid, en geven
zo een meetkundige beschrijving van QCD. Ze zijn bovendien onmisbaar in
een ijkinvariante de�nitie van bilokale operatoren, en dus ook in een conse-
quente beschrijving van elke ijktheorie. Zolang er geen externe velden zijn zal
een Wilson lijn altijd een lineair pad volgen tot ze plots in een andere richting
wordt gestuurd door een kortstondige externe impuls. In deze thesis stellen we
een nieuwe methode voor om stuksgewijs lineaire Wilson lijnen op een eenvou-
dige manier te berekenen. Deze methode hee reeds veelbelovende resultaten
en een hele reeks toepassingen. Een bijzonder type Wilson lijnen zijn Wilson
lussen, gede�nieerd op een gesloten pad. Ze kunnen gebruikt worden als basis
elementen om ijktheorie te beschrijven zonder coördinaten of velden, waar alle
dynamica door hun meetkundige evolutie gestuurd wordt. Hierop verder bou-
wend onderzoeken we het meetkundig gedrag van TMDs, wat tot eenvoudigere
evolutievergelijkingen zal leiden, en ons dus een stap dichter brengt bij een
volledig inzicht in QCD.
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ABSTRACT

Although at �rst sight maybe not so obvious to the unaccustomed eye, the
quantum �eld theory of the strong force, quantum chromodynamics or QCD
for short, is not as thoroughly understood as we would like it to be. A deep
understanding is imperative to properly interpret modern experimental searches
for new physics, as QCD is the theory that underlies the hadronic collisions
that drive the experiment. Roughly speaking, every QCD calculation consists of
two parts, a perturbative part, calculable by standard non-Abelian �eld theory
methods, and a non-perturbative part, described by parton density functions
(PDFs). ¿ese non-perturbative objects are not calculable, but can be estimated
(on a lattice) or modelled (and �tted to data). But more importantly, it is possible
to derive exact evolution equations. For a PDF that is �tted to data at a given
scale, these can be used to predict it at any scale.
¿ere exist several frameworks to investigate the behaviour of PDFs. One

of these is the small-x approach, which mainly aims at maintaining correct
predictions in deep inelastic scattering (DIS) even at high energies and high
densities. For this reason, its main applications lie in nuclear and heavy ion
physics. We devote one chapter to an introduction to small-x physics. Another
popular framework is the transverse momentum density (TMD) formalism,
which tries to give a complete 3-dimensional description of the contents of
the proton. Instead of limiting itself to deep inelastic scattering, it will acquire
information on the structure of the proton by observing particles in the �nal
state, using semi-inclusive experiments. ¿is thesis is mainly situated in this
formalism, and although it won’t deal much with TMDs themselves, it is centred
around one of its key ingredients, namely Wilson lines.
Wilson lines are curious mathematical objects. Path-ordered exponentials of

the gauge �elds, they contain all kinematical and dynamical information of the
gauge sector. ¿ey replace coordinate dependence with path dependence, and
allow as such for a geometrical approach to QCD. ¿ey are indispensable for
a gauge invariant description of bilocal operators, and hence for a consistent
de�nition of any gauge theory. In the absence of external �elds, all Wilson lines
will be piecewise linear, that is, linear until abruptly forced in another direction
by instantaneous external in�uences. Being the main topic of this thesis, we
will demonstrate a new approach to simplify calculations with piecewise linear
Wilson lines, that has promising results and a whole spectrum of applications.
A special class of Wilson lines are closed lines, or Wilson loops. ¿ey can

be used as basic objects to fully describe gauge theory without coordinates
nor �elds. Dynamics are governed by their geometrical evolution, and inspired
by this we investigate the geometrical behaviour of TMDs. ¿is will lead to
evolution equations that are easier to handle, bringing us one step closer to a
full understanding of QCD.
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φασὶ γὰρ ἐῖναι τὰ πρῶτα µεγέθη πλήθει µὲν ἄπειρα, µεγέθει δὲ
ἀδιαίρετα, καὶ οὔτ΄ ἐξ ἑνὸς πολλὰ γίγνεσθαι οὔτε ἐκ πολλῶν ἕν,

ἀλλὰ τῇ τούτων συµπλοκῇ καὶ περιπλέξει πάντα γεννᾶσθαι.

¿e ultimate units of matter are in�nite in number, are indivisible
and cannot be merged, but all things are formed by their plaiting.

— ∆ηµόϰριτος, as cited by Arist. de caelo III 4.303a5; 67A15.

FOREWORD

As far as written history knows, Democritos was the �rst philosopher to postulate
the idea that everything that exists—all matter—is built from extremely small
entities that are ἄτοµος—atomos, ‘indivisible’. In a time where the concept of a
‘particle’ is non-existent, where matter is always conceived as either solid (earth),
liquid (water), gaseous (air) or plasma (�re) without the addition of any internal
structure, making such a postulate is not only a bold leap forward, but it also
testi�es of great intuition for physics and life, for it has taken more than two
millennia to prove him right.
Far more important is the implication it had on (meta)physics, as now the

quest of understanding the universe became the quest for the smallest, the search
for elementary particles. Many, many years later, this quest was toughened by
the additional search a er the true nature of light (and forces in general), the
scienti�c community being divided into a group of particle-believers (led by
Newton) and a group of wave-believers (led by Huygens). Along came quantum
mechanics, demonstrating that forces are particles as well, but just behaving as a
wave. Everybody happy, end of story.
Not exactly, because something fundamentally had changed since Democritos’

postulate. Something so deeply rooted in physics that today we take it for granted.
It is the quest to understand every fundamental gear that makes the universe
tick, to understand the elementary forces and the elementary particles they do
bind and in�uence. Not to be satis�ed, unless we understand every tiny piece
of the elementary workings of the universe (which in my humble opinion is a
dream that is asymptotically free), always smaller and smaller. For this reason a
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large part of the modern day physics community will remain to be devoted to
elementary particles and their forces.
¿is thesis is no exception to that rule. It is a product made to contribute

in the search to solve one of elementary particle physics’ main issues that is
not fully understood, namely the behaviour of the strong force. On paper, we
elementary particle physicists have it all �gured out.¹We have deciphered the
underlying theory for the afore mentioned force, viz. the so-called ‘theory of
colour’ or quantum chromodynamics (QCD). But we cannot wield it. Because
this theory—which we know has to be the correct one—is of such calibre that
it tends to blow itself up. It works as long as we don’t focus on the contents of
hadrons (non-elementary particles like a proton). But that’s where the core of
the problem lies. ¿anks to Democritos’ legacy, we want to delve into it, deeper
and deeper, smaller and smaller. We want to take a proton and—because we
know it isn’t elementary—break it open to investigate its contents. And that’s
where QCD starts complicating things—the more we zoom in to smaller and
smaller scales, the more substructures we will �nd, until suddenly we �nd more
particles than can reasonably �t inside one proton. Did our theory break? No,
we just cannot wield it.
¿at is, we cannot blindly wield it. But we can manage it. For starters, we

separate out the well-understood hard scattering from the interesting hadron
contents. ¿is is the core principle of modern QCD and is known as factorisation,
and it has a strong mathematical background supporting it. A large fraction of
the present day scienti�c QCD community is devoted to �nding an accurate de-
scription of the 3-dimensional hadron content, be it in coordinate space (known
as the GPD framework) or momentum space (known as the TMD framework).
¿is thesis is part of the latter framework, be it on a more technical note. It
is a dissertation on the topic ofWilson lines, which are paramount to de�ne
gauge-invariant TMDs, objects that will be used to describe the contents of a
hadron. ¿e usability of Wilson lines is however not limited to the investigation
of the contents of the hadron. In the small-x formalism for instance—which
is a formalism where one investigates QCD by zooming in and zooming in, it
hence naturally adds a saturation mechanism to avoid the above scenario of an
‘overfull’ proton—Wilson lines emerge as a resummation of all gauge interactions
on a given particle. Hence the investigation and simpli�cation of Wilson line
calculations is bound to be bene�cial for a lot of people.

1 If we may just ignore gravity, which is so weak compared to the other three forces that we can
put it to zero anyway (for all practical calculations at the subatomic scale).
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outline of the thesis

I realise that this thesis is quite extensive, but this is mainly due to the fact that I
tried to make it into a reference work as well. Having struggled myself trying to
get acquainted with QCD and TMDs (coming from a Supergravity background),
I hope that this thesis can serve future students as a helpful entry work.
¿e thesis is roughly divided into 3 parts. Part i is a basic introduction to

QFT in general and QCD in particular. I start with an enumeration of possible
symmetries in QFTs in Chapter 1, describing di�erent terms in the Lagrangian
and exploring Noether’s theorems. In Chapter 2 I construct a general su(n)
gauge theory purely from geometrical arguments. ¿is is not new research, but
not so easily found in existing literature. It is also a natural �rst introduction
to both Wilson lines and Wilson loops, as they are the geometrical objects that
bring the gauge �eld into play. Chapter 3 is a detailed chapter that introduces
quantisation using path integrals. It is an almost insurmountable task to quantise
Wilson lines using canonical quantisation because the time ordering coming
from the quantisation may interfere with the path ordering from theWilson line.
Quantisation with path integrals avoids this problem. Chapter 4 is a continuation
on the quantisation procedure, as it shows some typical quantum e�ects which
we will need in later chapters, like the anomalous mass dimension and the �nal-
state cut. In the last chapter of this part, Chapter 5, I give a brief introduction on
how factorisation emerges in QCD using the most common experimental setup
to introduce it (namely DIS).
Part ii is what I would call the core of this thesis, and it contains the latest

of my research. In Chapter 6 I reintroduce Wilson lines in a more formal way,
and derive Feynman rules that are as general as possible. ¿e description of
the �nite and in�nite Wilson lines in Section 6.3 is as far as I know unique,
in that sense that it has never been done before with the same mathematical
rigorousity. ¿e Sections 6.2, 6.4 and 6.5 form the basis for a new methodology
to calculate piecewise linear Wilson lines (the most common type) in an easier
way. ¿is was the main topic of my research in the last year, and has lead to a
few papers [4, 6, 12]. ¿ese �rst results provide a �rm basic and will be extended
and developed further in my current and planned work. Section 6.6 describes
the eikonal approximation which is a common tool to approximate all gauge
interactions on a quark. Chapter 7 is a collection of tools to simplify calculations
with Wilson lines—like a direct, non-recursive calculation of colour traces in
Section 7.1 [5]—and some �rst results of the new methodology. ¿e full chapter
is new research, and although the results in Section 7.4 are already known, the
methodology used to calculate them is not and might lead to new insights. ¿e
two chapters that follow are both frameworks in QCD that rely on Wilson lines.
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¿e TMD framework is introduced at a basic level inChapter 8. I �rst reviewDIS in
a more formal way, giving an operator de�nition for the PDF, using Wilson lines
to make it gauge invariant. Next we apply the same principle to SIDIS, leading to
operator de�nitions for TMDs. In the last section I brie�y review the evolution
of TMDs, as I will come back to it when investigating the geometrical evolution
of Wilson loops in Chapter 11. ¿e last chapter in this part is Chapter 9, where
the small-x framework is reviewed. ¿is framework describes the behaviour
of QCD in the limit of a small longitudinal momentum fraction. ¿is chapter
includes in Section 9.3 a small research project which I did together with Dr.
Krzysztof Kutak in the �rst three months of my Ph.D. It is the calculation of the
transversal energy �ow in a saturation framework.
Part iii is all about Wilson loops and their geometric evolution, which are

results from a collaboration with Dr. Igor Cherednikov, TomMertens and Pieter
Taels [2, 3, 7–11]. In Chapter 10 I review howWilson loops can be used as basic
building bricks to recast QCD in loop space. I start with an introduction on col-
our diagrams—which are useful in any QCD calculation—and investigate these
diagrams in the large-Nc limit, which naturally leads to the emergence of Wilson
loops. In the second part of this chapter, I review the necessary procedures in
order to renormalise Wilson loops. ¿is is a section of high relevance, as the
singularity structure of Wilson lines—and hence of e.g. TMDs—is completely
analogous to that of Wilson loops. I have put some special attention on light-like
segments, as the latter are most relevant both for TMDs and the geometric evol-
ution of loops. And last, in Chapter 11, I present our results on the geometric
behaviour of Wilson loops. I start with a motivation based on a duality between
super Yang-Mills and loop space, and continue with the investigation of rect-
angular light-like loops. ¿is eventually leads to our conjecture of a geometric
evolution equation, which is motivated to be valid at all orders. ¿e chapter
ends with an application of the geometric evolution on TMDs. ¿is research
has since been continued by TomMertens and Igor Cherednikov with a larger
focus on the mathematical preliminaries of loop space, further strengthening
the conjecture [16, 17].
¿is thesis is concluded with two appendices that contain a lot of reference

formulae, and are meant both as a support for the calculations in this thesis, and
as a general reference.

—Frederik Van der Veken, December 2014.
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Part I

INTRODUCTION TO QFT AND QCD



1
SYMMETRIES IN QUANTUM FIELD THEORIES

Before we tackle more advanced concepts and delve into the core of this thesis,
we need to review some basic knowledge of quantum �eld theories (QFTs) and
QCD, which is what the following �ve chapters are devoted to. Our approach will
be a bit di�erent from the common way to do this, because we like to stress the
naturalness and elegance of a QFT. In this chapter, we almost purely deal with the
�eld aspect of QFTs, treating them as classical �elds and keeping quantisation for
Chapter 3. ¿e main topic of interest is Noether’s theorem, which describes the
deep relation between the symmetries of a theory and its conserved quantities.
Assuming that the reader already is acquainted with quantum �eld theories

to a basic level, we will try to avoid too much details and sketch the main lines
instead. ¿ere are many excellent introductory books to this subject, see e.g.
[18–22] for a more profound treatment.

1.1 classical field theory

Let us start by constructing the essential tools to work with QFTs. While in
quantum mechanics (QM) everything was built around the Hamiltonian, and
basic physical quantities were represented by 3-vectors, in QFT the basic object
will be the Lagrangian and physical quantities will be represented in a Lorentz-
covariant way, by 4-vectors.
¿e fundamental variables in QFT are �elds, de�ned in function of spactime

coordinates xµ. A er quantisation, excitations of these �elds will be identi�ed
as particles (see Chapter 3). A �eld is a function in a Hilbert space that is quad-
ratically integrable, i.e. for two �elds ϕa and ϕb, the integral

+∞
∫−∞d

4x ϕ∗b(x)ϕa(x)

2
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has to be �nite. ¿e most important practical consequence is that any �eld has
to vanish at ±∞ in each of its coordinates.¹
We consider a system that is fully described by a set of n �elds {ϕi}. We don’t

specify the nature of the �elds, they can be of any form including scalar, spinor or
vector �elds.Non-scalar �elds can be expressed in function of their components—
scalar quantities on their own—so that the full system only contains scalar �elds
or scalar �eld components (e.g. two vector �elds form a set of 8 �eld components).
Any obtained results will hence be applicable to spinor and vector �elds as well.
¿e cornerstone in any �eld theory is the action S, the time integral of the

Lagrangian L. To represent the latter in a Lorentz-covariant way, we de�ne the
Lagrangian density L as the spatial extension of the Lagrangian, depending
on the set of �elds {ϕi}, their derivatives {∂µϕi}, and possibly directly on the
spacetime coordinates xµ:

L(t) = ∫d3x L(x , ϕi , ∂µϕi) . (1.1)

¿e action is simply the integral of the Lagrangian density over the position
four-vector:

S = ∫d4x L(x , ϕi , ∂µϕi) . (1.2)

Since for the remainder of this thesis we will only work with the Lagrangian
density, we will simply refer to it as the Lagrangian.

Equations of Motion

What really characterises a Lagrangian, is its behaviour—or more generally the
action’s behaviour—under speci�c transformations, be it transformations acting
on the coordinates, or transformations acting on the �elds. ¿e Newtonian
principle of least action states that, for a transition between two states, nature will
always select the path that minimises the action. Transformations leaving the
action invariant, commonly called symmetries, are hence favoured. Translated
to �elds, the least action principle tells us that the requirement of invariance

1 It is possible to relax this requirement by a proper modi�cation of the theory. In fact, e.g. in axial
gauges (like the light-cone gauge) it is impossible to let the �eld vanish at both boundaries in x0.
¿e technicalities of this adaptation are beyond the scope of this thesis, and whenever working
in axial gauges, we will treat the �elds as well-behaving.
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of the action will lead to a set of equations describing the motion of the �elds.
Mathematically, this invariance is expressed as

δS = S′ − S ≡ 0 . (1.3)

¿e variation of the action is of course fully determined by the variation of the
Lagrangian, but we cannot simply integrate over δL,

δS ≠ ∫d4x δL ,
because the integration measure d4x and the integration region Ω transform as
well:

δS = ∫
Ω′
d4x′ L (x′µ , ϕ′i(x′), ∂µϕ′i(x′))− ∫

Ω

d4x L (xµ , ϕi(x), ∂µϕi(x)) .
Because in the �rst integral x′ is just a dummy variable, we can rename it x:

δS = ∫
Ω′
d4x L (xµ , ϕ′i(x), ∂µϕ′i(x)) − ∫

Ω

d4x L (xµ , ϕi(x), ∂µϕi(x)) ,
but the integration regions remain di�erent. It can be shown (see e.g. [23]) that
up to �rst order:

∫
Ω+δΩ

d4x L(x) = ∫
Ω

d4x ∂µ (δxµL) ,
such that we can write

δS = ∫
Ω

d4x [L (xµ , ϕ′i(x), ∂µϕ′i(x))−L (xµ , ϕi(x), ∂µϕi(x))+∂µ (δxµL) ] .
Note that the di�erence between the two Lagrangians acts only on the form of
the �elds, not on their arguments. Ignoring for a moment the last term, we can
thus write

δL = ∂L
∂ϕi

∆ϕi + ∂L
∂∂µϕi

∂µ∆ϕi ,

where the transformation only acts on the �eld structure itself, not on x:

∆ϕi(x) = ϕ′(x) − ϕ(x) . (1.4)
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¿ere is a small subtlety here. If we would literally follow the variational chain
rule, the second term of δL would be linear in ∆∂µϕi . ¿is is not the same as
what we wrote, because the variation operator acts on the derivative as well, i.e.
∆∂µϕi = ∂µ∆ϕi+ corrections. However, we restrict ourselves to transformations
of the �eld ϕi , avoiding transformations that would act on the derivative �eld
separately. Every transformation of the form

ϕi(x)→ ϕ′i(x) = ϕi(x) + ∆ϕi(x) ,
will induce a variation in the derivative �eld literally of the form ∂µ∆ϕi , hence
we can drop the correction terms. See e.g. [23–25] for a mathematical proof of
this statement. ¿e variation of the action now simpli�es into

δS = ∫
Ω

d4x [ ∂L
∂ϕi

∆ϕi + ∂L
∂∂µϕi

∂µ∆ϕi + ∂µ (L δxµ) ]
Using Leibniz’ rule, we can collect terms linear in ∆ϕi , and write what remains
as a divergence of some quantity J µ. We will collect the transformation of the
integration region in δL :

δL = ( ∂L
∂ϕi

− ∂µ ∂L
∂∂µϕi

)∆ϕi + ∂µ J µ . (1.5)

J µ is the so-called Noether current:²

J µ = ∂L
∂∂µϕi

∆ϕi +L δxµ , (1.6)

named a er Emmy Noether. We will see in Section 1.2 that it is a key concept
when exploring the e�ect of the action’s symmetries. By absorbing the trans-
formation of the integral into δL, we can now simply integrate over it:

δS = ∫d4x δL ,
= ∫d4x [ ( ∂L

∂ϕi
− ∂µ ∂L

∂∂µϕi
)∆ϕi + ∂µ J µ] ,

= ∫d4x ( ∂L
∂ϕi

− ∂µ ∂L
∂∂µϕi

)∆ϕi . (1.7)

2 See e.g. [25].
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where we were allowed to drop the term ∂µ J µ because all �elds in the Lag-
rangian are supposed to be well-behaving, and thus have to vanish at ±∞. Equa-
tion 1.7 holds for arbitrary ∆ϕi , implying that the integrand must be zero if we
want to satisfy the condition δS ≡ 0. ¿is gives rise to the famous classical
Euler-Lagrange equations of motion (ELEMs):

Euler-Lagrange Equations of Motion

∂µ ( ∂L
∂∂µϕi

) ≡ ∂L
∂ϕi

, (1.8)

which will be of great use when dealing with speci�c types of �elds.

Characteristics of the Lagrangian

In any Lagrangian, we can classify the possible terms that it contains into three
categories. ¿ese are kinetic terms, mass terms, and interaction terms. ¿e
�rst two are terms that are quadratic in the �elds, while the latter can be any
combination of �elds.
Kinetic and mass terms describe the behaviour of the �eld when free of

interaction with other �elds. Kinetic terms are built from two �elds of the same
type and describe the dynamics of this �eld. A er quantisation, they will give
rise to the propagator, which is the amplitude of the �eld to go from one state to
another. ¿e dynamical structure of the kinetic terms requires the presence of
�eld derivatives. On the other hand, mass terms are built from two �elds of the
same type as well, but describe the statics of this �eld. A er quantisation, they
will give rise to a constant factor in the propagator, viz. the mass. One could
interpret the mass as the constant of proportionality at which the �eld struggles
with itself when moving.³
It should be noted that the requirement of quadratic terms to be of the same

type can be relaxed, i.e. it is possible for so-called mixing to occur. Mixing of
kinetic terms would imply one type of �eld to dynamically create its propagation
by the aid of another type of �eld. ¿is would mean that the �rst �eld would
dynamically transform in the second while propagating. Example theories where
kinetic mixing is allowed include most supersymmetric and supergravity theor-

3 Recently, evidence from the LHC at CERN has proven the existence of a new kind of particle, the
Brout-Englert-Higgs particle. ¿is is a scalar �eld excitation, and as such can acquire a non-zero
vacuum expectation value (v.e.v.). By interacting with other �elds it passes this v.e.v. as a mass
term. So in the Standard Model (SM), any mass term isn’t interpreted as a struggle of a �eld with
itself, but as a struggle of a �eld with the Higgs �eld.
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ies, where the �elds inside the kinetic terms aremultipliedwith a so-calledKähler
metric tensor. To some extent, the recently discovered neutrino oscillation at
OPERA could also be interpreted as a mixing of kinetic terms.4
A mixing of mass terms is more common, as it simply implies that mass

eigenstates and �avour eigenstates don’t coincide. A er orthogonalisation, it
is possible to recover mass terms that are expressed diagonally in the �elds.
However, this immediately implies that interaction terms are no longer diagonal
in �avour, i.e. the process under consideration won’t conserve �avour. ¿e
paramount example is that of quarks in the weak interaction, where interactions
between di�erent quarks can mix with proportionality factors given by the CKM
matrix.
¿e last possible type of terms in the Lagrangian, interaction terms, are built

from at least three �elds that can, but don’t have to, be of the same type. Terms
built from a single �eld aren’t allowed in the Lagrangian (unless for real scalar
�elds). If our theory has to be renormalisable (see Section 4.1), a maximum of
four bosonic �elds, or two fermionic �elds and one bosonic �eld is imposed,
by arguments of Mass Dimension analysis (see 96). Interaction terms tell us
how the di�erent �elds couple to each other by giving the correct constant of
proportionality. If no interaction terms between two �elds are present, they
simply don’t interact with each other (as is the case with e.g. leptons and gluons).
It is not a necessary condition for a �eld to have quadratic terms in the Lag-

rangian. But any �eld that lacks these, automatically lacks a dynamic description.
Such a �eld is thus necessarily an external �eld, for which the dynamics are
de�ned outside of the system under consideration.5 As we will deal in this thesis
exclusively with Lagrangians describing systems at a global scale, we won’t treat
external �elds.

4 But for small distances, the mixing parameters are extremely small as compared to the non-
mixing parameters, making the mixing undetectable at standard collision experiments. For
this reason, one prefers to write down the neutrino Lagrangian without mixed kinetic terms,
preferring to interpret the oscillation as a mixed long-distance evolution of quantum states. Also,
the quantisation procedure puts the constraint that mixing can only occur for neutrinos that are
not massless. ¿is constrained can be relaxed in e.g. supersymmetric theories.

5 It is technically possible that a �eld has only mass terms without dynamics. Such a �eld is called
an auxiliary �eld, and is unphysical, as it can be removed from the Lagrangian by �lling in its
ELEMs (Equation 1.8). ¿is will lead to extra mass or interaction terms for the other �elds.
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Scalar Fields

Let us now investigate an example of possible �eld terms in the Lagrangian. We
start with a real scalar �eld, which has no components and thus no substructure.
From classical mechanics, it is known to have the Lagrangian

Lscalar0 = 1
2
∂µϕ ∂µϕ − 1

2
m2ϕ2 . (1.9)

We can interpret the �rst term as the energy cost of moving the �eld in spacetime,
and the second term as the energy cost for the �eld simply to exist. Using the
ELEMs that we derived in Equation 1.8, we construct the so-called Klein-Gordon
equations:

(◻ +m2) ϕ ≡ 0 (1.10)

¿e square is a commonnotation to denote the fully contracted second derivative,
i.e. ◻ = ∂µ∂µ. Note that scaling both the kinetic and the mass terms in the
Lagrangian with the same factor won’t change the Klein-Gordon equation. ¿e
factor 1/2 is chosen to be consistent with common literature.6 In the case of a
complex scalar �eld, the Lagrangian is normally expressed without this factor in
front:7

Lscalar0 = ∂µϕ ∂µϕ∗ −m2 ∣ϕ∣2 . (1.11)

As a complex �eld, it exists of two independent �elds, namely its real and ima-
ginary parts, but most of the time we prefer to express it in function of the �eld
and its complex conjugate. Now there are two Klein-Gordon equations, one for
each �eld:

(◻ +m2) ϕ ≡ 0 (1.12a)
(◻ +m2) ϕ∗ ≡ 0 (1.12b)

¿e Lagrangian Lscalar0 describes the free �eld,8 without interactions. We can add
for instance a four-�eld interaction term as follows (going back to a real scalar
�eld):

Lscalar = 1
2
∂µϕ ∂µϕ − 1

2
m2ϕ2 − 1

4!
λϕ4 . (1.13)

6 It is commonly chosen to be 1/2 in order to have a propagator without coe�cients in front.
7 For the same reason as above.
8 We will always use the label 0 to indicate a free �eld theory.
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¿en the Klein-Gordon equation is no longer homogeneous, but gains a source
term:

(◻ +m2) ϕ ≡ − 1
3!
λ ϕ3 . (1.14)

¿e important observation is that the free �elds, obeying Equation 1.10, can
be expanded as a Fourier series and quantised accordingly (in the canonical
quantisation framework), or can be evaluated as Gaussian path integrals (in the
path integral framework). ¿is is not possible for the interacting �elds, obeying
Equation 1.14. Instead one has to separate out the interaction part from the
Lagrangian, quantise the free �eld, and treat the interaction as perturbations on
the free �eld. See Chapter 3 for more details.

Vector Fields

Another example to investigate is the Lagrangian for vector �elds. A vector �eld
will commonly be associated with a force �eld, like the electromagnetic force, as
we will discover later on. Both a scalar �eld and a vector �eld represent particles
with integer spin, i.e. they are bosonic �elds. We therefore expect the Lagrangian
of a vector �eld to be of the same form of the one of a scalar �eld. For a real
vector �eld Aµ, we naively write

Lvector0
?= 1
2
∂µAν∂µAν − 1

2
m2AµAµ ,

where we also contracted the ν index on the �eld in the kinetic term, because
the Lagrangian has to be a scalar, and hence cannot have any open indices le .
But there is another contraction possible, namely doing

∂µAν∂νAµ .

We add this term to the Lagrangian with the same factor in front, but with an
opposite sign

Lvector0
?= 1
2
∂µAν∂µAν − 1

2
∂µAν∂νAµ − 1

2
m2AµAµ .

¿e reason for the opposite sign is to be in accordance with classical electro-
dynamics, where the electromagnetic �eld tensor is de�ned as

Fµν = ∂µAν − ∂νAµ . (1.15)
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Indeed, we can rewrite this Lagrangian as

Lvector0
?= 1
4
FµνFµν − 1

2
m2AµAµ .

In Chapter 2, we will demonstrate why the factor ∂µAν∂νAµ has to have an
opposite sign, motivated by geometric arguments. ¿ere are two more remarks
however. ¿e �rst one is a really important remark. As we will see in the next
section, any theory that is supposed to represent a realistic quantum system, is
required to be invariant under local phase rotations. It can easily be shown (see
44) that a vector mass isn’t invariant under such a rotation, so we drop this term.
¿e second remark is just a matter of convention, as it is common to de�ne
the kinetic �eld term with a minus sign in front.9 So we �nally have a realistic
free-�eld vector Lagrangian:

Lvector0 = − 1
4
FµνFµν . (1.16)

Again using Equation 1.8, we can construct the ELEM for Aµ:

∂µFµν = (gµν ◻ −∂µ∂ν)Aν ≡ 0 . (1.17)

But this equation cannot be solved, as it is represented by a singular (and hence
non-invertible) matrix.¿e di�culty resides in the fact that this problem already
arises at the level of the free vector �eld, leaving us no clue how to continue.
However, there is one key property of the vector �eld Aµ that we overlooked: it
is over-determined. As a spin-1 �eld, it has exactly three independent degrees
of freedom (d.o.f.s). But the Lorentz index µ runs over all four dimensions of
spacetime, giving us one d.o.f. too many. We can remove one d.o.f. by enforcing
a constraint equation on Aµ. ¿is is called “gauging away one d.o.f.”, or simply
“choosing a gauge”. Two common example are:

a. ¿e Lorentz gauge: ∂µAµ ≡ 0 , (1.18a)
b. ¿e axial gauge: nµAµ ≡ 0 , (1.18b)

where nµ is any constant directional vector. Using the Lorentz gauge drops the
second term in Equation 1.17, restoring the Klein-Gordon equation:

◻Aµ = 0 ,
9 Note the important di�erence: the minus sign in front of F µν is merely a scale factor of the
Lagrangian. But the minus inside F µν , as in Equation 1.15, de�nes the dynamics of the system.
Changing the latter, changes the theory, and we need it to be a minus sign to reproduce the
realistic electromagnetic interaction.
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which we know is quantisable. Using the axial gauge gives quantisable results
as well, this is however less straightforward to reveal. Because of this, vector
�elds are o en called gauge �elds, and a theory containing them is called a gauge
theory (especially when the theory is invariant under local transformations, see
further).
¿ere are several possible interaction terms to add to the Lagrangian, but the

most straightforward is to contract one Aµ with an external current vector J µ :

Lvector = − 1
4
FµνFµν −J µAµ . (1.19)

Just as in the case of a scalar �eld, this renders the ELEM inhomogeneous:

∂µFµν = J ν , (1.20)

such that a er choosing a gauge wewill continue with the quantisation of the free
�eld, and treat the interaction as perturbations on the free �eld. If the current is
a scalar quantity, the interaction term contains two vector �elds:

Lvector = − 1
4
FµνFµν −J AµAµ .

Self-interactions of the vector �eld are possible as well, made with terms of three
or four vector �elds, but for this we need to collect several vector �elds into one
multiplet. We will illustrate this in Section 1.4.

Spinor Fields

¿e last example that is relevant for this thesis, is the Lagrangian for spinor �elds.
We know for sure that we cannot blindly use the Klein-Gordon Lagrangian for
these, as they represent particles of half-integer spin, i.e. they are fermionic �elds.
¿ese �elds will be associated withmatter (in contract with vector �elds, that
are associated with forces).
Because matter particles have half-integer spin, it follows from the Pauli-

exclusion principle that spinor �elds anticommute:

ψ(x)ψ(y) = −ψ(y)ψ(x) ,
from which we automatically deduce that the square of a spinor �eld is zero:

ψ(x)ψ(x) ≡ 0 . (1.21)
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From classical quantum mechanics, we know that the Dirac equation for a
fermion �eld ψ is given by (see Equation A.20):

(i /∂ −m)ψ = 0 , (1.22)

whereψ is a complex valued spinor �eld, and /∂ is the contraction of the derivative
with a gamma matrix:

/∂ = γµ∂µ . (1.23)

A �rst attempt to construct a Lagrangian that reproduces Equation 1.22 is

LDirac0
?= ψ (i /∂ −m)ψ .

However, this cannot be right, as here the mass term would be zero by de�nition,
using Equation 1.21. We thus need a second, independent �eld, which we will
choose to be the hermitian conjugate of ψ. From symmetry considerations
concerning the gamma matrices, we add a γ0. ¿e conjugate �eld, of which the
excitation will be identi�ed with an antiparticle, is then de�ned as ψ = ψ†γ0,
and obeys a slightly modi�ed Dirac eqation (Equation A.23). See Appendix A.3
and [18] for more on Dirac spinors and gamma matrices. It is now not di�cult
to check that the Dirac equations are the ELEMs (Equation 1.8) for the following
Lagrangian:

LDirac0 = ψ (i /∂ −m)ψ . (1.24)

A possible interaction term can be introduced by using the Dirac �elds as a
current for Equation 1.19, i.e.

J µ = gψγµψ ,
where we added a dimensionless constant g. ¿e resulting Lagrangian is exactly
the Lagrangian for quantum electrodynamics (QED), describing the electromag-
netic force:

LQED = ψ (i /∂ −m)ψ + gψ /Aψ − 1
4
FµνFµν , (1.25)

where the slashed notation is used as before, i.e. /A N= Aµγµ.



1.2 symmetries of the lagrangian 13

1.2 symmetries of the lagrangian

Let us now investigate how the symmetries of a theory in�uence the quantities
within. ¿is will eventually lead us to Noether’s famous theorem, that states that
every symmetry can be associated with a conserved current and charge.
Any transformation can be parameterised in function of its e�ect on the

spacetime coordinates and on the �elds:

xµ → xµ + δxµ , (1.26a)
ϕi → ϕi + δϕi . (1.26b)

¿e two transformations are not independent, as a coordinate transformation
will also manifest itself as a �eld transformation:

ϕi(x)→ ϕi(x + δx) ≈ ϕi(x) + δxµ ∂µϕi(x) .
Let us add some notational clarity. When writing ∆ϕi , we refer to a transforma-
tion that only a�ects the form of the �eld:

∆ϕi = ϕ′i(x) − ϕi(x) ,
while δϕi is the full transformation, including the e�ect from the coordinate
transform:

δϕi = ϕ′i(x′) − ϕi(x) .
In other words, we have (up to �rst order):

δϕi = ∆ϕi + δxµ∂µϕi(x) . (1.27)

Because we absorbed the transformation of the integration parameters into the
variation of L, the variation of the action is easily recovered:

δS = ∫d4x δL , (1.28)

where the variation of the Lagrangian is, because of Equation 1.5, simply the
divergence of the Noether current as de�ned in Equation 1.6:

δL = ∂µ J µ . (1.29)

To satisfy the requirement δS ≡ 0, we see that δL has to vanish as well, or can
be at most a divergence of any four-vector Kµ, i.e.

δL ≡ ∂µKµ (1.30)
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leaves the action invariant. By subtracting Kµ from the current and using Equa-
tion 1.27 to remove ∆ϕi ,

J µ = ∂L
∂∂µϕi

δϕi − ( ∂L
∂∂µϕi

∂νϕi −L δµν) δxν − Kµ , (1.31)

we have constructed a conserved current, i.e.

∂µ J µ = 0 . (1.32)

¿e approach is as follows: we start with a certain transformation, and apply it
to the Lagrangian. If this transformation leaves the Lagrangian invariant, or if it
leaves the Lagrangian invariant up to a divergence, we know that the Noether
current in Equation 1.31 will be conserved.
Also, for every conserved current there is an associated charge

Q(t) = ∫d3x J 0 , (1.33)

which is conserved as well:

Q̇ = ∫d3x ∂µJ µ + ∫d3x ∂ ⋅J = 0 . (1.34)

¿e �rst term vanishes by current conservation, and the second by use of Gauss’
divergence theorem and assuming the �elds vanish at ±∞.
We have now all necessary ingredients to present Noether’s �rst theorem.

noether’s first theorem: Each continuous symmetry trans-
formation that leaves the Lagrangian invariant up to a divergence is
associated with a conserved current as de�ned in Equation 1.31. ¿e
spatial integral over this current’s zeroth component yields a conserved
charge, as given in Equation 1.33.

It is important that the symmetries have to be continuous symmetries, because
this guarantees that we can start from in�nitesimal variations and exponentiate
the result. E.g. we can start with an small translation to describe a macroscopic
shi . But for instance inversion symmetry in three dimensions (parity) is not a
continuous symmetry, so we cannot apply Noether’s theorem on it.
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We can explore and simplify the theorem further, by parameterising the
transformations in Equations 1.26 in function of a set of in�nitesimal parameters
єr (r = 1 . . . R):

δxµ = єrXµ
r , (1.35a)

δϕi = єrΦi r , (1.35b)
Kµ = єrKµ

r . (1.35c)

¿e functions Xµ
r and Φi r can depend on the other coordinates resp. �elds,

thus allowing transformations to mix coordinates resp. �elds. If we plug these
parameterisations in the Noether current, we can extract the common parameter
єr and de�ne a Noether current per component of the symmetry:

Noether Current

J µ
r = ∂L

∂∂µϕi
Φi r − ( ∂L

∂∂µϕi
∂νϕi −L δµν)Xν

r − Kµ
r . (1.36)

¿ese currents will be independently conserved for each symmetry component
r. Note that the expression between parentheses is simply the stress-energy
tensor:

Tµ
ν = ∂L

∂∂µϕi
∂νϕi −L δµν , (1.37)

so that we can rewrite the current as

J µ
r = ∂L

∂∂µϕi
Φi r − Tµ

ν X
µ
r − Kµ

r .

1.3 spacetime symmetries

Let us �rst investigate how spacetime symmetries in�uence a theory. We are
looking at any transformation of the form

xµ → xµ + δxµ . (1.38)

But these transformations don’t leave the Lagrangian invariant on their own,
as they propagate into the �eld transformations because of Equation 1.27. We
thus have to transform the form of the �eld as well, using ∆ϕi to compensate
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the e�ect of the coordinate transformation. We won’t delve into the details here,
see e.g. [26] for a good treatment.
¿e �rst spacetime symmetry we investigate is a translation, de�ned as

xµ → xµ + aµ , (1.39)

for a constant vector aµ. ¿e Lagrangian will be fully invariant (Kµ = 0) if we
let the total variation of the �eld vanish, i.e. δϕi ≡ 0. ¿ere are four independent
symmetry components, one for each spacetime direction. It is thus natural
to replace the index r with a Lorentz index ν. Using the parameterisation in
Equations 1.35, we identify

єr
N= aν , Xµ

r
N= δµν .

Using Equation 1.36we can construct theNoether current, which is conserved for
any Lagrangian that is invariant under spacetime translations. It is a contraction
of the translation parameter with the energy-momentum tensor of the �eld ϕi :

J µ = −aν Tµ
ν . (1.40)

Because the conservation law states that −aν∂µTµ
ν ≡ 0must hold for any aν , the

energy-momentum tensor is conserved in all of its components separately:

∂µTµ
ν ≡ 0 . (1.41)

¿ere will be four conserved charges as well, one for each spacetime direction.
¿e charge of the time component is the Hamiltonian

H = ∫d3x T00 , (1.42)

and the charges of the space components of Tµ
ν are associated with the mo-

mentum components of the �eld

P i = ∫d3x T0i . (1.43)

¿is already demonstrates the power ofNoether’s theorem:we derived the conser-
vation of four-momentum from �rst principles without specifying a Lagrangian,
only requiring it to be invariant under spacetime translations! Similarly, the
requirement of invariance under Lorentz transformations (rotations and boosts)

xµ → Mµ
νxν ,

will result in conservation of angular momentum.
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1.4 global symmetries

Now we turn our attention towards transformations that act on the form of the
�eld only, i.e. Xµ

r = 0 always. If such a transformation is a symmetry, it is called
an internal symmetry.
We consider a set of �elds that are in a representation of a Lie algebra (see

Appendix A.6), i.e. they are collected into multiplets:

⎛⎜⎜⎜⎝
ϕ1(x)⋮
ϕn(x)

⎞⎟⎟⎟⎠ .

When a �eld is organised as a singlet (i.e. exactly one �eld in the multiplet), the
only possible Lie structure is a u(1) algebra. Such a �eld is called Abelian and is
hence a commutating �eld, in contrast to �elds organised in multiplets that are
called non-Abelian. ¿e latter are inherently more di�cult to work with, because
of the non-commutative nature of the underlying generators.
A theory can combine several multiplets, not necessary of the same size. For

simplicity we consider now one such multiplet, but the generalisation to more
is easily made. A �eld ϕa in a multiplet can transform in function of all �elds
in the multiplet (other �elds and itself). We call this a rotation of the multiplet,
and write

ϕi → ϕi + iαa (ta)i j ϕ j , (1.44)

where the ta are the generators of the Lie algebra (see Equation 1.5), and the αa
are constant parameters. Note that there are two di�erent indices in use:

a. ¿e indices i , j, . . . are for the �elds, they can be organised in multiplets of
any representation. ¿e most common choice is the fundamental repres-
entation, where i = 1 . . . n for a n-dimensional Lie algebra. It is common
not to write out these indices.

b. ¿e indices a, b, . . . are the contraction of the parameters αa with the
generators. For any representation of a su(n) algebra, there are n2 − 1
generators, so a = 1 . . . n2 − 1. Most of the time, these indices are written
out.

If the �elds are complex, then the conjugate �elds simply transformwith a minus
sign:

ϕ∗i → ϕ∗i − iαa (ta)i j ϕ∗ j ,
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Note that these transformations are just the in�nitesimal forms of a global phase
rotation:

ϕi → eiα
a(ta)i jϕ j , ϕ∗i → e−iαa(ta)i jϕ∗ j . (1.45)

It is called a global transformation, because it holds globally, at every spacetime
point. In contrast, if αa wouldn’t be constant but depending on x, the Noether
theorem has to be adapted, as we will see in the next section.
If we compare the transformation with the parameterisation in Equations 1.35,

we see that

єa N= αa Φa
i

N= i (ta)i j ϕ j .
Plugging these in Equation 1.36, we �nd the Noether current for a global phase
rotation for real �elds:

J a
µ = ∂L

∂∂µϕi
i (ta)i j ϕ j . (1.46)

Note that that the presence of Lie generators in the current make the latter a non-
commuting operator. ¿is has important consequence for e.g. quantisation, as
in the canonical quantisation framework this fact interferes with the canonical
commutation relations. For complex �elds, we have the apparent choice of
putting the minus sign of the conjugate �eld’s transform in the parameter єa
or in Φa

i . But in the de�nition of Equation 1.36, we have extracted the same
parameter єa everywhere, so we have to move the minus sign into Φa

i , giving
the Noether current

J a
µ = ∂L

∂∂µϕi
i (ta)i j ϕ j − ∂L

∂∂µϕ∗i i (ta)i j ϕ∗ j (1.47)

for complex �elds.
Why would invariance to phase rotations be relevant from a physical point of

view? Remember that in QM the amplitude Ψ(x) is a complex-valued �eld that
is only a mathematical construct, while its complex square ∣Ψ(x)∣2 represents
the probability and is a physical observable. But there is some freedom on the
choice ofΨ(x), as multiplying it with a phase factor doesn’t a�ect the probability.
I.e. the transformation Ψ(x)→ ei θΨ(x) leaves the probability and hence the
system invariant, and will give rise to conservation laws that can be constructed
by Noether’s theorem.



1.4 global symmetries 19

Free Dirac Lagrangian

To investigate an easy example, take e.g. the Lagrangian for the free Dirac �eld
as de�ned in Equation 1.24:

LDirac0 = ψ (i /∂ −m)ψ ,
where now the �eld forms a multiplet. ¿e �elds carry both Lie indices i , j and
spinor indices α, β:

LDirac0 = ψ iα [i (γµ)αβ ∂µ − δαβm] δi jψ j
β , (1.48)

¿is Lagrangian is manifestly invariant under a phase rotation

ψ → eiα
a taψ . (1.49)

¿ere are n2 − 1 conserved Noether currents (see Equation 1.46):
J µ a = ψ γµ taψ , (1.50)

where we have chosen to extract −αa as the parameter єa to get a positive current
(but of course, this is a matter of convention). ¿ese currents are commonly
known as the Dirac or vector currents. We can easily check that they are indeed
conserved by using Equations 1.22 and A.23. ¿e associated charges are

Qa = ∫d3x ψ γ0taψ = ∫d3x ψ†taψ , (1.51)

because ψ = ψ†γ0 and (γ0)2 = 1. In case of an u(1) symmetry, we can associate
the charge with the number operator:

Q = ∫ d3p(2π)3 ∑s (as †p asp − bs †p bsp) , (1.52)

which holds up to an in�nite constant (that vanishes a er renormalisation).
¿e number operator is the baryon number (or lepton number, depending on
the �elds). Noether’s �rst theorem gives us a natural proof that the baryon and
lepton numbers are conserved quantities. Also note that it clearly shows that
what is conserved is the di�erence between the number of particle states (as †p asp)
and antiparticle states (bs †p bsp). ¿e two separately are not invariant.
We can construct an analogous transformation, using γ5 as de�ned in Equa-

tion A.27a:

ψ → eiα
a taγ5ψ , (1.53)
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a so-called chiral transformation. ¿e transformation of ψ is a bit more intricate:

ψ′ = ψ′ = eiαγ5ψ = (eiαγ5ψ)† γ0 = ψ†e−iαγ5γ0 = −ψ†γ0e−iαγ5 = −ψ e−iαγ5 ,
where theminus sign in front emerges because γµγ5 = −γ5γµ (see EquationA.29).
¿is implies

iψ /∂ψ → iψ /∂ψ , mψψ → −mψψ ,
i.e. the Dirac Lagrangian is only invariant under chiral transformations if m = 0.
Indeed, if we calculate the associated current:

J 5 µ a = ψγµγ5ta ψ , (1.54)

its derivative is given by

∂µ J 5 µ a = 2mψγ5ta ψ.

¿is current is o en called the axial vector current, or axial current for short. It
is only conserved for m = 0, as expected from symmetry considerations. Chiral
transformations and γ5 are essential ingredients for parity-violating theories
like the electroweak theory.

¿e Yang-Mills Lagrangian

Next we investigate the global symmetries of a general su(n) Lagrangian, also
called the Yang-Mills (YM) Lagrangian, which we will construct in the next
chapter, more speci�cally in Equation 2.45:

L = ψ (i /∂ −m)ψ + g ψ /Aψ − 1
2
tr FµνFµν , (1.55)

where the factor g is the coupling strength of the su(n) interaction. ¿e Dirac
�elds are organised in a multiplet (see Equation 1.48), and the vector �elds are
used as operators:

Aµ
N= Aaµ ta , (1.56a)

Fµν
N= Faµν ta = ∂µAν − ∂νAµ − i g [Aµ ,Aν] . (1.56b)

¿e latter makes sure that
1
2
tr FµνFµν = 1

2
tr(ta tb) FaµνFµν b = 1

4
FaµνFµν a .
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¿e Lagrangian has a manifest u(1) symmetry:
ψi → eiαψi , Aµ → Aµ ,

which leads to a conservation of baryon or lepton number, as we saw in Equa-
tion 1.51. However, the YM Lagrangian is not invariant under global su(n) sym-
metries (with n > 1) that only act on the Dirac �elds, as was the case in Equa-
tion 1.49, instead we have to extend the transformation to the vector �elds as
well:

ψi → ψi + i g αa (ta)i j ψ j , (1.57a)

Aaµ → Aaµ + g f abcAbµαc , (1.57b)

where we extracted g from α. ¿is is just a matter of convention. ¿ese are the
in�nitesimal forms of the rotations

ψ → ei gα
a taψ , (1.58a)

ψ → ψ e−i gαa ta , (1.58b)

Aµ → ei gα
a taAµ e−i gαa ta , (1.58c)

Fµν → ei gα
a taFµν e−i gαa ta . (1.58d)

To see how the exponentiation of the in�nitesimal transformation of Aµ leads
to the rotation in Equation 1.58c, note that Equation 1.57b can be written in
operator form as

Aµ → Aµ − i g [Aµ , α] .
It is not di�cult to show that the Lagrangian in Equation 1.55 is invariant under
the full transformation in Equations 1.58 (the kinetic term of the vector �eld
is invariant, because it sits inside a trace, which is cyclic). Using again −αa as
the transformation parameter єa, we can construct n2 − 1 conserved Noether
currents:

J µ a = i g ∂L
∂∂µψ

taψ + g f abc ∂L
∂∂µAbν

Acν

= g ψγµ ta ψ + g f abcFµν bAcν . (1.59)

¿e associated conserved charges are the charges of the symmetry under con-
sideration. E.g. for su(2) this is the weak hypercharge (and the vector �elds
represent the weak bosons), and for su(3) this is the colour charge (and the
vector �elds represent the gluons).
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An interesting remark is the fact that the u(1) symmetry leaves the vector
�elds invariant.¿is is a strong fact: all vector �elds have a vanishing u(1) charge
(e.g. photons and gluons carry no electromagnetic charge).
It is also interesting to explicitly calculate the ELEM for the vector �eld. For a

general YM Lagrangian, these are given by

Dab
µ Fµν b = −Jν a , (1.60a)

Dab
µ = δab∂µ − g f abcAcµ , (1.60b)
Jν a = g ψγν ta ψ , (1.60c)

and are commonly called the Yang-Mills equations. In operator form, these are:

[Dµ , Fµν] = −Jν a ta (1.61a)
Dµ = ∂µ − i gAµ , (1.61b)

but watch out, we cannot simply absorb ta in Jν a, because we need a Fierz
identity (see Equation A.77) for this.

1.5 local symmetries

Now we move on to the most important concept in QFT, viz. that of gauge
symmetries. In Section 1.4 we motivated the need for global phase invariance
from a QM point of view. But there is no reason why the phase parameter єa
couldn’t be dependent on spacetime coordinates, as theQM amplitude is invariant
under these transformations as well. Motivated by classical QM, we thus require
any realistic QFT to be invariant under a local phase transformation:

ψ → ei gα
a(x)taψ , (1.62)

which varies from point to point.
Demanding local phase invariance is a much stricter requirement than global

phase invariance. Indeed, e.g. the simple free Dirac Lagrangian in Equation 1.24
is not locally invariant:

δLDirac = −g ψ /∂α ψ .
¿emove to local phase invariance has serious implications, as both the ELEM
and Noether’s �rst theorem are no longer valid.
In order to adapt these theorems, we parameterise any �eld transformation

in function of spacetime-dependent parameters єa(x) and their derivatives
∂µєa(x):
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δϕi = єaΦa
i + (∂µєa)Ωµ a

i . (1.63)

¿e only condition on the functions єa(x) is that they are expected to be twice
di�erentiable. As all local symmetries of interest are automatically internal
symmetries (spacetime are spacetime-dependent anyway, and already treated in
Section 1.4), we can safely assume δxµ ≡ 0.

Localised Equations of Motion

¿e variation of the Lagrangian is given by

δL = ∂L
∂ϕi

δϕi + ∂L
∂∂µϕi

∂µδϕi .

Filling in the variation in Equation 1.63, we can collect the terms linear in єa and
its derivatives:

δL = Aa єa + Bµ a∂µєa + Cµν a∂µ∂νєa , (1.64)

with

Aa = ∂L
∂ϕi

Φa
i + ∂L

∂∂µϕi
∂µΦa

i , (1.65a)

Bµ a = ∂L
∂ϕi

Ωµ a
i + ∂L

∂∂µϕi
Φa
i + ∂L

∂∂νϕi
∂νΩµ a

i , (1.65b)

Cµν a = ∂L
∂∂µϕi

Ων a
i . (1.65c)

¿e necessary condition for the action to be invariant, is that the variation of
the Lagrangian vanishes up to a divergence, i.e.

δS ≡ 0 ⇒ δL ≡ ∂µ(. . .) .
With help of partial integration, we can rewrite Equation 1.64 as

δL = (Aa − ∂µBµ a + ∂µ∂νCµν a) єa + ∂µ(. . .) .
¿e �rst terms have to vanish independently of єa, giving us the invariance
requirement

Aa − ∂µBµ a + ∂µ∂νCµν a ≡ 0.
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Plugging in the de�nitions of A, Bµ , and Cµν gives

( ∂L
∂ϕi

− ∂µ ∂L
∂∂µϕi

)(Φa
i − ∂µΩµ a

i )−(∂µ ∂L∂ϕi − ∂µ∂ν ∂L
∂∂νϕi

)Ωµ a
i ≡ 0 . (1.66)

¿e variational derivative of L is de�ned as (see e.g. [24]):
Variational Derivative

δL
δϕi

def= ∂L
∂ϕi

− ∂µ ∂L
∂∂µϕi

. (1.67)

In the case of global symmetries, the ELEM are equivalent to the constraint

δL
δϕi

≡ 0 . (1.68)

Hence the variational derivative gives a measure of the extent at which the local
ELEMs diverge from the global ones. We can express the invariance requirement
(Equation 1.66) in function of the variational derivative:

δL
δϕi

Φa
i ≡ ∂µ ( δLδϕi Ωµ a

i ) . (1.69)

Removing the spacetime dependence of єa recovers the global ELEM as expected,
because then Ωµ a

i = 0, which gives us
δL
δϕi

Φa
i ≡ 0 ⇒ δL

δϕi
≡ 0 ,

because it should hold independently of Φa
i .

Consider for instance the Yang-Mills Lagrangian as given in Equation 1.55. It
is invariant under the local gauge transformation

ψ → ψ + i gαa taψ (1.70a)
Aaµ → Aaµ + ∂µαa (1.70b)

Comparing this with Equation 1.63, we see that the common parameter is given
by єa = αa. For the ψ �eld, we have

Φa
i

N= i gtaψ Ωµ a
i = 0 .

Identifying the transformation component for the �eld Aµ might be a bit con-
fusing, as the �eld itself also carries Lie and Lorentz indices. ¿e �eld index i on
Ω thus accounts for ν and b on the �eld:

Φa
i = 0 Ωµ a

i
N= δµν δab .
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Local gauge invariance then implies the following local equations of motion:

i g (δL
δψ

taψ − δL
δψ

taψ) ≡ ∂µ ( δL
δAbν

δµν δab)
g ∂µ (ψγµ taψ) ≡ g ∂µ (ψγµ taψ) + ∂µ∂νFµν a .

Or, in other words:

∂µ∂νFµν a ≡ 0 . (1.71)

¿is tells us amongst other things that the �eld tensor should be antisymmetric.

Noether’s Second¿eorem

When working with local symmetries, it isn’t always possible to derive con-
served currents and charges, as was the case for global symmetries. However,
the invariance of the Lagrangian under local symmetries will give rise to a set of
di�erential equations constraining the �elds. ¿is is Noether’s second theorem.
Instead of allowing the Lagrangian to vary up to a divergence, we require it to

fully vanish, i.e. δL ≡ 0. Comparing this to Equation 1.64, we see that every term
has to vanish separately, because the requirement has to be met independently
of єa. ¿is naturally implies Aa ≡ 0, Bµ a ≡ 0, and Cµν a ≡ 0. However, because
C is contracted with a fully symmetric tensor (∂µ∂ν), it is su�cient for C to
be fully antisymmetric for the last term to vanish. We thus have the following
requirements:

Aa ≡ 0 ⇒ ∂L
∂ϕi

Φa
i ≡ − ∂L

∂∂µϕi
∂µΦa

i , (1.72a)

Bµ a ≡ 0 ⇒ ∂L
∂ϕi

Ωµ a
i + ∂L

∂∂νϕi
∂νΩµ a

i ≡ − ∂L
∂∂µϕi

Φa
i , (1.72b)

C(µν) a ≡ 0 ⇒ ∂L
∂∂µϕi

Ων a
i ≡ − ∂L

∂∂νϕi
Ωµ a
i . (1.72c)

We de�ne the local Noether current as
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Local Noether Current

J µ a = ∂L
∂∂µϕi

Φa
i + δL

δϕi
Ωµ a
i . (1.73)

¿en the �rst equation Aa ≡ 0 reduces to
∂µJ µ a + δL

δϕi
Φa
i − ∂µ ( ∂L∂ϕi Ωµ a

i ) ≡ 0 ,
or, a er using the local ELEM (Equation 1.69),

∂µJ µ a ≡ 0 , (1.74)

again demonstrating current conservation. We could derive a conserved charge
from this current just a before, but it wouldn’t make much sense as it isn’t linked
to any physical observable.
We can also construct a Noether tensor, de�ned as

Local Noether Tensor

Fµν a def= ∂L
∂∂νϕi

Ωµ a
i . (1.75)

Watch the order of the indices! We chose to reverse them (Fµν = Cνµ), to make
the identi�cation with the gauge �eld tensor identical. ¿e third equation
C(µν) a ≡ 0 tells us that it is antisymmetric:

Faµν = −Faνµ ,
and we can use it to rewrite the second equation Bµ a ≡ 0 as

∂νFνµ a ≡ J µ a . (1.76)

Current conservation (and the fact that Fµν is antisymmetric) implies conserva-
tion of the Noether tensor as well:

∂µ∂νFaµν ≡ 0 . (1.77)

Note that we can combine the local ELEM with current conservation, to get a
new set of equations:

∂L
∂ϕi

Φa
i + ∂L

∂∂µϕi
∂µΦa

i ≡ 0 . (1.78)
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However, most of the time these equations are trivially satis�ed and hence carry
no new information. Now we can state Noether’s second theorem:

noether’s second theorem: Each continuous local symmetry
transformation that leaves the Lagrangian invariant is associated with a
conserved current as de�ned in Equation 1.73 and a conserved tensor as
de�ned in Equation 1.75. ¿ey are related to each other by Equation 1.76.
For each symmetry component a, there are local ELEMs acting on all
�elds, as given by Equation 1.69.

Can we extend the second Noether theorem for the case where the Lagrangian
is invariant up to a divergence ∂µ (єaKµ a)? Filling the de�nitions of the Noether
current and Noether tensor in Equation 1.64, the variation of the Lagrangian is
given by:

δL = (∂µJ µ a) єa + (J µ a − ∂νFνµ a) ∂µєa + Fµν a∂µ∂νєa ≡ ∂µ (єaKµ a) .
We see that the Noether equations remain valid if we subtract Kµ from the
current.
Returning to the Yang-Mills Lagrangian in Equation 1.55, the �rst thing we

note is that the Noether tensor (Equation 1.75) identically equals the gauge �eld
strength, validating our naming choice. Next we can construct the local Noether
current using the parameterisation in Equations 1.70:

J µ a = i g ∂L
∂∂µψ

taψ + δL
δAbν

δµν δab

= −gψγµ taψ + gψγµ taψ + ∂νFνµ a= ∂νFνµ a ,
which is a trivial identity because of Equation 1.76. Also note that indeed Equa-
tion 1.78 doesn’t bring any new information, as it states

−iψta (i /∂ −m)ψ − iψta ψ − ψ /∂ta ψ ≡ 0 ,
i.e. 0 ≡ 0, which is trivially satis�ed.
At �rst sight, it would seem that Noether’s second theorem isn’t all that helpful,

because it doesn’t give us new information on the theory. But this is because
the Yang-Mills Lagrangian is already a perfectly gauged Lagrangian, a ‘�nished’
one. As the power of the second Noether theorem lies in its strong relations
and constraints, it is an especially handy tool to make existing theories gauge
invariant.



2
GEOMETRY OF QUANTUM FIELD THEORIES

We will now try to construct the Yang-Mills Lagrangian, as de�ned in Equa-
tion 1.55, only from geometric arguments and past knowledge from quantum
mechanics. From experiment it is known that matter particles, like leptons and
quarks, have spin 1/2, obeying Fermi-Dirac statistics and the Pauli exclusion
principle. And from QM we know that such particles obey the Dirac equation.
We start by only considering a Dirac �eld, as in our simple-minded ansatz

we have no idea yet about the true nature of gauge �elds, only knowing they
act on particles that are charged under the su(n) symmetry. Our basic building
brick is the free Dirac Lagrangian (Equation 1.24), on which we will impose
invariance under local phase rotations.

2.1 parallel transport and wilson lines

In Sections 1.4 and 1.5 we motivated the need for global and local phase invari-
ance with classical quantum mechanics, because the QM probability ∣Ψ(x)∣2 is
supposed to be invariant under phase rotations, both global and local.
We know the free Dirac Lagrangian is not gauge invariant. Consider a local

su(n) phase rotation
ψ(x)→ e±i g αa(x)taψ(x) , (2.1)

where g is just a constant (which will be identi�ed later as the coupling constant),
and we leave the sign unspeci�ed. ¿e antiparticle �eld ψ transforms with an
opposite sign in the exponent:

ψ(x)→ ψ(x)e∓i g αa(x)ta .

28
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¿emass term is behaving nicely and remains unchanged under the transforma-
tion:

−mψψ → −mψ e∓i g αa(x)tae±i g αa(x)taψ = −mψψ .

However, the derivative term is giving problems, as it pulls out a factor ∂µα from
the exponential:

iψ /∂ψ → iψ /∂ψ − g ψ /∂αa ta ψ .

¿e Parallel Transporter

¿e standard way to proceed, is to introduce a so-called gauge �eld Aaµ, that
transforms in such a way that it cancels the problematic terms. But instead of
introducing a �eld ad hoc, we investigate the problem at hand a bit deeper, and
see if we can pinpoint the erratic behaviour (and solve it) purely by geometric
arguments.
Actually, it is not surprising that the derivative spoils local transformations, as

it is not a local but a bi-local operator, viz. it is de�ned in two spacetime points
instead of one. ¿e de�nition of the derivative of ψ(x) in the direction of a
vector nµ is namely

nµ∂µψ = lim
є→0

1
є
(ψ(x + єn) − ψ(x)) . (2.2)

¿is de�nition is not well-de�ned, as ψ(x + єn) and ψ(x) obey di�erent trans-
formation laws. In other words, there isn’t a sensible transformation for the
quantity ∂µψ.
If we would have an object that is able to transport the transformation proper-

ties of a �eld at a point x to those of a �eld at a point y, we could use it to adapt
the derivative to have a single transformation. Let us assume that we have found
such a quantity U(x ; y) that is scalar, only depending on x and y, and transforms
under the symmetry in Equation 2.1 as

U(y ; x) → e±i g αa(y)ta U(y ; x)e∓i g αa(x)ta , (2.3)

so we can use it to transport a �eld at x to a �eld at y:

U(y ; x) ψ(x)→ e±i g αa(y)ta U(y ; x) ψ(x) . (2.4)
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For this reason it is o en called a parallel transporter, or a comparator. Other
common names are a gauge link, or aWilson line. We will mostly stick to the
latter naming convention. We will treat them extensively in Chapter 6 and later.
In principle, the requirement in Equation 2.3 is the only constraint on U so
far, leaving a whole list of functions as possible candidates. In an attempt to
narrow down this list, we will add some additional constraints that seem logical
to enforce.
First of all, transporting a �eld from x to y, and then from y to z, should

yield the same result as transporting it directly from x to z. Hence the parallel
transporter should be transitive:

U(z ; y) U(y ; x) = U(z ; x) . (2.5)

¿is is not yet a rigorous de�nition, but it is accurate enough to help us under-
stand the structure of U a bit more. Next, if we place the transporter in between
a bi-local product ψ(y)ψ(x) to make it invariant, we can use Equation 2.5 to
split it at some point z:

ψ(y)U(y ; x)ψ(x) = ψ(y)U(y ; z) U(z ; x)ψ(x) . (2.6)

But we could as well rede�ne ψ by absorbing the transporter, i.e.

Ψ(z) N= U(z ; x)ψ(x) ,
allowing us to write the bi-local product asΨ(z)Ψ(z). By writing out the barred
�eld:

Ψ(z) = U(z ; y)ψ(y) = ψ(y) [U(z ; y)]† ,
and identifying with Equation 2.6, we see that the dagger operation switches the
endpoints:

[U(z ; y)]† ≡ U(y ; z) . (2.7)

Furthermore, moving a �eld from x to y, and then back to x, should have no
�nal e�ect. ¿is immediately implies that U should be unitary:

U(x ; y) U(y ; x) def= 1 ⇒ [U(y ; x)]† U(y ; x) ≡ 1 (2.8)

Every unitary object can be represented as a pure phase, i.e.

U(y ; x) N= e±i g f (y,x) , (2.9)



2.1 parallel transport and wilson lines 31

x

y

[ 13th August 2014 at 14:59 – classicstyle]

Figure 2.1: As a parallel transporter transforms in function of its path endpoints only,
all paths shown will give rise to equivalent U(y ; x)’s, shi ing a �eld at x to a
�eld at y.

where f is a real function, and the sign in front of i g is for convenience the same
as the one chosen in the transformation Equation 2.1. We extracted the same
factor g from f (y, x) as in the transformation rules. Because of the transitivity
of U , this function has to be transitive with respect to addition, particularly
f (y, x) = f (y, z)+ f (z, x). Also, because of theHermiticity of U , the function f
has to be antisymmetric in its arguments, viz. f (y, x) = − f (x , y). ¿is suggests
something of the form

f (y, x) ?= f (y) − f (x) .
All these prerequisites are typical for a path-dependent function. ¿is is a

function that takes a coordinate as an argument, but is evaluated at the endpoints
of the path. For a path C, we can write this as

C ∶ zµ = xµ . . . yµ ⇒ f (y, x) def= f C(z)∣yx . (2.10)

We thus succeeded in limiting the list of possible candidates for U(y ; x) to all
pure phases that are functions of a path connecting x and y. ¿is is illustrated
in Figure 2.1, where every path leads to a di�erent parallel transporter that is a
valid candidate for U(y ; x). ¿is is why we added the label C to f ; each path can
have its own function. ¿ere is no restriction on the possible paths, except that
they should all be continuous and have the same endpoints.
From the physical point of view, this makes a lot of sense. Intuitively, it feels

logical that, when transporting a �eld from one point to another, this is done in
a continuous way without abrupt jumps, i.e. along a path in spacetime. As the
only property we are interested in is its transformation, depending only on the
endpoints, we end up with an in�nite set of possible parallel transporters, each
one de�ned along a di�erent path, and all equally valid. Whenever it is needed
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Figure 2.2: When a parallel transporter is split in a point z that lies on its path, it can be
written as the product of the two new parallel transporters, i.e. it is transitive.
¿is is not correct when z lies outside the original path.

to make a distinction between parallel transporters on di�erent paths, we can
write U C(y ; x) to identify the chosen path.

Non-Abelian paths

Now we have to stop for a moment, because there is a really important caveat
that we overlooked. From the transitivity requirement in Equation 2.5, we de-
duced that f (y, x) = f (y, z) + f (z, x). However, because the transformation
exponentials in Equation 2.3 are possibly Lie algebra valued functions, it is to be
expected that f is Lie algebra valued as well. But it that case, we cannot simply
split the exponential, i.e.

e f (y,z)+ f (z,x) ≠ e f (y,z)e f (z,x) ,
but we have to use the Baker-Campbell-Hausdor� formula instead, involving
chained commutators of f at di�erent spacetime points.
We decide to turn a di�erent road, and order the f along the path. More

speci�cally, in the expansion of the exponential, all f are ordered in such a way
that the f that is �rst on the path (having the largest path parameterisation
parameter) is written le most. We will use the symbol P in front of the expo-
nential to show that it is a path-ordered exponential. Path-ordering is treated in
much more detail in Section 6.1 on page 151 and onwards. ¿en the transitivity
property is valid:

P e f (y,x) = P e f (y,z)P e f (z,x) . (2.11)



2.1 parallel transport and wilson lines 33

i
i

“gfx/tikz/Geometry/PathDeleting” — 2014/9/17 — 1:17 — page 35 — #1 i
i

i
i

i
i

x

z

=U C1(z ; x) U C2(z ; y)U C(y ; x)
C1 C

C2

x

z

y

Figure 2.3: ¿e transitivity rule can be also applied to points outside the path C on
the condition that the path returns on itself, cancelling the overlapping
segments.

¿ere is, however, another caveat: this property is only valid if z already lies on
the path connecting x and y, because we cannot blindly split the path in a point
outside of it, see Figure 2.2. ¿e correct de�nition of the transitivity property is
then

∀C1 + C2 = C ∶ U C(y ; x) = U C2(y ; z) U C1(z ; x) . (2.12)

Note that it is not impossible to use the transitivity rule with a point outside of
the path. If we multiply both sides of the last equation with U C2(z ; y), we get

U C2(z ; y) U C(y ; x) = U C1(z ; x) , (2.13)

because U C2(z ; y) U C2(y ; z) = [U C2(y ; z)]† U C2(y ; z) = 1. We can interpret this is as saying
that the path C1 can be “split” at a point outside of the path if, and only if, the
path returns on top of itself to cancel the super�uous part, i.e. if

C1 = C − C2 . (2.14)

¿is is illustrated in Figure 2.3.
Let us now try to parameterise f C for a given path C. We approximate the

path connecting x and y by dividing it into n in�nitesimal linear segments:

f C(y, x) ≈ n∑ f C(xi+1 , xi) (2.15)
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¿is is illustrated in Figure 2.4. From symmetry considerations we expect f C to
depend in the in�nitesimal limit on the centre of the segment:¹

f C(xi+1 , xi) ?= f̃ C(xi+1 + xi
2

) .
Yet this cannot be correct, as now f C is symmetric instead of antisymmetric.
¿is was to be anticipated as we discarded information, going from a function
of two variables to one of one variable. If we choose to describe a linear line
segment [x , y] in function of its centre (x + y)/2 , we have to add the separation
vector y − x as a second variable. But instead of making f̃ C dependent on the
separation vector, we interpret it as though its structural form itself changes, in
function of the direction it is evaluated over. In other words, we promote f̃ C
to a vector function which we will call Aµ, and contract it with the separation
vector. ¿en f C is de�ned as

f C(y, x) ≈ n∑ (xi+1 − xi)µ Aµ (xi+1 + xi2
) .

Note that we dropped the label C from Aµ , because the path dependence is
now fully moved to the coordinates xi and xi+1, while the structural form of
Aµ is path independent. In other words, the same Aµ is used for every parallel
transporter, for any path, in contrast with f C , which is di�erent for every path.
¿e path dependence manifests itself through the factor (xi+1 − xi)µ in front,
in the index µ of Aµ , and in the argument (x i+1 + x i)/2 of Aµ.² As we discussed
before, f C(y, x) is expected to be Lie algebra valued, because the transformation
of U is Lie algebra valued as well. It is then logical to put the Lie dependence
inside Aµ, i.e. Aµ

def= Aaµ ta.
Taking the limit n → ∞, the discrete formula becomes a line integral (see

Equation B.5c), i.e. :

f C(y, x) = ∫C dz
µ Aaµ(z) ta . (2.16)

¿is is in perfect accordance with our physical intuition of a path with �xed
endpoints. Inserting this result in Equation 2.9 gives us the �nal de�nition for
the parallel transporter:

1 Using Ito-calculus, one can show that taking the centre of the segment is even a necessity in
order to get a correct de�nition.

2 It is important to realise that although we intentionally named Aµ(x) as is to simplify identi�ca-
tion with the gauge �eld later on, at the moment it is nothing but a generic vector function of x,
without specifying its further structure.
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Figure 2.4: Any path C can be discretised by dividing it into n linear segments. In the
limit n →∞, the original path is recovered.

Parallel Transporter

U(y ; x) def= P e±i g
y
∫
x
dz µ Aaµ(z) ta . (2.17)

¿is newly constructed de�nition for the parallel transporter allows us to
interpret the transformation rules in Equation 2.3 as a transformation of Aµ,
because the latter is the only dynamic component of U . To see this, we take
the parameters from the exponentials in Equation 2.3 and insert them in the
integral using the gradient theorem (see Equation B.14):

±i gα(y) ∓ i gα(x) = ±i g y

∫
x

dx µ ∂µα . (2.18)

¿is implies that we have to de�ne the transformation of the vector function Aaµ
as follows:

Aaµ(x)→ Aaµ(x) + ∂µαa . (2.19)

Note that the sign in the transformation of Aaµ is always a plus, independent of
the sign chosen in Equation 2.1, because ∂µα has the same sign as Aµ (compare
Equation 2.18 with Equation 2.17 to see this). ¿is result is only approximately
true, because we assumed that we can simply combine the exponentials. ¿is is
however not true in the non-Abelian case, as the presence of Lie generators
makes the �eld behave like operators (see the end of Appendix A.1 for a short
discussion on the usage of operators in this thesis). It is generally known that
for any two operators X ,Y with Y invertible, the following relation holds:

eYXY
−1 = YeXY−1 ,
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which, applied on the transformation of a Wilson line, gives:

e±i g αa(y)ta U(y ; x)e∓i g αa(x)ta = P e±i ge±i g α
a(y)ta( y

∫
x
dz µ Aaµ(z) ta)e∓i g αa(x)ta . (2.20)

We can simplify this result by partial integration and the gradient theorem:

P e±i g
y
∫
x
dz µ e±i g αa(z)ta (Aaµ(z) ta± i

g ∂µ)e∓i g αa(z)ta , (2.21)

from which we deduce the correct transformation rule for a non-Abelian �eld:

Non-Abelian Vector Transformation

Aaµ(x)ta → e±i g αa(x)ta (Aaµ (x) ta ± i
g
∂µ) e∓i g αa(x)ta , (2.22)

which indeed reduces to Equation 2.19 for Abelian �elds.

¿e Covariant Derivative

Let us return to the original goal for which the comparator was constructed, viz.
formulating a sensible de�nition for the derivative in Equation 2.2. ¿is is now
straightforward; we simply transport the �eld at x to x + єn. ¿e result is called
a covariant derivative:

Covariant Derivative

nµDµψ
def= lim

є→0
1
є
(ψ(x + єn) − U(x+єn ; x)ψ(x)) . (2.23)

Because the comparator connects two points that are separated by an in�nites-
imal distance єn, we can expand its de�nition in Equation 2.17 up to �rst order
in є. Applying the discrete de�nition of the line integral (Equation B.14), this
leads to

U(x+єn ; x) ≈ P e±iєgnµAµ(x+ 1
2 єn) ≈ 1 ± iєgnµAµ(x) . (2.24)

¿e covariant derivative is then given by:
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Dµψ = ∂µψ ∓ i g Aaµ taψ , (2.25)

and it indeed transports the transformation of the �eld:

Dµψ → ∂µ (e±i gαψ) ∓ i g (Aµ + ∂µα) e±i gαψ= ±i g (∂µα) e±i gαψ + e±i gα∂µψ ∓ i gAµe±i gαψ ∓ i g (∂µα) e±i gαψ= e±i gαDµψ .

To derive the transformation rule of the covariant derivative itself, we simply
insert 1 = e±i gα(x) e∓i gα(x) betweenDµ andψ. We see that it transforms similarly
to a parallel transporter U(x ; x) on a closed path:³

Dµ → e±i gαa(x)taDµ e∓i gαa(x)ta . (2.26)

From this, we can also express the transformation rule for Aµ in a di�erent way:

Aaµ ta → ± i
g
e±i gαa taDµ e∓i gαa ta . (2.27)

With help from the covariant derivative, we can now de�ne a Dirac Lagrangian
that is invariant under local transformations like those in Equation 2.1:

LDirac = ψ (i /D −m)ψ . (2.28)

¿e vector �eld part in the covariant derivative gives rise to an interaction term
between the Dirac �elds and the vector �eld:

LIDirac = ±g ψ /Aψ . (2.29)

¿is is the main result of our approach: by making the derivative a well-de�ned
mathematical object, we let a vector �eld emerge naturally in the form of inter-
actions terms with the Dirac �eld. Of course, this vector �eld will be identi�ed
as the su(n) gauge �eld, but let’s not be too rash in our conclusion. ¿ere are
still some missing parts in our approach.

3 We are not insinuating that the covariant derivative is a special type of U(x ; x). ¿is cannot be
true, because the latter lacks a derivative in its de�nition. But we do observe that they have the
same transformation behaviour, which is to be expected as Dµ is constructed from U .
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2.2 the gauge field tensor and wilson loops

In a QFT, the next step to proceed a er de�ning a classical Lagrangian is to
quantise the theory, so that every function of spacetime coordinates inside the
Lagrangian will be interpreted as a particle �eld. ¿is is exactly what we will do
in Chapter 3. However, our Lagrangian isn’t ‘complete’ yet. To understand this,
note that the quantisation procedure is split into two parts per �eld:

a. Quadratic terms are treated as the dynamics for the �eld and quantised,

b. Remaining terms are treated as interactions using perturbation theory.

We argued in Section 1.1 on page 6 that any �eld without dynamics is automat-
ically an external �eld, for which the dynamics are de�ned outside the system
under consideration. As we are now constructing the Lagrangian at a global
scale, we conclude that we are missing kinetic terms for the �eld Aµ.
Of course, the standard approach is to continue in a heuristic manner, as we

did more or less in Section 1.1 on page 9. We prefer however to let the kinetic
terms emerge in the Lagrangian in a natural and elegant fashion, in the same
way the interaction term emerged in the previous section. We want to base our
approach on geometrical arguments only, starting from the parallel transporter.
Because the kinetic terms can only contain Aµ �elds, we have start with a gauge
invariant version of the Wilson line (as we have no other �elds to balance the
transformation rules). If we evaluate a line on a closed path and trace it, i.e.

U def= TrP e±i g ∫∮C dz µAµ(z) , (2.30)

it is automatically invariant:

Tr U(x ; x) → Tr(e±i gα(x) U(x ; x)e∓i gα(x)) = Tr U(x ; x) . (2.31)

Such an object is called a Wilson loop, and it contains—as we will show—all
dynamics of the vector �eld.
We use Stokes’ theorem to transform the line integral over a vector into a

surface integral over the gradient:

∫∮C dz ⋅ A(z) = ∫
Σ

dσ µν ∂[µAν] , (2.32)

where Σ is the surface that is spanned by the closed path C. Note that because
the path is oriented, the surface is oriented as well. ¿e orientating of the normal
of the surface follows the corkscrew-rule: making a �st, if your �ngers follow the
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Figure 2.5: Stokes’ theorem relates a line integral over a closed path C with a surface
integral over the enclosed surface Σ.

path, your thumb points in the normal direction of the surface.¿is is illustrated
in Figure 2.5.
Just as we can parameterise a curve in function of a parameter λ as

C ∶ zµ(λ) ⇒ dzµ = dλ ∂zµ
∂λ

, (2.33)

we can parameterise a surface in function of two parameters λ and κ:

Σ ∶ zµ(λ, κ) ⇒ dσ µν = dzµ∧ dzν = 2dλ dκ ∂z[µ
∂λ

∂zν]
∂κ

. (2.34)

So we write the surface integral as

∫
Σ

dλ dκ ∂z
µ

∂λ
∂zν

∂λ
(∂µAν − ∂νAµ) . (2.35)

Our next move is a bit peculiar. We have to �nd a loop that makes sense from a
physical point of view, i.e. it should be as general as possible. ¿e most natural
case is to choose a ‘zero’-loop, in�nitesimally small, starting from and ending in
a point x. To achieve this, we discretise spacetime and de�ne our theory on a
latticewith grid spacing є. Discretising spacetime is only allowed in an Euclidian
space, so we make our space Euclidian by doing aWick rotation (see Section 7.3):

z0 def= iz0E , z def= zE , (2.36a)

∂0 def= i∂0E , ∂ def= ∂E , (2.36b)

A0 def= iA0E , A def= AE , (2.36c)



2.2 the gauge field tensor and wilson loops 40

which changes a vector product by vµwµ = −vE µwµ
E , but leaves a matrix product

invariant, i.e. ωµνρµν = ωE µνρµνE . ¿en we can rewrite the Wilson loop as

U = TrP Exp⎧⎪⎪⎪⎨⎪⎪⎪⎩±i g ∫Σ dλ dκ
∂zµE
∂λ

∂zνE
∂κ

(∂µAaE ν − ∂νAaE µ) ta
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (2.37)

A short remark: for the Wick rotation to be valid, we assume that Aµ is well-
behaving on the contour C, especially that it doesn’t introduce poles that would
hit the Wick rotation (invalidating the result). Similarly, we assumed spacetime
and the loop Σ to be continuously enough for Stokes’ theorem to hold. In fact,
Stokes’ theorem is only well-de�ned for smooth paths and manifolds (which is
now not the case), but we use an extension to Stokes’ theorem that is well-de�ned
for piecewise smooth paths. ¿ere is a strong mathematical background for this
extension, but this would go much too far beyond the scope of an introductory
approach to QFTs, so we don’t pay much attention to it and assume all necessary
conditions to be satis�ed.
A ‘zero’-loop is of course the smallest possible loop possible; on a lattice

this is a rectangular planar loop spanning the lattice spacing, as is illustrated
in Figure 2.6. We will naturally choose our coordinate system along the grid,
such that the sides of the square loop lie along the basis directions. We can
parameterise such a loop as:

Σ ∶ zµE (λ, κ) = xµ + nµλ + ñµκ λ, κ = 0 . . . є , (2.38)

where nµ and ñµ are perpendicular basis vectors (i.e. n ⋅ñ ≡ 0). It is necessary
to expand Equation 2.37 up to second order, because the �rst order vanishes
due to the tracelessness of the Lie generators tr ta = 0. Even in the Abelian
case—where the only generator is the identity with non-vanishing trace—the
�rst order terms vanish, by cancellation, which is easy to prove. Ignoring the
constant �rst term, the expansion gives

U ≈−g2 1
2
nµ ñ νnρ ñ σ

є

∫
0

dλ1 dκ1
λ1 ,κ1

∫
0

dλ2 dκ2 (∂µAaE ν− ∂νAaE µ)(∂ρAaE σ− ∂σAaE ρ) ,
where the factor 1/2 comes from the trace of the generators tr ta tb = 1/2δab. We
satis�ed the path ordering requirement by chaining the integrals (see Section
for more information on how this works). Note that we can simplify the factor
nµ ñ νnρ ñ σ by collecting similar vectors. ¿e tensor product nµnν can be repres-
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Figure 2.6: On a lattice, the smallest loop possible is a planar square with sides equal to
the lattice spacing.

ented by a matrix that is zero everywhere except on the diagonal entry of the
directional vector, where it is one, i.e.

nµ1 n
ν
1 ≐

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
, nµ2 n

ν
2 ≐

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
, nµ3 n

ν
3 ≐

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
, nµ4n

ν
4 ≐

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
.

If we take e.g. the in�nitesimal square loop spanned by the n1 and n2 vectors,
the integrand automatically becomes

(∂1AaE 2− ∂2AaE 1)(∂1AaE 2− ∂2AaE 1) ,
in other words, both factors get the same indices. As this starts to look as a sum
over indices, we try to exploit this further. In a four dimensional Euclidian space,
there are twelve independent planes, viz. the planes spanned by nµ1 n

ν
2, n

µ
1 n

ν
3 ,

nµ1 n
ν
4, n

µ
2 n

ν
3 , n

µ
2 n

ν
4 and n

µ
3 n

ν
4, and the planes oppositely oriented to them. ¿ere

is no reason why one plane would be preferred over the other, so we de�ne our
Wilson loop as the sum of all twelve square loops, one for each independent
in�nitesimal plane. Note that summing these planes gives a straightforward
result:

∑
planes

nµi n
ρ
i ñ

ν
j ñ

σ
j = δµρδνσ − gµρσν , (2.39)

where gµνρσ = 1 only when µ=ν=ρ=σ . Because both factors of the integrand
are already antisymmetric in µν resp ρσ , only the �rst term of the right-hand-
side (r.h.s.) will contribute, and we can just make the contractions. ¿en the
second order term in the expansion becomes:

U ≈−g2 є

∫
0

dλ1 dκ1
λ1 ,κ1

∫
0

dλ2 dκ2 (∂µAaE ν− ∂νAaE µ)(∂µAν aE − ∂νAµ aE ) . (2.40)
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Because є is an in�nitesimal parameter, going to zero in the continuum limit,
we can approximate the integrals with help from Equation B.5c. ¿e innermost
integral then equals

λ1 ,κ1

∫
0

dλ2 dκ2 (∂µAν aE − ∂νAµ aE ) ≈ λ1κ1 (∂µAν aE − ∂νAµ aE ) ∣
x+ 1

2 λ1n+ 1
2 κ1 ñ

,

so that the outermost integral becomes

є

∫
0

dλ1 dκ1 λ1κ1 (∂µAaE ν− ∂νAaE µ) ∣
x+λ1n+κ1 ñ

(∂µAν aE − ∂νAµ aE ) ∣
x+ 1

2 λ1n+ 1
2 κ1 ñ

≈ є4

4
(∂µAaE ν− ∂νAaE µ) ∣

x+ є
2 n+ є

2 ñ
(∂µAν aE − ∂νAµ aE ) ∣

x+ є
4 n+ є

4 ñ
.

Because the arguments of the �elds in both factors are the same in the limit
є → 0, we already drop the linear parts in є from the arguments. We then have:

U ≈ −g2 є4
4

(∂µAaE ν− ∂νAaE µ)2 ∣x +O(є4) . (2.41)

Unfortunately, these are not the only terms of order є4. If we expand the ex-
ponential further to third and up to fourth order, additional terms of order є4
emerge. We won’t show the calculation here, as it is trivial to do but really long,
but just give the result instead. ¿e extra terms are

∓g3 f abcAaE µAbE ν∂µAν aE − 1
4
g4 f abx f xcdAaE µA

b
E νA

µ c
E Aν dE .

So we can conclude that, up to an irrelevant constant term in front,

U ≈ −g2є4 1
4
FaE µνF

µν a
E +O(є5) . (2.42)

Now comes the tricky part. We cannot simply take the continuum limit є → 0,
as the action, the �elds, and the coupling constant are subject to rescalings and
renormalisation to be able to reproduce the correct continuum theory. When
summing over all lattice points (i.e. when integrating over x), we have to divide
by the lattice spacing to the fourth, i.e. є4, before taking the limit є → 0 See e.g.
[27] for a profound treatment on the continuum limit.
So �nally, a er rescaling the coupling constant, moving back to the continuum

theory and un-Wick rotating, we �nd
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U ≡ − 1
4
FaµνFµν a , (2.43)

up to an irrelevant constant term (which will be subtracted from the action
anyway). ¿e gauge �eld tensor is given by

Faµν = ∂µAaν − ∂νAaµ ± g f abcAbµAcν . (2.44)

¿is is exactly what we hoped for. We have shown how the kinetic terms for the
gauge �eld naturally emerge from the Wilson loop. Because the latter is gauge
invariant by de�nition, the gauge �eld tensor is automatically gauge invariant as
well.

2.3 summary

We cannot stress enough how deep the implications of our results in this chapter
are. ¿ey show us that every gauge theory has a deep geometric structure, in
fact, that every gauge theory is a geometric e�ect in se.
Starting only from the free Dirac Lagrangian and the demand of local phase

invariance, we constructed a full gauge theory.More speci�cally, the requirement
for the derivative to be well-behaving, viz. having a sensible local de�nition
instead of bi-local, leads to:

a. ¿e construction of a parallel transporter, or Wilson line, and with it the
introduction of the gauge �eld.

b. ¿e transformation rules for the gauge �eld.

c. ¿e de�nition of the covariant derivative, and hence with it the description
of interactions between matter �elds and the gauge �elds.

d. ¿e construction of a gauge-invariantWilson loop, and the demonstration
that it is intimately related to the gauge �eld dynamics and kinetic terms.

Note that the last statement is a direct indication that the gauge sector of any
gauge theory can be fully recast in function of Wilson loops. ¿is methodo-
logy, �rmly based on the mathematics of loop space, replaces coordinate and
momentum dependence with path dependence. We will elaborate on this in
Chapter 11.
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¿e full Yang-Mills Lagrangian for a su(n) symmetry is thus given by
Yang-Mills su(n) Lagrangian

LYM = ψ (i /D −m)ψ − 1
2
Tr FµνFµν . (2.45)

For the rest of this thesis we will stick to the convention of a positive sign in the
gauge transformation exponential. ¿e opposite convention is easily recovered
by making the substitution g → −g. ¿is sign convention propagates through
the de�nition of the covariant derivative and the gauge �eld tensor:

Yang-Mills Gauge Content

Dµ = ∂µ − i g Aaµ ta , (2.46a)

Faµν = ∂µAaν − ∂νAaµ + g f abcAbµAcν , (2.46b)

and the local gauge transformations

Local Gauge Transformations

ψ → ei g α
a(x)ta ψ , (2.47a)

ψ → ψ e−i g αa(x)ta , (2.47b)

Aaµ ta → i
g
ei g α

a(x)taDµ e−i g αa(x)ta , (2.47c)

Dµ → ei g α
a(x)taDµ e−i g αa(x)ta , (2.47d)

Fµν → ei g α
a(x)taFµν e−i g αa(x)ta , (2.47e)

which leave the Lagrangian invariant.
Four �nal remarks:

a. Note that these gauge transformation rules immediately invalidate mass
terms for the gauge �eld; indeed, terms of the form m2 AaµAµ a are not
gauge invariant.

b. ¿is is not the most general Lagrangian possible that conserves a su(n)
symmetry. We could add terms of the form єµνρσ Tr FµνFρσ . However,
these terms are parity violating, and hence beyond the scope of this thesis.

c. Note that the covariant derivative and the gauge �eld tensor can be related
by [Dµ ,Dν] = −i gFµν.
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d. ¿e minus sign between the derivative terms inside the gauge �eld tensor
(Equation 2.44) is a direct result of the wedge product in the in�nitesimal
surface element in Stokes’ theorem (Equation 2.34), hence it is a pure
geometrical e�ect.



3
QUANTISATION OF QUANTUM FIELD
THEORIES

In the two previous chapters, we constructed the gauge-invariant Lagrangian
for a classical �eld theory, based on symmetric and geometric arguments. ¿e
logical next step towards a decent QFT is of course the quantisation of the �elds.
Abelian theories are commonly quantised using the canonical formulation of
quantum �eld theory, in which the �elds are represented by non-commuting
operators.¿is approach comes straight from classical (non-relativistic) QM, and
puts the emphasis on the physical interpretation of the formalism. It is however
di�cult to apply to non-Abelian theories, because then the conserved charges
do not commute with each other (see Equation 1.46). ¿e solution is to do the
quantisation in the path integral formalism, as it perfectly allows to quantise
non-Abelian theories, and naturally shows the emergence of ghosts. We will try
to give a decent outline of the methods, without delving too much into details,
as it might lead us too far away from the main topic. See e.g. [18–21] for more
details.

3.1 formal definition of path integrals

Before we can start quantising the di�erent �elds, we need to introduce the
de�nition of a path integral and develop some calculational methods. We will
start with a short motivation for the use of path integrals, coming from the
propagator in classical non-relativistic QM. ¿is is done by using the transitivity
property to discretise the path along which the propagator is evaluated.¿e path
integral then naturally emerges when taking the continuum limit.

46
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QM Propagator as a Path Integral

In non-relativistic quantum mechanics, the Green’s function G is de�ned as a
solution of the Schrödinger equation:

(iħ ∂
∂t

−H)G(x , t; x0, t0) = iħδ(3)(x − x0)δ(t − t0) . (3.1)

It is o en called a “propagator”, as it propagates a wavefunction from a time t0
to a time t:

ψ(x , t) = ∫d3y G(x , t; y , t0)ψ(y , t0) for t0 < t . (3.2)

In the Schrödinger picture, the propagator is also o en written as

G(x , t; x0, t0) = ⟨x ∣T e− i
ħ

t
∫
t0
dt′ Ĥ(t′) ∣x0⟩ , (3.3)

for a general—possibly time-dependent—Hamiltonian. If the Hamiltonian
doesn’t commute at di�erent times, the exponential needs to be ordered along
the time direction; this is indicated by the symbol T . Next we divide the time in-
terval [t0, t1] into two parts by inserting a t1 (with t0 < t1 < t), using Equation 3.2
to split the propagator at t1:

ψ(x1, t1) = ∫d3x0 G(x1, t1; x0, t0)ψ(x0, t0) ,
ψ(x , t) = ∫d3x1 G(x , t; x1, t1)ψ(x1, t1) ,

= ∫d3x1 G(x , t; x1, t1) ∫d3x0 G(x1, t1; x0, t0)ψ(x0, t0) . (3.4)

But the latter should also equal

ψ(x , t) = ∫d3x0 G(x , t; x0, t0)ψ(x0, t0) . (3.5)

Comparing Equation 3.5 with Equation 3.4 we get

G(x , t; x0, t0) = ∫d3x1 G(x , t; x1, t1)G(x1, t1; x0, t0) for t0 < t1 < t . (3.6)
In other words, we can view the propagator from t0 to t as the sum of all possible
propagators going from t0 to t1, and then from t1 to t for any given t1. We can
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iterate this procedure, and slice the time interval into n + 1→∞ in�nitesimal
segments of length є = ti − ti−1:
G(x , t; x0, t0) = lim

n→∞ ∫d3x1⋯d3xn G(x , t; xn, tn)⋯G(x1, t1; x0, t0) . (3.7)
¿e i-th segment is given by (see Equation 3.3)

G(x i, ti ; x i−1, ti−1) = ⟨x i ∣T e−
i
ħ

ti
∫

t i−1dt
′ Ĥ(t′) ∣x i−1⟩ ,

= δ(3)(x i − x i−1) − i
ħ

t i

∫
t i−1
dt′ ⟨x i ∣ Ĥ(t′) ∣x i−1⟩ , (3.8)

up toO( 1
ħ2 ) . We now make the ansatz

Ĥ(t) = p̂2

2m
+ V̂(x̂ , t) . (3.9)

¿e �rst term then gives

⟨x i ∣ p̂22m ∣x i−1⟩ = ∫d3pi d3pi−1 ⟨x i ∣p i⟩ ⟨p i ∣ p̂22m ∣p i−1⟩ ⟨p i−1 ∣x i−1⟩ ,
= 1
2πħ ∫d3pi e

i
ħ pi ⋅(x i−x i−1) p2i

2m
,

while the second term gives

⟨x i ∣ V̂(x̂ , t) ∣x i−1⟩ = V(x i, t) δ(3)(x i − x i−1) ,
= 1
2πħ ∫d3pi e

i
ħ pi ⋅(x i−x i−1) V(x i, t) .

Plugging these results back in Equation 3.8, we get

G(x i, ti ; x i−1, ti−1) ≈ 1
2πħ ∫d3pi e

i
ħ pi ⋅(x i−x i−1) ⎛⎜⎝1 −

i
ħ

t i

∫
t i−1
dt′ H(x i, pi, t′)⎞⎟⎠ ,

= 1
2πħ ∫d3pi e

i
ħ pi ⋅(x i−x i−1) T e− i

ħ

ti
∫

t i−1dt
′ H(x i ,pi ,t′)

.
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To retrieve the full propagator, we combine all segments using the transitivity:

G(x , t; x0, t0) = lim
n→∞ ∫

n∏
i=1 d

3x i
n+1∏
j=1

d3pj
2πħ

T e i
ħ

n∑
0

⎡⎢⎢⎢⎢⎣pi ⋅(x i−x i−1)−
i
ħ

ti
∫

t i−1dt
′ H(x i ,pi ,t′)

⎤⎥⎥⎥⎥⎦ .
We can write the product between the momentum and position vectors in the
exponential as a time integral

∞∑
0
pi ⋅ (x i − x i−1) = ∞∑

0
є pi ⋅ x i − x i−1є

= t

∫
t0

dt′ p(t′)ẋ(t′) , (3.10)

such that we can combine the two terms in the exponential. So we �nally get

G(x , t; x0, t0) = ∫Dx Dp e
i
ħ

t
∫
t0
dt′ [p ⋅ẋ−H] = ∫Dx Dp e

i
ħ S . (3.11)

In other words, the Green’s function that propagates a space point x0 at time t0
to a space point x at time t can be written as an integral over all possible paths;
a path integral of the action. ¿is is a result on which we will build when going
to quantum �eld theory.

De�nition of the Path Integral

Let us now try to develop the formalism a bit more formal, starting with path
integrals of scalar �elds. ¿e result in Equation 3.11 is a path integral over co-
ordinates and momenta, but in QFT we of course would like to express it as an
integral over the �elds. First we expand the scalar �eld in an arbitrary basis {ui}:

ϕ(x) def= ∞∑ αi ui(x) , (3.12)

where the coe�cients are just real numbers, and the basis is chosen to be or-
thonormal:

∫d4x ui(x)u j(x) def= δi j . (3.13)

Because of the orthonormality of the basis, we can retrieve the αi coe�cient by
projecting ϕ on ui :

αi = ∫d4x ϕ(x)ui(x) . (3.14)
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If we cut o� the series in Equation 3.12 at a value n, we can write any functional
of the �eld in function of the n coe�cients αi :

F[ϕ] cut at nÐÐÐ→ Fn(α1, . . . , αn) .
Now it is straightforward to give a sensible de�nition of the path integral. First
note that integrating over all possible �elds is the same as integrating over all
possible �eld coe�cients αi . So for the series expansion cut at n, the path integral
over a functional F is simply

∫Dcutϕ F[ϕ] = +∞
∫−∞dα1⋯dαn Fn(α1, . . . , αn) .

It is thus logical to de�ne the path integral for an uncut series expression as

Path Integral

∫Dϕ F[ϕ] def= lim
n→∞

+∞
∫−∞dα1⋯dαn Fn(α1, . . . , αn) , (3.15)

under the condition that this limit exists. ¿e path integral is linear and
translation invariant:

∫Dϕ (aF[ϕ] + bG[ϕ]) = a ∫Dϕ F[ϕ] + b ∫Dϕ G[ϕ] , (3.16a)

∫Dϕ F[ϕ + χ] = ∫Dϕ F[ϕ] , (3.16b)

where the latter is of course only valid it χ doesn’t depend on ϕ. Instead of
translating the �eld, we could also rotate it:

ϕ(y) def= ∫d4x L(y, x)ϕ(x) . (3.17)

In this case the coe�cients of ϕ are related to those of ϕ by the coe�cients of L:

α i =∑
j
Li jα j .

¿is variable change will modify the integration measure with a determinant:

∏ αi →∏ α i = det Ln∏ αi ,
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and hence

Dϕ → Dϕ = det L Dϕ . (3.18)

We can combine translation and rotation in one formula:

∫Dϕ F[Lϕ + χ] = det L ∫Dϕ F[ϕ] , (3.19)

where we adopted the shorthand notation

Lϕ N= ∫d4x L(y, x)ϕ(x) , (3.20)

which is a notation that we will o en use, as a matter of saving space.

Gaussian Path Integral

By far the most important path integral is a Gaussian integral, because—as we
will see—�eld correlators are related to the path integral of an exponential of
the action. Because the kinetic �eld terms in the action are quadratic by nature,
they lead to a Gaussian path integral. A general Gaussian path integral can be
written as:

∫Dϕ e
− ∫d4x d4 y ϕ(x)K(x ,y)ϕ(y)

, (3.21)

where K(x , y) is a real symmetric operator by de�nition,¹ and is commonly
called a Kähler metric. Expanding the �elds in their coe�cients, we can write

∫d4x d4y ϕ(x)K(x , y)ϕ(y) =∑
i , j
∫d4x d4y αiui(x)K(x , y)α ju j(y) . (3.22)

If we expand K in the same basis as ϕ:

K(x , y) def= ∞∑
i , j
Ki j ui(x)u j(y) , (3.23)

we can retrieve its coe�cients by projecting—now twice—on the basis functions:

Ki j = ∫d4x d4y ui(x)K(x , y)u j(y) . (3.24)

1 If it is not symmetric, only its symmetric part contributes to the result.
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¿is is exactly the integral in Equation 3.22, i.e. we can write

∫d4x d4y ϕ(x)K(x , y)ϕ(y) =∑
i , j
αiKi jα j , (3.25)

So the Gaussian path integral is now given by:

lim
n→∞ ∫

n∏dαi e
−∑
i , j
α iKn

i jα j
.

¿e components of Kn represent a n × n matrix which can be orthogonalised as
Kn
i j =∑

k,l
OikBklOl j ,

where B is diagonal, i.e.

Bkl = λkδkl (no sum over k) ,
and where the orthogonal matrices O have unit determinant. We absorb them
by rede�ning αi :

βi
def=∑

j
Oi jα j ,

so that we can rewrite

∑
i , j
αiKn

i jα j =∑
i
λiβ2i . (3.26)

¿e integration measures remain invariant:
n∏dβi = detO n∏dαi = n∏dαi . (3.27)

¿e exponential can now be rewritten as a product of n exponentials:

e∑i λ iβ2i =∏
i
eλ iβ

2
i ,

so the Gaussian path integral becomes a product of n Gaussian integrals:

Gaussian Path Integral

∫Dϕ e
− ∫d4x d4 y ϕ(x)K(x ,y)ϕ(y) = NG 1√

detK
, (3.28)

where

NG = lim
n→∞

√
πn (3.29)
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is an in�nite constant that we will divide out in a later stage, and

detK = lim
n→∞detKn ,

provided that this limit exists. Let us investigate a trivial example, where

K(x , y) = δ(4)(x − y) .
¿e components of K are then:

Ki j = ∫d4x ui(x)u j(x) = δi j ,
which is simply the identity matrix with determinant detKn = 1. Because the
determinant is independent of n, taking the limit doesn’t change it, i.e. detK = 1
as well. We hence have

∫Dϕ e
− ∫d4x ϕ2(x) = NG . (3.30)

n-Point Gaussian Integrals

Now that we know how to path-integrate Gaussian functions, we investigate
what to do when the exponential contains, next to quadratic terms, linear terms
as well:

A[ϕ, J] = − ∫d4x d4y ϕ(x)K(x , y)ϕ(y) + ∫d4x J(x)ϕx .
If this would be a regular (non-path) integration, the way to proceed would be
to ‘complete the square’, i.e.

∫dx e−ax2+bx = e b24a ∫dx e−a(x− b
2a )2 = e b24a ∫dx e−ax2 . (3.31)

We will now try a similar approach on the functionals. First we de�ne

ϕ(x) = ϕ(x) − 1
2 ∫d4x′ K−1(x , x′)J(x′) , (3.32)

where K−1 is the inverse Kähler metric, satisfying
∫d4z K(x , z)K−1(z, y) = δ(4)(x − y) . (3.33)
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Next we can write A[ϕ, J] in function of the new �elds ϕ:

A[ϕ, J] = − ∫d4x d4y ⎛⎝ϕ(x) + 1
2 ∫d4x′ K−1(x , x′)J(x′)⎞⎠

× K(x , y)⎛⎝ϕ(y) + 1
2 ∫d4y′ K−1(y, y′)J(y′)⎞⎠

+ ∫d4x J(x)⎛⎝ϕ(x) + 1
2 ∫d4x′ K−1(x , x′)J(x′)⎞⎠ ,

which gives a er using Equation 3.33:

A[ϕ, J] = − ∫d4x d4y [ϕ(x)K(x , y)ϕ(y) − 1
4
J(x)K−1(x , y)J(y)] .

Because in the path integral formalism �elds are functions, not operators, they
commute and we can always factor out the exponential, writing the sum as a
product of two exponentials.² Furthermore, from Equation 3.32 we see that the
shi in ϕ is independent on ϕ, it hence leaves the integration invariant (because
of translation invariance). So the path integral is given by:

Completing the Square in a Path Integral

∫Dϕ e−ϕKϕ+Jϕ = e 1
4 JK

−1 J ∫Dϕ e−ϕKϕ , (3.34)

with the abbreviations

ϕKϕ N= ∫d4x d4y ϕ(x)K(x , y)ϕ(y) , (3.35a)

Jϕ N= ∫d4x J(x)ϕx , (3.35b)

JK−1J N= ∫d4x d4y 1
4
J(x)K−1(x , y)J(y) . (3.35c)

Look how closely it resembles the regular integration technique in Equation 3.31.

2 Even when the �elds are Lie algebra-valued they commute, because we assume that in general the
Kähler is diagonal in Lie indices, i.e. K ∼ δab , which implies both �elds have the same generator
so that they commute.
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A last thing we want to investigate is how to make path integrations of Gaus-
sians with �elds in front of the exponential, evaluated at di�erent points, i.e.

∫Dϕ ϕ(x1)⋯ ϕ(xn) e−ϕKϕ . (3.36)

We will call this an n-point Gaussian path integral. For odd n, the path integral
cancels because the integrand is an odd function, so let us start with a 2-point
integral. If this would be a regular integration, the way to proceed would be to
make a derivation w.r.t. the coe�cient in front of x2 in the exponent:

∫dx x2e−ax2 = − d
da ∫dx e−ax2 = − d

da

√π
a
.

If we want to do something similar in the path integral formalism, we �rst need
to �nd a sensible derivative. Without going too much into the formal details, we
de�ne the functional derivative of a functional by its action on a test function:

Functional Derivative

δJ(y)
δJ(x) def= δ(4)(x − y) . (3.37)

It commutes with integration, so that

δ
δJ(x) ∫d4y J(y)ϕ(y) = ϕ(x) . (3.38)

For all other calculations it can be treated as a normal derivative on the functions.
It obeys e.g. the same Leibniz’ rule as the standard derivative:

δ
δJ(x) (F[J]G[J]) = δF[J]

δJ(x)G[J] + F[J]δG[J]
δJ(x) . (3.39)

just as it obeys the chain rule as well:

δ
δJ(x)e∫

d4 y J(y)ϕ(y) = ⎛⎝ δ
δJ(x) ∫d4y J(y)ϕ(y)⎞⎠ e∫

d4 y J(y)ϕ(y)
,

= ϕ(x)ei ∫d4 y J(y)ϕ(y)
, (3.40)

¿e latter allows us to write the 2-point integral as a double derivative:
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∫Dϕ ϕ(x1)ϕ(x2) e−ϕKϕ = δ
δJ(x1) δ

δJ(x2) ∫Dϕ e−ϕKϕ+Jϕ∣
J=0 . (3.41)

And we know how to calculate the integral in the r.h.s., as we calculated it in
Equation 3.34. ¿e J-dependence then sits in the exponential in front of the
path integral:

∫Dϕ ϕ(x1)ϕ(x2) e−ϕKϕ = ( δ
δJ(x1) δ

δJ(x2)e
1
4 JK

−1 J)
J=0 ∫Dϕ e−ϕKϕ . (3.42)

¿e chain rule brings the term JK−1J in front of the exponential, which we can
easily calculate:

δ
δJ(x2) ∫d4x d4y J(x)K−1(x , y)J(y)

= ∫d4x d4y [δ(4)(x−x2)K−1(x , y)J(y) + J(x)K−1(x , y) δ(4)(y−x2)] ,
= ∫d4y K−1(x2, y)J(y) + ∫d4x J(x)K−1(x , x2) ,
= 2 ∫d4x J(x)K−1(x , x2) .

¿e last step is valid because K−1 is symmetric. Using the shorthand Ji N= J(xi)
we then have:

δ
δJ1

δ
δJ2

e
1
4 JK

−1 J = 1
2
δ
δJ1

JxK−1x2 e 1
4 JK

−1 J ,

= 1
2
( δ
δJ1

JxK−1x2) e 1
4 JK

−1 J + 1
2
JxK−1x2 δ

δJ1
e

1
4 JK

−1 J ,

= 1
2
K−112 e 1

4 JK
−1 J + JxK−1x2 JyK−1y1 e 1

4 JK
−1 J ,

J = 0= 1
2
K−1(x1, x2) .

¿is gives us the �nal result for a 2-point Gaussian path integral:

∫Dϕ ϕ(x1)ϕ(x2) e−ϕKϕ = 1
2
K−1(x1, x2) ∫Dϕ e−ϕKϕ . (3.43)

Generalising this to an n-point integral is trivial, as we just can write



3.1 formal definition of path integrals 57

n-point Gaussian Path Integral

∫Dϕ ϕ1⋯ϕn e−ϕKϕ = δ
δJ1

⋯ δ
δJn

e
1
4 JK

−1 J ∣
J=0 ∫Dϕ e−ϕKϕ , (3.44)

where we introduced the shorthand notation ϕn
N= ϕ(xn). However, we have to

be careful as Leibniz’ rule chains non-trivially at higher orders. E.g. for the case
with four �elds, we get

δ
δJ1

δ
δJ2

δ
δJ3

δ
δJ4

e
1
4 JK

−1 J = 1
2
δ
δJ1

δ
δJ2

δ
δJ3

JxK−1x4 e 1
4 JK

−1 J ,

= δ
δJ1

δ
δJ2

( 1
2
K−134 + 1

4
JxK−1x4 JyK−1y3) e 1

4 JK
−1 J ,

= δ
δJ1

( 1
4
K−134 JxK−1x2 + 1

4
K−123 JxK−1x4 + 1

4
JyK−1y3 K−124

+ 1
4
JyK−1y3 JxK−1x4 JzK−1z2) e 1

4 JK
−1 J ,

= 1
4
(K−134 K−112 + K−123 K−114 + K−113 K−124 +O(J)) e 1

4 JK
−1 J ,

J = 0= 1
4
(K−112 K−134 + K−113 K−124 + K−114 K−123) .

So any n-point Gaussian path integral is just a set of all possible combinations of
n/2 inverse Kähler metrics in front of a standard Gaussian, when n is even.Indeed,
for any n even, we have found that

∫Dϕ ϕi1⋯ϕin e−ϕKϕ = (n − 1)!!
2
n
2

K−1(i1 i2⋯K−1in−1 in) ∫Dϕ e−ϕKϕ . (3.45)

¿e factor in front deserves a short explanation. First of all, the factor 2−n/2
comes from the fact that every K−1 gets a 1/2 in front (see Equation 3.43).³ On
the other hand, the double factorial

(n−1)!! = (n−1)⋅(n−3)⋅ ⋯ ⋅3⋅1 (3.46)

represents the number of possible combinations to pick unordered pairs from
an even set of n elements. It is needed to cancel the normalisation factor from
the symmetrisation procedure, but we can ignore this factor if we instead of
normalising the symmetry just make all possible unique permutations of the

3 ¿is is the reason why one commonly chooses to put a factor 1/2 in front of the kinetic terms in
the scalar Lagrangian, as it will manifest in the Kähler as a factor 2, cancelling the overall factor
2−n/2.
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indices. Note that relating the n-point integral to a combination of 2-point
integrals is exactly the same as making a Wick contraction, so we have found a
nice mathematical explanation for a relation that is otherwise—arguably—a bit
less elegant to prove.
Until now we have only considered a real scalar �eld. Generalising this to a

complex scalar �eld is trivial. First of all, the Gaussian can be calculated in the
same way as before, by expanding the �eld in function of a set of basis vectors
ui(x), and cutting the series at a value n. ¿en using the result for a standard
integral in Equation B.4j, we �nd:

Complex Gaussian Path Integral

∫Dϕ∗Dϕ e−ϕ∗Kϕ = NG∗
detA

, (3.47)

where NG∗ = lim
n→∞(2π i)n. Note that now the dependence on the determinant

is without the square root; a consequence of the fact that we have two path
integrations. Completing the square goes the same as before, but because we
now have two source terms (J and J∗), the result is without the factor 1/4:

∫Dϕ∗Dϕ e−ϕ∗Kϕ+J∗ϕ+Jϕ∗ = eJ∗K−1 J ∫Dϕ∗Dϕ e−ϕ∗Kϕ . (3.48)

Finally, n-point Gaussians can be calculated in the same way as well, where this
time we use two functional derivatives, one to J and one to J∗ (note that to bring
down a ϕ we need to derive w.r.t. J∗ and vice versa):

∫Dϕ∗Dϕ ϕi1⋯ϕim ϕ∗j1⋯ϕ∗jn e−ϕ∗Kϕ = δ
δJ∗i1

⋯ δ
δJ∗im

δ
δJ jm+1

⋯ δ
δJ jn

eJ
∗K−1 J ∣

J ,J∗=0
× ∫Dϕ∗Dϕ e−ϕ∗Kϕ . (3.49)

Note that this is an n+m-point integral. ¿ere are however two important
di�erences, as compared to the real �eld, when identifying the derivatives with
the inverted Kähler metric. First of all, if in the above equation m ≠ n, i.e. when
the number of δJ doesn’t equal the number of δJ∗ , the result will automatically
be zero a er setting J , J∗ = 0. So we have the natural requirement m ≡ n. But
more importantly, as compared to the real n-point Gaussian, the number of
possible combinations will be smaller. Where in the real case the number of
possible combinations equals (n − 1)!!, in the complex case this is only (n/2)!,



3.2 quantisation of the scalar field 59

for a total number of n derivatives.4 Consider e.g. the calculation of the 4-point
integral:

δ
δJ1

δ
δJ2

δ
δJ∗3

δ
δJ∗4 e

J∗K−1 J = δ
δJ1

δ
δJ2

δ
δJ∗3 (K−1x4 Jx eJ∗K−1 J) ,

= δ
δJ1

δ
δJ2

(K−1x4 Jx K−1y3 Jy eJ∗K−1 J) ,
= δ
δJ1

(K−124 K−1y3 Jy + K−1x4 Jx K−123) eJ∗K−1 J ,
J , J∗ = 0= K−113 K−124 + K−114 K−123 . (3.50)

When comparing this to the real result, we see that the missing term is K−112 K−134 ,
which would connect two coordinates that are both belonging to non-conjugated
�elds, and two coordinates that are both belonging to conjugated �elds. It is easy
to show that

∫Dϕ∗Dϕ ϕ1ϕ2 e−ϕ∗Kϕ = ∫Dϕ∗Dϕ ϕ∗1 ϕ∗2 e−ϕ∗Kϕ = 0 . (3.51)

Hence when making all possible combinations, we only make those that cross
conjugated and non-conjugated �elds. Using index notation, we can write this
as:

∫Dϕ∗Dϕ ϕi1ϕ
∗
j1⋯ϕinϕ∗jn e−ϕ∗Kϕ = n! (K−1) j1(i1 ⋯ (K−1) jnin)

× ∫DϕDϕ∗ e−ϕ∗Kϕ , (3.52)

where again the factor n! in front is only needed to cancel the normalisation of
the symmetrisation.

3.2 quantisation of the scalar field

Let us see how we can use the path integral formalism in order to quantise any
�eld theory, starting with a scalar �eld theory—as this is the most trivial to work

4 To appreciate the di�erence: the real 8-point correlator has 105 terms, while for the complex
there are only 24.
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with, and as the results can be easily ported to higher-spin �elds. Motivated by
Equation 3.11, we expect the propagator to be related to

∫Dϕ ei S .

Note that from now on we will work in natural units, hence ħ ≡ 1 and c ≡ 1.

¿e Free Scalar Field

¿e action for a free scalar �eld is given by Equation 1.9 (we still consider the
�eld to be real-valued):

Sscalar0 = ∫d4x ( 1
2
∂µϕ ∂µϕ − 1

2
m2ϕ2) .

Using partial integration, we can rewrite this as

Sscalar0 = − 1
2 ∫d4x d4y ϕ(x) δ(4)(x − y) (◻ +m2) ϕ(y) , (3.53)

hence the Kähler metric is given by

K(x , y) = i
2
δ(4)(x − y) (◻ +m2) . (3.54)

Note that the Kähler includes the Klein-Gordon operator ◻ + m2 (see Equa-
tion 1.10). Its inverse is de�ned so to satisfy

∫d4z K(x , z)K−1(z, y) ≡ δ(4)(x − y) .
Here we hence have

i
2
(◻ +m2)K−1(x , y) ≡ δ(4)(x − y) . (3.55)

Now comes the important part. In the canonical quantisation framework, quant-
isation is implemented by imposing canonical commutation relations on the
�elds. Next these are used in order to construct the free scalar propagatorDF as a
2-point correlation. Applying the Klein-Gordon Equation 1.10 on this propagator
then yields the equation:
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−Ek + iε Ek + iε

advanced

−Ek − iε Ek − iε
retarded

−Ek + iε
Ek − iε

Feynman

Figure 3.1: Pole structures for the three most common propagators, from le to right:
the advanced, retarded and Feynman propagator. ¿eir de�nitions are
given in Equation 3.58 and Equations 3.59, while the energy is simply
Ek =√

k2 +m2 .

Klein-Gordon Propagator Equation

(◻ +m2)DF(x , y) ≡ −i δ(4)(x − y) . (3.56)

But we didn’t impose commutation relations, and so we don’t yet have derived
a sensible de�nition for the propagator. We can avoid the need for canonical
commutation relations by comparing Equation 3.56 with Equation 3.55. Instead
of trying to derive the propagator, we simply de�ne it as

DF(x , y) def= 1
2
K−1(x , y) . (3.57)

So this is the main di�erence between the two formalisms: while in the canonical
quantisation framework, quantisation itself lies in the canonical commutation
relations (which will eventually lead to the above identi�cation between the
inverse Kähler and the propagator), in the path integral quantisation framework
we skip the commutation relations, and directly impose this identi�cation.Hence
Equation 3.57 summarises the fundamental basis of quantisation in the path
integral formalism.
Equation 3.56 can be easily solved in momentum space, giving the de�nition

of the Feynman scalar propagator:

Feynman Scalar Propagator

DF(x , y) = ∫ d4k(2π)n i
k2 −m2 + iε e−i k⋅(x−y) , (3.58)

where ε is a pole-prescription that follows from the technicalities in the calcula-
tion. ¿e solution is not unique, and di�erent prescriptions lead to propagators
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that have di�erent causal behaviours. Two examples are the advanced and
retarded propagators:

Dadv = ∫ d4k(2π)n i(k0 − iε)2 − k2 −m2
e−i k⋅(x−y) , (3.59a)

Dret = ∫ d4k(2π)n i(k0 + iε)2 − k2 −m2
e−i k⋅(x−y) . (3.59b)

¿e pole structures for these three propagators are shown in Figure 3.1. In what
remains of this thesis, we will exclusively deal with the Feynman propagator in
Equation 3.58. See e.g. [18–20] for more detail.
Now that we have identi�ed the propagator with the inverse Kähler, we in-

vestigate how it emerges from (possibly a combination of) path integrals of
the exponentiated action. ¿e path integral over the action is just a standard
zero-point Gaussian, which we already solved in Equation 3.28:

∫Dϕ ei S = NG√
det i2 δ(4)(x − y) (◻ +m2) (3.60)

To calculate its determinant, we again expandK in function of the basis functions
ui(x), and cut the series again at n. It is clear that this determinant is merely a
constant—as there is no �eld dependence inside—but as an illustration of the
techniques involved it is interesting to calculate it. First we express the basis
functions as discrete Fourier series, so that we can let the derivatives work on
them:

ui(x) = 1
V

n∑
m
e−i km ⋅xui(km) , (3.61)

where

kµm = 2πmµ

L
, V = L4 ,

and where mµ is an integer. So the elements of K are given by:

Ki j = i
2 ∫d4x d4y ui(x) δ(4)(x − y) (◻ +m2) u j(y) ,

= i
2
m2δi j + i

2
1
V 2∑

m,l
∫d4x e−i kn ⋅xui(km) ∂2e−i k l ⋅xu j(kl) ,

= i
2
m2δi j − i

2
1
V 2 (2π)4∑

m,l
k2l δ

(4)(km + kl)ui(km)u j(kl) ,
= i
2
m2δi j − i 8π4V 2 ∑

m
k2m ui(km)u j(−km) .
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¿is determinant can be calculated, because for any n × n matrix that has this
form, the determinant is simply given by

RRRRRRRRRRRRRRRRRRRRRRR

a + x1y1 x1y2 ⋯ x1yn
x2y1 a + x2y2 ⋯ x2yn⋮ ⋮ ⋱ ⋮
xn y1 xn y2 ⋯ a + xn yn

RRRRRRRRRRRRRRRRRRRRRRR
= an−1 (a + n∑

1
xi yi) . (3.62)

Applied to the Kähler this is

detKn = ( i
2
)nm2n−2 [m2 − (2π)4

V 2

n∑
i

n∑
m
k2m ui(km)ui(−km)] .

In other words, the path integral is again a constant:

∫Dϕ ei S
scalar
0 = Nϕ , (3.63)

where the in�nite constant now equals

Nϕ = lim
n→∞

¿ÁÁÁÁÀ (−2iπ)n
m2n − n∑

i
k2i f (ki)

, (3.64)

f (km) = m2n−2 (2π)4
V 2

n∑
i
∫d4x d4y ei km ⋅(x−y)ui(x)ui(y) . (3.65)

I.e. the constant resums all possible mass and momentum modes up to in�nity.
Now we are a bit stuck, as we wanted to relate the propagator to the path integ-

ral of the action, but the latter equals a constant without any dynamics, which is
even in�nite to make things worse. However, as we motivated in Equation 3.57,
the propagator is directly related to the inverse Kähler metric, which in turn
emerges from the 2-point Gaussian path integral in Equation 3.43:

∫Dϕ ϕ1ϕ2 e−ϕKϕ = 1
2
K−112 ∫Dϕ e−ϕKϕ = DF(x1, x2) Nϕ . (3.66)

If we divide this result by the zero-point integral (which equals Nϕ), the bother-
some in�nite constant cancels out. In other words, we de�ne the propagator to
be equal to
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Feynman Propagator as Path Integrals

DF(x1, x2) def= ∫Dϕ ϕ1ϕ2 ei S0

∫Dϕ ei S0
. (3.67)

¿e physical interpretation of the propagator follows from the fact that it is
a solution to the Klein-Gordon Equation 3.56. Hence it remains the same as
in QM but now expressed in spacetime, i.e. it is the amplitude for a particle
travelling from a spacetime point x1 to a spacetime point x2, and vice versa
(because the propagator is symmetric).
¿e Feynman propagator equals the time-ordered 2-point correlation function

of a �eld as de�ned in the canonical quantisation framework, i.e.

DF(x , y) ≡ ⟨0∣T ϕ(x)ϕ(y) ∣0⟩ .
Because in the path integral framework time-ordering is irrelevant (remember
that the �elds are mere functions, no operators), we can drop the T from this
notation. If one wants to relate results between the two formalisms, adding a T
in the correlator will do (at least from a notational point of view).
It is then trivial to generalise this de�nition to higher order correlation func-

tions:

⟨0∣ ϕ1ϕ2⋯ϕn ∣0⟩ def= ∫Dϕ ϕ1ϕ2⋯ϕn ei S0
∫Dϕ ei S0

, (3.68)

¿ese integrals are solved in Equation 3.45. E.g. for the 4-point correlator we
�nd

⟨0∣ ϕ1ϕ2ϕ3ϕ4 ∣0⟩ = D12
F D34

F + D13
F D

24
F + D14

F D23
F . (3.69)

So it represents 2 particles that are travelling from any of the four points to
any of the other points. ¿is is illustrated in Figure 3.2. Such pictures are called
Feynman diagrams, a er the famous physicist that invented them. ¿e relation
we found is true at any order: the n-point correlator represents n/2 identical
particles that connect any two out of the n spacetime points.
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x1

x2 x3

x4
D12

F D34
F

x1

x2 x3

x4
D13

F D24
F

x1

x2 x3

x4
D14

F D23
F

Figure 3.2: ¿e scalar 4-point correlator can be interpreted in a physical way by using
Feynman diagrams. Here two particles are created at di�erent spacetime
points. Each propagates to one of the remaining points and is annihilated.
¿is can be done in three ways only, because the particles are indistinguish-
able.

x1

x2 x3

x4
D13

F D24
F

x1

x2 x3

x4
D14

F D23
F

Figure 3.3: ¿e complex scalar 4-point correlator represents all di�erent possibilit-
ies for two complex scalar �elds. A complex scalar propagator connects
a conjugated �eld (represented as open dots) with a non-conjugated �eld
(represented as �lled dots).

Note in the case of complex scalar �elds, the propagator can only connect a
non-conjugated with a conjugated �eld, as was explained in Equation 3.50. ¿is
means e.g. :

⟨0∣ ϕ∗1 ϕ∗2ϕ3ϕ4 ∣0⟩ = D13
F D

24
F + D14

F D23
F , (3.70a)

⟨0∣ ϕ1ϕ∗2ϕ3ϕ∗4 ∣0⟩ = D12
F D34

F + D14
F D23

F . (3.70b)

¿e �rst relation is illustrated in Figure 3.3.



3.2 quantisation of the scalar field 66

¿e Interacting Scalar Field

Let us now advance to an interacting scalar �eld theory. ¿e most common is
ϕ4-theory, so we will choose it as an example to quantise interacting scalar �eld
theory. Its Lagrangian given by (see also Equation 1.13):

Sscalar = ∫d4x ( 1
2
∂µϕ∂µϕ − 1

2
m2ϕ2 − λ

4!
ϕ4) . (3.71)

While it is in principle possible to calculate the Gaussian path integral that
contains this action, it becomes quickly unmanageable to calculate n-point
correlators, as we cannot use the derivation trick anymore. Instead, for any
coupling constant λ smaller than one, we can expand interacting part of the
action exponential:

e−ϕKϕ−ϕ4 = ⎛⎝1 − i λ4! ∫d4x ϕ(x)ϕ(x)ϕ(x)ϕ(x) +⋯⎞⎠ e−ϕKϕ . (3.72)

¿e �rstO(λ) term is just a 4-point correlator, but with every �eld in the same
point:

∫d4x ∫Dϕ ϕxϕxϕxϕx e−ϕKϕ = 3Nϕ ∫d4x DF(x , x)DF(x , x) . (3.73)

¿is can be interpreted (up to an irrelevant constant Nϕ) as the creation of
two particles at some point x, that propagate over an unde�ned distance only
to be annihilated again in exactly the same point. Furthermore, this result is
integrated over all possible spacetime points. Higher orders give the same result,
be it with more particles as intermediate steps (but every diagram is ‘closed’, i.e.
there are no external points, instead every point is integrated over). It hence
symbolises the natural excitation of an interacting scalar �eld over all spacetime,
better known as the vacuum energy. However, this vacuum diagrams are a bit
troublesome, as they are in�nite by de�nition—and not only due to the factor
Nϕ (we don’t mind the latter, as we will divide it out anyway). We can see this by
using the Fourier transform of the propagator:

∫d4x DF(x , x)DF(x , x) = ∫d4x d4k1(2π)4 d
4k2(2π)4 i e−i k1 ⋅(x−x)

k21 −m2 + iε i e
−i k2 ⋅(x−x)

k22 −m2 + iε ,
= ⎛⎝ ∫d4x ⎞⎠ ∫ d4k1(2π)4 d

4k2(2π)4 i
k21 −m2 + iε i

k22 −m2 + iε ,
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x

a)

x y

b)

Figure 3.4: a) ¿e NLO vacuum Feynman diagram for ϕ4-theory, where two particles
are created and annihilated in the same point. b) An NNLO example.

where the factor in front explodes to in�nity. ¿e only solution we have to get a
�nite result, is to divide these modes out, just as we did in the free case. we will
soon see how to accomplish this.
Now for a more interesting example, we investigate the situation where we

have two extra �elds at di�erent spacetime point in front of the expansion (we
already divided by Nϕ—the path integral over the free action—in order to cancel
it):

1
Nϕ

∫Dϕ ϕxϕy
⎛⎝1 − i λ4! ∫d4z ϕzϕzϕzϕz +⋯⎞⎠ e−ϕKϕ ,

= DF(x , y) − i λ4! 1
Nϕ

∫d4z ∫Dϕ ϕxϕyϕzϕzϕzϕz e−ϕKϕ +⋯ . (3.74)

¿e �rst term is again the propagator, and the next terms areO(λ) corrections.
We will interpret this result as the full propagator, i.e. the propagator for the
interacting �eld. ¿e propagator for the free �eld is the ‘leading order’ (LO)
approximation to the full propagator, and the one that includes the �rst-order
correction in λ the ‘next-to-leading order’ (NLO) approximation, and so on. ¿e
NLO correction term is a 6-point correlator, which we can express in terms of
free-�eld propagators:

1
Nϕ

∫Dϕ ϕxϕyϕzϕzϕzϕz e−ϕKϕ = 12Dxz
F D

zz
F D

zy
F + 3Dxy

F Dzz
F D

zz
F . (3.75)

We only have two terms; one where both x and y are connected to one of the z’s
(there are 12 equal terms of these form), and onewhere x and y are connected and
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all z are interconnected (of which there are 3 equal terms). ¿eir corresponding
Feynman diagrams are given by:

zx y
z

x y

¿e �rst diagram is what we will call a one-loop correction to the propagator.
¿e second diagram is the free propagator multiplied with an NLO vacuum
diagram. Remember that there is an integral over all possible z; this is exactly
the superposition principle of QM: when a process can happen in di�erent ways,
we sum over all possible paths.
Let us out of curiosity investigate the NNLO contribution, the second order in

λ. It is given by

− 1
2

λ2(4!)2 1
Nϕ

∫d4z ∫d4w ∫Dϕ ϕxϕyϕzϕzϕzϕzϕwϕwϕwϕw e−ϕKϕ . (3.76)

¿e solution is a bit more involving than before, as it is now a sum of terms
consisting of 5 free propagators:

144Dxz
F D

zz
F D

zw
F Dww

F Dwy
F + 144Dxz

F D
zw
F Dzw

F Dzw
F Dwy

F + 96Dxz
F D

zw
F Dww

F Dwz
F Dzy

F+ 36Dxz
F D

zz
F D

zy
F D

ww
F Dww

F + 9Dxy
F Dzz

F D
zz
F D

ww
F Dww

F + 36Dxy
F Dzz

F D
zw
F Dzw

F Dww
F+ 24Dxy

F Dzw
F Dzw

F Dzw
F Dzw

F + z↔ w .

¿e coe�cients just follow from summing equal terms, as before. ¿e diagrams
corresponding to these terms are:

So we have three 2-loop corrections, one 1-loop correction plus an NLO vacuum
diagram, and three free propagators plus an NNLO vacuum diagram. Now what
to do with the troublesome vacuum diagrams, that are in�nite? It is not di�cult
to understand that when calculating the propagator to all orders, in the end we
will have all possible combinations between ‘pure’ propagator corrections and
vacuum diagrams. In other words, symbolically we can write:
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all orders = ( + + +⋯)⎛⎜⎝1 + + +⋯⎞⎟⎠ .

So we can factor out all vacuum contributions. ¿is in turn means that we can
de�ne the full interacting propagator in function of the full action:

Dfull
F (x1, x2) def= ∫Dϕ ϕ1ϕ2 e−i S

∫Dϕ e−i S
, (3.77)

where we have the full interacting action in the numerator to include all loop
corrections, and in the denominator to divide out the in�nite constant Nϕ plus
all vacuum diagrams. Totally similar, we can de�ne the full interaction higher
order correlation functions:

⟨Ω∣ ϕ1ϕ2⋯ϕn ∣Ω⟩ def= ∫Dϕ ϕ1ϕ2⋯ϕn e−i S

∫Dϕ e−i S
, (3.78)

where ⟨Ω ∣Ω⟩ denotes the normalised interacting vacuum state.
It is much easier to draw all possible diagrams than to calculate all possible

combinations resulting from the path integral. ¿e only thing we need to know,
is how to calculate the combinatorics coe�cient in front, only based on the
diagram. Let us build it step by step. First there is a factor n! from the interchange
of the coordinates that are integrated over (the vertices)—this factor cancels with
the factor 1/n! from the expansion of the exponential. Furthermore, every vertex
has four legs that can be interchanged at will, giving a factor 4! that cancels with
the 1/4! from the interaction term in the Lagrangian. However, in doing this we
might have a factor that is too large, as the combinations in the path integral
are only those that are distinguishable. More speci�c, if a vertex has its four legs
connected to four di�erent points, then it is distinguishable and we add a factor
4!, cancelling the vertex factor. However, if two legs are connected to each other,
interchanging them doesn’t make a di�erence and it will show up in the path
integral as only one term. Hence this gives a factor 4⋅3 instead. So a symmetry in
the diagram lowers the coe�cient in front. To incorporate this in our calculations,
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we just keep the cancellation of the vertex coe�cient 4!, but divide out the by
symmetry factor of the diagram. Any self-connection gives a factor of 2, and any
interchange of n lines or vertices that leaves the diagram invariant also gives a
factor of (n!). Diagrams are considered equivalent if they can be related by a
continuous deformation, or, literally, if one can be transformed into the other
by moving—not tearing—the legs whilst keeping the external points �xed. A
few examples:

2
2

2 2

2
2 ⋅ 2 ⋅ 2

3! 3!

Feynman was the �rst to acknowledge the possibility to relate amplitudes with
diagrams so he created the tool of Feynman diagrams, which are accompanied
by a set of Feynman rules that dictate how to retrieve the correct mathematical
amplitude for a given diagram. For ϕ4-theory, we have derived everything we
need to present these rules:

a. Scalar propagator: x y = DF(x , y) , (3.79a)

b. Scalar vertex: z = −iλ ∫d4z , (3.79b)

c. Scalar external point: x = 1 , (3.79c)

d. Divide by the symmetry factor. (3.79d)

Since the formula for the propagator is expressed in momentum space:

DF(x , y) = ∫ d4k(2π)n i
k2 −m2 + iε e−i k⋅(x−y) , (3.80)

it is o en easier to calculate the diagrams in momentum space. We then label
each scalar line with an extra arrow indicating the direction of momentum �ow.
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What happens is that the integration in each vertex eats the exponentials to give
a delta function:

k1

k2 k3

k4

∼ ∫d4z ei k1 ⋅ze−i k2 ⋅zei k3 ⋅ze−i k4 ⋅z = δ(4)(k2+k4−k1−k3) ,

where we de�ned the short-hand notation

δ(n)(x) N= (2π)n δ(n)(x) , (3.81)

because a δ-function will o en be accompagnied with powers of 2π.
Note that the vertex rule in momentum space is essentially the same as con-

servation of momentum at each vertex. ¿e only exponentials that remain, are
those from the propagators that end in an external point. ¿e generalisation to
Feynman rules in momentum space is now trivial:

Momentum Feynman Rules for Scalar Fields

a. Scalar propagator: k = i
k2 −m2 + iε , (3.82a)

b. Scalar vertex: = −iλ , (3.82b)

c. Scalar external point: k
x = e−i k⋅x , (3.82c)

d. Impose momentum conservation at each vertex, (3.82d)

e. Integrate over all undetermined momenta: ∫ d4k(2π)4 (3.82e)

f. Divide by the symmetry factor. (3.82f)

3.3 quantisation of the dirac field

We have chosen to start with the quantisation of scalar �elds, as they form the
easiest subject to develop the framework because both Dirac and gauge �elds
have some intricate details that need to be dealt with. We now move to the
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investigation of the quantisation of the former, however, the di�culty arises in
the fact that Dirac �elds are Grassmannian functions, i.e. they anticommute.

Grassmann Numbers

Before we can de�ne path integrals over Dirac �elds, we have to de�ne Dirac
�elds themselves in a rigorous manner. In the path integral formalism, we try to
avoid the use of operators. When expanding a Dirac �eld in the same basis as in
Equation 3.12:

ψ(x) def= ∞∑ θ i ui(x) , (3.83)

where now the coe�cients anticommute

θ iθ j = −θ jθ i .
¿ese are calledGrassmann numbers, and form an extension to standard number
theory. Anti-commutation has some strong consequences, e.g. the square of a
Grassmann number is always zero:

θ2 = 0 ,
and more speci�cally, any product of n Grassmann numbers

θ i1⋯θ im
will be zero from the moment two indices are equal, as we can anticommute
until the two numbers with the same indices are next to each other and hence
vanish. Also because of this property, a Taylor series is cut a er the �rst order,
i.e.

f (θ) = f (0) + θ f ′(0) (3.84)

is an exact relation for any function that satis�es the requirements to be eligible
for a Taylor expansion. Di�erentiation of Grassmann numbers can be introduced
by the logical requirement

∂θ i
∂θ j

def= δi j , (3.85)

but care has to be taken, as the di�erentiation operator is Grassmann-valued
itself:

∂
∂θ1

(θ1θ2) = ∂θ1
∂θ1

θ2 = θ2 , ∂
∂θ1

(θ2θ1) = −θ2 ∂θ1∂θ1
= −θ2 . (3.86)
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Considering integration, the only type we have to investigate is a linear integral,
due to the cut in the Taylor series:

∫dθ (A+ B θ) ,
which is de�ned to equal

∫dθ (A+ B θ) = B . (3.87)

there is a strong mathematical background for this statement, which would lead
us to far away, so we just accept it as is. Note that it essentially makes derivation
and integration the same thing.When having amultiple integration, we postulate
the sign convention that if inner integrals can be calculated �rst, the result is
positive:

∫dθ1 dθ2 θ2θ1
def= +1 . (3.88)

Complex Grassmann number are a logical extension, with the fact that complex
conjugation reverses the order of the numbers:

(θ1θ2)∗ = θ∗2 θ∗1 . (3.89)

It is now straightforward to calculate e.g. a Gaussian integral over a complex
variable:

∫dθ∗ dθ e−θ∗bθ = ∫dθ∗ dθ (1 − θ∗bθ) = ∫dθ∗ dθ (1 + θθ∗b) = b . (3.90)
If this would have been a normal, non-Grassmann number, the result would
have been 2π/b. So with Grassmann integration, the Kähler factor comes out in
the numerator rather than in the denominator. With an additional factor θθ∗
we get:

∫dθ∗ dθ θθ∗e−θ∗bθ = ∫dθ∗ dθ (θθ∗ − θθ∗θ∗bθ) = ∫dθ∗ dθ θθ∗ = 1 ,
which we can interpret as 1/b b, i.e. the factor θθ∗ brings down an additional
factor 1/b. We can easily generalise this to higher dimensions:

∫dθ∗1 dθ1⋯dθ∗n dθn e−θ∗i K i jθ j = detK . (3.91)
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Inserting extra �elds brings down the inverse of K:

∫dθ∗1 dθ1⋯dθ∗n dθn θkθ∗l e−θ∗i B i jθ j = (K−1)kl detK . (3.92)

So the Grassmannian Gaussian behaves exactly like the regular one, except for
the position of the determinant.
To derive the calculation of path integrals now goes complete analogous to

the complex scalar case. E.g. the Gaussian path integral is given by:

Gaussian Path Integral over Grassmanian Fields

∫DψDψ e−ψKψ = detK , (3.93)

where the bar operation is de�ned in Equation A.22. It is easy to verify that it
doesn’t change the integral. Completing the square goes totally analogous as
well, now with η and η as Grassmanian source terms:

Comleting the square with Grasmmanian Fields

∫DψDψ e−ψKψ+ηψ+ψη = detK eηK
−1η . (3.94)

Again we de�ne n-point integrals by derivation to the sources (and as was the
case for the complex scalar, we need to derive to η to bring down a ψ and vice
versa):

∫DψDψ ψ1ψ2⋯ψn−1ψn = detK δ
δη1

δ
δη2

⋯ δ
δηn−1

δ
δηn

eηK
−1η , (3.95)

but remember that Dirac �elds anticommute, and derivatives w.r.t. a Dirac
source as well. Two common examples

∫DψDψ ψ1ψ2e
−ψKψ = K−112 detK , (3.96a)

∫DψDψ ψ1ψ2ψ3ψ4e
−ψKψ = [K−112 K−134 + K−114 K−132 ]detK . (3.96b)

Note that the inverse Kähler is now naturally antisymmetric in its arguments,
which means that the order of its arguments becomes signi�cant, e.g. in the last
term K−132 = −K−123 .
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¿e Free Dirac Field

¿e action for a free Dirac �eld is given by Equation 1.24:

SDirac0 = ∫d4x (iψ /∂ψ −mψψ) ,
where the slashed notation is explained in Appendix A.3. ¿e Kähler metric is
hence given by

K(x , y) = −i δ(4)(x − y) (i /∂y −m) . (3.97)

¿e inverse Kähler satis�es

−i (i /∂x −m)K−1(x , y) ≡ δ(4)(x − y) . (3.98)

From QM it is known that the Dirac propagator ∆F has to satisfy

Dirac Propagator Equation

(i /∂x −m)∆F(x , y) ≡ i δ(4)(x − y) , (3.99)

so we make the logical de�nition

∆F(x , y) def= K−1(x , y) . (3.100)

Note that the Dirac propagator can be related to the scalar propagator in a
straightforward way, by relating Equation 3.56 to Equation 3.99:

∆F(x , y) = (i /∂ +m)DF(x , y) . (3.101)

We can solve the Dirac Equation 3.99 exactly, with result:5

Dirac Feynman Propagator

∆F(x , y) = ∫ d4k(2π)4 i/k −m + iε e−i k⋅(x−y) . (3.102)

Because this function is odd, the propagator is automatically antisymmetric:

∆F(x , y) = −∆F(y, x) . (3.103)

5 In this case the +i ε isn’t merely a pole prescription, but it ensures the proper ordering of the
�elds. See [20, 21] for a more detailed explanation.
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¿is antisymmetry tells us that we have to choose a direction for the propagator.
It is common to de�ne ∆F(x , y) as the propagator from y to x,6 which we will
denote with an arrow:

∆F(x , y) = y x . (3.104)

Note that this implies that in a Feynman diagram, a Dirac propagator is read
from right to le . ¿is will generalise to any Dirac structure, hence from now on
we adopt the convention that any Feynman diagram has to be read from right to
le (which we can do without changing the results for scalar and gauge �elds, as
these are symmetric anyway). If we nowmake the convention that in a Feynman
diagram time runs in the horizontal direction, from le to right, we can make
the distinction between a particle and an antiparticle based on the direction of
the arrow (as the latter ‘moves back in time’):

a. Particle: y x y0 < x0 , (3.105a)

b. Antiparticle: x y y0 > x0 . (3.105b)

Exactly as in the scalar case, we de�ne the propagator and n-point function as a
fraction of path integrals:

∆F(x1, x2) def= ∫DψDψ ψ1ψ2 e
i S0

∫DψDψ ei S0
, (3.106a)

⟨0∣ψi1⋯ψinψ j1⋯ψ jn ∣0⟩ def= ∫DψDψ ψi1⋯ψinψ j1⋯ψ jn e
i S0

∫DψDψ ei S0
. (3.106b)

¿e ordering of the �elds inside the path integral matters because of the
antisymmetry, so we adopted the common convention to order the barred
integration measure �rst, i.e. DψDψ , but for the �elds we put the unbarred
�elds �rst, i.e. ψψ⋯ψψ⋯ . Note that the convention in Equation 3.104 now
implies that a Dirac propagator goes from a ψ �eld to a ψ �eld.
¿e 2n-point Gaussian equals as before all possible combinations for n

particles to propagate to one of the remaining spacetime points. However be-
cause the Dirac �eld is complex, less combinations are possible, as was the case

6 ¿is is a result from the positive i ε.
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Figure 3.5: ¿e Dirac 6-point correlator represents six possible (equivalent) diagrams.
Note that every propagator starts in one of the �rst three points and ends in
one of the last three.¿is comes from the fact that the Dirac �eld is complex,
as we have already seen in the case of a complex scalar �eld.

for the complex scalar �eld in Equations 3.70. ¿e ordering of the �elds as in
ψψ⋯ψψ⋯ makes sure that no minus signs enter in the sum of possibilities, as
long as we express all propagators from a ψ �eld to a ψ �eld. As an example we
calculate the 6-point correlator:

⟨0∣ψ1ψ2ψ3ψ4ψ5ψ6 ∣0⟩ = ∆14F ∆25F ∆36F + ∆14F ∆26F ∆35F + ∆15F ∆24F ∆36F + ∆15F ∆26F ∆34F+ ∆16F ∆24F ∆35F + ∆16F ∆25F ∆34F ,

which is illustrated in Figure 3.5.
¿e only thing le to do before we can de�ne Feynman rules for the free Dirac

�eld (the interacting Dirac �eld includes gauge bosons, which we will treat in
the next section), is derive appropriate rules for external Dirac �eld lines. From
standard QM and spinor theory, we know that a Dirac �eld acts on a particle
momentum state as:

ψ(x) ∣p, s⟩ = e−i p⋅x us(p) ∣0⟩ , (3.107a)⟨p, s∣ψ(x) = 0 , (3.107b)
ψ(x) ∣p, s⟩ = 0 , (3.107c)
⟨p, s∣ψ(x) = ⟨0∣us(p) e+i p⋅x , (3.107d)
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and on an antiparticle momentum state as:

ψ(x) ∣p, s⟩ = 0 , (3.108a)
⟨p, s∣ψ(x) = ⟨0∣ vs(p) e+i p⋅x , (3.108b)
ψ(x) ∣p, s⟩ = e−i p⋅x vs(p) ∣0⟩ , (3.108c)⟨p, s∣ψ(x) = 0 , (3.108d)

where u and v are spinors (see e.g. Equations A.24), that satisfy the completeness
relations:

∑
s
us(p)us(p) = /p +m , (3.109a)

∑
s
vs(p)vs(p) = /p −m , (3.109b)

which will prove to be very useful to simplify calculations with external spinors.
In Feynman diagram notation, we make the di�erence between a particle

and an antiparticle state with the direction of the arrow. ¿e exponentials will
be absorbed into δ-functions to account for the conservation of momentum,
but the sign in front of p⋅x will de�ne the direction of the momentum �ow: a
negative sign implies towards the δ-function, i.e. towards the vertex. As the state∣p, s⟩ is an initial state (remember that we read Dirac �elds from right to le ),
the momentum �ow for a regular particle will be parallel to the arrow indicating
the Dirac �eld:

ψ(x) ∣p, s⟩ = i , s
p

It is easy to verify that in general themomentum of a particle is parallel to its �eld
arrow, and that of an antiparticle antiparallel. So �nally we have the following
momentum space Feynman rules for the free Dirac �eld:
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Momentum Feynman Rules for the Dirac Field

a. Initial fermion: i , s
p = usi(p) , (3.110a)

b. Final fermion: i , s
p = usi(p) , (3.110b)

c. Initial antifermion: i , s
p = vsi(p) , (3.110c)

d. Final antifermion: i , s
p = vsi(p) , (3.110d)

e. Fermion propagator:
p = i/p −m + iε .

(3.110e)

3.4 quantisation of the gauge field

Last we need to quantise gauge �elds. As vector �elds commute, a path integral
over a vector �eld is just one scalar path integral per component, i.e.

∫DA N= ∫DA0DA1DA2DA3 . (3.111)

However the fact that there is gauge freedom on the �eld makes this much less
straightforward. To see this, we take the regular action for a free vector �eld
from Equation 1.16:

Svector0 = − 1
4 ∫d4x F0µνFµν0 , (3.112)

where the free gauge tensor is given by

Fµν0 = (∂µAa ν − ∂νAa µ) ta , (3.113)

with ta a generator of the underlying Lie algebra (see Appendix A.6). A er
partial integration, we can rewrite the action as

Svector0 = 1
2 ∫d4x d4y Aaµ(x) δ(4)(x − y) δab (gµν ◻ − ∂µ∂ν)Abν(y) ,
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so the Kähler metric is given by

K(x , y) = − i
2
δ(4)(x − y) δab (gµν ◻ − ∂µ∂ν) . (3.114)

But this is exactly the core of the problem: this metric is a singular 4×4 matrix,
and hence has no inverse. ¿is is due to gauge freedom, i.e.

Aµ(x) + ∂µα(x)
leaves the action invariant (see Equation 2.19). ¿e modes Aµ = ∂µα are gauge-
equivalent to A = 0, hence these are the troublesome modes. ¿e path integral
is badly divergent, as we are redundantly integrating over an in�nite set of
equivalent �elds.
We can �x the problem with a trick due to Faddeev and Popov [28]. First we

de�ne the functional G[A] as a gauge-�xing condition, i.e. it is zero for a given
gauge. ¿e two most common types of gauges are the Lorentz gauge and the
axial gauge:

a. Lorentz gauge: G[A] = ∂µAµ , (3.115a)
b. Axial gauge: G[A] = nµAµ . (3.115b)

We would like to constrain the path integral to only contain the gauge-�xed
modes, so that all redundancy disappears. ¿is is achieved with a functional
δ-function. ¿e formula

∫DA δ(G[A]) (3.116)

will only select these �elds that satisfy G[A] = 0, i.e. that are gauge-�xed. How-
ever, we cannot blindly input something inside the path integral, as that would
change its value. But note that in the one-dimensional case, a δ of another
function can be simpli�ed by using the Jacobian of this function:

∫dx δ(g(x)) f (x) = ∑
roots

f (xi) ∣ ∂g∂x ∣−1
x i
,

and more speci�cally, when f (g(x)) = 1, we have
∫dx δ(g(x)) = ∑

roots
∣∂g(x)
∂x

∣−1
x i
.

¿is is easily generalised to higher dimensions:

∫dx1⋯dxn δn(g(x)) = det( ∂gi
∂x j

)−1 ,
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and we can hence de�ne a similar relation for path integrations, putting the
determinant on the l.h.s. to get an expression equal to 1:

det(δG[Aα]
δα

) ∫Dα δ(G[Aα]) = 1 , (3.117)

where Aα is the gauge transformed �eld. So now we can input this into the path
integral overDA , as it is just 1:

∫DA det(δG[Aα]
δα

) ∫Dα δ(G[Aα]) ei S[A] . (3.118)

¿e action is gauge-invariant, so we can replace S[A]→ S[Aα]:
∫DA det(δG[Aα]

δα
) ∫Dα δ(G[Aα]) ei S[Aα] .

Also, making a gauge transformation is equivalent to a constant shi , and hence
it leaves the integration measure invariant, i.e.DAα = DA . So we can write:

∫DAα det(δG[Aα]
δα

) ∫Dα δ(G[Aα]) ei S[Aα] .
Now we note that Aα is just a dummy variable, so we can rename it back to A:

∫DA det(δG[A]
δα

) ∫Dα δ(G[A]) ei S[A] .
¿ere is no α-dependence le , and we can factor out the integral

⎛⎝ ∫Dα ⎞⎠ ∫DA det(δG[A]
δα

) δ(G[A]) ei S[A] . (3.119)

¿is is just another in�nite constant that will be divided out later, so we already
drop it. Note that it represents the in�nite number of redundant �eld con�gura-
tions, which we wanted to remove. In other words, the integral

∫DA det(δG[Aα]
δα

) δ(G[A]) ei S[A]
is �nite, as the functional δ ensures that only non-equivalent �eld con�gurations
are integrated over. Note that we re-added the α-dependence inside the Jacobian,
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which is valid as the Jacobian is gauge-invariant itself.7 It will allow us to do a
speci�c calculation of the determinant, and we can turn the α-dependence in
the Jacobian on and o�, depending on what suits us most. What follows will be
di�erent for Abelian and non-Abelian �elds, so we will treat each case separately.

Abelian Gauge Fields

If the �elds are Abelian, the gauge transformation is given by (see Equation 2.19):

Aαµ(x) N= Aµ(x) + ∂µα(x) .
¿is implies that the functional determinant is invariant of the �eld itself, i.e. it
is det (◻) (in Lorentz gauge), and we can factor it out the integral:

det(δG[Aα]
δα

) ∫DA δ(G[A]) ei S[A] ,
which again implies that we can drop the determinant, as it will cancel out
anyway. Now we will loosen our gauge-�xing condition a bit, and consider the
class of Lorentz gauges given by

G[A] = ∂µAµ − ω(x) , (3.120)

where ω is any scalar function. ¿is doesn’t change the Jacobian, so the former
derivation remains valid. So far we have found the equality

∫DA ei S[A] = det (◻)⎛⎝ ∫Dα ⎞⎠ ∫DA δ(∂µAµ − ω) ei S[A] , (3.121)

but because ω is unspeci�ed, this equation remains valid if we replace the r.h.s.
with any linear combination of di�erent ω. We can even multiply the integrand
with a Gaussian weighting function that is normalised to one:

Nξ e
−i ∫d4x ω2

2ξ , (3.122a)

Nξ = ⎛⎝ ∫Dω e
−i ∫d4x ω

2ξ⎞⎠
−1 = lim

n→∞
√(2i ξπ)n . (3.122b)

Finally we integrate over all possible ω (which is the same as the continuous
limit of making all possible linear combinations):

7 ¿is is not so straightforward to demonstrate, however quite logical. See [20] for a nice explana-
tion.
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∫DA ei S[A] = Nξ det (◻)⎛⎝ ∫Dα ⎞⎠ ∫DωDA δ(∂µAµ − ω) e−i ∫d4x ω2
2ξ ei S[A] ,

= Nξ det (◻)⎛⎝ ∫Dα ⎞⎠ ∫DA e
−i ∫d4x (∂µ Aµ)2

2ξ ei S[A] ,

wherewe used the δ-function and the integration overω tomake the replacement
ω = ∂µAµ. E�ectively, we have added a new term to the Lagrangian:

Lgauge-�xed = 1
2
Aaµ (gµν ◻ − ∂µ∂ν)Abν − 1

2ξ
∂µAµ∂νAν . (3.123)

So now the Kähler metric is given by

K(x , y) = − i
2
δ(4)(x − y) (gµν ◻ − (1 − 1

ξ
) ∂µ∂ν) , (3.124)

which is no longer singular! In analogy with the scalar �eld in Equation 3.57, we
de�ne the vector propagator as:

Dµν
F (x , y) def= 1

2
(K−1(x , y))µν , (3.125)

which now satis�es the equation

Vector Propagator Equation

(gµν ◻ − (1 − 1
ξ
) ∂µ∂ν)Dνρ

F ≡ iδρµ δ(4)(x − y) . (3.126)

We can solve this equation exactly, giving

Vector Feynman Propagator

Dµν
F (x , y) = ∫ d4k(2π)4 −i

k2 + iε (gµν − (1 − ξ) kµkν
k2

) e−i k⋅(x−y) . (3.127)
So now we have another gauge choice, namely the choice of ξ. A few common
examples are:

a. ξ = 0 Landau gauge, (3.128a)
b. ξ = 1 Feynman gauge, (3.128b)
c. ξ = 3 Yennie gauge. (3.128c)
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By far the most commonly used choice is the Feynman gauge. It is o en possible
to cancel divergences for a given (piece of a) diagram by choosing an appropriate
gauge (see e.g. Equation 7.31). However, it is rare that di�erent diagrams combine
in a �nite way with the same gauge choice. Finally, not that in the Feynman gauge
ξ = 1 Equation 3.126 transforms into the simpler form we found in Equation 1.17.
Now that we have successfully quantised the Abelian gauge �eld, all other

properties are analogous to the scalar case. I.e. we de�ne the free propagator as

Dµν
F (x1, x2) def= ∫DA Aµ(x1)Aν(x2) ei S0

∫DA ei S0
, (3.129a)

⟨0∣A1⋯An ∣0⟩ def= ∫DA A1⋯Anei S0

∫DA ei S0
. (3.129b)

Non-Abelian Gauge Field: Lorentz Gauge

What changes when we try to quantise non-Abelian gauge �elds? ¿e important
fact is that the gauge transformation is now more intricate (see Equation 2.27):

Aaµ ta → ei gα
a ta (Aaµ ta + i

g
∂µ) e−i gαa ta ,

≈ (Aaµ + Dµαa) ta ,
where Dµ is the derivative acting in the adjoint representation:

Dab
µ = δab∂µ − g f abcAcµ .

In particular the functional determinant in Equation 3.119 is no longer independ-
ent of A, so we cannot factor it out from theDA path integral:

det(δG[A]
δα

) = det (∂µDµ) , (3.130)
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where we again adopted the Lorentz gauge condition G[A] = ∂µAµ . We have no
hope in calculating the remaining integral

⎛⎝ ∫Dα ⎞⎠ ∫DA det (∂µDµ) δ(G[A]) ei S[A] , (3.131)

as the dependence of the determinant onA spoils any path integration techniques
we know. However, again we can use a trick, and again due to Faddeev and Popov.
¿is time we make the observation that a determinant in a numerator can be
the result of a path integration over Grassmanian �elds. So instead of trying to
calculate it, we exponentiate it:

det (∂µDµ) = ∫DcDc e−i ∫d4x c ∂µDµ c
. (3.132)

¿ese �elds are a bit peculiar, as they obey the path integral formalism for
spinor �elds—having the determinant in the numerator—but have the kinetic
terms of scalar �elds, with a double derivative. Hence they cannot have any
correspondence to real particles, but that shouldn’t be a big problem, as long
as we use them as a mathematical tool. ¿ese new �elds and their particle
excitations are called Faddeev-Popov ghosts, and have to be included in every
Feynman diagram calculation in a non-Abelian theory that is quantised in the
Lorentz gauge.
¿e main point is that their dependence on the A-�eld is only linear, and

not quadratic. ¿is means we can treat this term as an interaction term to the
gauge �eld, and ignore it while quantising the free gauge �eld. In other words,
the quantisation of the gauge �eld now goes exactly the same as in the Abelian
case, resulting in the propagator in Equation 3.127 (with an added factor δab
for the colour, which is merely a δ because the Kähler is diagonal in its colour
indices). However, for a non-Abelian �eld this steps are only possible if we have
exponentiated the determinant, i.e. if we include ghosts in our theory.
¿e ghost Lagrangian is given by:

Lghost = −ca ◻ ca − g f abcca∂µAbµcc . (3.133)

Using the same methods as before, we can calculate the ghost propagator:
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Feynman Ghost Propagator

ΣabF (x , y) = ∫ d4k(2π)4 i
k2 + iε δabe−i k⋅(x−y) . (3.134)

¿e interaction term gives a factor g f abckµ, with k the outgoing ghost mo-
mentum a er the a er the vertex. As ghost �elds anticommute, they naturally
have a �eld arrow similarly to Dirac �elds. But as ghosts will never be external,
they will only appear in loops, and we don’t really have to worry about the arrow
as long as we use it consistent. Every loop will then give an extra minus sign, just
as in the Dirac case. ¿e Feynman rules for ghosts are given in Equations A.99.

Non-Abelian Gauge Field: Axial Gauge

Now we will make an important investigation. When using a di�erent class
of gauges, namely axial gauges, ghosts fully decouple from our theory. Let us
investigate this a bit more. Any axial gauge is de�ned as

G[A] def= nµAµ − ω , (3.135)

for some arbitrary directional vector nµ. ¿e functional determinant is then
given by

det(δG[A]
δα

) = det (∂µDµ) = det (n ⋅∂ − gn ⋅A) = det (n ⋅∂ − gω) , (3.136)
which is independent of A! So we don’t have to introduce ghosts at all in an axial
gauge, we can just factor out the determinant from the integral. ¿e trick we
used, is to apply the constraint given by the functional δ-function—as it is fully
integrated over, this constraint will be in e�ect anyway. Couldn’t we have done
the same in the Lorentz gauge? Yes, but then we shouldn’t forget to apply Leibniz’
rule on the derivative:

det(δG[A]
δα

) = det (∂µDµ) = det (◻ − g∂ ⋅A− gA⋅∂) = det (◻ − gω − gA⋅∂) ,
so we still have a term in the determinant that depends on A. In general, any
gauge that is de�ned using derivatives, will give rise to ghosts. So it seems the axial
gauge is much easier to work with. However, because we have a di�erent gauge
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condition, we need to redo the calculation leading to the propagator, starting
from Equation 3.120 but now with the class of axial gauges as in Equation 3.135:

∫DA ei S[A] = det (n ⋅ ∂)⎛⎝ ∫Dα ⎞⎠ ∫DA δ(n ⋅A− ω) ei S[A] , (3.137)

Again, we make an integration over ω, weighted with the Gaussian in Equa-
tions 3.122:

∫DA ei S[A] = Nξ det (n ⋅ ∂)⎛⎝ ∫Dα ⎞⎠ ∫DωDA δ(b ⋅A− ω) e−i ∫d4x ω2
2ξ ei S[A] ,

= Nξ det (n ⋅∂)⎛⎝ ∫Dα ⎞⎠ ∫DA e
−i ∫d4x (n⋅A)2

2ξ ei S[A] ,

¿e new term in the Lagrangian is now:

Lgauge-�xed = 1
2
Aaµ (gµν ◻ − ∂µ∂ν)Abν − 1

2ξ
nµAµnνAν , (3.138)

and the Kähler metric is given by

K(x , y) = − i
2
δ(4)(x − y) (gµν ◻ − ∂µ∂ν − 1

ξ
nµnν) . (3.139)

Of course we use the same de�nition for the propagator:

Dµν
F (x , y) def= 1

2
(K−1(x , y))µν , (3.140)

which now satis�es the slightly di�erent equation

(gµν ◻ − ∂µ∂ν − 1
ξ
nµnν)Dνρ

F ≡ iδρµ δ(4)(x − y) . (3.141)

We can again solve this equation exactly, giving �nally the propagator in a
general axial gauge:

Vector Feynman Propagator in Axial Gauge

Dµν
F (x , y) = ∫ d4k(2π)4 −i δ

ab

k2+iε (gµν− kµnν + kνnµ
k ⋅n + (n2+ξ k2) kµkν(k ⋅n)2) e−i k⋅(x−y).

Like was the case with Lorentz gauges, ξ induces an additional gauge choice.
We are however only interested in the so-called light-cone (LC) gauge, where
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n2 = 0. Furthermore, we take ξ = 0 (the homogeneous LC gauge), such that the
term proportional to k2 vanishes.
Most of the time, calculations are easier in Lorentz gauges, because ghost loop

diagrams resemble a lot to gauge boson loop diagrams, hence the calculation
can be ‘copied’. On the other hand, calculations in axial gauges are far more chal-
lenging, due to the extra terms 1/k ⋅n in the propagator, which makes integrations
more tricky. A few common pole prescriptions to regulate this factor are:

a. Advanced: 1[n ⋅k] = 1
n ⋅k − iη , (3.142a)

b. Retarded: 1[n ⋅k] = 1
n ⋅k + iη , (3.142b)

c. Principal Value: 1[n ⋅k] = 1
2
( 1
n ⋅k + iη + 1

n ⋅k − iη) . (3.142c)

¿e principal value prescription is less suited for the LC gauge and should be
avoided in this case [29]. A particular prescription that is more adequate is the
Mandelstam-Leibbrandt prescription (see [30]):

d. Mandelstam-Leibbrandt: 1[n ⋅k] = ñ ⋅k
n ⋅k ñ ⋅k + iη , (3.142d)

ñ2 ≡ 0, n ⋅ñ ≠ 0, e .g . ∶ 1[k+] = k−
k+k− + iη . (3.142e)

¿ere are also special considerations depending on the axial structure of the
gauge. See e.g. [29] for a good treatment.



4
QUANTUM CORRECTIONS

Although at �rst sight maybe not so clear, quantised �elds have a behaviour
that is totally di�erent from classical �elds. Loop integrations require appropri-
ate regularisation schemes, which in term spawn the theory with unphysical
divergences. ¿e theory needs to be properly renormalised to treat these diver-
gences, and this renormalisation procedure will in turn in�uence the physical
parameters of the theory, and more, it will deeply change our understanding of
physical quantities. Besides the divergences, the regularisation procedure leaves
behind unphysical energy scales as well. From the requirement of invariance
under rescalings, we will derive a set of renormalisation group equations, and
show how these equations lead to an asymptotically free behaviour of QCD,
violating perturbative methods at low energies.

4.1 working with quantised fields

In the previous chapter we succeeded in quantising the free �eld theory for the
YM Lagrangian (see Equation 2.45). Fully expanded, the interacting Lagrangian
reads in Lorentz gauge:

LYMLorentz = Lgauge0 +Lghost0 +LDirac0 +LI , (4.1a)

Lgauge0 = − 1
4
(∂µAaν − ∂νAaµ)2 − 1

2ξ
∂µAµ∂νAν , (4.1b)

Lghost0 = −ca ◻ ca , (4.1c)
LDirac0 = ψ (i /∂ −m)ψ , (4.1d)

LI = g ψ /Aψ − g f abcca∂µAbµcc − g f abc (∂µAaν)AµbAνc
− 1
2
g2 f abx f xcdAaµAbνAµcAνd . (4.1e)

89
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¿e only di�erence with the axial gauge is the omission of ghosts and a di�erent
gauge-�xing term:

LYMaxial = Lgauge0 +LDirac0 +LI , (4.2a)

Lgauge0 = − 1
4
(∂µAaν − ∂νAaµ)2 − 1

2ξ
nµAµnνAν , (4.2b)

LDirac0 = ψ (i /∂ −m)ψ , (4.2c)

LI = g ψ /Aψ − g f abc (∂µAaν)AµbAνc
− 1
2
g2 f abx f xcdAaµAbνAµcAνd . (4.2d)

We didn’t calculate the Feynman rules for the interaction terms yet, and we won’t
do so either, as they are really straightforward to derive, totally analogous to the
scalar case in Section . All Feynman rules for YM are listed in Appendix A.8 as a
quick reference.
As we have seen in Subsection¿e Interacting Scalar Field on page 66 and

onwards, all interaction terms in the Lagrangian are expanded in orders of the
coupling constant, to form a perturbative series. In a YM theory this coupling
constant will o en be denoted by g. It entered for the �rst time in the gauge
transformation of the Dirac �eld, Equation 2.1, where we extracted it arbitrarily
from the gauge parameter α. Starting from there, it propagated through the
theory to become the interaction strength between the gauge �eld and the Dirac
�elds, between the gauge �elds themselves and between the gauge and ghost
�elds (if in Lorentz gauge). ¿e fact that all this couplings are the same, follows
from the simple requirement of gauge invariance. Hence, there is only one
constant that governs the dynamics of a typical YM theory, viz. g, that has to be
matched against experiment. Considering the kinematics, there are much more
constants that govern it, these are the masses of the �elds.
As long as g << 1, we can validate a perturbative regime, and can tune our

theory to higher accuracy by including higher order diagrams, for instance when
higher resolution data becomes available from experiment. However, it is not
always possible to keep g small, as we will see later in this chapter. A suitable
way to solve this, is to separate the process in two regimes depending on the
value of g, and combine the regimes accordingly. Such an approach is known as
factorisation, and is the main topic of the next chapter.
When calculating diagrams of NLO and higher orders, we encounter many

apparent divergences. Of course, observable quantities always have to be �nite,
and therefore we expect divergences to cancel out when calculating a full res-
ult. However, the emergence of such divergences in intermediate steps might
prove challenging to deal with. We hence need some methods to regulate the
divergences.
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Regularisation

Any integration over loop momenta will automatically introduce divergences,
which correspondingly have to be regulated. ¿ere are two types of divergences,
ultra-violet (UV) divergences, that appear for momenta→∞, and infra-red (IR)
divergences, that appear in the so region, i.e. for momenta→ 0. ¿e former are
the most common and most well-known how to treat. A typical loop integral
has the form

∫ d4k(2π)4 1(k2 −m2)n . (4.3)

¿is is badly divergent in the UV-region. ¿e standard procedure to calculate
this integral, would be to �rst make a Wick rotation, such that the momentum
is now an Euclidian vector:

k0E
def= −ik0 , (4.4a)

(kE)2 = −k2 . (4.4b)

¿is transforms the integral into

i(−)n ∫ d4kE(2π)4 1(k2E +m2)n .
Because it is Euclidian, we can move to 4-dimensional spherical coordinates:

d4kE → d3Ω dkE k3E , k2E → k2E .

¿e angular part of the integration is given by

∫d3Ω = 2π

∫
0

dϕ
π

∫
0

dχ dθ sin2 θ sin χ = 2π2 , (4.5)

hence the integral is now

i (−)n
8π2

∞
∫
0

dkE
k3E(k2E +m2)n ,

which is divergent for n = 1 and n = 2. One way to proceed, is to avoid the
singular part by introducing a cut-o�:
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Cut-O� Regularisation

− i
8π2

Λ

∫
0

dkE
k3E

k2E +m2 = − i
16π2

m2 (Λ2

m2 − ln Λ2

m2) , (4.6a)

i
8π2

Λ

∫
0

dkE
k3E(k2E +m2)2 =

i
16π2

(ln Λ2

m2 − 1) , (4.6b)

where we already dropped the terms where we could take the limit L → ∞
safely. So the cut-o� acts as a regulator, as it regulates the divergence. ¿e
original integral can be retrieved by letting Λ →∞. ¿e �rst integral is called
quadratically divergent, as it is quadratic in Λ. Similarly, the second divergence
is called logarithmically divergent as it behaves like lnΛ. What we now expect
is that other diagrams will give similar contributions, but with opposite signs,
such that the dependence on the regulator vanishes.
However, the cut-o� regularisation—being the easiest regulator available—

has some shortcomings, the most important of which being the violation of
translational invariance. ¿ere exist several other regularisation procedures, like
Pauli-Villars regularisation, analytic regularisation, ζ-regularisation, etc... We
won’t treat these. Instead, we investigate the—arguably—most useful regularisa-
tion procedure, that of dimensional regularisation.
Consider again the same integral as above. For n = 1, it behaves at large

momenta as ∣p∣−2, and for n = 2 it behaves at large momenta as ∣p∣−4. ¿e
momentum integrals are therefore divergent for dimensions d ≥ 2 resp. d ≥
4. ¿e idea is to subtract a small in�nitesimal number 2є from the number
of spacetime dimensions,¹ in order to make the integral convergent. E.g. the
following integrals are convergent:

∫ d2−2єk(2π)2−2є 1
k2 −m2 , (4.7a)

∫ d4−2єk(2π)4−2є 1(k2 −m2)2 . (4.7b)

¿ere is no physical meaning to a theory with 4-2є dimensions, so we are allowed
to use it as a mathematical tool, as long as we make the limit є → 0 in the �nal

1 ¿e factor 2 in front of є follows from normalisation considerations, because every pole in 4-є
will be of the form 2/є, so choosing 4-2є gives ‘clean’ poles of the form 1/є. In older literature it was
common to use the convention ω = 4 − є, so care should be taken when comparing references.
Most of the time one can deduce the convention used by inspecting the factor in front of the
pole.
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result. But how do we integrate in non-integer dimensions? ¿ere are several
ways to do this (see e.g. [31, 32]), but the most straightforward is when used in
combination with spherical coordinates, especially for integrands that do not
depend on the angular part. ¿e extrapolation to non-integer dimensions will
be based on the extrapolation from the integer factorial to the real numbers by
use of the Gamma function. Consider a function f that only depends on the
momentum squared, and is divergent when integrated in d dimensions, e.g.

∫ ddk
(2π)d f (k2) . (4.8)

We will regulate this integral by making the shi ω = d−2є. ¿e �rst steps
are straightforward: again we make a Wick rotation, and move to spherical
coordinates:

i ∫ d
ω−1Ω(2π)ω

∞
∫
0

dkE kω−1E f (−k2E) .
Wemoved the non-integer part of the spacetime dimensions into the angular
part, because then we can calculate it separately, and the result will be applicable
to all integrals for which the integrand only depends on k2. To calculate the
angular part, we use a trick. An ω-dimensional Gaussian function can be written
as a product of ω Gaussians, or, more generally:

∫dωx e−x ix i = ⎛⎝ ∫dx e−x2⎞⎠
ω =√

πω .

We can make this step because all xi are independent from each other. We can
calculate a ω-dimensional Gaussian as well by moving to spherical coordinates:

∫dωx e−x ix i = ∫dω−1Ω
∞
∫
0

dx xω−1e−x2 = ⎛⎝ ∫dω−1Ω⎞⎠ 1
2
Γ (ω

2
) .

So we have

⎛⎝ ∫dω−1Ω⎞⎠ = 2π
ω
2

Γ (ω2 ) , (4.9)

which we use to give the result for a general dimensionally regularised integrand
that depends on k2 only:

∫ ddk
(2π)d f (k2) = lim

є→0
2i

(4π) ω
2 Γ (ω2 )

∞
∫
0

dkE kω−1E f (−k2E) . (4.10)
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As an example, we calculate the 4-dimensional integral in Equation 4.3 (with
n = 2, so that it is at most logarithmically divergent):

∫ d4k(2π)4 1(k2 −m2)2 = limє→0 2i
(4π) ω

2 Γ (ω2 )
∞
∫
0

dkE
kω−1E(k2E +m2)2

¿e last integral can be related to a Beta function by making the substitution
α = m2/(k2 + m2):

∞
∫
0

dkE
kω−1E(k2E +m2)2 =

1
2

∞
∫
0

d(k2E) (k2E) ω
2 −1

(k2E +m2)2 ,
= 1
2
mω−4 1

∫
0

dα α1− ω
2 (1 − α) ω

2 −1 ,

= 1
2
mω−4 1

∫
0

dα B (2 − ω
2
, ω
2
) ,

and because we can write the Beta function as a combination of Gamma func-
tions, i.e.

B(α, β) = Γ(α)Γ(β)
Γ(α + β) , (4.11)

the �nal result is given by (using ω =4−2є):
∫ d4k(2π)4 1(k2 −m2)2 = limє→0 i(4π)2 ( 4π

m2)є Γ(є) . (4.12)

We can investigate the behaviour in the limit ω → 4 using the expansion of the
Gamma function near zero:

Γ(є) ≈ 1
є
− γE +O(є) , (4.13)

where γE ≈ 0.5772 is the Euler-Mascheroni constant. ¿e є-power can be ap-
proximated as well:

xє ≈ 1 + є ln x +O(є2) . (4.14)

¿is then gives:
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Dimensional Regularisation

∫ d4k(2π)4 1(k2 −m2)2 → i(4π)2 ( 1
є
− γE + ln 4π − lnm2) . (4.15)

When comparing this to the result in Equation 4.6b, i.e.

∫ d4k(2π)4 1(k2 −m2)2 → i(4π)2 (lnΛ2 − lnm2 − 1) , (4.16)

we see that the Λ-regulator naturally emerged with a logarithm, while in the
case of dimensional regularisation this is an inverse pole. Note that the ‘core’
result of the integration is in both cases the same, namely − lnm2, while each
procedure adds a di�erent regulator, but also di�erent �nite terms:

a. Cut-o� regularisation: lnΛ2 − 1 , (4.17a)

b. Dimensional regularisation: 1
є
− γE + ln 4π . (4.17b)

We will mainly work in the dimensional regularisation scheme in this thesis.
We can now repeat the same calculation, but for general dimension and general

n:

I = ∫ ddk
(2π)d

1(k2 −m2)n = lim
є→0 i(−)nm

d−2n
(4π) d

2
( 4π
m2)є Γ (n −

d
2 + є)

Γ(n) .

(4.18)

¿e Gamma function has poles in 0 and all negative numbers, hence the result
is divergent when d is even and d ≥ 2n. If this is not the case, the integral
is convergent and we can just take the limit є → 0. We can �nd a general
expression for the divergent integral, by using the more general expansion of
the Gamma function (see Equation B.6l):

Γ(є − n) = (−)n
n!

( 1
є
+ ψ(0)(n + 1) +O(є)) n ≥ 0 , (4.19)

where ψ(0) is the digamma function, de�ned as the logarithmic derivative of
the Gamma function:

ψ(0)(z) = Γ′(z)
Γ(z) .
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For integer values n > 0 it equals
ψ(0)(n) = −γE + n−1∑

j=1
1
j
. (4.20)

We can now give the general result for the integral in Equation 4.18:

General Result for Dimensional Regularisation

I = i(−)nmd−2n
(4π) d

2

Γ (n− d
2 )(n−1)! (d < 2n or d odd) ,

I = i md−2n
(4π) d

2

(−) d
2

(n−1)! ( d2 −n)!
⎛⎜⎝
1
є
− γE +

d
2 −n∑ 1

j
+ ln 4π − lnm2

⎞⎟⎠ (d≥2n) .
We give a list of common integrals in dimensional regularisation in Appendix B.3.
Note that the change of dimensions to a non-integer value also re�ects itself in
tensor contractions. In particular

gµνgµν = ω . (4.21)

Dirac γ-matrices are however dimensionally normalised such that Tr(1) ≡ d,
i.e. while Lorentz indices live in an ω-dimensional spacetime, Dirac indices
always live in an (integer) d-dimensional spacetime. ¿is implies that the con-
traction identities for γ-matrices are in function of ω (see Equations A.30), while
the trace identities are in function of d (see Equations A.31, in 4 dimensions).
¿is works �ne for every γ-matrix but γ5, hence dimensional regularisation
is not suited to regularise parity-violating theories. As this thesis solely deals
with (parity-conserving) QCD, we can adopt the dimensional regularisation
framework without problem.

Mass Dimension Analysis

Dimensional analysis is a useful tool in physics, as it helps us to keep track of
the right physical quantities. ¿e Dimension of an expression is a collection of
powers of the basic physical quantities, and is intimately related to the unit of
a quantity. ¿ere are 7 basic physical quantities in physics, the base quantities
(with their corresponding SI units in brackets):

[M] Mass (kg, kilogram),

[L] Length (m, metre),
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[T] Time (s, second),

[Θ] Temperature (K, Kelvin),

[N] Amount of substance (mole),

[I] Electric current (A, Ampère),

[J] Luminous intensity (cd, candela).

Any physical quantity can be expressed in powers of these base units.² E.g. accel-
eration is [L][T−2], force is [M][L][T−2], electric resistance is [M][L2][T−3][I−2],
and energy is [M][L2][T−2].¿e important fact is that any physically meaningful
equation must have the same Dimensions on the l.h.s. and r.h.s., hence checking
this is a useful tool to check the validity of an equation.
But we are working in natural units (more speci�cally, Lorentz-Heaviside

natural units), where c def= ħ def= kB def= ε0 def= 1. ¿is implies that [M], [L], [T] and [Θ]
are now related to each other, because:

c = λν def= 1 ⇒ [L] ≡ [T] , (4.22a)

E = ħω def= ω ⇒ [M][L2][T−2] ≡ [T−1] ⇒ [M] ≡ [L−1] , (4.22b)

S = kB lnW def= lnW ⇒ [M][L2][T−2] ≡ [Θ] . (4.22c)

We will choose Mass as the basic Dimension, with [M]=[L−1]=[T−1]=[Θ]. Using
natural units leads to a simpli�ed relation between the elementary charge and
the �ne-structure constant:

α ≡ e2

4π
⇒ [Q] ≡ 0 . (4.23)

We can exploit this to relate the dimension of the electric current to the dimen-
sion of mass:

I = dQ
dt

⇒ [I] ≡ [M] . (4.24)

¿e two remaining base quantities (amount of substance and luminous intensity)
are of lesser importance in pure QFT, so we state that every expression we will
encounter will—when in natural units—have its Dimension exactly de�ned by
its Mass Dimension. Some common Mass Dimensions are (from now on, we
use the notation [. . . ] to denote the Mass Dimension of an expression):

[m] = +1 , [xµ] = −1 , [d4x ] = −4 , [∂µ] = +1 , [E] = +1 , [pµ] = +1 .
2 An exception to this are dimensionless quantities, for which it is not guaranteed that they can be
expressed in function of the base quantities. ¿e best examples are the radian and steradian, that
are considered the standard units of (solid) angular measure.
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¿e derivative has positive Mass Dimension because it equals one over length.
¿e action is required to be a dimensionless quantity:

[S] ≡ 0 ⇒ [L] ≡ 4 , (4.25)

because the integral over x has Mass Dimension [∫d4x ] = ∫[d4x ] = −4. We

can use this requirement to derive the Mass Dimension of the di�erent �elds,
because every term in the Lagrangian has to have Mass Dimension equal to 4.
For scalar �elds we have:

[∂µϕ∂µϕ] ≡ 4 ⇒ [ϕ] ≡ 1 , (4.26)

for spinor �elds:

[ψ /∂ψ] ≡ 4 ⇒ [ψ] ≡ 3
2
, (4.27)

and for gauge �elds:

[∂µAν∂µAν − ∂µAν∂νAµ] ≡ 4 ⇒ [Aµ] ≡ 1 . (4.28)

¿e n-point correlators have Mass Dimension equal to n times the mass of the
�eld, as

[⟨ϕ1⋯ϕn⟩] =
[∫Dϕ ϕ1⋯ϕn ei S]

[∫Dϕ ei S] = [∫Dϕ ] [ϕ1⋯ϕn] [ei S]
[∫Dϕ ] [ei S] = [ϕ1]⋯ [ϕn] ,

and similar for the Dirac and gauge �elds. Note that [Dϕ ] =∞, but is divided
out as usual. Using the fact that the δ-function has Mass Dimension opposite to
that of its argument:

[ δn(x)] = ⎡⎢⎢⎢⎢⎣ ∫
dnp(2π)n ei p⋅x

⎤⎥⎥⎥⎥⎦ = n , [ δn(p)] = ⎡⎢⎢⎢⎢⎣ ∫
dnx(2π)n ei p⋅x

⎤⎥⎥⎥⎥⎦ = −n , (4.29)

we can as well calculate the Mass Dimension of the propagator based on its
equation of motion. E.g. , the gauge �eld propagator has to satisfy Equation 3.126:

[(gµν ◻ − (1 − 1
ξ
) ∂µ∂ν)Dνρ

F ] ≡ [iδρµ δ(4)(x − y)] ⇒ [Dνρ
F ] ≡ 2 . (4.30)

We can verify from the mass terms [mψψ] and [m2ϕ2] that these parameters m
indeed have the Dimension of a mass. ¿e coupling constant is dimensionless,
as we can see from [gψ /Aψ].
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Now comes the important part. In dimensional regularisation, we modi�ed
the number of spacetime dimensions by subtracting a small parameter 2є. But
this changes the Mass Dimension of the Lagrangian if we want to satisfy the
requirement that the action remains dimensionless, because now

⎡⎢⎢⎢⎢⎣ ∫d
ωx L⎤⎥⎥⎥⎥⎦ ≡ 0 ⇒ [L] ≡ ω . (4.31)

Hence the Mass Dimensions of the �elds change as well:

[∂µϕ∂µϕ] ≡ ω ⇒ [ϕ] ≡ 1 − є , (4.32a)

[ψ /∂ψ] ≡ ω ⇒ [ψ] ≡ 3
2
− є , (4.32b)

[∂µAν∂µAν − ∂µAν∂νAµ] ≡ ω ⇒ [Aµ] ≡ 1 − є . (4.32c)

But now the coupling constant is no longer dimensionless:

[gψ /Aψ] ≡ ω ⇒ [g] ≡ є . (4.33)

A dimensionful coupling constant hinders perturbative theories quite a lot, if
not makes them totally unmanageable. So we de�ne a dimensionless coupling
constant g as:

gµє def= g , (4.34)

with µ an arbitrary energy scale, which we will refer to as the renormalisation
scale (see the next section). For convenience, we will only use g in calculations,
so that we can drop the bar in the notation and always write g. In practice this
means we need to add a factor µє in front of every g.
Until now we have derived the Mass Dimension based on �rst principles:

either we could just read it from the powers of the underlying quantities, or
we could derive from a relation to other quantities (like we derived the Mass
Dimension of the �elds from the requirement that the action is dimensionless).
But how do we compute the Mass Dimension for a general quantity F, if nothing
is known about its underlying structure? We will try to give a simple intuitive
statement here. Suppose that F has Mass Dimension n, then we can write:

F = c mn .

By di�erentiating w.r.t. m, the exponent comes in front:

∂F
∂m

= n cmn−1 ,
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µ ν
q q

q + k

k

Figure 4.1: Fermion loop correction to the gluon propagator. Because the γ-matrices
are traced, they give rise to a negative sign in front. Quark momenta are in
the direction of the �eld arrow.

and by multiplying with m, we retrieve the original function:

m ∂F
∂m

= n cmn = n F .
So we de�ne the Mass Dimension as

Mass Dimension

[F] def= ∂ln F
∂lnm

= m
F
∂F
∂m

. (4.35)

¿is is of course a bit simplistic, so we will give a more formal approach when
deriving the Callan-Symanzik Equation 4.81.

One-Loop Example: Gluon Propagator with Fermion Loop

Wehave nowall necessary tools tomake an example calculation.Wewill calculate
one of the NLO corrections diagrams to the gluon propagator, namely the one
with an internal fermion loop as depicted in �gure Figure 4.1.
Using the Feynman rules in Appendix A.8, we can write down the amplitude

for this diagram:

iΠµν
2 (q) = − (i g)2 tr(ta tb) µ2є ∫ dωk(2π)ω Tr(γµ i/k −mγν i/k + /q −m) .

(4.36)

Note that we added a factor µ2є coming from the Mass Dimension of the
coupling constant. Because we are calculating the correction to the gluon
propagator, the two gluon lines are not included in the calculation. ¿e trace
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over the colour generators can be calculated using Equation A.70. We bring the
γ-matrices up from the denominator:

1/k −m /k +m/k +m = /k +m
k2 −m2 ,

and next we use Feynman parameters (see Appendix B.2) to combine the two
denominators into one:

1
k2 −m2

1(k + q)2 −m2 =
1

∫
0

dx 1(ℓ2 − ∆)2 ,
where

ℓµ = kµ + xqµ , ∆ = m2 − x(1 − x)q2 .
¿e amplitude then becomes

iΠµν
2 (q) = −g2 Tr(γµγργνγσ) 1

2
δabµ2є∫ dωk(2π)ω dx ℓρℓσ − x(1 − x)qρqσ(ℓ2 − ∆)2

− g2 Tr(γµγν) 1
2
δabµ2є∫ dωk(2π)ω dx m2

(ℓ2 − ∆)2 ,
where we used the fact that the integration over odd powers of ℓ vanishes, just
as the trace of an odd number of γ-matrices. Now we use the trace identities for
the Dirac matrices (see Equations A.31), which gives:

iΠµν
2 (q) = −2g2δabµ2є∫ dωk(2π)ω dx (gµν 2 − ω

ω
ℓ2(ℓ2 − ∆)2

+ (gµνm2 − x(1 − x) (2qµqν − gµνq2)) 1(ℓ2 − ∆)2) .

¿ese two integrals are given in Equations B.25. Note that we can rewrite

gµνm2 − x(1 − x) (2qµqν − gµνq2) = gµν∆ − 2x(1 − x) (qµqν − gµνq2) .
¿is ∆ will cancel the extra ∆ coming from the integration with ℓ2 (a er taking
the limit є → 0 where possible):

∫ dωk(2π)ω dx ℓ2(ℓ2 − ∆)2 = i ∆(4π)2 ω2 ( 1
є
− γE + ln 4π − ln∆ + 1) ,

∫ dωk(2π)ω dx 1(ℓ2 − ∆)2 = i 1(4π)2 ( 1
є
− γE + ln 4π − ln∆) .
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¿e result is then

iΠµν
2 (q) = (q2gµν − qµqν) iδabΠ2(q2) , (4.37a)

Π2(q2) = −αsπ ∫dx x(1 − x)( 1
є
− γE + ln 4π − ln ∆

µ2
) , (4.37b)

where we used the de�nition of the �ne-structure constant as in Equation A.2.
¿is last integral can be calculated as well. ¿e �rst part is trivial:

( 1
є
− γE + ln 4π + ln µ2) ∫dx x(1−x) = 1

6
( 1
є
− γE + ln 4π + ln µ2) . (4.38)

For the last term we have to make a distinction whether the polynomial can be
factored or not. In case q2 ≥ 4m2, we can:

m2 − x(1 − x)q2 = q2(x − x1)(x − x2) , x1,2 = 1
2
± 1
2

¿ÁÁÀ1 − 4m2

q2
.

¿e integral then breaks up into 5 pieces:

− ∫dx x(1 − x) ln (m2 − x(1 − x)q2) =
− 1
6
ln q2 − ∫dx x ln(x − x1) − ∫dx x ln(x − x1)

+ ∫dx x2 ln(x − x1) + ∫dx x2 ln(x − x1) .
¿ese integrals are listed in Equations B.2:

∫dx x ln(x − xi) = 1
2
(1 − x2i ) ln(1 − xi) − xi

2
− 1
4
+ 1
2
x2i ln(−xi) ,

∫dx x2 ln(x − xi) = 1
3
(1 − x3i ) ln(1 − xi) − x2i

3
− xi
6
− 1
9
+ 1
3
x3i ln(−xi) .

We can simplify this sum further by noting that x1 = 1 − x2 and vice versa. ¿is
gives:

− ∫dx x(1 − x) ln (m2 − x(1 − x)q2) =

− 1
6

⎡⎢⎢⎢⎢⎢⎣
lnm2 − 4m2

q2
− 5
3
+ iπ +

¿ÁÁÀ1 − 4m2

q2
(1 + 2m2

q2
) ln 1 +

√
1 − 4m2

q2

1 −√
1 − 4m2

q2

⎤⎥⎥⎥⎥⎥⎦
.
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On the other hand, in case q2 < 4m2, we can only break the integral in 3 pieces
because we cannot factor the polynomial. ¿e result is then:

− ∫dx x(1 − x) ln (m2 − x(1 − x)q2) =

− 1
6

⎡⎢⎢⎢⎢⎢⎣
lnm2 − 4m2

q2
− 5
3
+ i

¿ÁÁÀ4m
2

q2
− 1 (1 + 2m2

q2
) ln 1 + i

√
4m2

q2 − 1
1 − i√4m2

q2 − 1
⎤⎥⎥⎥⎥⎥⎦
.

¿eonly di�erencewith the case q2 > 4m2 is the term iπ.¿is is not so surprising,
as the logarithm has a branch cut at q2 = 4m2. So the �nal result is then

Gluon Propagator with a Fermion Loop

iΠµν
2 (q) = (q2gµν − qµqν) iδabΠ2(q2) , (4.39a)

Π2(q2) = − αs6π ( 1
є
− γE + ln 4π − ln m2

µ2
+ C(q2)) , (4.39b)

C(q2) = −4m2

q2
− 5
3
+
¿ÁÁÀ1−4m2

q2
(1+2m2

q2
) ln 1+

√
1−4m2

q2

1−√1−4m2

q2
+ iπ θ(q2−4m2) .

Most of the time we are only interested in the coe�cient of the pole; the �nite
coe�cients only matter when going to NNLO and higher. But note that C(q2) is
�nite at q2 = 0, although maybe not obvious at �rst sight. We can make this
clear by expanding the square root and the logarithm around q2 = 0:¿ÁÁÀ1 − 4m2

q2
= 2i ( q

m
)−1 − i

4
q
m
+O(q3) , (4.40a)

ln
1 +√

1 − 4m2

q2

1 −√
1 − 4m2

q2
= −i q

m
− i
24

( q
m

)3 +O(q5) , (4.40b)

such that their combination becomes¿ÁÁÀ1 − 4m2

q2
(1 + 2m2

q2
) ln 1 +

√
1 − 4m2

q2

1 −√
1 − 4m2

q2
= 4m2

q2
+ 5
3
+O(q) , (4.41a)

⇒ C(0) = 0 . (4.41b)

In other words, the NLO correction doesn’t add any poles in q2 = 0.
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4.2 from theory to experiment

What we have derived so far, is how to calculate n-point �eld correlators. ¿ese
are, depending on normalisation and convention, exactly the same as the bare
Green’s functions of the theory. As the di�erence is at most a constant factor, we
will use the two naming conventions interchangeable.
By themselves, Green’s functions are not physical observables, as their external

legs are not necessarily on mass-shell, and as e.g. correlators of gauge �elds aren’t
even gauge invariant. So we need to relate them to physical quantities that are
directly linked to observables. We will apply the most common approach, the
S-matrix expansion, that is due to Dyson. ¿e Dyson expansion of the S-matrix
contains the complete information about all collision processes. We de�ne it as
the probability amplitude for a process to go from an initial state ∣in⟩ to a �nal
state ⟨out∣:

Sβα = ⟨β ∣α⟩ . (4.42)

Note that this S is not the same as the action S.³ We can also introduce an
operator Ŝ that transforms an in-state into an out-state:

⟨β, out∣ def= ⟨β, in∣ Ŝ ,
which gives

Sβα = ⟨β, in∣ Ŝ ∣α, in⟩ . (4.43)

It is a unitary operator, because

⟨β, in∣ ŜŜ† ∣α, in⟩ = ⟨β, in∣α, in⟩ = δβα .
It is possible to construct this operator from the Green’s functions with the
so-called Lehmann-Symanzik-Zimmermann (LSZ) reduction formula. We won’t
treat its technicalities here as that would lead us to far, but we will just state the
formula itself. ¿e S-matrix for a process with m initial particles (labelled with
momenta pi) and n �nal particles (labelled with momenta p′i) can be derived
from the n +m-point correlation function as follows:

3 ¿ere simply aren’t enough letters available in the alphabet.
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LSZ Reduction Formula

⟨p′1⋯ p′n∣ Ŝ ∣p1⋯ pm⟩ ∼ (4.44)

∫⎛⎝
n∏
i

m∏
j
d4xi d4y j ei p

′
i ⋅x i e−i p j ⋅x j (◻′x i+m2) (◻y j+m2)⎞⎠ ⟨Ω∣ ϕ′x1⋯ ϕ′xnϕy1⋯ϕym ∣Ω⟩ .

On the other hand, we can also retrieve observable quantities from the transition
matrix T , which is de�ned as the shi that S makes from the identity:

Ŝ def= 1̂ + i T̂ . (4.45)

It can be shown that the transition matrix for processes with two initial particles
directly relates to the amplitude:

i ⟨p′1⋯ p′n∣ T̂ ∣p1p2⟩ = δ(4)(p1 + p2 − n∑ p′i)M(p1+p2 → p′1+ ⋯ +p′n) ,
where we used the short-hand notation de�ned in Equation 3.81.M is the
sum of all possible Feynman diagrams consisting of two incoming particles
with momenta p1 and p2, and n outgoing particles with momenta p′1, . . . , p′n.
Furthermore, we only consider diagrams that are fully connected and amputated.
A diagram is fully connected when it is not separable into subdiagrams, and is
amputated if every external leg can be cutted as close to the nearest vertex as
possible without making a di�erence. ¿e following diagrams will hence not be
included in amplitude calculations:

¿e �rst because it consists of two subdiagrams and is hence not fully connected,
the second because the lower right leg isn’t fully amputated; we still have to
amputate the loop, as indicated by the dashed red line (of course, loop correc-
tions are allowed inside the diagram, i.e. for virtual particles—amputation only
concerns external particles).
From this de�nition for the amplitude, we can construct—using the Lehmann-

Symanzik-Zimmermann (LSZ) reduction formula—an observable known as the
cross section:

Cross Section

dσ (12→ 1′2′⋯n′) def= 1
4
√(p1 ⋅p2)2 −m2

1m2
2
dΦ ∣M∣2 . (4.46)

¿e �rst factor is the �ux factor and depends on the 4-momentum of the
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incoming particles. ¿e measure dΦ is the Lorentz-invariant phase space (LIPS),
and represents the on-shell conditions for the �nal particles:

dΦ = ( n∏
i

d4p′i(2π)4 δ+(p′i2 −m2)) δ(4)(p1 + p2 − n∑
i
p′i) , (4.47)

where δ is de�ned in Equation 3.81, and δ+ is a combination of Equation 3.81
and Equation A.54:

δ+(p2 −m2) N= 2π δ+(p2 −m2) N= 2π δ(p2 −m2) θ(p0) . (4.48)

For each subset of k indistinguishable particles in the �nal state, we have to
divide by a symmetry factor

1
k!
, (4.49)

that compensates for double counting the same state k! times. ¿is is additional
to the symmetry factor of the diagram, which only manages the double counting
of the internal lines. ¿e cross section is directly observable, as it represents the
‘e�ective interaction surface’ of a certain process, and can be hence retrieved
from experiment by counting events, normalised against a background.
A common approach is to calculate diagrams directly for the amplitude

squared ∣M∣2. ¿e amplitude is then associated with the le side of the dia-
gram, the conjugate amplitude with the right side, and they are separated by a
so-called �nal-state cut. ¿e Feynman rules on the le side remain the same,
while the rules on the right are hermitian conjugated (in particular, also the
propagator pole prescription changes sign to −iε). Particles that cross the cut
are external particles, so they have to be on-shell, which means we add a factor
δ+(p2 −m2). Because we would like to treat it as one diagram, momenta in the
right side are �ipped. ¿is changes the sign of the 3-gluon vertex and the ghost
vertex. We can easily motivate this schematically:

Fabcµνρ(k, p, q)
M

(Fabcµνρ(k, p, q))† = Fabcµνρ(k, p, q)
M∗

where F is the 3-gluon coe�cient:

Fabcµνρ(k, p, q) = g f abc[ gµν(k−p)ρ + gνρ(p−q)µ + gρµ(q−k)ν] .
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If we now calculate the same probability with the cut diagram method, we get:

Fabcµνρ(k, p, q) Fabcµνρ(−k,−p,−q) = −Fabcµνρ(k, p, q)
∣M∣2

So indeed, by �ipping the momenta we get a minus sign di�erence. ¿e same is
true for the ghost vertex. ¿is then gives rise to the following extra Feynman
rules for cut diagrams:

a. Cut Fermion: i j
p = δ i j δ+(p2 −m2)

b. Cut Gluon: a, µ b, νk Lorentz= −δab δ+(k2) gµν
LC= −δab δ+(k2)(gµν − 2k(µnν)

k ⋅ n )
d. All Feynman diagrams at the right side of the cut are complex conjugated.
c. ¿e 3-gluon vertex and the ghost vertex get an extra minus sign when on
the right side of the cut.

¿e advantage of this approach is that it is easier to directly calculate inter-
ference diagrams. It is especially common when calculating PDFs and structure
functions, as we will see e.g. in Equation 5.35.

Renormalisation

¿ere is an important matter that we yet have to match with experiment. When
doing loop calculations, as we saw before, we regularise the integral using dimen-
sional regularisation. However, in doing so we introduced two new parameters
to the theory, namely the UV regulator є and the renormalisation scale µ. ¿ese
are unphysical le overs from a mathematical tool, so we somehow have to adapt
our theory to manage these.
We start with the UV regulators. ¿e poles are an indication that some of

our physical quantities tend towards in�nity at higher orders. ¿is behaviour
is of course pathological, because we expect the corrections to become smaller
and smaller at higher order, converging to a �nite value. Let us illustrate this in
an intuitive way. Consider e.g. a free electron propagating through spacetime.
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It has a charge equal to the elementary charge e. As we go to higher orders
in perturbation theory, the electron gets more and more ‘dressed’ with virtual
photons and virtual electron-positron pairs, and these corrections add to the
apparent charge as we observe it macroscopically. However, these corrections
pull the value of the charge to in�nity instead of some reasonable value. Now,
we have to understand that when we make a real-life experiment, there are no
order calculations involved—it is an all-order result—the only limiting factor is
the resolution of the detector. But even when the resolution is extremely bad, it
will always be good enough to make the di�erence between a stable value, and a
value that explodes towards in�nity. In other words, experiment contradicts the
theoretical prediction. ¿ere is something fundamentally wrong.
In fact, as it happens, there is something conceptually wrong with our intuitive

explanation. We assumed that the elementary charge equals the bare electron
charge e0 (which is the charge as it appears in L, i.e. before corrections), but of
course this is totallywrong.¿e elementary charge aswe know it, is a result drawn
from experiment, hence it is the charge a er making all order corrections. If the
reason that the charge explodes is that we took the wrong starting assumption,
then maybe we have to reverse the idea. Instead of a �nite (unmeasurable) bare
charge, that explodes when calculating all order corrections towards an in�nite
(measurable) macroscopic charge, we take the bare charge to be in�nite, such
that it becomes �nite a er including all order corrections.¿is is the key concept
behind renormalisation.
Is it counter-intuitive—or even unphysical—to make the bare charge diver-

gent? Actually, no, it isn’t, as the bare charge itself is unphysical. It is not an
observable, because no real-world electron will ever be free of virtual corrections
dressing it. Hence the renormalised charge is the correct physical observable.
Let us try to forge this into in a mathematical statement. We start with an

investigation of the gluon propagator.We de�ne the one-particle irreducible (1PI)
diagram as the sumof all diagrams that cannot be separated by cuttingmaximally
one gluon line:

iΠµν(q) ≡ 1PIµ ν
q

. (4.50)

In the calculation we have done before, we have used the notation Πµν
2 to denote

the contribution that is second order in g. Note that we were able to factorise
out the tensor structure in Equation 4.39a. In fact, it is possible to prove that this
is a general statement to all orders:

Πµν(q) = (q2gµν − qµqν)Π(q2) , (4.51)

where Π doesn’t introduce extra poles in q2 = 0. ¿e full gluon two-point
function is then given by:
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= + 1PI + 1PI 1PI + . . .

= −i gµν
q2

+ −i gµρ
q2

i (q2gρσ − qρqσ)Π(q2) −i gσν
q2

+ ⋯ ,

which we can abbreviate as

= −i gµν
q2 (1 −Π(q2)) .

Note that this relation is only valid inside an S-matrix calculation, and that its
derivation relies heavily on the validity of so-calledWard identities kµMµ = 0,
for which the treatment goes beyond the scope of this thesis. Because Π(q2)
doesn’t add extra poles in q2, the manifest singularity in the exact propagator for
q2 = 0 remains, and the gluon remains massless a er higher order corrections.
¿e residue of this pole is

1
1 −Π(0) N= ZA , (4.52)

so that we can write

= ZA−i gµνq2
+ �nite terms . (4.53)

¿e constant ZA, which we will call a renormalisation constant, is in�nite a er
taking the limit є → 0. E.g. using the result in Equations 4.39, we can can
calculate theO(αs)-shi in the propagator due to the fermion loop correction:

δZψ
A = Zψ

A − 1 O(αs)= − αs
6π

⎛⎝ 1є − γE + ln 4π − ln
m2
q

µ2
⎞⎠ . (4.54)

We can repeat the same calculation for the quark propagator. ¿e 1PI diagram is
de�ned as:

−iΣ(p) ≡ 1PI
p

. (4.55)

¿e full quark propagator is then given by:

= + 1PI + 1PI 1PI + . . .

= i/p −m0
+ i/p −m0

[ − iΣ(/p)] i/p −m0
+ ⋯ .



4.2 from theory to experiment 110

Note that these are the bare masses, as the observable mass will be the mass a er
corrections. ¿e sum of all 1PI diagrams resums into

= i/p −m0 − Σ(/p) . (4.56)

¿e pole /p = m0 + Σ(/p) represents the condition for the propagator to go on-
shell, it hence de�nes the new mass, a er corrections, which is thus de�ned as
the solution of

m ≡ m0 + Σ(m) . (4.57)

¿e mass shi is given by:

δm = m −m0 = Σ(m) . (4.58)

For �rst-order corrections, it can be approximated by:

δm ≈ Σ(m0) . (4.59)

Close to the pole /p = m, we can expand the denominator as
(/p −m)⎛⎝1 − dΣ

d/p ∣
/p=m

⎞⎠ +O((/p −m)2) .
¿e residue of the propagator pole is given by

1
1 − dΣ

d/p ∣/p=m
N= Zψ , (4.60)

so that we can write

= Zψ i/p −m + �nite terms . (4.61)

Again, the factor Zψ is in�nite in the limit є → 0. Similarly, the ghost �eld
propagators will gain a factor Zc . What makes things somewhat cumbersome,
is that because the Green’s functions gain a renormalisation factor, i.e.

⟨Ω∣ ϕ1⋯ϕn ∣Ω⟩→ (√Zϕ )n ⟨Ω∣ ϕ1⋯ϕn ∣Ω⟩ ,
the LSZ formula in Equation 4.44 also gains this factor:
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(√Zϕ )n+m ⟨p′1⋯ p′n∣ Ŝ ∣p1⋯ pm⟩ ∼ (4.62)

∫⎛⎝
n∏
i

m∏
j
d4xi d4y j ei p

′
i ⋅x i e−i p j ⋅x j (◻′x i+m2) (◻y j+m2)⎞⎠ ⟨Ω∣ ϕ′x1⋯ ϕ′xnϕy1⋯ϕym ∣Ω⟩ .

We will see in a moment how we can deal with this.
In Equations 4.53 and 4.61 we separated the pole part from the �nite parts.

However, it is o en convenient to absorb some of the �nite terms into the
constants ZA and Zψ (or equivalently, in the renormalisation scale). ¿is choice
is totally free, as long as it is kept consistently. ¿is is called a renormalisation
scheme. Two common choices are

a. MS (minimal subtraction renormalisation scheme): No �nite terms, only
the pole 1/є is absorbed.

b. MS (modi�ed minimal subtraction renormalisation scheme): ¿e pole 1/є
and the regularisation ‘remnants’ ln 4π and −γE are absorbed.

It is convenient to de�ne theMS scheme in a more rigorous way. We will subtract
the remnants by absorbing them in the renormalisation scale. For this we de�ne
a factor Sє such that µ, de�ned as

µ2є def= µ2єSє = µє[1 + є (ln 4π − γE) +O(є2) ] , (4.63)

contains the remnants. ¿e most common choice for Sє is

Sє = (4πe−γE)є , (4.64)

but we prefer to follow the convention by Collins [33]:

MS Subtraction

Sє = (4π)є
Γ(1 − є) . (4.65)

Up to �rst order in є, the two conventions are equal. We prefer the last one,
because it maximally simpli�es loop calculations with a double pole at �rst
order, which are common when using Wilson lines (see e.g. Equation 7.72
for a calculation where we demonstrate the di�erence). In practice, every
coupling constant is automatically accompanied by the renormalisation scale
(see Equation 4.34), so to express the results in function of the subtracted scale,
we have to divide it by Sє:

g def= gµє def= g µє
√
S−1є , (4.66)
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where g is the dimensionful and g the dimensionless coupling constant, i.e.[g] = є and [g] = 0. We will only use the dimensionless coupling constant g and
the subtracted scale µ, so for convenience, we drop the bar notation. Also, in
order not to overload our calculations, we won’t explicity write the factors

√
S−1є .

We will just remind ourselves to divide by a factor Sє per loop (and mention
when we do this). To see how Sє subtracts the remnants, we �rst note that the(4π)є factor is directly cancelled, and that the Euler-Mascheroni constant is
cancelled because

Γ(є)Γ(1 − є) = 1
є
+O(є) . (4.67)

¿is can be illustrated with e.g. Equation 4.15:

S−1є ∫ dωk(2π)ω 1(k2 −m2)2 = Γ(1 − є)(4π)є i(4π)2 ( 4π
m2)є Γ(є) ,

→ i(4π)2 ( 1
є
− lnm2) .

To renormalise our theory we can now proceed in two di�erent ways.

renormalised perturbation theory: In this approach we remove
the in�nite renormalisation constants from the n-point correlators. To achieve
this, we rescale the bare �elds:

Aµ0 →√ZA Aµr , (4.68a)
ψ0 →√Zψ ψr , (4.68b)

c0 →√Zc cr . (4.68c)

¿is is indeed the renormalisation procedure as we described it in an intuitive
way in the beginning of this section.We de�ne the bare �elds as in�nite, such that
they become �nite a er corrections. Here the Aµr ,ψr and cr are the renormalised
�elds, i.e. the �elds as we measure them in experiment. In a way, they are the
bare �elds a er extraction of an in�nite factor. ¿anks to these rescalings, the
LSZ formula is cast in its original form, as in Equation 4.44 without the in�nite
factors in front of the S-matrix, and in function of the renormalised �elds. ¿e
rescalings also propagate into the Lagrangian, which is now given by:

L = − 1
4
ZA (∂µAνr − ∂νAµr )2 − 1

2ξ
ZA∂µAµr ∂νAνr −Zc cr ◻ cr

+Zψ ψr (i /∂ −m0)ψr + g0√ZAZψ ψr /Arψr − g0√ZAZc f abccr∂µAbµ rcr
− g0Z 3

2
A f

abc (∂µAaν r)Aµbr Aνcr − 1
2
g20Z2

A f abx f xcdAaµ rAbν rA
µc
r Aνdr .
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If we now de�ne

Counterterms

δψ
def= Zψ − 1 , δA

def= ZA − 1 , δc
def= Zc − 1 , (4.69a)

δm
def= Zψm0 −m , δ1

def= g0
g
Zc√ZA −1 , δ2

def= g0
g
Zψ√ZA − 1 , (4.69b)

δ3
def= g0

g
(√ZA )3−1 , δ4

def= g20
g
Z2
A − 1 , (4.69c)

we can write the Lagrangian as

L = Lrenorm +Lcounter , (4.70)

where the �rst is the renormalised Lagrangian, i.e. the standard Lagrangian
expressed in function of renormalised �elds, physical masses, and physical
coupling constants:

Lrenorm = − 1
4
(∂µAνr − ∂νAµr )2 − 1

2ξ
∂µAµr ∂νAνr − cr ◻ cr

+ ψr (i /∂ −m)ψr + g ψr /Arψr − g f abccr∂µAbµ rcr
− g f abc (∂µAaν r)Aµbr Aνcr − 1

2
g2 f abx f xcdAaµ rAbν rA

µc
r Aνdr ,

and the second contains the so-called counterterms:

Lcounter = − 14δA (∂µAνr − ∂νAµr )2 − 1
2ξ
δA∂µAµr ∂νAνr − δccr ◻ cr

+ δψψr (i /∂ − δm)ψr + g δ2 ψr /Arψr − g δ1 f abccr∂µAbµ rcr
− g δ3 f abc (∂µAaν r)Aµbr Aνcr − 1

2
g2δ4 f abx f xcdAaµ rAbν rA

µc
r Aνdr .

¿e eight parameters in Equations 4.69 depend on �ve quantities (3 �elds, a
mass and a coupling constant), so there are three relations between them. ¿ese
are known as the Slavnov-Taylor identities, and can be derived from Noether’s
current conservation theorem and gauge invariance (see e.g. [31]):

δ1 − δc ≡ δ2 − δψ ≡ δ3 − δA ≡ 1
2
(δ4 − δA) . (4.71)

¿e de�nitions in Equations 4.69 only make sense if we give a precise de�nition
for the physical mass and coupling constant. For this we need to de�ne a set
of renormalisation conditions, from which we can derive constraints on the
counterterms. One such condition is e.g. that the physical mass is de�ned as
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the pole of the quark propagator at all orders. ¿en we proceed as follows: the
terms in Lcounter will give rise to extra Feynman rules, viz. the counterterm
diagrams. We then can compute any amplitude by considering all possible
diagrams, including the counterterm diagrams (which are power-counted as
one order in αs higher than the corresponding regular diagrams).¿e amplitude
will be expressed in the unknown parameters δA, δψ , δc , δ1, δ2, δ3, δ4, and δm.
¿ese parameters are then retrieved by matching the amplitude against the
renormalisation conditions. ¿e result will be naturally free of divergences, and
independent of the regulator. See e.g. [18, 31] for an expanded treatment.

bare perturbation theory: Another approach is to keep all quantities
in their bare form during the computation of amplitudes. It will gives us an
expression in function of the regulator є and the bare parameters m0 and g0.
Next we calculate the physical mass and coupling constant up to the order that
is relevant for the �rst calculation. We then express the bare mass and coupling
constant in function of the physical parameters. We retrieve the cross section
by using the LSZ-formula, but with the renormalisation factors. In the end the
result is free of divergences, and independent of the regulator. ¿is approach
is more straightforward to implement, as we can keep the same calculations as
before but expressed in bare quantities. It requires however double the number
of calculations, as we have to calculate the physical quantities separately, and
becomes quite complicated at higher orders. But the advantage is that if the
physical masses and coupling constants have already been calculated, they can be
reused in other calculations. We prefer to use this approach, as it allows us to do
regular calculations as before, forgetting about renormalisation or counterterms,
and still renormalise the result later on. Of course the two approaches are totally
equivalent, but not interchangeable; one has to use one approach consistently.

¿e Callan-Symanzik equation

In the previous subsection we investigated howwe use renormalisation to handle
one of the unphysical le overs of the regularisation process, namely the UV
regulator. However, there is another unphysical remnant that we need to deal
with, viz. the renormalisation scale µ, which follows from a shi in spacetime
dimensions to non-integer values (see Equation 4.34). A er renormalising the
�elds, all the parameters will depend on this renormalisation scale, i.e.

Z(µ) , g(µ) , m(µ) . (4.72)
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But logically, the bare parameters are renormalisation-scale independent:

∂ϕ0
∂µ

≡ 0 , ∂g0
∂µ

≡ 0 , ∂m0
∂µ

≡ 0 . (4.73)

Now consider a Green’s function of n �elds, for simplicity all of the same type.
¿e bare Green’s function depends on the bare parameters, the �elds, and the
momenta in the external legs, but not on the renormalisation scale:

Gn
0 ≡ Gn

0 (g0,m0, {ϕi}, {pi}) , (4.74a)

dGn
0

dµ
= 0 . (4.74b)

¿e renormalised Green function follows from the rescaling of the �elds:

Gn def= (√Zϕ )−n Gn
0 , (4.75)

and gains now scale dependence through its parameters, but possibly also directly
(note that the momenta don’t scale with µ):

Gn ≡ Gn(µ, g(µ),m(µ), {ϕi(µ)}, {pi}) . (4.76)

Using Equation 4.74b we can investigate its behaviour under a scale shi :

d
dln µ

((√Zϕ )n Gn) ≡ 0 ⇒ (n γϕ + d
dln µ

) Gn ≡ 0 , (4.77)

where

γϕ
N= − 1

2
∂lnZ
∂ln µ

(4.78)

is the anomalous dimension of the �eld. We have chosen to di�erentiate w.r.t.
ln µ instead of µ, such that γϕ is dimensionless. We can use the chain rule for
the di�erentiation of the Green’s function:

d
dln µ

G = ( ∂
∂ln µ

+ β(g) ∂
∂g

+ γm ∂
∂lnm

) G ,

where

γm
N= ∂lnm(µ)

∂ln µ
, β(g) N= ∂g(µ)

∂ln µ
. (4.79)
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Combining this with Equation 4.77, we get

( ∂
∂ln µ

+ β(g) ∂
∂g

+ γm ∂
∂lnm

+ n γϕ) Gn ≡ 0 . (4.80)

If we consider a general renormalised n-point Green’s function in Yang-Mills
theory:

Gn,k,l N= ⟨Ω∣ψ1⋯ψ n
2
ψ n

2 +1⋯ψn Aµ11 ⋯Aµkk c1⋯c l
2
c l
2+1⋯c l ∣Ω⟩ ,

= Z−nψ (√ZA )−k Z−lc Gn,k,l
0 ,

we now know that it has to satisfy the equation

Callan-Symanzik Equation

( ∂
∂ln µ

+ β(g) ∂
∂g

+ γm ∂
∂lnm

+ n γψ + k γA + l γc) Gn,k,l ≡ 0 , (4.81)

with

Renormalisation Group Equations

β(g) N= ∂g(µ)
∂ln µ

, γψ
N= − 1

2
∂lnZψ
∂ln µ

, γA
N= − 1

2
∂lnZA
∂ln µ

, (4.82a)

γc
N= − 1

2
∂lnZc
∂ln µ

, γm
N= ∂lnm
∂ln µ

. (4.82b)

¿is is called the Callan-Symanzik equation, and the set of equations de�ning
the β-function and the anomalous dimensions are commonly called the
renormalisation-group equation (RGE). We can calculate the β and γ functions
by calculating a few diagrams at a given order (e.g. the gluon propagator and
the 3-gluon vertex) and compare the respective Callan-Symanzik equations.
¿e renormalised perturbation theory is the best suited framework for this type
of calculations.

Running Coupling in QCD: Asymptotic Freedom

At NLO, the β-function can be written as:

β(g) = b0 g3(4π)2 , (4.83)
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which we can solve exactly:

Running Coupling

g2(µ) = g20
1 − g20(4π)2 b0 ln µ2

µ20

. (4.84)

¿ere is a huge di�erence between Abelian and non-Abelian theories. In an
Abelian theory, like QED, we have

bQED0 = 4
3
, (4.85)

which gives a plot as shown in Figure 4.2a, where the coupling goes towards zero
in the limit µ → 0, and rises towards in�nity for µ →∞. ¿is is quite intuitive,
as high energies imply short-distance physics. If we imagine e.g. two magnets
approaching, they will attract each other (assuming opposite poles) stronger
and stronger the closer they get.
On the other hand, in a non-Abelian theory like su(n), the b0 coe�cient is

given by:

bsu(n)0 = − 11
3
Nc + 2

3
Nf , (4.86)

where Ncis the number of gauge elements (colour charges, 3 for QCD) and Nf the
number of quark �avours (6 for QCD). If 11

3 Nc > 2
3Nf , the coe�cient will be

negative (as is the case for QCD). ¿is gives a plot as shown in Figure 4.2b, where
the coupling goes towards zero at in�nity, and rises sharply in the limit µ → 0.
¿is is quite counter-intuitive, as it implies that particles at an in�nitesimally
small separation don’t attract each other (colourwise). Such a theory is called
asymptotically free. ¿ere is a useful metaphor, namely that of two particles
connected by a rubber band. If you leave the band relaxed, nothing happens. But
from themoment you try to pull the particles apart, tension will accumulate, and
the more you pull, the more you try to increase the separation between the two
particles, the stronger the tension. It is hence also a metaphor for con�nement,
describing how quarks can never exist as free particles, because the harder you
try to separate them from a bound state, the harder they resist. But the metaphor
goes even further, because if you pull too hard on the rubber band, it will snap
in half. Similarly, if you keep on trying to separate quarks, a er a while the gluon
binding energy will ‘snap’, i.e. it will create two new quarks to bind with the
existing ones, such that there are now two independent bound states that can be
separated at will.
But the most important consequence is that at a given energy scale, namely

roughlyΛQCD ≈ 250MeV, the coupling constant αs will become bigger than one,
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Figure 4.2: a) Running coupling for QED. As for any Abelian theory, it is slowly increas-
ing. b) Running coupling for QCD (with log scale on the horizontal axis).
Because 11

3 Nc > 2
3Nf , the β-function is negative, and the coupling rises to-

wards small energies. ¿e dashed line shows αs ≈ 0.1, the common value
for high-energy calculations.

and the perturbative framework is invalidated. ¿is is pathological. Of course,
also in QED there could be energies high enough to render the coupling αEM > 1,
but at least these energies are high enough not to in�uence with the physics at
hand, i.e. we can still treat the perturbative theory as an e�ective theory up to
some upper cut-o� scale. ¿is is not the case in QCD, as the energies at which a
perturbative treatment fails are energies that are present in every experiment,
namely inside the hadrons.
Luckily there is a way to deal with it. ¿e asymptotic freedom essentially

divides QCD into two parts: a part where µ > ΛQCD and a perturbative approach
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is valid—we can hence use perturbative qcd (pQCD) as an e�ective theory in this
region—and a part that is not calculable, but has to be extracted from experiment.
¿is is the basis for the factorisation framework, which we will study in the next
chapter.



5
BASICS OF QCD

QCD, as a non-Abelian theory, has a peculiar behaviour due to the anti-screening
of gluons which makes it asymptotically free, as was discussed in the previous
chapter. Essentially it means that it is cut into two regimes: a perturbative regime
called perturbative qcd (pQCD) where αs < 1, such that hard processes can be
calculated by standard �eld theory methods (using pQCD as an e�ective theory
toQCD), and a non-perturbative regime that is not calculable. Real-life scattering
experiments are never limited to hard processes, so it is necessary to somehow
combine both regimes into meaningful observables. ¿e use of factorisation is
a key method to achieve this, as it allows us to separate the two regimes as a
separation of energy scales. As the separation is arbitrary, we add the natural
requirement that the resulting process cannot depend on the separation point.
¿is then leads to the emergence of evolution equations, describing how the
non-perturbative part evolves in function of energy. A few common processes
in QCD are:

EPA Electron positron annihilation was one of the �rst processes used to in-
vestigate QCD. ¿e lepton pair annihilates into a virtual photon, which
consequently decays into a quark-antiquark pair (events where the photon
decays into a lepton pair are ignored). It was intensively studied in the
LEP experiments between 1981 and 2000, and lead to deep insights in the
theory of the strong force. Angular distributions of two jet events demon-
strated the spin-1/2 nature of quarks, angular distributions of three jet
events demonstrated the spin-1 nature of gluons and the rate of three-jet
events to two-jet events provided a good estimate of the strength of the
strong coupling constant (10% rate, hence αs ≈ 0.1 at standard energies).
Finally, four-jet events (see Figure 5.1) are sensitive to the three-gluon
vertex, and hence allow for an investigation of the non-Abelian nature of
QCD, and literary for a check of SU(3) to be the underlying group theory.
It remains to date an interesting experimental setup to investigate the
workings behind jet fragmentation and hadronisation, as there are no
initial-state interactions that could blur data and calculations.

120
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DIS Deep inelastic scattering, in which an highly relativistic electron is collided
onto a heavy proton (or any other hadron), is a process mainly useful
to probe the hadronic contents. Its investigation at the HERA experiment
has lead to the development of the so-far most successful factorisation
approach, namely collinear factorisation. It is the process that we will use
in this chapter as a starting ground to develop the framework of parton
density functions (PDFs) and collinear factorisation.

SIDIS Semi-inclusive deep inelastic scattering allows for a much richer phe-
nomenology, because it includes the identi�cation of one �nal hadron.
However, ¿e underlying theory becomes much more involving, as in
this case collinear factorisation is broken, and dependence of the PDFs
on transverse momentum has to be included. As this is the ideal process
to develop the transverse momentum density (TMD) framework, we will
study it extensively in Chapter 8.

DY ¿e Drell-Yan process, where two hadrons are collided and form a lepton
pair, is a very interesting process as it is free of �nal-state interactions, and
can as such be considered the reverse of the EPA process. It is however quite
rare and hard to measure, leading to low statics and making it di�cult to
interpret. One of the key results in DY experiments is the discovery of the
light quark �avour asymmetry in the proton. We will brie�y investigate
the topological di�erences between DY and SIDIS in the TMD framework
in the end of Section 8.2.

DVCS Deeply virtual Compton scattering, in which a photon is scattered elast-
ically on a hadronic target, is a process that allows a direct view on the
hadron contents as expressed in coordinate space, hence it is the most
appropriate experimental setup to investigate generalised parton density
functions (GPDs). We will not address it in this thesis.

More reading on the basics of pQCD can be found in [18, 22, 33–38]

5.1 deep inelastic scattering

To investigate the framework of factorisation, we will introduce it in the QCD
process where it is easiest (because collinear) and best understood, namely DIS.
Here an electron is collided with a proton, but in the �nal state only the electron
is measured while all other �nal states are integrated out. What simpli�es this
process as compared to other factorised processes, is that there is only one
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Figure 5.1: Four-jet events demonstrate the non-Abelian behaviour of QCD, because
they consist of two distinct sub-processes. In the Abelian sub-process, a
gluon is radiated twice from a quark, proportional to CF , but in the non-
Abelian sub-process, a gluon is radiated and then split into two gluons,
as shown here. ¿e latter is proportional to CA, and angular correlations
between the two sub-processes allow for the extraction of the rate of the
constants.

hadronic state, i.e. only one non-perturbative region. A process where two
protons are collided would be much more di�cult to investigate, due to the
mixture of two non-perturbative regions (unless severely restricted, like the way
that DY is limited to events that produce a lepton pair).
¿is also implies that in DIS we can integrate out the transversal component

of the momentum of the struck quark, leaving only longitudinal dependence in
the PDF. In Section 8.2 we go one step further by identifying a �nal state hadron,
implying the need of two PDFs concurrently, and the preservation of transversal
momentum dependence.

Kinematics

Deep inelastic scattering is the most straightforward process to probe the insides
of a hadron. An electron is collided head-on with a proton (or whatever hadron),
destroying it maximally. ¿e kinematic diagram is shown in Figure 5.2. We will
always neglect electron masses. ¿e centre-of-mass energy squared s is then
given by:

s = (P + l)2 = m2
p + 2P ⋅ l , (5.1)

and q is the momentum transferred by the photon:

qµ N= l µ − l ′µ . (5.2)

Because q2 = 2EeE′e(cos θee′ − 1) ≤ 0, we de�ne Q2 N= −q2 ≥ 0. ¿e invariant
mass of the �nal state X is then given by

m2
X = (P + q)2 = m2

p + 2P ⋅ q − Q2 . (5.3)
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Figure 5.2: Kinematics of deep inelastic electron-proton scattering.

In order for the photon to probe the contents of the proton, it should have a
wavelength λ << rp with λ ∼ 1

Q and rp the radius of the proton. ¿e latter is
fully destroyed if we have deep (Q2 >> m2

p) and inelastic (m2
X >> m2

p) scattering.
¿e two Lorentz invariants of interest in the process are Q2 and P ⋅ q, but it is
convenient to use the variables Q and xB instead, where

xB
N= Q2

2P ⋅q (5.4)

is called the Bjorken-x. Unless necessary to avoid confusion, we will always
drop the index ‘B’, just remember that x always denotes the Bjorken-x (and thus
not a general fraction, see further). Its kinematics restrain x to lie between Q2

s+Q2

(neglecting terms ofO(M2

Q2 )) and 1 (the elastic limit). Another useful variable is
y N= P ⋅q

P ⋅ l , (5.5a)

= Q2

x (s −m2
p) . (5.5b)

In the rest frame this equals y = E−E′
E , the fractional energy loss of the lepton. It

is not an independent variable because

Q2 = x y(s −m2
p) . (5.6)

Let us �nish this subsection on kinematics with two trivial relations:

2x P ⋅ l = Q2

y
, (5.7a)

l ⋅q = −l ′ ⋅q = −Q2

2
. (5.7b)

¿e latter can be demonstrated by calculating (l − q)2 = l ′2 = 0.
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Invitation: ¿e Free Parton Model

A parton is a terminology used to denote any pointlike constituent of the proton,
being quarks, antiquarks or gluons. ¿e parton model (PM) describes the proton
as a black box containing an undetermined amount of such partons. ¿e mutual
interactions of these partons have large timescales compared to the interaction
with the photon, allowing us to separate the latter from the former. For instance,
inside the proton a gluon could �uctuate into a quark-antiquark pair.¿e photon
would enter the proton and kick out one of the quarks, much faster than the pair
can recombine. ¿e pair looks ‘frozen’ to the photon: because of the much larger
timescale of the parton interactions, all dynamics are hidden for the photon.
From the latter’s viewpoint, all partons are hence ‘free’.
As we will see in Equation 5.10, in DIS the momentum of a parton is de�ned

as a fraction ξ of the original parent hadron. ¿e size of this fraction will de�ne
the dominant type of parton that arises in this regime. We have three types:

a. Valence quarks: 10−2 ≤ ξ ≤ 1. ¿ese are the quarks that normally
form the parent hadron. E.g. for a proton there are 3
valence quarks, viz. 2 up quarks and a down quark.

b. Sea quarks: 10−4 ≤ ξ ≤ 10−2. ¿ese quarks always come in a quark-
antiquark pair, and are created from a virtual gluon.

c. Gluons: 10−8 ≤ ξ ≤ 10−2. At large-x, gluons can be neglected as
the valence quarks are by far the dominant partons.
However, at small-x gluons quickly dominate all
partons and one can neglect all quarks (see Chapter 9).

Note that the regions in ξ are just vague approximations, as there is no way
to sharply separate the di�erent parton types. Furthermore, at higher energy
scales, the gluons become dominant much faster. Also note that the existence
of both valence and sea quarks makes that the quark number operator is not
well-de�ned, as it is not conserved. We anticipated this in the construction of
conserved Noether charges (see Equation 1.52), where it naturally follows that
it is the di�erence between particle and antiparticle states that is conserved.
Hence if we write the number of valence u quarks as Nuv , the number of u
quarks as Nu, the number of u antiquarks as Nu, and similarly for the d quarks,
the following equations are valid (conserved and Lorentz invariant) in the case
of the proton:

Nuv = Nu − Nu ≡ 2 , (5.8a)
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Figure 5.3: DIS in the FPM. ¿e virtual photon strikes one of the quarks, while the other
two quarks are le unharmed and don’t in�uence the process anyhow.

Ndv = Nd − Nd ≡ 1 . (5.8b)

When applied on parton density functions (see later), these sum rules are known
as the Gottfried sum rules.
It is convenient to let the short-distance process—the interaction between the

photon and one of the partons—be named the hard part, which we will o en
denote with a hat, e.g. ŝ is the hard CoM energy squared. In contrast to this stands
the so part, which—as we will see in later sections—contains all interactions at
large distances. For now, we can make an intuitive distinction: everything inside
the proton is so , everything outside the proton plus the interaction point—the
photon and the struck parton—is hard. ¿is is illustrated in the le picture of
Figure 5.3. Later on we will give a more rigorous formulation for this distinction.
¿e PM thus describes DIS without the strong interaction participating, as all
e�ects of the strong force are absorbed in the proton, without giving any clue for
the structure of the latter except one, viz. that we can extract a parton from it.
Before we really delve into the PM, we try to get a general idea by investigating

an extreme case: the free parton model (FPM). In this toy model the proton
has no dynamic structure, but merely consists of exactly three quarks, totally
unaware of each other’s existence. From the point of view of the photon it doesn’t
matter how the proton structure looks, be it in the FPM or the standard PM,
it just hits a parton like it would hit any electromagnetically charged particle,
ignoring all other structure in the proton. ¿e leading order hard part of DIS is
therefore genuine electron-quark scattering, which we can describe similarly
to electron-muon scattering.¹¿is is illustrated schematically in Figure 5.3. Of
course, at timescales much larger than the process, the remains of the proton
and the struck parton will hadronise into jets, as free quarks can only exist for a
short amount of time due to the asymptotic freedom of QCD.

1 Note that we deliberately choose e−µ+ scattering over e−e+ scattering, because the latter also
contains a diagram where the two electrons annihilate into a virtual photon, which has no
correspondence with e−q scattering.
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¿e di�erential cross section for (unpolarised) e−µ+ scattering can be calcu-
lated by basic QED techniques and equals

dσ
dy

(e−µ+ → e−µ+) = 4πα2s
Q4 (1 − y + y2

2
) , (5.9)

where α ≈ 1
137 is the electromagnetic �ne-structure constant (see Equation A.2).

¿e only di�erence between the cross section for e−µ+ scattering and that for
e−q± scattering is the charge of the quark:

dσ̂
dy

(e−q± → e−q±) = e2q 4πα2 ŝQ4 (1 − y + y2

2
) ,

but now ŝ = (l + k)2, the centre-of-mass energy squared of the electron and the
quark. In order to relate the hard cross section to the full cross section, we de�ne
the quark momentum as a fraction of the proton momentum:

k = ξP 0 < ξ < 1 , (5.10)

such that

ŝ = ξs ŷ = y .
For the outgoing quark to be on-shell, we have the requirement

(k + q)2 ≈ 2ξP ⋅ q − Q2 ≡ 0 ,⇒ ξ ≡ x .
In this case, the on-shellness constraint �xes the momentum fraction to equal
the Bjorken variable, but this is certainly not a general result. ¿e Bjorken-x is
a kinematical constraint de�ning the process, while ξ is nothing more than a
momentum fraction (totally independent of the process). Keeping both x and ξ
as independent variables (which will simplify comparisons with later results),
the electron-quark cross section is given by

d3σ̂q
dx dy dξ

= 4πα2s
Q4 (1 − y + y2

2
) e2q ξ δ(x − ξ) , (5.11)

Going to the electron-proton cross section is obvious in the FPM. We simply
integrate over all possible quark fractions ξ and make a weighted sum over the
three quarks:

d2σFPM

dx dy
= 1
3∑q ∫dξ d3σ̂q

dx dy dξ
,

= 4πα2s
Q4 (1 − y + y2

2
) x 1

3∑q e2q . (5.12)
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X

Figure 5.4: DIS to all orders: a photon hitting a proton and breaking it.

AMore Formal Approach

Let us redo our intuitive derivation from the previous section in a more formal
way. We will treat the proton as a ‘black box’ (contrary to the FPM representation
where it is an exact packet of three partons), which we deeply probe with a
highly virtual photon. ¿is is depicted in Figure 5.4. Whe know that in the PM,
it is assumed that the photon interacts with one constituent of the proton only
(a quark, an antiquark, or at higher orders possibly a gluon), on a timescale
su�ciently small to allow the struck parton to be considered temporarily ‘free’. To
motivate this quantitatively, we write the components of the proton momentum
P and the parton momentum k in light-cone coordinates (see Appendix A.4):

Pµ = (P+, m2
p

2P+ , 0⊥) , kµ = (k+, k−, k⊥) .
In the rest frame of the proton, the distribution of its constituents is isotropic,
i.e. all components of pµ are of the order ≲ mp. In the limit P+ → ∞, the so-
called in�nite-momentum frame, the only remaining component of the proton
momentum is its plus-component. ¿e parton naturally follows the proton in
the boost. ¿en the 4-momenta become:

PµIMF = (P+, 0−, 0⊥) , kµIMF ≈ (k+, 0−, 0⊥) .
¿e parton’s transverse component p⊥ ∼ mp can be trivially neglected when
compared to p+ →∞. ¿e ratio of the plus momenta is boost invariant, so that
we can write:

ξ = k+
P+ , ⇒ kµIMF = ξ PµIMF .

As long as we can boost to a frame where P+ is the only remaining large compon-
ent of the proton momentum, the parton is fully collinear to the parent proton
and can thus considered to be ‘free’. Fromnow onwewill always parameterise the
proton momentum and the struck quark momentum based on the dominantly
large P+:

Pµ = ⎛⎝P+,
m2
p

2P+ , 0⊥
⎞⎠ , kµ = (ξP+, k2 + k2⊥

2ξP+ , k⊥) , (5.13)
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where we can safely assume k2, k2⊥ << 2ξP+ and m2
P << 2P+, reproducing the

IMF limit. Furthermore, we choose a frame such that

qµ = (0+, Q2

2xP+ , q⊥) , (5.14)

where q2⊥ = Q2 .
Returning our attention to the mechanics behind the process, we write the

matrix element for a given �nal state X in function of the leptonic and hadronic
states:

MX = ⟨l ′∣ Jµleptonic ∣l⟩Dµν(q) ⟨X∣ Jνhadronic ∣P⟩ , (5.15)

such that the di�erential cross section is given by (see Equation 4.46):

dσ = 1
4P ⋅ l d3 l ′(2π)32E′l ∑X ∫ d3pX(2π)32EX δ(4)(P+ l−pX− l ′) ∣M∣2 ,

E′l d
3σ

d l ′ 3 =
2

s −m2
p

α2

Q4 LµνW
µν . (5.16)

Before we continue, we will de�ne a set of Cartesian basis vectors, which will
show to be especially convenient when investigating SIDIS in the TMD framework
in Section 8.2. We start by choosing a spacelike normal vector in the direction
of qµ. We thus de�ne the normal vector q̂µ as

q̂µ def= qµ

Q
, (5.17)

which is indeed spacelike normal because q̂2 = −1. Next we construct the timelike
basis vector from the proton momentum Pµ by subtracting from it its projection
on q̂, and dividing by its total length:

t̂µ def= 1√
m2
p + (P ⋅q̂)2 (Pµ + P ⋅q̂ q̂µ) ,

= 1
κ

1
Q

(2xPµ + qµ) , (5.18)

where x is the Bjorken-x and

κ =
¿ÁÁÀ4x2

m2
p

Q2 + 1 → 1 (5.19)
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in the limitQ2 >> m2
p. Also note that the projection on q̂µ equals

P⋅q̂
q̂⋅q̂ q̂µ = −P⋅q̂ q̂µ .

¿e next basis vector is then constructed by subtracting from it its projection on
q̂µ and t̂µ. ¿is is the same as contracting it with the tensor

gµν⊥ def= gµν + q̂µ q̂ν − t̂µ t̂ν , (5.20)

which has the following useful properties:

q̂µgµν⊥ = gµν⊥ q̂ν = 0 , (5.21a)
t̂µgµν⊥ = gµν⊥ t̂ν = 0 , (5.21b)

gµν⊥ g⊥νρ = δµρ + q̂µ q̂ρ − t̂µ t̂ρ , (5.21c)
gµν⊥ g⊥µν = 2 . (5.21d)

Note that this de�nition of gµν⊥ is compatible with the de�nition in Equa-
tions A.45. We can hence construct a third orthonormal (spacelike) vector
from, say, l µ:

l̂ µ def= 1√−lµgµν⊥ g⊥νρ l ρ
gµν⊥ lν ,

= 1√
1 − y − κ2−1

4 y2
(κ y
Q
l µ − κ y

2
q̂ − 2 − y

2
t̂) ,

where we used the relations in Equations 5.7. It is again a spacelike orthonormal
vector:

l̂ µ⊥ l̂µ = l̂ µ⊥ gµν l̂ν⊥ = l̂ µ⊥ g⊥ µν l̂ν⊥ = −1 . (5.22)

Now normally we would proceed with the construction of the last orthonormal
basis vector, but we don’t have any independent physical vectors le in our
process. But we still can de�ne an antisymmetric projection tensor as follows:

εµν⊥ def= εµνρσ t̂ρ q̂σ . (5.23)

As with gµν⊥ , this de�nition of εµν⊥ is compatible with the de�nition in Equa-
tions A.47. It is easy to show that

εµν⊥ t̂ν = 0 , (5.24a)
εµν⊥ q̂ν = 0 , (5.24b)

εµν⊥ g⊥ νρ = εµ⊥ ρ , (5.24c)
εµν⊥ g⊥ µν = εµ⊥ µ = 0 , (5.24d)
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by use of the antisymmetry of εµνρσ . Note that εµ⊥ ν has the same components as
εµρ⊥ but with opposite signs. Furthermore, because in general

εµνρσ εµντυ = −2 (δρτδσυ − δρυδστ) , (5.25)

we have

εµν⊥ ε⊥ µν = 2 . (5.26)

Let’s summarise our new basis:

Orthonormal Basis Vectors

q̂µ = qµ

Q
, (5.27a)

t̂µ = 1
κ
1
Q

(2xPµ + qµ) , (5.27b)

l̂ µ = 1√
1 − y − κ2−1

4 y2
(κ y
Q
l µ − κ y

2
q̂ − 2 − y

2
t̂) . (5.27c)

Transversal Tensors

gµν⊥ = gµν + q̂µ q̂ν − t̂µ t̂ν , (5.28a)
εµν⊥ = εµνρσ t̂ρ q̂σ . (5.28b)

Now we can express all the relevant momenta in the process in our new basis
using Equation 5.13 (remember that the projections on q̂µ and l̂ µ give an extra
minus sign, because q̂2 = l̂2 = −1):

Physical Vectors in Orthonormal Basis

qµ = Q q̂µ , (5.29a)

Pµ = κ Q
2x
t̂µ − Q

2x
q̂µ , (5.29b)

kµ ≈ ξ
x
Q
2
t̂µ − ξ

x
Q
2
q̂µ , (5.29c)

l µ = 1
κ
Q 2 − y

2y
t̂µ + Q

2
q̂µ + 1

κ
Q
y

√
1 − y − κ2 − 1

4
y2 l̂ µ , (5.29d)

l
′µ = 1

κ
Q 2 − y

2y
t̂µ − Q

2
q̂µ + 1

κ
Q
y

√
1 − y − κ2 − 1

4
y2 l̂ µ . (5.29e)

It is easy to verify that these formulae indeed reproduce the correct de�nitions.
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E.g. one can quickly check the on-shell conditions q2 = −Q2, k2 = ξ2m2
p,

l2 = l ′2 = 0.
Let us return to Equation 5.16, and specify the lepton and hadron tensor in

our new basis. We consider the electron beam to be polarised, say longitudinally,
but we don’t measure the polarisation of the outgoing electron, implying we
have to sum over outgoing polarisation states using Equations A.26. ¿en the
lepton tensor Lµν is given by

Lµν N=∑
λ′

(uλ(l)γµuλ′(l ′)) (uλ′(l ′)γνuλ(l)) ,
= −Q2gµν + 4l(µ l ′ν) + 2iλεµνρσ lρ l ′σ . (5.30)

Writing it in our new basis gives:

Lµν = Q2

y2
[−y2gµν⊥ + 4 (1 − y) (t̂µ t̂ν + l̂ µ l̂ν) + 4√1 − y (2 − y) t̂(µ l̂ν)

−iλ y (2 − y) εµν⊥ + i2λ y√1 − y εµνρσ q̂ρ l̂σ] . (5.31)

¿is might look more di�cult than the original expression, but the advantage
lies in the fact that it is now expressed in an orthonormal basis, simplifying
contractions with other tensors.
On the other hand, from Equation 5.16 we see that the hadronic tensor is

de�ned as

W µν N= 4π3∑
X
∫ d3pX(2π)32EX δ(4)(P+q−pX) ⟨P∣ J†µ(0) ∣X⟩ ⟨X∣ Jν(0) ∣P⟩ , (5.32)

= 1
4π ∫d4z eiq⋅z ⟨P∣ J†µ(z)Jν(0) ∣P⟩ , (5.33)

where we used the translation operator

⟨P∣ J†µ(0) ∣X⟩ ei(P−pX)⋅z = ⟨P∣ J†µ(z) ∣X⟩ , (5.34)

and integrated out a complete set of states by use of the completeness relation:

∑∫ ∣X⟩ ⟨X∣ = 1 , ∑∫ N=∑
X
∫ d3pX(2π)32EX =∑

X
∫ d

4pX(2π)4 δ+(p2X −m2
X) , (5.35)

where

δ+(p2X −m2
X) N= 2π δ(p2X −m2

X) θ(p0) . (5.36)
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Figure 5.5: ¿e hadronic tensor is a squared amplitude de�ned with a sum over all
possible external states.¿is sum, and the separation between the amplitude
and its conjugate, is represented by the vertical �nal-state cut line.

Figure 5.5 shows the common convention to draw the hadronic tensor. It is
a squared amplitude for a proton absorbing a photon going to any �nal state
X, while summing over all possible �nal states. ¿e vertical curve, a so-called
‘�nal-state cut’, acts both as a separator (everything to the le is the amplitudeM, everything to the right is the complex conjugateM∗) and as a symbol rep-
resenting the completeness relation (reminding us that we have to sum over
all �nal states and integrate out their momenta). It is straightforward to use
the �nal-state cut in perturbative calculations: every particle crossing it, is a
real particle and thus has to be on-shell. ¿is can be incorporated by adding a
δ+(p2 −m2), matching the particle’s momentum squared to its mass squared
(see also the discussion on page 106). We have no information about the con-
tents of the hadronic tensor, as it sits in the highly non-perturbative region of
QCD; the proton constituents are strongly con�ned. But we can parameterise
the hadronic tensor based on its mathematical structure. In this thesis, we will
restrict ourselves only to work with unpolarised hadron tensors, as polarisation
brings some technicalities with it, which would distract us too much from our
main topic of interest at the moment.
For an unpolarised proton,W µν will only exist in the vector space spanned

by the orthonormal vectors we derived before. But as the electron momentum
l µ doesn’t have any physical signi�cance inside the hadron tensor, we will use
q̂µ , t̂µ , and their crossings. ¿us we can expand the former as:

W µν = A gµν + B q̂µ q̂ν + C q̂µ t̂ν + D t̂µ q̂ν + E t̂µ t̂ν + iFεµνρσ t̂ρ q̂σ ,
where the scalar functions A, . . . , F only depend on m2

p ,Q2 and x (because
there are no other invariants in the proton system). In the case of polarised
hadrons, the spin vector Sµ and its combinations should be added to the basis.
Next we impose current conservation, which requires ∂µ Jµ = 0. Applying this
to Equation 5.33 we �nd q̂µW µν =W µν q̂ν = 0. ¿is condition gives:

A ≡ B , C ≡ D ≡ 0 .
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W µν should also be Hermitian and time-reversal invariant, and for the electro-
magnetic and the strong force it should be parity invariant as well. By using the
transformation matrix

Λ ν
µ =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠
. (5.37)

we can write out these conditions (adding spin-dependence for future reference):

Hermiticity: W∗
µν(q, P, S) ≡Wνµ(q, P, S) , (5.38a)

parity-reversal: Λ ρ
µ Λ σ

ν Wµν(q, P, S) ≡Wµν(q̃, P̃,−S̃) , (5.38b)
time-reversal: Λ ρ

µ Λ σ
ν W∗

µν(q, P, S) ≡Wµν(q̃, P̃, S̃) . (5.38c)

where q̃µ = δµ0q0 − δµiqi . ¿e e�ect of these conditions is that A, . . . , F should
be real functions, and the parity-reversal requirement sets F = 0. But parity is
not conserved in weak interactions; in that case F is allowed to have a non-zero
value. We can rewriteW µν as (taking S = 0 again):

W µν = − 1
2x

[gµν⊥ FT(x ,Q2) − t̂µ t̂ν FL(x ,Q2) − iεµν⊥ FA(x ,Q2)] . (5.39)

where

FT = −2x A , FL = 2x (A+ E) , FA = 2x F .
¿ese are called the transversal resp. longitudinal resp. axial structure functions of
the proton. ¿ey are non-perturbative (and thus non-calculable) objects, which
have to be extracted from experiment. In parallel to these, a di�erent notation is
also used in literature:

F1 = 1
2x
FT , FT = 2x F1 , (5.40a)

F2 = 1
κ2

(FL + FT , ) , FL = κ2F2 − 2x F1 , (5.40b)

F3 = 1
x κ2

FA , FA = x κ2 F3 . (5.40c)

We can express the hadron tensor in function of the last three structure functions
as well:

W µν = −gµν⊥ F1 + t̂µ t̂ν ( κ2
2x
F2 − F1) + i κ22 ε⊥µν FA . (5.41)
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¿e di�erence between FT , FL , FA and F1, F2, F3 is just a matter of historic con-
vention. However, there exist di�erent conventions for the normalisation of
the structure functions, if so o en di�ering by a factor of 2 or 2x. We follow
the same convention as e.g. in [39], as we believe it to be the most commonly
accepted one.¿e structure functions can be extracted from the hadronic tensor
by projecting with appropriate tensors:

F1 = − 12 gµν⊥ Wµν , FT = −x gµν⊥ Wµν , (5.42a)

F2 = x
κ2

(2t̂µ t̂ν − gµν⊥ )Wµν , FL = 2x t̂µ t̂νWµν , (5.42b)

F3 = − 2iκ2 εµν⊥ Wµν , FA = −2x i εµν⊥ Wµν . (5.42c)

For the rest of this thesis we will ignore weak interactions, dropping FA from
the hadronic tensor.
Combining the result from the leptonic and the hadronic tensor, we get

LµνW µν = 2Q2

x y2
[(1 − y + y2

2
) FT (x ,Q2) + (1 − y) FL (x ,Q2)] .

Plugging this result in Equation 5.16 gives us the �nal expression for the unpo-
larised cross section for electron-proton deep inelastic scattering (neglecting
terms of order m2

p
Q2 ):

d2σ
dx dy

= 4πα2s
Q4 [(1 − y + y2

2
) FT (x ,Q2) + (1 − y) FL (x ,Q2)] (5.43)

If we compare this with the result in Equation 5.12, we �nd the following
structure functions for the free parton model:

FFPMT (x ,Q2) = 1
3
x∑

q
e2q , (5.44a)

FFPML (x ,Q2) = 0 . (5.44b)

5.2 parton distribution functions

In Subsection Invitation: ¿e Free Parton Model on page 124 and onwards, we
succeeded in deriving a lowest order result for the cross section, starting from
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a static proton. On the other hand, in Subsection A More Formal Approach
on page 127 and onwards, we followed a more formal approach, without any
assumptions about the proton structure but one: that we can separate the hard
interaction from the proton contents. ¿is is the concept of factorisation: in
any process containing hadrons we try to separate the perturbative hard part
(the scattering Feynman diagram) from the non-perturbative part (the hadron
contents). ¿e latter is not-calculable, and consequently it has to be described
by a parton density function (or parton distribution function, PDF for short) that
gives the probability to �nd a parton with momentum fraction ξ in the parent
hadron. However, one has to proceed with caution because factorisation has not
been proven but for a small number of processes, including EPA, DIS, SIDIS and
DY.
¿e PDF is literally the object that describes the proton as a black box. You

give it a fraction ξ and it returns the probability to hit a parton carrying this
longitudinal momentum fraction when you bombard the proton with a photon.
It is commonly written as

fq(ξ),
where q is the type of parton for which the PDF is de�ned. ¿ere are thus 7 PDFs,
one for each quark and antiquark, and one for the gluon. A parton distribution
function is not calculable; they have to be extracted from experiment. However,
as we will see in Section 5.3, we can calculate its evolution equations, such that we
can evolve an extracted PDF from a given kinematic region to a new kinematic
region. It is a probability density, but it is also a distribution in momentum space;
by plotting the PDF in function of x one gets a clear view of the distribution of
the partons in the proton. Furthermore we assume that the PDF only depends on
ξ, and not e.g. on the parton’s transverse momentum. ¿is doesn’t mean that we
automatically neglect the struck parton’s transverse momentum component! But
because we don’t identify any hadron in the �nal state, and because we have to
sum over all �nal states and integrate out their momenta (the �nal-state cut), any
transverse momentum dependence in the PDF or the hard part is integrated out.
Factorisation inDIS—also called collinear factorisation because of the collinearity
of the struck quark to the proton—is a factorisation over x (plus an energy scale).
We can write this formally as

dσ
dx

∼ fq(x , µ2F) ⊗ Ĥ(x , µ2F) ,
which is just a schematic. We will treat the technical details soon, in Section 5.3.
Whenever information on the transverse momentum is needed, e.g. when

identifying a �nal hadron like in SIDIS, collinear factorisation won’t do, and
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k⊥-factorisation is needed instead, where a transverse momentum dependent
PDF, or TMD for short, is convoluted with the hard part:

dσ
dx

∼ fq(x , k⊥, µ2F) ⊗ Ĥ(x , k⊥, µ2F) .
Formally, a PDF and a TMD should be related by integrating out the transverse
momentum dependence:

fq(ξ) = ∫d2k⊥ fq(ξ, k⊥) ,
however, QCD corrections make this equality invalid.
In the parton model, the concept of (collinear) factorisation can be painlessly

implemented:

Factorisation in the pm

dσ PM≡ ∑
q
∫dξ fq(ξ) dσ̂q(xξ ) , (5.45a)

N= fq ⊗ dσ̂q . (5.45b)

Note that this is not the common convolution de�nition, i.e. ∫dτ f (τ)g(t − τ).
¿is is because the latter is a convolution as de�ned in Fourier space. In QCD,
a lot of theoretical progress has been made by the use of Mellin moments.
¿ese form an advanced mathematical tool, which would take use too long
to delve into. ¿e thing to keep in mind is that the type of convolution as in
Equations 5.45 is a convolution in Mellin space (see Equations A.66 for the
de�nition of the Mellin transform).
We can express the structure functions of the proton in terms of the structure

functions of the quark, where the latter are de�ned at leading order as

F̂qT(x) def= x e2q δ(1 − x) . (5.46)

To do this, we use Equations 5.45 to relate the electron-quark cross-section in
Equation 5.11 with the electron-proton cross-section in Equation 5.43. ¿en it is
easy to show that:

FPMT (x ,Q2) =∑
q

1

∫
x

dξ fq(ξ) F̂qT (x
ξ
) , (5.47a)

=∑
q
e2q x fq(x) , (5.47b)

FPML (x ,Q2) = 0 . (5.47c)
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Note that FPMT does not depend on Q2! ¿is is called the “Bjorken scaling”
prediction: the structure functions scale with x, independently of Q2. Because
this prediction is a direct result from the parton model, it should be clearly
visible in leading order (up to �rst-order QCD corrections, where the Bjorken
scaling is broken). ¿is is indeed con�rmed by experiment.
Also note that by comparing Equations 5.47 to Equations 5.44, we can easily

�nd the quark PDFs in the free parton model:

f FPMq (x) = 1
3
, (5.48)

which is exactly what the initial assumption for the FPM is: the proton equals
exactly three quarks, thus the probability of �nding one of those is always one
third per quark, regardless the value of x.
A small remark on the di�erence between structure functions and PDFs. A

structure function emerges in the parametrisation of the hadronic tensor, the
latter being process dependent. If we have a look at its de�nition for DIS in
Equation 5.33, we see that the hadronic tensor contains information both on
the proton content and the photon hitting it. ¿is is illustrated in Figure 5.5,
where the blob represents the hadronic tensor, describing the process of a photon
hitting a (black box) proton. As a structure function is just a parametrisation of
the hadronic tensor, the same applies to it. If we change the process to, say, deep
inelastic neutrino scattering, our structure functions change as well, because
now they describe the process of aW± or Z0 boson hitting a proton.
But the main idea behind factorisation is that, inside the structure functions,

we can somehow factorise out the proton content (which is process independent)
from the process dependent part. ¿is is shown in Figure 5.6, where the smaller
blob now represents a quark PDF. ¿e factorisation of structure functions in
the parton model is demonstrated in Equations 5.47. ¿e initial factorisation
ansatz, Equations 5.45, is required to be valid for any cross section, given an
unique set of PDFs, i.e. the PDFs are universal. We can extract these PDFs in one
type of experiment, like electron DIS, and reuse them in another experiment
like neutrino DIS. In contrast with the structure functions, PDFs emerge in the
parametrisation of the quark correlator—as we will see in Section —which is
universal by de�nition.

5.3 collinear factorisation and evolution of pdfs

We started the idea of a separation between so and hard parts in the crude PM
(see Equations 5.45); Figure 5.7 shows our current view on factorisation in DIS.
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fq
W µν

Figure 5.6: Di�erence between structure functions and PDFs.

⊗

Figure 5.7: Factorisation in DIS at LO.

However, until now we haven’t given a rigorous de�nition for the separation
between the hard and the so part. At leading order (LO) this is trivial (we just
cut the struck quark before the interaction with the photon, as in Figure 5.7), but
we need a fail-proof approach at higher orders. E.g. at NLO an additional gluon
can be radiated from the struck quark before the interaction with the photon
(as in the four le most diagrams in Figure 5.8). How do we de�ne whether the
radiated gluon belongs to the PDF or in the hard part? As we will see, the correct
way to approach this—at least in the collinear case—is to de�ne a separation in
energy scales.¿e requirement of independence of the process on this separation
will then lead to evolution equations for the PDFs.
Let us now continue with an investigation of DIS at �rst order in αs, and see

how that changes our factorisation rules:

FT (x ,Q2) =∑
q
e2q x fq(x) +O(αs) ,

FL (x ,Q2) = 0 +O(αs) .
In what follows we will continue by using F2 = FT + FL, to be in accordance with
common literature. ¿e correct approach to continue is as such: we calculate
Ŵ µν for a single quark from the amplitude

Ŵ µν = ∫dΦ ∣M∣2 (5.49)
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Figure 5.8: All types of �rst order corrections to the DIS process. Real corrections are
on the upper line; virtual on the lower line.i

i
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Figure 5.9: a) Initial state gluon radiation. b) Final state gluon radiation.

up to �rst order in αs , then we extract F̂2 for a single quark using Equations 5.42.
We compare the result with Equation 5.46, plug it in Equation 5.47a and see how
it changes the PDF.
¿ere are 3 types of real gluon exchanges at �rst order, where the exchanged

gluon is on-shell, and 3 types of virtual gluon exchanges, shown in Figure 5.8. We
will calculate the real contributions in LC-gauge—as the latter gives the natural
interpretation of the PDF as a number density—and label the momenta as shown
in Figure 5.9. ¿e corresponding amplitude for the initial state gluon radiation
(Figure 5.9a) is (see also Equations A.99 for the QCD Feynman rules):

Ma,λ,λ′
i = uλ(p′) (i eqγµ) i /k

k2 + iє (i g ε/ε(k) ta) uλ
′ (p) .

We average over colour and incoming spin states, and sum over �nal spin (see
Equations A.26) and gluon polarisation states, i.e.

∣M∣2 N= 1
Nc
∑
a,b

1
2∑λ ∑λ′ ∑polMa,λ,λ′M∗ b,λ,λ′ . (5.50)
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We hence get for the complex squared amplitude

∣M∣2 = 1
2
CF e2q g2

1
k4∑pol tr(ε/ε/p/ε/kγµ /p′γν /k) , (5.51)

where we used Equation A.72b to simplify the colour generators. We can sum
over the gluon polarisation states by using Equation A.98b, this simpli�es the
trace into

tr(. . .) = − tr(γρ /pγρ /kγµ /p′γν /k)
+ 1
p+ − k+ tr(γ+/p (/p − /k) /kγµ /p′γν /k)

+ 1
p+ − k+ tr((/p − /k) /pγ+/kγµ /p′γν /k) .

¿e �rst term can be simpli�ed using Equation A.30b:

− tr(γρ /pγρ /kγµ /p′γν /k) = (ω − 2) tr(/p/kγµ /p′γν /k) ,
which can further simpli�ed using

/k/p/k = 2p⋅k /k − k2 /p .
¿e other two traces can be simpli�ed by using the fact that /p/p = p2 ≈ 0, the
mass of the quark and /k/k = k2, the virtuality of the quark (also using the cyclicity
of the trace):

tr(γ+/p (/p − /k) /kγµ /p′γν /k) = −k2 tr(/kγ+/pγµ /p′γν) ,
tr((/p − /k) /pγ+/kγµ /p′γν /k) = −k2 tr(/pγ+/kγµ /p′γν) .

¿eir sum can be further simpli�ed with the same trick as before:

(/k + /p)γ+(/k + /p) = 2(k + p)+(/k + /p) − (k2 + 2k ⋅p)γ+ . (5.52)

Nowwe assume that the longitudinal component of the virtual quark is a fraction
of the longitudinal momentum of the parent quark, i.e.

k+ = ξp+ . (5.53)

¿e full trace is then given by:

tr(. . .) = [(ω − 2)2p⋅k − 2k2 1 + ξ
1 − ξ] tr(/kγµ /p′γν)

− k2 [(ω − 2) + 21 + ξ
1 − ξ] tr(/pγµ /p′γν)

+ 1
1 − ξ k

2

p+ (k2 + 2k ⋅p) tr(γ+γµ /p′γν) . (5.54)
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We parameterise the quark and photon momenta as in Equations 5.13 and 5.14,
neglecting the transverse momentum components of the original quark. How-
ever, a er radiating the gluon it will acquire transversemomentumwhich cannot
be neglected, but will be integrated out as we are integrating over �nal states.
¿e momenta are thus given by:

pµ = (p+, 0−, 0⊥) , kµ = (ξp+, k2 + k2⊥
2ξp+ , k⊥) , qµ = (0+, Q2

2x̂ p+ , q⊥) ,

where q2⊥ = Q2 and x̂ is the Bjorken-x for the quark-photon system. ¿e phase
space integral is given by

∫dΦ = ∫ d4k′(2π)4 d4p′(2π)4 δ+(k′2) δ+(p′2) δ(4)(p + q − p′ − k′) ,
= ∫ d4k(2π)2 δ+((p − k)2) δ+((k + q)2) ,

and using

(p − k)2 = 1
ξ
[k2 (ξ − 1) − k2⊥] , (k + q)2 = k2 + Q2

x̂
(ξ − x̂) − 2k⊥ ⋅q⊥ ,

d4k = dξ
2ξ

dk2 d2k⊥ .
it can be rewritten as

∫dΦ = 1
2 ∫dξ dk2

d2k⊥(2π)2 δ((ξ − 1)k2 − k2⊥) δ(k2 + Q2

x̂
(ξ − x̂) − 2k⊥ ⋅q⊥) .

Note that the θ-part of the δ+-functions dropped out, as it is automatically
satis�ed due to the fact that 0 ≤ ξ ≤ 1:

p+ − k+ = p+(1 − ξ) > 0 , k+ + q+ = ξp+ > 0 ,
because the quark moves with the proton in the positive n+-direction. To rewrite
the trace, we �rst de�ne a notational shorthand:

l+ = −41 + ξ2
1 − ξ k2p+ ,

l− = 2
p+ k

4 ,

l⊥ = 4 ξ
1 − ξ k2 k⊥ .
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We already used the fact that k2⊥ ≡ (ξ − 1)k2 due to the δ’s in the phase space
integral. ¿is shorthand allows us to simply write

tr(. . .) = tr(/l γµ /p′γν) = 8l(µp′ν) − 4gµν l ⋅p′ .
To retrieve the structure functions of the quark from the hadronic tensor, we
project on the orthonormal basis using Equations 5.42 (and using Equation 5.51
to get the correct terms in front):

F̂2 = ∫dΦ x (2t̂µ t̂ν − gµν⊥ ) 1
2
CF e2qg2

1
k4

(8l(µp′ν) − 4gµν l ⋅p′) ,
= 4x CF e2qg2 ∫dΦ 1

k4
(2 l ⋅t p′⋅t + l⊥ ⋅p′⊥) . (5.55)

Note that (2t̂µ t̂ν − gµν⊥ ) gµν = 0 and lµgµν⊥ p′ν = −l⊥ ⋅p′⊥. ¿e basis vector t̂ is in
this frame given by

t̂µ = (2xp+
Q

, Q
2xp+ ,

q⊥
Q

) ,

and p′ is simply the sum of the virtual quark and photon momentum p′ = k + p:
p′ = (ξp+, 1

2p+ (k2 + Q2

x
) , k⊥ + q⊥) .

¿e next steps are straightforward but tedious; we will just give the result:

F̂2div = e2q αs2π x Pqq(x)
Q2

∫
µ0

dk2

k2
, (5.56)

where the integral is regulated in the IR region wit a lower cut-o� µ20. ¿e UV
cut-o� Q2 follows from kinematics. ¿e integration just gives a logarithm:

F̂2div = e2q αs2π x Pqq(x) ln Q
2

µ20
. (5.57)

¿ese are the only divergent terms.We didn’t list the �nite terms, as they are easily
calculable and are of secondary importance. We could have used dimensional
regularisation as well (with ω = 4+2є, as appropriate for IR divergences), giving

F̂2div = e2q αs2π x Pqq(x) 1є . (5.58)
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However, the physical interpretation that now follows is muchmore natural with
a cut-o�, so we prefer to use that. ¿e function Pqq(x) is the so called splitting
function:

Pqq(ξ) = CF 1 + ξ21 − ξ . (5.59)

¿is function is speci�c for the diagram in Figure 5.9a. We use the notation
Pi j(ξ) to denote “the probability to get a parton of type i with a momentum
fraction ξ from a parent parton of type j”. In this case, Pqq(ξ) represents the
probability for a quark to split into a quark carrying a fraction ξ of its momentum
and a gluon carrying a fraction 1 − ξ of its momentum. In light-cone gauge, the
other real diagrams don’t add any divergences, only �nite, calculable parts. So do
the virtual diagrams, which can be easily calculated using standard loop-integral
methods, as all ultraviolet divergences which appear in individual loop diagrams,
cancel out. So we can write the full result for F̂2 at leading order in αs:

F̂2 = e2q x [ δ(1 − x) + αs
2π

(Pqq(x) ln Q2

µ20
+ C(x))] , (5.60)

where C(x) contains all �nite parts. Bjorken scaling is, as expected, violated;
F̂2 now depends on Q2. ¿e singularity which is regulated by µ20 appears when
the gluon is emitted collinear to the quark (k⊥ = 0), hence it is called a collinear
divergence. Physically the limit k⊥ corresponds to a long-range (so ) interaction,
where QCD can no longer be calculated in a perturbative way.
To extend our result to the proton structure, we convolute F̂2 with a PDF, as in

Equation 5.47a:

F2 =∑
q
e2q x

1

∫
x

dξ
ξ

f q(ξ) [ δ(1 − x
ξ
) + αs

2π
(Pqq(xξ ) ln Q

2

µ20
+ C (x

ξ
)))] .

However, care has to be taken as f q is the bare, unrenormalised PDF, exactly the
same situation as for the renormalisation of the coupling constant. From now
on we will write it as f q0 (ξ) to make the distinction clear. We want to absorb the
collinear divergence into the PDF and renormalise it up to an arbitrary scale. We
choose such a scale µF , with µ20 < µ2F < Q2, and we use it to split the logarithm:

ln Q
2

µ20
= ln Q2

µ2F
+ ln µ2F

µ20
, (5.61)

and de�ne a renormalised PDF as:

f q(x , µ2F) =
1

∫
x

dξ
ξ

f q0 (ξ)[δ(1− xξ ) + αs
2π

(P(x
ξ
) ln µ2F

µ20
+ C′(x

ξ
))] . (5.62)
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¿en we can rewrite the factorisation formula in terms of the renormalised PDF
and the factorisation scale:

F2 =∑
q
e2q x

1

∫
x

dξ
ξ

f q(ξ, µ2F) Ĥ (x
ξ
,Q2, µ2F) , (5.63a)

Ĥ (x
ξ
) = [ δ(1 − x

ξ
) + αs

2π
(Pqq(xξ ) ln Q

2

µ2F
+ C̃(x

ξ
))] . (5.63b)

In other words, we can retrieve the structure by convoluting the PDF f q with the
partonic hard part Ĥ. Note that we have divided the �nite part into two parts:

C(x) = C̃(x) + C′(x) . (5.64)

C′ is subtracted from the hard part and gets absorbed by the PDF, while C̃ is what
remains in the factorisation formula. ¿e exact choice of how to do this is up to
convention, and is called a factorisation scheme. ¿is is exactly the same as the
renormalisation scheme as we introduced it in the section on renormalisation
on page 111. In this framework, two common schemes are the DIS scheme, where
C̃ = 0, i.e. everything is subtracted into the PDF, and the more common MS
scheme, where C′ = ln 4π − γE only.
It is very important to have a clear understanding of what is happening here.

In the calculation of the correction to the hard part, we integrated out all k2⊥-
dependence between µ20 and Q2. ¿e kinematics of the system make sure that
k⊥ ≤ Q always, i.e. the upper border of the integration is justi�ed. In the infrared
region however, there is no such kinematic restriction. By cutting the lower
border of the integration at µ20 we discarded gluon radiation with k⊥ < µ0 from
the hard part. In order to avoid dropping these gluons entirely, we have to absorb
them in the PDF, which we subsequently renormalise up to an arbitrary scale
µF . By doing this, we hide the divergence from the process, inside an object that
wasn’t perturbative to begin with.
¿e physical interpretation goes as follows: we choose an arbitrary energy

scale µF that separates the process in two parts, namely a hard part with k⊥ larger
than this scale, and a non-perturbative part (the PDF) with k⊥ smaller than this
scale. ¿is interpretation is illustrated in Figure 5.10. Note that this supports our
previous intuitive de�nition of factorisation at LO, namely to separate the two
regions by just cutting the quark in two, before it gets struck by the photon. For
this reason we will call µF the factorisation scale.
Since F2 is a physical observable, it cannot depend on the factorisation scale

(which is merely an unphysical le over of a mathematical tool). Translated to a
formal statement, his implies:

∂F2
∂ln µ2F

≡ 0 . (5.65)
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k⊥
µF

a) k⊥ < µF

k⊥
µF

b) k⊥ > µF
Figure 5.10: a) ¿e transverse momentum of the gluon is smaller than the factorisation

scale, so we absorb it in the PDF. b)¿e transverse momentum of the gluon
is larger than the factorisation scale, so we add it to the hard part.

X

Figure 5.11: Boson-gluon fusion in DIS.

¿is is really a strong requirement—so strong that we can use it to derive an
evolution equation for f , the so-called Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equation:

∂
∂ln µ2F

f q(x , µ2F) = αs(µ2F)
2π

1

∫
x

dξ
ξ

Pqq (xξ , αs(µ2f )) f q (ξ, µ2F) , (5.66)
where we also incorporated the e�ect of the running coupling αs(µ2F). Note that
Pqq depends on the coupling because this is an all-order equation; corrections
from higher order calculations will manifest themselves inside the splitting
function. ¿e fact that the independence on the factorisation scale yields the
evolution of the PDF is not so strange, a er all, if we want to be able to arbitrarily
choose an unphysical cut between so and hard for a given process, we will also
need to know how this energy cut a�ects the PDF.
Everything we have derived so far was for quarks only. Adding gluons, we can

now calculate the leading-order contribution (in αs) to F̂2 from the boson-gluon
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fusion diagram in Figure 5.11, and convolute this with the gluon PDF. We �nd
for the partonic structure function:

F̂ g2 =∑
q
e2q x

αs
2π

(Pqg(x) ln Q2

µ20
+ Cq(x)) . (5.67)

¿is is quite similar to Equation 5.60, especially, there is again a singularity from
the integration over k2⊥. As we already knew, there is no gluon contribution to
F̂2 when αs = 0. ¿e splitting function is given by

Pqg(ξ) = 1
2
(ξ2 + (1 − ξ)2) , (5.68)

where Pqg is the probability to �nd a quark in a gluon. Note that in F̂ g we sum
over quark �avour. We have to renormalise the gluon PDF as we did with the
quark PDF, but we absorb the singularities in the quark PDF (exactly because we
are looking at a quark in a gluon):

f q(x , µ2F) = f q0 (x) + αs
2π

1

∫
x

dξ
ξ

f q0 (ξ)(Pqq(xξ ) ln µ
2
F
µ20

+ C′q(x
ξ
))

+ αs
2π

1

∫
x

dξ
ξ

f g0 (ξ)(Pqg(xξ ) ln µ
2
F
µ20

+ C′g(x
ξ
)) .

On the other hand, higher-order calculations show that the renormalisation of
the gluon PDF is given by:

f g(x , µ2F) = f g0 (x) + αs
2π

1

∫
x

dξ
ξ

f g0 (ξ)(Pg g(xξ ) ln µ
2
F
µ20

+ C′q(x
ξ
))

+ αs
2π

1

∫
x

dξ
ξ

f q0 (ξ)(Pgq(xξ ) ln µ
2
F
µ20

+ C′g(x
ξ
)) .

With these renormalisation de�nitions, we can write the factorisation formulae
as:
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Collinear Factorisation

F2 =∑
q
e2q x ( f q ⊗ Ĥq + f g ⊗ Ĥg) , (5.69a)

Ĥq (z) = δ(1 − z) + αs
2π

(Pqq(z) ln Q2

µ2F
+ C̃q(z)) , (5.69b)

Ĥg (x
ξ
) = αs

2π
(Pqg(z) ln Q2

µ2F
+ C̃g(z)) , (5.69c)

( f ⊗H)(x) N= 1

∫
x

dξ
ξ

f (ξ)H (x
ξ
) . (5.69d)

Of course, in order to fully validate collinear factorisation, one needs to derive
factorisation formulae for F1 as well and verify if they agree with those for
F2. ¿is has been done quite thoroughly, such that we can accept collinear
factorisation as a valid framework. ¿en �nally, the full DGLAP evolution
equations can be expressed in a matrix equation:

dglap Evolution

∂
∂ln µ2

⎛⎝qi(x , µ
2)

g(x , µ2)
⎞⎠ = αs

2π

1

∫
x

dξ
ξ

⎛⎝Pq iq j Pq i g
Pgq j Pg g

⎞⎠
RRRRRRRRRRR xξ
⋅ ⎛⎝q j(

x
ξ , µ

2)
g( xξ , µ2)

⎞⎠ (5.70)

For completeness’ sake, we list all splitting functions at leading order:

Splitting Functions

ξ

1−ξ Pqq(ξ) = CF 1 + ξ21 − ξ , (5.71a)

ξ

1−ξ Pqg(ξ) = 1
2
(ξ2 + (1 − ξ)2) , (5.71b)

ξ

1−ξ Pgq(ξ) = CF 1 + (1 − ξ)2
ξ

, (5.71c)

ξ

1−ξ Pg g(ξ) = 2CA ( ξ
1 − ξ + 1 − ξ

ξ
+ ξ(1 − ξ)) . (5.71d)

¿is leads us to the end of this chapter on deep inelastic scattering and collinear
factorisation. In Chapter 8, we will investigate what changes when we can no
longer integrate over transverse momentum, e.g. when we identify a hadron in
the �nal state.
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6
WILSON LINES

We saw in Chapter 2 that a Wilson line is a path-ordered exponential construc-
ted from the gauge �elds (see Equation 2.17), that transforms bi-locally (see
Equation 2.3). It is an object that emerges naturally in gauge theories from geo-
metrical arguments to cure the de�nition of the derivative, but this is not its only
application. Because of its bi-local transformation properties, it is o en used as
a parallel transporter to render non-local terms gauge invariant, especially in
QCD calculations concerning validation of factorisation schemes, and in calcu-
lations for constructing or modelling PDFs (see Chapter 8). For these reasons,
Wilson lines deserve some special attention—which is why we investigate them
in great detail in this chapter and the next. We focus on piecewise linear Wilson
lines—which are vastly the most commonly used and the only ones used in
this thesis—and will derive their properties and Feynman rules, and construct
a framework meant to simplify perturbative calculations. Finally, in the last
section we brie�y motivate the importance of Wilson lines by explaining the
eikonal approximation—one of the main applications of Wilson lines.

6.1 a wilson line along a path

AWilson line is a path-ordered exponential of a line integral of the gauge �eld
along a given path C:

U C = P ei g ∫Cdzµ Aµ(z)
. (6.1)

¿e sign convention which was discussed in Chapter 2 also manifests itself in
the de�nition of the Wilson line. Choosing a positive sign in the gauge trans-
formation of the particle �eld—as we do in this thesis—results in a positive sign
in the path-ordered exponential. ¿is follows from its behaviour under gauge
transformations, as it has to have the correct sign to cancel the transformation

149
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of the particle �eld, in order to parallel transport it to a di�erent spacetime point
(see Equations 2.3, 2.4 and 2.18).
¿e Wilson line we constructed in Chapter 2 is valid for any group theory.

We focus on QCD, and as such every Wilson line we will use from now on
will be an SU(3) group element, expressed in the fundamental or the adjoint
representation. If no statement about the representation is made, we assume it
to be in the fundamental. ¿e physical interpretation of a Wilson line becomes
clear by expanding the exponential:

U C = ∞∑
n=0

1
n!

(i g)n P ∫C dz
µn
n ⋯dzµ11 Aµn(zn)⋯Aµ1(z1) , (6.2)

i.e. the n-th order in the expansion represents a radiation of n gluon �elds as in
Figure 6.1. To save writing space, we o en use the shorthand notation

Ai
N= Aa iµ i(zi) . (6.3)

¿e point zi at which the �eld Ai is radiated is integrated over the full path
to get all possible con�gurations. However, path-ordering adds the additional
constraint that all �elds should remain in the same order, i.e. the �eld Ai has to
be radiated between Ai−1 and Ai+1. ¿e full exponential is thus a resummation
of all possible radiations from the path. We can interpret this as a full gauge
e�ect along the path; this can be e.g. the nett e�ect of a particle moving in
an external medium. Resumming all gluons, a Wilson line can also represent
e.g. a fast-moving quark (when in the fundamental representation) or a fast-
moving gluon (when in the adjoint representation). In this case, we assume the
quark resp. gluon not to deviate a er radiating a gluon. ¿is is called the eikonal
approximation and is treated in more detail in Section 6.6.

Properties of Wilson Lines

In Chapter 2 we constructed a Wilson line by the requirement to satisfy a set of
properties. As we discovered during the derivation, these properties led to the
natural interpretation of a Wilson line being a functional of a path. We just list
them here again for easy reference:
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x
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. . .

[ 27th August 2014 at 3:01 – classicstyle]

Figure 6.1: Illustration of the n-th order term in the expansion of the Wilson lineUC(y ; x). ¿e n radiated �elds A i (using the short-hand notation de�ned in
Equation 6.3) can be radiated at any point (due to the fact that they are
integrated over along the path), but are ordered such that λn ≥ λn−1 ≥ ⋅ ⋅ ⋅ ≥
λ2 ≥ λ1.

Properties of Wilson Lines

a. AWilson line is unitary: U C [U C]† = 1 . (6.4a)

b. Path reversion equals Hermitian conjugation: U C = [U−C]† .
(6.4b)

c. It is path-transitive, i.e. if C = C1 + C2, then U C = U C1 U C2 . (6.4c)
d. It transforms in function of its endpoints only:

U(y ; x) → ei g α
a(y)ta U(y ; x)e−i g αa(x)ta . (6.4d)

e. AWilson loop is gauge-invariant: U → U . (6.4e)

Path Ordering

¿e symbol P in Equation 6.1 denotes path ordering, ensuring that the gauge
�elds are ordered in such a way that the �rst �elds on the path are written
le most. When associating a diagram with this formula, we will use the same
convention as with Dirac lines: we read them from right to le . Getting a bit
ahead, we have already written the gauge �elds in a reversed order, from n to 1,
such that when drawing a Wilson line on a path from le to right, we can notate
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the gauge �elds as 1 to n (from le to right, see Figure 6.1). ¿is ensures that An
is the �rst �eld on the path (having the highest value for its parameter λ, see
below).
¿eWilson line still has two open indices, in the fundamental or the adjoint

depending on the representation chosen for the Lie generators (remember that
we de�ned the gauge �elds with the generators absorbed, Aµ = Aaµ ta). In case of
a Wilson loop, these indices are traced.
It is convenient to parameterise the path C in function of a one-dimensional

parameter λ:

C ∶ zµ(λ) λ = a . . . b , (6.5)

where z(a) and z(b) are the start- resp. endpoints of the path. ¿en we can
formally write out the path ordering requirement, e.g. for two �elds we have

P Aµ1(z1)Aµ2(z2) = θ(λ1−λ2)Aµ1(λ1)Aµ2(λ2) + θ(λ2−λ1)Aµ2(λ2)Aµ1(λ1)
for zµ1(λ1) and zµ2(λ2). ¿is can easily be generalised to more than two �elds,
by chaining an appropriate number of θ-functions:

P Aµ1(z1)⋯Aµn(zn) = ∑
σ(λ1 ,...,λn)

(n−1∏
i=1 θ(λi+1−λi))Aµ1(λ1) ⋯Aµn(λn) , (6.6)

where ∑
σ(λ1 ,...,λn) represents a sum over all possible permutations of λi . Note that

in case of Abelian �elds all �elds commute, and we can sum all θ-functions.
¿en the path-ordering symbol can just be ignored:

P Aµ1(z1)⋯Aµn(zn) = Aµ1(z1)⋯Aµn(zn) .
In this case, every term in the expansion of the exponential is just a power of
the same integral:

Uabelian = P ei g ∫Cdzµ Aµ(z) = ∞∑
n=0

1
n!

(i g)n ⎛⎜⎝ ∫C dz
µAµ(z)⎞⎟⎠

n

.

But of course, we are mainly interested in non-Abelian �elds, as in this thesis
we will be using Wilson lines in QCD. Calculating a line integral is easiest by
parameterising the path as in Equation 6.5. ¿en we make a change of variables:

dzµ → dλ dz
µ

dλ
,
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in order to rewrite the path ordered exponential as

U C(b ; a) = P Exp
⎧⎪⎪⎪⎨⎪⎪⎪⎩i g

b

∫
a

dλ (zµ)′ Aµ(z)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (6.7)

We can e�ectuate the path ordering in the expansion using Equation 6.6. ¿is
will manifest itself as a chaining of the parameters λi in the upper integration
borders:

P ∫dλ n⋯dλ 1
dzµn(λn)
dλn

⋯dzµ1(λ1)
dλ1

= n! b

∫
a

dλ n
λn

∫
a

dλ n−1
λn−1
∫
a

dλ n−2 ⋯
λ2

∫
a

dλ 1
dzµn(λn)
dλn

⋯dzµ1(λ1)
dλ1

. (6.8)

¿is literally tells us what we anticipated: that the i-th gauge �eld (with para-
meter λi) has to be radiated between the i− 1-th and the i+ 1-th gauge �eld
(because with these integration borders the parameters satisfy λi+1 ≥ λi ≥ λi−1).
Note that Equation 6.8 is only valid for integrands of the form

Aµn(z(λn)) ⋯Aµ1(z(λ1)) , (6.9)

i.e. products of the same vector �eld function, depending on di�erent variables.
We cannot use it for e.g.

Aµn(z(λn)) ⋯ ∂νAµ i(z(λi)) ⋯Aµ1(z(λ1)) ,
because the interchange symmetry is broken by the derivative.
It is possible to move the chaining to the lower integration borders, but in this

case we need to �ip the order of the parameters (to ensure that we can keep the
order of the radiated gluons as is, i.e. from n to 1):

P ∫dλ n⋯dλ 1
dzµn(λn)
dλn

⋯ dzµ1(λ1)
dλ1

= n! b

∫
a

dλ 1
b

∫
λ1

dλ 2
b

∫
λ2

dλ 3 ⋯ b

∫
λn−1

dλ n
dzµn(λn)
dλn

⋯ dzµ1(λ1)
dλ1

. (6.10)

It is straightforward to check these formulae in an intuitive way, by verifying that
in both cases λn ≥ λn−1 ≥ ⋅ ⋅ ⋅ ≥ λ2 ≥ λ1. Using the integrand in Equation 6.9, the
full expression is then automatically path ordered. Depending on the speci�c
path calculation, Equation 6.8 or Equation 6.10 might be easier to use.
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In order to investigate how di�erent path structures in�uence a Wilson line,
it is preferable to separate out the path content from the gauge �eld content.
Luckily, this can be easily done by making a Fourier transform.¿e path content
is then fully described by the following integrals:

In = 1
n!

(i g)n P ∫ dλ1 ⋯dλn (zµ11 )′ ⋯ (zµnn )′ ei n∏ k i ⋅z i . (6.11)

Note that although we use the common convention for Fourier transforms (with
a negative sign in the exponent for the inverse transform, see Equations A.58),¹
we preferred to make the integration substitution k → −k, to make the link with
common literature concerning Wilson lines (cf. e.g. in [33], where momenta are
pointing outwards). ¿e n-th order term of the Wilson line expansion is then
given by

Un = ∫ dωkn(2π)ω ,⋯ dωk1(2π)ω Aµn(−kn)⋯Aµ1(−k1) In , (6.12)

¿e negative signs in the arguments are a result from the integration substitution
explained above. ¿ey remind us that the results we will derive are de�ned for
momenta pointing outwards in a Feynman diagram.
Also, remember that the �elds are ordered from n to 1 to allow them to be

read from le to right.

6.2 piecewise wilson lines

In general, most interesting and dynamically rich paths will not be smooth, but
contain cusps. ¿ese are points in the path where the path is continuous but
its derivative is not, i.e. the path looks cracked. ¿is is illustrated in Figure 6.2.
¿e reason that cusps are more compelling is that they don’t occur naturally,
but are the result of external driving forces. E.g. if the Wilson line represents a
resummed quark, a cusp can be the e�ect of an interaction with a hard photon.
Cusps hence contain all information on the dynamics of a system.
At �rst sight, paths with cusps might seem a bit problematic from a mathem-

atical point of view, as a general path is supposed to be smooth, i.e. continuously
di�erentiable. What saves the day, is the transitivity property of a Wilson line,
because it allows us to split the path at the cusp, and continue with a product of
twoWilson lines. E.g. in Figure 6.2 we have three cusps that divide the path into
four segments.

1 ¿is implies that positive momenta are pointing inwards in a Feynman diagram.
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C1

C2 C3
C4

[ 27thAugust 2014 at 18:13 –classicstyle]

Figure 6.2: A path with cusps. Although the full path is not smooth, the three cusps di-
vide the path into four smooth segments.¿e full path C can be approached
as a piecewise path with regions C1–4.

In other words, the path on which a Wilson line is evaluated can be piece-
wise, as long as each segment is smooth (in particular, each segment should
be de�ned over an interval that is not a single point). Note that we don’t even
need the restriction that the segments should be joined, because we can always
de�ne a piecewise function (with possibly disconnected segments) in function
of adjoining intervals in the parameterisation parameter:

f (λ) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f 1(λ) λ = a1 . . . a2 ,
f 2(λ) λ = a2 . . . a3 ,
⋮
f M(λ) λ = aM . . . aM+1 .

(6.13)

We will use capitalised Latin letters for the index referring to segments. Let us
consider a piecewise smooth path, consisting ofM continuously di�erentiable
segments.Wewould like to be able to express the integrals In that contain all path
information (see Equation 6.11) in function of the same integrals but expressed
over each segment separately.
¿e �rst order integral over the J-th segment only involves the J-th part of f :

S J1 =
aJ+1
∫
aJ

dλ f (λ) = aJ+1
∫
aJ

dλ f J(λ) . (6.14)

¿en of course the �rst order integral I1 can be trivially expressed in function of
the �rst order segment integrals, as it is just their sum:

aM+1
∫
a1

dλ = ⎛⎜⎝
a2

∫
a1

+ a3

∫
a2

+⋯ + aM+1
∫
aM

⎞⎟⎠dλ ,
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I1 = M∑
J=1 S

J
1 . (6.15)

¿e calculation of the second order integral is a bit more tricky, as there are two
points of particular interest. First, because in Equation 6.11 every incarnation of
e−i k i ⋅z gets another index i, we need to introduce this dependence in f , which
we will do with a lower index:

I2 =
aM+1
∫
a1

dλ1 fi(λ1)
λ1

∫
a1

dλ2 fi+1(λ2) ,
where of course in this case i = 1, but we le it open for the sake of generality.
¿e second point is that in the de�nition of I2 the inner integral has a variable
upper border, and thus is a piecewise function itself:

λ1

∫
a1

dλ2 fi+1(λ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1
∫
a1
dλ2 fi+1(λ2) λ1 = a1 . . . a2 ,
S1(i + 1) + λ1

∫
a2
dλ2 fi+1(λ2) λ1 = a2 . . . a3 ,

⋮
M−1∑
J=1 S

J(i + 1) + λ1
∫
aM
dλ2 fi+1(λ2) λ1 = aM . . . aM+1 .

(6.16)

¿e outermost integral will be split as well, combining the appropriate regions:
aM+1
∫
a1

dλ1 fi(λ1)
λ1

∫
a1

dλ2 fi+1(λ2)

= a2

∫
a1

dλ1 fi(λ1)
λ1

∫
a1

dλ2 fi+1(λ2) +
a3

∫
a2

dλ1 fi(λ1)⎛⎜⎝S1(i + 1) +
λ1

∫
a2

dλ2 fi+1(λ2)⎞⎟⎠
+⋯ + aM+1

∫
aM

dλ1 fi(λ1)⎛⎜⎝
M−1∑
J=1 S

J(i + 1) + λ1

∫
aM

dλ2 fi+1(λ2)⎞⎟⎠ .

¿is can be simpli�ed by using the notation for the �rst-order segment integral
and by introducing the notation for the second-order segment integral:

S J2(i) =
aJ+1
∫
aJ

dλ1
λ1

∫
aJ

dλ2 f Ji (λ1) f Ji+1(λ2) , (6.17)

I2 = M∑
J=1 S

J
2(1) + M∑

J=2
J−1∑
K=1 S

J
1 (1)SK1 (2) . (6.18)
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Note that S2 only depends on the J-th segment; no mixing occurs. ¿is will
be true to all orders, and is exactly what we hoped for: we can express the full
path ordered integral as path ordered integrals over the separate segments. Also
note that the argument of successive segment integrals (which is the incarnation
index of f ) is simply incrementing; this will also be true to all orders (i.e. only
terms of the form S J1m1(i)S J2m2(i + 1) . . . S Jkmk(i + k) will appear). In what follows,
we will drop this argument of S, as it is trivial to deduce as long as we keep the
ordering of the S’s �xed.
Although we used the expression for the path-ordering given by Equation 6.8,

the whole derivation is equally valid when using the chaining of the integration
borders as given in Equation 6.10.
¿e extension to higher orders is trivial but paper-consuming, so we just give

the results:

Piecewise Path Ordered Integrals

I3 = M∑
J=1 S

J
3 + M∑

J=2
J−1∑
K=1 [S J1 SK2 + S J2SK1 ] +

M∑
J=3

J−1∑
K=2

K−1∑
L=1 S

J
1 S

K
1 SL1 , (6.19a)

I4 = M∑
J=1 S

J
4 + M∑

J=2
J−1∑
K=1 [S J1 SK3 + S J2SK2 + S J3SK1 ] +

M∑
J=4

J−1∑
K=3

K−1∑
L=2

L−1∑
O=1 S

J
1 S

K
1 SL1 SO1

+ M∑
J=3

J−1∑
K=2

K−1∑
L=1 [S J1 SK1 SL2 + S J1 SK2 SL1 + S J2SK1 SL1 ] , (6.19b)

In = n∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎝

i∏
j=1

J j−1−1∑
J j=i− j+1

⎞⎠
J0−1=M

⎛⎜⎜⎜⎜⎝
All terms of the form

i∏
j=1 S

J j
l j

such that
i∑
j=1 l j = n

⎞⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (6.19c)

It is straightforward to write out the n-th order integral for any n. All we have
to do is make all possible combinations of Si ’s that give n internal f ’s and
adding the correct number of sum symbols while keeping the ordering. It is
also possible to give a recursive de�nition:

In(M) = M∑
J=1 S

J
n + M∑

J=2
n−1∑
i=1 S

J
i In−i(J − 1) . (6.20)
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¿e last two equations literally translate to a Wilson line; just replace every S
with a U , for instance:²

U3 = M∑
J=1U J3 + 2

M∑
J=2

J−1∑
K=1U J(1UK2) +

M∑
J=3

J−1∑
K=2

K−1∑
L=1U J1 UK1 UL1 , (6.21)

where

U Jn = ( i g
16π4

)n ∫d4k1 . . . d4kn Aµ1(k1) . . .Aµn(kn) S Jn . (6.22)

Note that the ordering of the U J remains important, as the momentum integra-
tion runs over the Si ’s and the �elds, which are non-commutative due to the
colour generators.
¿e physical interpretation of the n-th order formula is a collection of all

possible diagrams for n-gluon radiation from a M-segment Wilson line, as is
illustrated in �gure (Figure 6.3) for 3 gluons radiated from a line with 4 linear
segments. Note themanifest path ordering: theU J are path ordered by de�nition,
and the sums are such that the the gluon from segment J is radiated before K
which is radiated before L (here we literally see that a Wilson line is read from
right to le , as the order of J, K, and L is �ipped).
Consider now the product of e.g. three Wilson lines, labelled UA, UB and UC .

Expanding the exponentials and collecting terms of the same order in g we get:

UAUBUC = 1 + (UA1 + UB1 + UC1 )
+ (UA1 UB1 + UA1 UC1 + UB1 UC1 + UA2 + UB2 + UC2 )
+ (UA1 UB1 UC1 + UA1 UB2 + UA1 UC2 + UB1 UC2 + UA2 UB1+ UA2 UC1 + UB2 UC1 + UA3 + UB3 + UC3 ) +⋯ ,

which equals, up to third order, the sumof Equations 6.14, 6.18 and 6.19a. In other
words, we can equate a product ofWilson lines to one line with several segments.
¿e proof easily generalises to all orders. Note that the order of the segments is
reversed w.r.t. the order of the product (because we read the lines from right to
le ), e.g. the product UAUBUC is a line with �rst segment C, second segment B
and last segment A, i.e.

UAUBUC = UABC ,
where we read the order of the segments in the r.h.s. from right to le .

2 We use the brace notation for tensor symmetrisation, i.e. U J(1UK
2) = 1

2 (U
J
1 U

K
2 + U

J
2U

K
1 ) .See

Equations A.13
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M∑
J=1U J3 =

J + J + J + J

M∑
J=2

J−1∑
K=1U J1 UK2 = JK + JK + JK + JK

+ JK + JK

M∑
J=2

J−1∑
K=1U J2UK1 = JK + JK + JK + JK

+ JK + JK

M∑
J=3

J−1∑
K=2

K−1∑
L=1 U J1 UK1 UL1 = JKL + JKL + JKL + JKL

Figure 6.3: Correspondence between Equation 6.21 and all possible diagrams for 3-
gluon radiation on a 4-segment Wilson line. Path ordering is manifestly
conserved.

6.3 wilson lines on a linear path

¿e results from the former section are general results, i.e. valid for any path. Let
us now turn our focus towards paths built from linear segments—as these are the
most commonly used in literature—and derive Feynman rules for the di�erent
linear topologies. For every segment there exist four possible path structures: it
can be a �nite segment connecting two points, it can be a segment connecting±∞ and a point rµ , or it can be a fully in�nite line connecting −∞ with +∞. We
will investigate them case by case.

Bounded from Below

We start with a path going from a point aµ to +∞ along a direction nµ. Such a
path can be parameterised as

zµ = aµ + nµ λ λ = 0 . . .∞ . (6.23)
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Using the path-ordering as de�ned in Equation 6.10, we can write Equation 6.11
as:³

Il.b.n = (i g)n nµ1⋯ nµn e
i a⋅∑

j
k j
∞
∫
0

∞
∫
λ1

⋯ ∞
∫

λn−1
dλ1⋯dλn e

i ∑
j
(n⋅k j+iη)λ j

, (6.24)

where the terms +iη in the exponential (with η > 0 in�nitesimal) are needed
to make the integral convergent. Solving this integral is straightforward. First
we calculate the innermost integral, which is just the Fourier transform of a
Heaviside θ-function:

∞
∫

λn−1
dλn ei(n⋅kn+iη)λn = i

n ⋅kn + iη ei(n⋅kn+iη)λn−1 , (6.25)

Note that if we would have used Equation 6.8 instead of Equation 6.10, this
result would have contained two terms—of course valid as well but much more
di�cult.
We can summarise the e�ect of the innermost integral as a factor 1

n⋅kn and
an extra term n ⋅kn in front of λn−1. ¿e next integral will then give a factor

1
n⋅kn+n⋅kn−1 and so on. In other words, we simply get:

Il.b.n = (i g)n nµ1⋯ nµn e
i a⋅∑

j
k j n∏

j=1
i

n ⋅ n∑
l= j kl + iη

, (6.26)

¿ere is a small subtlety in this result, as we absorbed some factors in front of
the iη into η (which is something we are allowed to do as the limit η → 0 is
implicitly assumed).
We can reconstruct the result in Equation 6.26 with the following Feynman

rules:

3 ¿e symbol n is used both as an index (in the n-th order expansion) and as a directional vector.
¿e di�erence should be clear from context.
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Figure 6.4: n-gluon radiation for a Wilson line going from aµ to +∞.

Feynman Rules for Linear Wilson Lines

a. Propagator:

i
i
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i

i
i

i
i

k = i
n ⋅k + iη , (6.27a)

b. External point:
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“gfx/tikz/Wilson/WilsonExternalPoint” — 2014/9/17 — 11:43 — page 144 — #1 i
i

i
i

i
i

k
aµ = ei a⋅k , (6.27b)

c. Line to in�nity: +∞

[ 31stAugust 2014 at 11:46 –classicstyle]

= 1 , (6.27c)

d. Wilson vertex:
i

i
“gfx/tikz/Wilson/WilsonVertex” — 2014/9/17 — 11:43 — page 144 — #1 i

i

i
i

i
i

j i

µ, a
k = i g nµ (ta)i j . (6.27d)

¿ese Feynman rules are for momenta that start in the external point and point
outwards from the Wilson line (see the discussion above Equation 6.12). If
one or more momenta are inwards, the correct Feynman rule can be trivially
retrieved by making the substitution ki → −ki . As an illustration, the resulting
n-th order diagram is drawn in Figure 6.4.

Bounded from Above

¿e logical next step is to investigate a path that starts at −∞ and now goes up
to a point bµ , which we parameterise as

zµ = bµ + nµ λ λ = −∞ . . . 0 . (6.28)

In this case, it is easier to reverse the integration variables as in Equation 6.8,
which then gives the integral for a Wilson line with upper bound:

Iu.b.n = (i g)n nµ1⋯ nµn e
ib⋅∑

j
k j

0

∫−∞
λn

∫−∞⋯
λ2

∫−∞dλn⋯dλ1 e
in⋅∑

j
k jλ j

. (6.29)

¿e calculation goes as before, giving:
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−∞ bµ

k1

k1

k2

k1 + k2

k3

. . .

. . . kn−1

n−1∑
j=1 k j

kn

n∑
j=1 k j

Figure 6.5: n-gluon radiation for a Wilson line going from −∞ to bµ . Path �ow is
opposite to momentum �ow

Iu.b.n = (i g)n nµ1⋯ nµn e
ib⋅∑

j
k j n∏

j=1
−i

n ⋅ j∑
l=1 kl − iη

, (6.30)

which di�ers from Equation 6.26 only in the accumulation of momenta in
the denominators (bottom-top instead of top-bottom) and the sign of the
convergence terms. ¿e Feynman rules derived before remain valid if we make
the substitution k → −k in the Wilson line propagators, but not in the external
point. ¿en it is straightforward to draw the n-th order diagram for a Wilson
line going from −∞ to bµ, as demonstrated in Figure 6.5. ¿e path still �ows
from le to right, but now the momenta are opposite to the path �ow. However
the main idea remains the same: momenta start from the external point and are
spread over the outgoing gluons.

Path Reversal

Let us now investigate what changes when we reverse the path of a Wilson
line. First of all, the integration borders are of course interchanged, because the
path �ows from the �nal point to the initial point. ¿is is the same as keeping
the integration borders as they are, and �ipping the sign in the exponent. But
the most important is that the order of the �elds is reversed, because the �eld
that normally lies �rst on the path will be encountered last when following the
reversed path �ow. ¿is is the idea of anti path-ordering P , de�ned such that
the �eld with the highest value for λ is written rightmost instead of le most. ¿e
reversed Wilson line is thus given by:

U(a ; b) = Pe−ig
b
∫
a
dz µ Aµ

. (6.31)

It comes as no surprise that this is exactly the same as the Hermitian conjugate,
as this was one of the properties imposed during the derivation of the Wilson
line in Chapter 2. Note that the reversal of the �eld ordering is not only a
logical step when reversing the path, but also a direct result of the Hermitian
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conjugate, because (An⋯A1)† = A†
1⋯A†

n. By using the fact that A(k)† = A(−k)
is a Hermitian function4, and making the substitution k → −k, the relation to
the reversed path becomes apparent. We thus have indeed:

U(a ; b) = U†(b ; a) . (6.32)

But of course it would be desirable to express the Hermitian conjugate line in
function of normal path-ordered �elds, such that we can use the same Feynman
rules as before.
Let’s see how e.g. a Wilson line from −∞ to bµ behaves when Hermitian

conjugated (remember that in Equation 6.12 we de�ned the regular Wilson line
with opposite momenta, i.e. with factors Ai(−ki)):

U†(b ;−∞) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∞∑
n=0 (i g)n∫

dωkn(2π)ω n ⋅A(−kn) . . . n ⋅A(−k1) eib⋅ n∑ k j
n∏
j=1

−i
n ⋅ j∑

l=1 kl − iη
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

†

= ∞∑
n=0 (−i g)n∫

dωkn(2π)ω n ⋅A(k1) . . . n ⋅A(kn) e−ib⋅ n∑ k j
n∏
j=1

i

n ⋅ j∑
l=1 kl + iη

= ∞∑
n=0 (−i g)n∫

dωkn(2π)ω n ⋅A(−k1) . . . n ⋅A(−kn) eib⋅ n∑ k j
n∏
j=1

−i
n ⋅ j∑

l=1 kl − iη
,

where in the last step we made the integration substitution ki → −ki . In order to
make the identi�cation with Equation 6.12, we have to relabel the �elds by doing

1→ n, 2→ n − 1, . . . , n → 1,

which gives

U†(b ;−∞) = ∞∑
n=0 ∫

dωkn(2π)ω⋯ dωk1(2π)ω Aµn(−kn)⋯Aµ1(−k1) Il.b. †n ,

Il.b. †n = (i g)n (−nµ1)⋯ (−nµn) eib⋅ n∑ k j
n∏
j=1

i

−n ⋅ n∑
l= j kl + iη

.

4 Because A(x) is real.
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i
i

“gfx/tikz/Wilson/HermitianFeyn” — 2014/9/17 — 11:44 — page 147 — #1 i
i

i
i

i
i

+∞bµ

k1

n∑
j=1 k j

k2

n∑
j=2 k j . . .

. . . kn−2 kn−1
kn−1 + kn

kn

kn

Figure 6.6: Reversing the path of a Wilson line is the same as taking the Hermitian
conjugate U†(b ;−∞). If we want to express this in standard path ordering,
we have to make the substitution n → −n (shown by the blue arrow) and
change the path into a line going from bµ to +∞.

We see now that this is the expansion of a Wilson line from bµ to +∞, but with
opposite nµ .5¿e same will be true for a Wilson line from a point to +∞, so we
can write:

U†(+∞ ; a) = U(a ;−∞)∣n→−n , (6.33a)

U†(b ;−∞) = U(+∞ ; b)∣n→−n . (6.33b)

We will indicate the direction of n in a Feynman diagram with a blue arrow on
the Wilson line, where going from le to right implies a positive n. ¿is also
indicates the direction of the path �ow: an arrow from right to le implies a
negative n, implying a Hermitian conjugate, implying a reversed path (from
right to le ).6 With this convention, we can draw the reversed version ofU(b ;−∞) as in Figure 6.6.
Let us have a look at how the Feynman rules change when making the substi-

tution n → −n. First for the Wilson line propagator, we see that it gets complex
conjugated when the momentum �ow is opposed to the path direction:i

i
“gfx/tikz/Wilson/Propagator1” — 2014/9/17 — 11:44 — page 147 — #1 i

i

i
i

i
i

k = i
n ⋅k + iη ,

i
i

“gfx/tikz/Wilson/Propagator2” — 2014/9/17 — 11:44 — page 147 — #1 i
i

i
i

i
i

k = −i
n ⋅k − iη , (6.34a)i

i
“gfx/tikz/Wilson/Propagator3” — 2014/9/17 — 11:45 — page 147 — #1 i

i

i
i

i
i

k = −i
n ⋅k − iη ,

i
i

“gfx/tikz/Wilson/Propagator4” — 2014/9/17 — 11:45 — page 147 — #1 i
i

i
i

i
i

k = i
n ⋅k + iη . (6.34b)

5 ¿e important fact to realise here is that what de�nes whether a Wilson line is going from −∞

to aµ or from aµ to +∞ is how the momenta are summed in the denominator. For the former it
is

j
∑
l=1, and for the latter

n
∑
l= j.

6 Note that the substitution n → −n is not the same as a path reversal. To appreciate the di�erence,
remember that for a linear path zµ = rµ + nµ λ, so the substitution n → −n changes a path
from −∞ to 0 into one from +∞ to 0 (ignoring the di�erence between path-ordering and anti
path-ordering). But the reversed path goes in the direction −n; this is why we can use the blue
arrow to denote both. ¿e di�erence is maybe subtle, but cannot be neglected.
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¿evertex coe�cient only depends on the path direction, (not on themomentum
direction):i

i
“gfx/tikz/Wilson/Vertex1” — 2014/9/17 — 11:45 — page 147 — #1 i

i

i
i

i
i

j i

µ, a
k = i g nµ (ta)i j ,

i
i

“gfx/tikz/Wilson/Vertex2” — 2014/9/17 — 11:46 — page 147 — #1 i
i

i
i

i
i

j i

µ, a
k = −i g nµ (ta)i j . (6.35)

On the other hand, the sign in the exponent for an external point doesn’t depend
on the direction of the path �ow, but only on the momentum direction as
compared to the point itself:i

i
“gfx/tikz/Wilson/ExternalPoint2” — 2014/9/17 — 11:46 — page 148 — #1 i

i

i
i

i
i

k
rµ = k

rµ = k
rµ = k

rµ = ei r⋅k , (6.36a)i
i

“gfx/tikz/Wilson/ExternalPoint1” — 2014/9/17 — 11:46 — page 148 — #1 i
i

i
i

i
i

k
rµ = k

rµ = k
rµ = k

rµ = e−i r⋅k .
(6.36b)

Most of the time, we will drop the arrow indicating the path �ow on the Wilson
line, as it obscures readability, and assume—unless speci�ed otherwise—the
path �owing from le to right.
We now introduce a shorthand notation to denote the path structure for a

Wilson line segment. We represent the two structures we calculated �rst by:

Schematic Representation of Wilson Line Segments

U(+∞ ; a) N=

[ 29thAugust 2014 at 4:23 –classicstyle]

, (6.37a)

U(b ;−∞) N=

[ 29thAugust 2014 at 4:23 –classicstyle]

. (6.37b)

Note that there is a subtlety in our drawing conventions. Until now we’ve only
drawn small pieces of a segment in order to illustrate the Feynman rules. But
here we give a schematic representation of a full segment (including gluons).
Confusion might especially appear between the depiction of the Feynman rule
for an external point and this representation, however, the correct interpretation
should be clear from the context. Furthermore, from now on we will mostly use
the latter notation.
For the reversed path, there is some ambiguity in the interpretation. Combin-

ing Equation 6.32 and Equations 6.33, we can write

U(a ;+∞) = U(a ;−∞)∣n→−n . (6.38)

In both sides of the equation, the blue arrow is pointing from right to le .
However, in the l.h.s. the line touches +∞ and in the r.h.s. it touches −∞. ¿e l.h.s.
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gives the correct physical picture, while the r.h.s. gives the correct calculational
picture (assuming we keep all �elds in standard path-ordering). We choose the
latter, so keep in mind that this is not a correct physical representation:

U(a ;+∞) = U(a ;−∞)∣n→−n
N=

[ 29thAugust 2014 at 4:23 –classicstyle]

, (6.39a)

U(−∞ ; b) = U(+∞ ; b)∣n→−n
N=

[ 29thAugust 2014 at 4:23 –classicstyle]

. (6.39b)

¿is helps avoiding calculational mistakes, as the former representation would
seem to suggest that U(+∞ ; a) and U(a ;+∞) are related by a simple sign change
in n. ¿is is not enough, one also has to change the accumulation of momenta
in the denominator of the propagator, from ∑n

j kl (Equation 6.26) to ∑ j
1 kl

(Equation 6.30). A trick to remind this correctly is to remember that path
reversing equals Hermitian conjugation, and the latter is easily demonstrated in
our schematic notation using a “mirror relation”:

Mirror Relation for Hermitian Conjugate Line

(

[ 29thAugust 2014 at 11:35 –classicstyle]

)† =

[ 29thAugust 2014 at 11:35 –classicstyle]

, (

[ 29thAugust 2014 at 11:35 –classicstyle]

)† =

[ 29thAugust 2014 at 11:35 –classicstyle]

, (6.40)

which is literally the same as Equations 6.33.

Finite Wilson Line

Next we investigate a Wilson line on a �nite path, going from a point aµ to a
point bµ (where now the direction is de�ned by nµ = bµ−aµ∥b−a∥ ). We parameterise
this as:

zµ = aµ + nµλ λ = 0 . . . ∥b − a∥ . (6.41)

Of course we can simply use Equation 6.4c to split the line at ±∞, i.e.

U(b ; a) = U(b ;+∞) U(+∞ ; a) = U(b ;−∞) U(−∞ ; a) ,
but in what follows we will do a brute-force calculation giving the same result,
and this for three reasons:

a. It is an extra, practical check of the transitivity formula.

b. Following our calculations, we will see that this is the natural and only way
to calculate a �nite line in momentum space, i.e. so far no easier solutions
exist.
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c. Halfway the calculation we will need to solve a recursive relation, which
we can re-use when calculating the fully in�nite line.

Because there are no in�nities at the borders, it doesn’t matter whether we choose
Equation 6.10 or Equation 6.8, as both are equally di�cult but will give the same
results. Choosing Equation 6.10, we write the segment integral as

I�n.n = (i g)n nµ1⋯ nµn e
i a⋅∑

j
k j

∥b−a∥
∫
0

λn

∫
0

⋯ λ2

∫
0

dλn⋯dλ1 ein⋅
n∑ k jλ j . (6.42)

Dropping the factors in front of the integral, we �nd a recursion relation:

I�n1 (k1) =
∥b−a∥
∫
0

dλ ein⋅k1 λ = −i
n ⋅k1 (ei(b−a)⋅k1 − 1) , (6.43a)

I�nn (k1 ,...,kn) = −i
n ⋅k1(I�n.n−1(k1+k2 ,...,kn) − I�n.n−1(k2 ,...,kn)) . (6.43b)

To ameliorate notational clarity, we will drop the factors nµ (from the fractions)
and i(b − a)µ (from the exponent) in the next calculation. ¿e �rst few orders
are easily calculated:

I�n2 = (−i)2
k1(k1 + k2) (ek1+k2 − 1) + i(−i)

k1k2
(ek2 − 1) ,

I�n3 = (−i)3
k1(k1 + k2)(k1 + k2 + k3) (ek1+k2+k3 − 1) + i(−i)2

k1k2(k2 + k3) (ek2+k3 − 1)
+ i2(−i)(k1 + k2)k2k3 (ek3 − 1) ,

I�n4 = (−i)4
k1(k1+k2)(k1+k2+k3)(k1+k2+k3+k4) (ek1+k2+k3+k4 − 1)
+ i(−i)3
k1k2(k2+k3)(k2+k3+k4) (ek2+k3+k4 − 1)

+ i2(−i)2(k1+k2)k2k3(k3+k4) (ek3+k4 − 1) + i3(−i)(k1+k2+k3)(k2+k3)k3k4 (ek4 − 1) ,

and so on. We see that every term has a fraction where a part of the momenta is
accumulated from below, and the other part is accumulated from above. We can
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thus express the n-th order term exactly as (reintroducing the factors nµ and(b − a)µ):
I�n.n = n−1∑

m=0
⎛⎝e

i(b−a)⋅ n∑
m+1 k j − 1⎞⎠

⎛⎜⎜⎜⎜⎝
m∏
j=1

i

n ⋅ m∑
l= j kl

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

n∏
j=m+1

−i
n ⋅ j∑
l=m+1 kl

⎞⎟⎟⎟⎟⎠
. (6.44)

¿is can be simpli�ed further. First of all, we have exactly 2n terms, of which n
have no exponential and can thus be summed to simplify into one term (these
are all terms corresponding to the −1 term in parentheses). Note that if we sum
these n terms and add the m = n term, we get zero:

Eikonal Identity

n∑
m=0

⎛⎜⎜⎜⎜⎝
m∏
j=1

i

n ⋅ m∑
l= j kl

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

n∏
j=m+1

−i
n ⋅ j∑
l=m+1 kl

⎞⎟⎟⎟⎟⎠
= 0 , (6.45)

which is easy to prove by induction. ¿is is known as the eikonal identity, and is
especially useful in the case of Abelian �elds, because then it tells us that—for
a given diagram where two Wilson lines are connected to each other with n/2
photons (or gluons when ignoring colour)—if we sum the possible emission
partitions between the two lines, the result is automatically zero.7
Using the eikonal identity, we can replace the sum of the n terms by the

opposite of the m = n term:
− n−1∑
m=0

⎛⎜⎜⎜⎜⎝
m∏
j=1

i

n ⋅ m∑
l= j kl

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

n∏
j=m+1

−i
n ⋅ j∑
l=m+1 kl

⎞⎟⎟⎟⎟⎠
= n∏

j=1
i

n ⋅ m∑
l= j kl

,

¿e important observation is now that the last term is also the m = n term
for the full sum including the exponential (Equation 6.44), as in this case the
exponential vanishes:8

e
i(b−a)⋅n∑

n+1 k j = e0 = 1 .
7 We don’t even have to sum over all possible crossings. Any given diagram connecting the photons
is represented as a product of δ-functions andpropagators, and is factorised out of this calculation.

8 Remember that by de�nition
b
∑
j=a f ( j) = 0 if a > b, this is an ‘empty sum’. ¿e same is true for

multiplication:
b
∏
j=a f ( j) = 1 if a > b.
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¿is then gives:

I�n.n = n−1∑
m=0 e

i(b−a)⋅ n∑
m+1 k j

⎛⎜⎜⎜⎜⎝
m∏
j=1

i

n ⋅ m∑
l= j kl

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

n∏
j=m+1

−i
n ⋅ j∑
l=m+1 kl

⎞⎟⎟⎟⎟⎠
+ n∏

j=1
i

n ⋅ n∑
l= j kl

,

= n∑
m=0 e

i(b−a)⋅ n∑
m+1 k j

⎛⎜⎜⎜⎜⎝
m∏
j=1

i

n ⋅ m∑
l= j kl

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

n∏
j=m+1

−i
n ⋅ j∑
l=m+1 kl

⎞⎟⎟⎟⎟⎠
.

Reintroducing the factors in front, we see that the exponential simpli�es into

e
i a⋅ n∑

1
k j n∑
m=0 e

i(b−a)⋅ n∑
m+1 k j = n∑

m=0 e
i a⋅m∑

1
k j
e
ib⋅ n∑

m+1 k j .

We can thus �nally write the path content integral for a �nite line as

I�n.n = n∑
m=0

⎛⎜⎜⎜⎜⎝
m∏
j=1 i g n

µ j i

n ⋅ m∑
l= j kl

ei a⋅k j
⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

n∏
j=m+1 i g n

µ j −i
n ⋅ j∑
l=m+1 kl

eib⋅k j
⎞⎟⎟⎟⎟⎠
. (6.46)

Using the fact that this kind of chained sum can in general be written as a product
of two in�nite sums:

∞∑
n=0

n∑
m=0AmBn−m = ( ∞∑

n=0An)( ∞∑
n=0Bn) ,

we can transform Equation 6.46 into a product of two half-in�niteWilson lines:9

∞∑ I�n.n =
⎛⎜⎜⎜⎜⎝
∞∑
n=0

n∏
j=1 i g n

µ j −i
n ⋅ j∑

l=1 kl
eib⋅k j

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
∞∑
n=0

n∏
j=1 i g n

µ j i

n ⋅ n∑
l= j kl

ei a⋅k j
⎞⎟⎟⎟⎟⎠
.

To make the identi�cation with two half-in�nite Wilson lines, we will manually
add the convergence terms in the fraction (we can do this without problem

9 ¿ere is a small subtlety here: in Equation 6.46, the propagators are ordered from 1 to n. But
of course the �elds are ordered from n to 1 as explained in Equation 6.12. So basically, when
including the momentum integrals over the �elds, the two products switch places.



6.3 wilson lines on a linear path 170

because in the in�nitesimal limit they are zero anyway), but to be consistent,
they have to have the same sign in both products:¹0

∞∑ I�n.n =
⎛⎜⎜⎜⎜⎝
∞∑
n=0

n∏
j=1 i g n

µ j −i
n ⋅ j∑

l=1 kl + iη
eib⋅k j

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
∞∑
n=0

n∏
j=1 i g n

µ j i

n ⋅ n∑
l= j kl + iη

ei a⋅k j
⎞⎟⎟⎟⎟⎠
,

which is literally the same as two lower bound Wilson lines:

U(b ; a) = U(b ;−∞)∣n→−n U(+∞ ; a) = U†(+∞ ; b) U(+∞ ; a) = U(b ;+∞) U(+∞ ; a) .
(6.47)

Of course, we can just as well insert convergence terms with a negative sign, i.e.

∞∑ I�n.n =
⎛⎜⎜⎜⎜⎝
∞∑
n=0

n∏
j=1 i g n

µ j −i
n ⋅ j∑

l=1 kl − iη
eib⋅k j

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
∞∑
n=0

n∏
j=1 i g n

µ j i

n ⋅ n∑
l= j kl − iη

ei a⋅k j
⎞⎟⎟⎟⎟⎠
,

which gives us two upper bound Wilson lines:

U(b ; a) = U(b ;−∞) U(+∞ ; a)∣n→−n = U(b ;−∞) U†(a ;−∞) = U(b ;−∞) U(−∞ ; a) ,
(6.48)

proving the arbitrariness of the transitivity property. When putting this relations
in a schematic form, it is easiest to represent the one where the �nite line is cut
at +∞, because then the line is literally torn in two:

Finite Wilson Line

aµ bµ = aµ ⊗ bµ .

¿e reversed path is simply the Hermitian conjugate (note that the Hermitian
conjugation also �ips the order of the two lines in the r.h.s.):

aµ bµ = bµ ⊗ aµ .

10 ¿e reasoning behind it is that the correct place to introduce these convergence terms is not here—
at the end of the calculation—but at the start of the calculation in the exponent of Equation 6.42,

i.e. e
i(n⋅ n∑ k j±i η)λ j . ¿en a er doing the full calculation, both products in Equation 6.46 will have

convergence terms with the same sign.
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So the only things that change a er reversing the path are the external points.
¿is is of course logical, as we could interpret it as a normal �nite line from bµ
to aµ, for which the former schematic relation holds.

In�nite Wilson line

Finally, the last possible path structure for a linear segment is a fully in�nite
line, going from −∞ to +∞ along a direction nµ and passing through a point
rµ. Such a path can be parameterised as:

zµ = rµ + nµλ λ = −∞ . . . +∞. (6.49)

Using Equation 6.8, we can write the segment integral as

Iinf.n = (i g)n nµ1⋯ nµn e
i r⋅∑

j
k j

+∞
∫−∞⋯

λ2

∫−∞dλn⋯dλ1 ein⋅
n∑ k jλ j .

Naively, one could think that Iinf.n consists of n −1 integrals that evaluate to the
Fourier transform of a Heaviside θ-function (see Equations A.63), −i

n⋅k−iη , and
one integral, the outermost, that evaluates to a Dirac δ-function. ¿is would
give the following result (again dropping the factors in front of the integral for
convenience):

Iinf.n = (i g)n nµ1⋯ nµn
⎛⎜⎜⎜⎜⎝
n−1∏
j=1

−i
n ⋅ j∑

l=1 kl − iη
⎞⎟⎟⎟⎟⎠
2π δ(n ⋅ n∑ k j) . (6.50)

However, there is one caveat. When we explicitly write the convergence terms
used in the n−1 innermost integrals, we see that the outermost integral doesn’t
equal a δ-function at all, but is badly divergent:

+∞
∫−∞dλn e

i(n⋅ n∑ k j−iη)λn . (6.51)

¿is is the Fourier transform of eηλn , which is divergent.¹¹ In other words, either
we drop the convergence terms (η = 0), making the δ integral representation
convergent but making all n−1 innermost integrals divergent, or we add the

11 ¿e only square-integrable linear exponential functions are e−η∣λ∣ and e−ηλ θ(λ).
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convergence terms in order tomake the innermost integrals convergent, but then
we loose the δ function representation and are stuck with a divergent Fourier
transform. Simply using the convergence terms for the n−1 innermost integrals,
and then setting them to zero for the last integral won’t do, as there is no reason
to believe that we are allowed to take the limit η → 0 halfway. Furthermore we
will need the convergence terms in the Wilson line propagators when doing
momentum integrations.
A consistent approach is to regularise the path, as is calculated up to second

order in [40]. However, their proof is based on a not so rigorous use of the
Riemann-Lebesgue lemma. We will show that it is not di�cult to make a math-
ematically correct all-order proof, based on solving the same recursion relation
as we encountered in the calculation of the �nite line. ¿e regularised path runs
from rµ − 2

ξn
µ to rµ + 2

ξn
µ (with ξ > 0), and is parameterised as:

zµξ = rµ + 2
ξ
tanh( ξ

2
λ) nµ λ = −∞ . . . +∞ (6.52)

If we take the limit ξ → 0, we recover the same parametrisation as in Equa-
tion 6.49. ¿e innermost integral equals:

Iinf.1 = λ2

∫−∞dλ1 sech2 ( ξ
2
λ1) ei 2ξ (n⋅k1−iη) tanh( ξ

2 λ1)

= −i
n ⋅k1 − iη (ei 2ξ (n⋅k1−iη) tanh( ξ

2 λ2) − e−i 2ξ (n⋅k1−iη))
λ2→+∞ÐÐÐÐ→ 2 i sin(2

ξ
(n ⋅k1 − iη)) −i

n ⋅k1 − iη
¿e factor sech2 is the integration measure that comes from the reparameterisa-
tion of the path dzµ → (zµ)′ dλ . Note that we added the convergence terms iη,
despite the fact that at �rst sight they don’t seem necessary. However, intuitively
one can expect that they are in fact indispensable, as the regularisation of the
path acts on the outermost ‘δ’-integral and not on the innermost ‘θ’-integrals,
leaving the latter unregularised. We will indeed con�rm their necessity in the
next step. To proceed, we observe that for higher orders the integrals obey a
recursion relation (again dropping the factors in front):

Iinf.n (k1 ,...,kn) = −i
n ⋅k1−iη (Iinf.n−1(k1+k2 ,k3 ,...,kn) − e−i 2ξ (n⋅k1−iη) Iinf.n−1(k2 ,k3 ,...,kn)) . (6.53)
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¿is relation looks a lot like Equations 6.43. In fact the result is very similar and
can be simpli�ed into

Iinf.n = 2i n−1∑
m=0 e

−i 2ξ(n⋅m∑1 k j−iη) sin [2
ξ
(n ⋅ n∑

m+1 k j−iη)]
m∏
1

i

n ⋅m∑
j
kl−iη

n∏
m+1

−i
n ⋅ j∑
m+1 kl−iη

.

Note how the convergence terms −iη ensure that the exponent converges nicely
in the limit ξ >→ 0; they are indeed indispensable. All terms thus vanish in this
limit, except the m = 0 term where the exponent equals 1. We now move from
the regularised path back to the original path by taking this limit:

Iinf.n = (i g)n nµ1⋯ nµn
⎛⎜⎜⎜⎜⎝
n−1∏
1

−i
n ⋅ j∑

1
kl − iη

⎞⎟⎟⎟⎟⎠
2π δ(n ⋅ n∑

1
k j − iη) . (6.54)

As this is the same result as in Equation 6.50, we have shown that there is no
need to regularise the path and that the naive calculation leads to correct results,
although seemingly divergent at �rst sight.
A few words on the emergence of the δ-function however. We use here the

concept of a nascent δ-function, which is any function δξ with in�nitesimal
parameter ξ > 0, that has the weak limit

lim
ξ >→0 δξ(x) ≅ δ(x) . (6.55)

¿is weak limit relates δξ and δ not by equality, but by the si ing property:

lim
ξ >→0

+∞
∫−∞dx δξ(x) f (x) = f (0) . (6.56)

In other words, for all practical purposes we can treat the weak limit of a nascent
delta function as a normal delta function. One can construct such a nascent
δ-function from any function g that is absolutely integrable and has total integral
equal to 1 by de�ning

δξ(x) = 1
ξ
g (x

ξ
) (6.57)

As the sinc function has total integral equal to ∫dx sin x
x = π, we can easily

construct a nascent δ-function from it:

δξ(x) = 1
π
sin x

ξ

x
(6.58)
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We still have one encumbrance to overcome, namely that in our result the
argument of the sine has an in�nitesimal (but non-zero) complex shi −iη,
while the δ-function and nascent δ-functions are only de�ned for real arguments.
Luckily the former steps can be proven to be valid for complex shi s as well.
First note that

∫dx sin (x − iη)
x − iη = π (6.59)

from which it is straightforward to show that

lim
ξ >→0

+∞
∫−∞dx

1
π
sin ( x−iηξ )
x − iη f (x − iη) = f (0) (6.60)

In other words, the si ing property still holds a er making a small complex
shi (at least for this type of nascent delta functions). We thus can make the
identi�cation:

lim
ξ >→0

sin( 2ξ (n ⋅ n∑1 k j − iη))
n ⋅ n∑

1
k j − iη ≅ π δ(n ⋅ n∑

1
k j − iη) (6.61)

leading to the �nal result in Equation 6.54. Still oneword of caution: asmentioned
before, this weak limit doesn’t ensure that it equals a δ-function, but merely
shows that the si ing property holds.¿is implies that when using Equation 6.54,
we are not allowed to use the integral representation of the δ-function (the latter
wouldn’t make any sense, as it is a divergent integral). ¿e correct way to make
use of a δ-function with a complex argument, is to only use it in conjunction
with the si ing property.
Returning to the in�nite Wilson line, we can get an equivalent de�nition by

starting from Equation 6.10:

Iinf.n = (i g)n nµ1⋯ nµn
n−1∏
1

i

n ⋅ n∑
j
kl + iη 2π δ(n ⋅ n∑

1
k j + iη) . (6.62)

We conclude that the correct way to draw an in�nite Wilson line, is to put all
radiated gluons on one side from the point rµ, where the line piece connecting
the point to a gluon is a cut propagator having the following Feynman rule:
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Figure 6.7: Two possible diagrams for n-gluon radiation from aWilson line going from−∞ to +∞. ¿e upper diagram corresponds to Equation 6.54 and the lower
one to Equation 6.62.

Extra Feynman Rule for In�nite Line

e. Cut propagator:

i
i
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i

i
i

k = δ(n ⋅k + iη) , (6.63)

where δ(i)s de�ned in Equation A.56. ¿ere are hence two ways two draw a
Feynman diagram for an in�nite Wilson line, i.e. having all gluons radiated
before or a er the point rµ. ¿is is illustrated in Figure 6.7.

External Momenta

Sometimes it is useful to write the Feynman rule for external points in mo-
mentum representation. To achieve this, we Fourier transform the full Wilson
line in all of its external points. Consider e.g. the simple line

U =
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which consists of 4 segments (remember that the �nite segment is split in two).
It has two external points, or vertices, that each contribute a factor ei kr on each
side of the vertex:

r1
k1

q1

ei k1 ⋅r1eiq1 ⋅r1
r2

k2
q2

ei k2 ⋅r2eiq2 ⋅r−2
¿eWilson line in momentum space is de�ned as the Fourier transform in every
vertex:

Umomentum def= ∫dωr1 dωr2 e−iP1 ⋅r1e−iP2 ⋅r2 U coordinate , (6.64)

¿ese integrations will give rise to δ-functions:

k1

q1

P1

δω(P1−k1−q1)

k2
q2

P2
δω(P2−k2−q2)

So we can simply replace the Feynman rule for the external point with the
demand of momentum conservation at every vertex, with an additional external
momentum per vertex.

6.4 relating different path topologies

In the former section we have seen that there are eight possible linear path
structures; two connecting a point to ±∞, next a �nite line and �nally a fully
in�nite line, all with normal or reversed path �ow. We won’t treat the fully
in�nite line anymore in the remainder of this thesis, because it has a particular
way of dealing with it, and because in�nite lines won’t o en appear as segments
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of a piecewise Wilson line and are thus less relevant for what follows in the next
section.¹²
¿e remaining six path structures are not independent. We have seen in

the previous subsections that if we choose the two path topologies from Equa-
tions 6.37:¹³

= (i g)n nµ1⋯ nµn e
i r⋅∑

j
k j n∏

j=1
i

n ⋅ n∑
l= j kl + iη

, (6.65a)

= (i g)n nµ1⋯ nµn e
i r⋅∑

j
k j n∏

j=1
−i

n ⋅ j∑
l=1 kl + iη

, (6.65b)

we can express the remaining four in function of them:

= ∣n→−n , (6.66a)

= ∣n→−n , (6.66b)
= ⊗ , (6.66c)
= ( ⊗ ∣a↔b . (6.66d)

Note that in Equations 6.65 we deliberately chose two structures that have
positive convergence terms +iη, so that all calculations have the same type
of poles. But these two structures aren’t fully independent either, as they are
related by a sign di�erence and an interchange of momentum indices:

= (−)n ∣(k1 ,...,kn)→(kn ,...,k1) . (6.67)

We can exploit this relation when making a full calculation, i.e. connecting the
Wilson line to a blob. ¿is blob can be constructed from any combination of
Feynman diagrams, but cannot contain otherWilson lines. If one is interested in
interactions between di�erent Wilson lines, it is su�cient to treat the di�erent
lines as di�erent segments of one line (as is explained in the end of Section 6.2).
We will name the blob depending on the number of gluon lines that connect
it to the Wilson segment. Valid blobs are e.g. a gluon propagator connected to
the Wilson segment (a 2-gluon blob), a gluon connecting a quark to the Wilson
segment (a 1-gluon blob). Note that the naming of the blob isn’t always faithful

12 technically, they are relevant when considering several in�nite Wilson lines and treating these as
one line with multiple segments, but we avoid these scenarios as they complicate the formalism.

13 Remember that n is de�ned along the path �ow (from starting point to ending point). A reversed
path arrow thus always denotes −n.



6.4 relating different path topologies 178

to the number of gluons participating in the process. E.g. in the case of a gluon
being connected to a segment (a self-energy diagram), this is clearly one gluon,
but we will refer to it as a 2-gluon blob, as two gluon lines enter the blob:

It is a matter of convention, and we chose this one as it helps categorising the
blobs.
In the next section we will research how to calculate diagrams with piecewise

Wilson lines, but �rst we investigate how to connect a blob to one segment. For
the structure given in Equation 6.65a this is (again abusing the path integration
measure notation):

. . .

F

[ 31stAugust 2014 at 12:10 –classicstyle]

= tan⋯ta1 ∫ dωkn(2π)ω⋯ dωk1(2π)ω Il.b.n Fa1⋯anµ1⋯µn (k1, . . . , kn) ,

where we absorbed the gluon propagators into the blob Fa1⋯anµ1⋯µn . Furthermore, we
always de�ne the blob as the sum of all possible crossings; it is thus symmetric
under the simultaneous interchange of Lorentz, colour, and momentum indices.
Because every Lorentz index of F is contracted with the same vector nµ, it is
automatically symmetric in these. ¿e combination of these symmetries implies
that an interchange of momentum variables is equivalent to an interchange of
the corresponding colour indices. In particular, it is now straightforward to
relate Equation 6.65b to Equation 6.65a when connected to a symmetrised blob:

. . .

F

[ 31stAugust 2014 at 12:15 –classicstyle]

= (−)n tan⋯ta1 ∫ dωkn(2π)ω⋯ dωk1(2π)ω Il.b.n Fan⋯a1µ1⋯µn (k1, . . . , kn) .

Note that the only di�erence is an interchange of the colour indices. O en the
blob has a factorable colour structure, i.e.

Fa1⋯anµ1⋯µn (k1, . . . , kn) = ca1⋯anFµ1⋯µn(k1, . . . , kn). (6.68)

If we then de�ne the following notations:

c = tan⋯ta1 ca1⋯an , (6.69a)
c = tan⋯ta1 can⋯a1 , (6.69b)
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we can simply write

. . .

F

[ 31stAugust 2014 at 12:18 –classicstyle]

= c
. . .

F

[ 31stAugust 2014 at 12:18 –classicstyle]

, (6.70a)

. . .

F

[ 31stAugust 2014 at 12:18 –classicstyle]

= (−)n c . . .

F

[ 31stAugust 2014 at 12:18 –classicstyle]

. (6.70b)

¿e yellow, ‘photon-like’ wavy lines are just a reminder that there is no colour
structure le in the blob. In other words, when changing the structure of a
Wilson line, we don’t have to redo the calculation of the integral! ¿e di�erence
is merely some colour algebra, changing c into c and a sign di�erence.
Remember that due to the fact that we read a Wilson line as a Dirac line, i.e.

from right to le , we have to order the generators in Equation 6.69a from n to
1. On the other hand, the blob is written from le to right—which is a matter
of choice, as it is fully symmetrised¹4—leading to the di�erence in ordering
between tan⋯ta1 and ca1⋯an .
For a factorable blob example, take e.g. the 3-gluon vertex:

F = g f a1a2a3 [(k1 − k2)ρDµ1ν(k1)Dν
µ2(k2)Dρµ3(k3) + cross.] ,

with colour structure

ca1a2a3 = f a1a2a3 ⇒ c = ta3 ta2 ta1 f a3a2a1 = −ta3 ta2 ta1 f a1a2a3 = −c .
¿is clearly implies that

[ 31stAugust 2014 at 12:27 –classicstyle]

= (−)3c

[ 31stAugust 2014 at 12:27 –classicstyle]

= c =

[ 31stAugust 2014 at 12:27 –classicstyle]

. (6.71)

So the 3-gluon vertex is path topology-invariant. Of course, a lot of blob struc-
tures won’t be colour factorable, but we can always write these as a sum of
factorable terms:

Fa1⋯anµ1⋯µn (k1, . . . , kn) =∑
i
ca1⋯ani Fi µ1⋯µn(k1, . . . , kn),

14 ¿e important fact to realise is that indeed the order doesn’t matter for a fully symmetrised blob,
but it should of course have the same ordering in its momenta, i.e. we identify a1 with k1 . Because
most references in literature write simple blobs from le to right, we keep this convention for
the blob for the sake of simplicity.
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such that we can repeat the same procedure as before

. . .

F

[ 31stAugust 2014 at 12:35 –classicstyle]

= ∑
i
ci

. . .

Fi

[ 31stAugust 2014 at 12:35 –classicstyle]

, (6.72a)

. . .

F

[ 31stAugust 2014 at 12:35 –classicstyle]

= (−)n ∑
i
c i

. . .

Fi

[ 31stAugust 2014 at 12:35 –classicstyle]

. (6.72b)

In conclusion: whatever the structure of the Wilson line, to calculate a given
diagram we can retrieve it from the calculation of the same diagram with a
Wilson line bounded from below, using straightforward colour algebra. For a
trivial structure containing only one segment, the gain is not that big, but for a
line consisting of several segments—as we will see in the next section and the
next chapter—this trick can save us quite some calculation time.

6.5 piecewise linear wilson lines

Now we turn our attention to piecewise Wilson lines, using the results from
section Section 6.2. When connecting a n-gluon blob to a piecewise Wilson line,
the n gluons aren’t necessarily all connected to the same segment; other diagrams
are possible as well, where the n-gluons are divided among several segments.
¿is is the physical interpretation of formula Equation 6.19c. As mentioned
before, the U Ji aren’t commutative in se due to the non-Abelian nature of the
�elds. However, when connected to the same symmetrised blob that is summed
over all crossings, they can be treated as if they where.¿is implies that multiple-
segment terms can be related by straightforward substitution, e.g.

UK1 U J2 = UK2 U J1 ∣(rK↔rJ ,nK↔nJ) , (6.73)

etc. To get all diagrams connecting a given n-gluon blob to a piecewise line,
we have to calculate exactly p(n) diagrams, the partition function from
combinatorics,¹5 independent of the number of segmentsM. When connecting

15 ¿e partition function p(n) is the number of integer partitions of n; e.g. 4 = 4, 3+ 1, 2+2, 2+ 1+ 1,
or 1 + 1 + 1 + 1. ¿us p(4) = 5. Other examples are p(3) = 3, p(5) = 7 and p(6) = 11.
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e.g. a 4-gluon blob, we need to calculate exactly 5 diagrams. ¿ese are
constructed from the following segments (cf. Equation 6.19b):

U J4 , U J3UK1 , U J2UK2 , U J2UK1 UL1 , and U J1 UK1 UL1 UO1 .

¿ey are the easiest represented schematically:

F

J

F

K J

F

K J

F

L K J

F

O L K J

(6.74)

In addition, there are 3 more diagrams that can be related using Equation 6.73,
built from the segments

U J1 UK3 , U J1 UK2 UL1 , and U J1 UK1 UL2 .
Nowwhat about external momenta?We saw in Subsection External Momenta on
page 175 and onwards that if we want to express the Wilson line in momentum
space, we have to add an additional external momentum to every vertex and
apply momentum conservation. However, most of the time a vertex connects
two or more segments, and to be able to use our framework, we need Feynman
rules that are de�ned per segment (not per vertex). Luckily, this can be easily
achieved by using the fact that a Fourier transformation transforms a product
in a convolution:

Fk [ f (r)g(r)] = Fk [ f (r)]⊗Fk [g(r)] . (6.75)

¿is means that we can associate per segment the Fourier transform of an
external point, i.e. we replace the Feynman rule for an external point with:

Feynman Rule in External Momentum Space

b. External point:
kP = δ(ω)(P−k) . (6.76)

An ‘empty’ segment—with no gluon radiated from it—then naturally gains a
δ(P). A er connecting the blob we make a convolution over the segments that
are connected to the same external point.
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In the TMD framework (see Chapter 8), it is common to express Wilson lines
only partially in momentum space. More speci�c, the plus and minus compon-
ents are expressed in coordinate space, while the transversal components are
expressed in momentum space. ¿e Feynman rule is in this case replaced with:

Feynman Rule in Partial External Momentum Space

b. External point:
kP

r = δ(ω−2)(P⊥−k⊥) ei r+k−+i r−k+ , (6.77)
where the convolution is now only over P⊥.
Let us brie�y sketch the steps needed to do a full calculation in this framework.

We illustrate each step with an easy example, viz. the calculation of all self-
interactions of the Wilson line with the following path structure:

U = n1

n2

n3 n4

r1 r2

r3
,

where the path �ow is assumed from le to right. ¿e steps to undertake are:

a. List the segments that form the Wilson line and their corresponding path
constants: the segment direction nµK , the external point r

±
K and the external

momentum P⊥K. For the given example, these are (from le to right):

− n1, P1, r1 ,
n2, P1, r1 ,
n2, P2, r2 ,
n3, P2, r2 ,
n3, P3, r3 ,
n4, P3, r3 .

¿e �rst segment has a minus sign in it direction because we used relation
Equation 6.66a.

b. De�ne the process under consideration, and identify all possible blob
structures for the process, ordered by the number of gluons interchanged
between the blob and the Wilson line. For the NNLO¹6 self-interaction

16 Note that there is a di�erence between referring to the order of the process and the order of the
blob. As every gluon radiated from the blob already contributes a factor g, the total order of a
diagram connecting an n-gluon blob to a Wilson line will be αn/2

s plus the order of the blob. E.g.
connecting a NLO 4-gluon blob gives a diagram at next-to-next-to-next-to-leading order (N3LO).
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example, there are three blobs: the 2-gluon blob, which is the gluon propag-
ator at NLO, the 3-gluon blob, which is the three gluon vertex, and the
4-gluon blob, which consists of two gluon propagators at LO.

c. For every blob, list all possible diagrams. For the 4-gluon blob, these are
listed in Equation 6.74. ¿e 2-gluon blob has two diagrams, and the 3-
gluon blob three. Note that this step is independent on the content of the
blob (only dependent on the number of interchanged gluons), and thus
independent on the process.

d. For every diagram, separate out the dependence on the path, like we did
in the previous section by factorising out the colour structure. We will
develop a more formal approach in the next subsection (see e.g. Equa-
tion 6.79). Next apply the Feynman rules and calculate the momentum
integrals in the diagram.

e. Apply the speci�c path structure to the relevant diagrams, and sum all
diagrams according to Equation 6.19c. If external momenta are used,
assign a δ(ω−2)(P⊥K) to all external points that do not participate in the
diagram, and make a convolution over duplicate external momenta. Let’s
illustrate the latter with an example. ¿e diagram connecting the 2-gluon
blob to two di�erent segments will be a function of P⊥J , P⊥K, r±J , r±K , nµJ and
nµK (it will also depend on the type of path structure, but let us ignore this
for now):

N= W2(P⊥J , P⊥K, r±J , r±K , nµJ , nµK) ,
Consider now the following contribution:

.

¿e third external point isn’t participating, so it gets a δ-function. ¿e
gluon isn’t connecting the same external point, so no convolution is
needed. ¿e result for this term is hence simply

δ(ω−2)(P⊥3 )W2(P⊥1 , P⊥2 ) .
But if we consider the contribution

,
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we need to do a convolution because now P⊥J = P⊥K. ¿is can be easily
done, by making the substitutions P⊥J → P⊥J − q⊥ and P⊥K → q⊥, and
integrating over q⊥. ¿e result for this term is then

δ(ω−2)(P⊥2 ) δ(ω−2)(P⊥3 ) ∫ dω−2q⊥(2π)ω−2 W2(P⊥1 − q⊥, q⊥) .
Note that because this diagram essentially forms a tadpole, i.e.

P1

→
,

momentum conservation demands the incoming momentum to vanish as
well, i.e. it will give δ(ω−2)(P⊥1 ). So we could have ignored the convolution
from the beginning. But this is only true for 2-gluon blobs. Consider e.g.
the 4-gluon blob diagram

,

¿is is no tadpole, so we need to make a double convolution. ¿e result is
then

δ(ω−2)(P⊥3 ) ∫ dω−2q1⊥(2π)ω−2 d
ω−2q2⊥(2π)ω−2 W4(P⊥1 −q1⊥, q1⊥, P⊥2 −q2⊥, q2⊥) .

¿e good thing about this framework is that the results from b, c, and d are
independent of the structure of the Wilson line. Furthermore, we can already
calculate the convolution integrals when calculating the momentum integrals,
such that we have the result ready. In other words, once we calculated e.g. the
three possible diagrams connecting a 3-gluon vertex to a piecewise Wilson
line, we can retrieve this result for any Wilson line structure and never need to
recalculate it again; we only need to change the colour factors and the way the
di�erent diagrams combine.
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Path Functions

Now what about the di�erent path structures, as de�ned in Equations 6.65? We
can use the same trick as in the end of the former section, viz. a sign change and
an interchange of the corresponding colour indices. For instance:

F

[ 31stAugust 2014 at 14:23 –classicstyle]

= (−)2
F∣a3↔a4

[ 31stAugust 2014 at 14:23 –classicstyle]

.

¿e easiest way to implement this on a general basis, is to de�ne a functionΦ per
diagram for a given blob, that gives the colour structure in function of the path
type, hence it depends on the segment index J. For the leading order 2-gluon
blob, this is straightforward. When the gluon is connected to the same segment,
�ipping the segment makes no di�erence because we have a factor (−)2, and
the colour interchange has no e�ect (δba = δab). When the gluon connects two
di�erent segments, �ipping one of the segments gives a sign di�erence because
of the factor (−)1. So the leading order 2-gluon blob has the following path
function:

[ 31stAugust 2014 at 21:15 –classicstyle]

∶ Φ(J) = CF , (6.78a)

[ 31stAugust 2014 at 21:15 –classicstyle]

∶ Φ(J ,K) = (−)ϕJ+ϕKCF , (6.78b)

where ϕJ is a number representing the type of the path:

ϕJ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 J =

[ 31stAugust 2014 at 20:26 –classicstyle]

1 J =

[ 31stAugust 2014 at 20:26 –classicstyle]

. (6.79)

Keep in mind that in our original de�nition of the Wilson line in Equation 6.1,
colour indices are not yet traced, meaning that Equations 6.78 should still be
multiplied with a unit matrix 1Nc×Nc . Similarly, we �nd for the leading order
3-gluon blob:

[ 31stAugust 2014 at 21:15 –classicstyle]

∶ Φ(J) = −i Nc
2
CF , (6.80a)

[ 31stAugust 2014 at 21:15 –classicstyle]

∶ Φ(J ,K) = −i(−)ϕJ+ϕK Nc
2
CF , (6.80b)

[ 31stAugust 2014 at 21:15 –classicstyle]

∶ Φ(J ,K , L) = −i(−)ϕJ+ϕK+ϕL Nc
2
CF . (6.80c)
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For non-factorable blobs we use the same trick as in Equations 6.72, by giving
Φ an extra index to identify the sub diagram it belongs to.
Let us introduce a new notation, to indicate a full diagram but without the

colour content, in which a blob is connected to mWilson line segments, with
ni gluons connected to the i-th segment:

Wilson Line With Blob but Without Colour

W Jm⋯J1
nm⋯n1 N= ∫ dωkn(2π)ω⋯ dωk1(2π)ω Il.b. Jmnm ⋯ Il.b. J1n1 Fµ1⋯µn1+⋯+nm , (6.81)

where we will write the indices from right to le to be consistent with the
Wilson line being read from right to le . It is important to be consistent in the
choice of the ‘base’ structure, from which all other linear topologies can be
derived. We have chosen the lower bound Wilson line as the base, which can be
seen in the integrals Il.b.. If we would have chosen e.g. the upper bound line,
also the de�nition in Equation 6.79 would change.
Returning to the 4-gluon blob, we can now write the full result for a factorable

blob using Equation 6.19b:

U4 = M∑
J
Φ4W J

4 + M∑
J=2

J−1∑
K=1 [Φ3 1WKJ

3 1 +Φ2 2WKJ
2 2 ] + M∑

J=3
J−1∑
K=2

K−1∑
L=1 Φ2 1 1WLKJ

2 1 1

+ M∑
J=4

J−1∑
K=3

K−1∑
L=2

L−1∑
O=1Φ1 1 1 1WOLKJ

1 1 1 1 + symm , (6.82)

where the symmetrised diagrams Φ1 3WKJ
1 3 , Φ1 2 1WLKJ

1 2 1 , and Φ1 1 2WLKJ
1 1 2 are cal-

culated using Equation 6.73, interchanging also the ϕJ . In other words:

Φ1 3(K , J)WKJ
1 3 = Φ3 1(J ,K)W JK

3 1 , (6.83a)
Φ1 2 1(L,K , J)WLKJ

1 2 1 = Φ2 1 1(K , L, J)WKLJ
2 1 1 , (6.83b)

Φ1 1 2(L,K , J)WLKJ
1 1 2 = Φ2 1 1(J ,K , L)W JKL

2 1 1 . (6.83c)

For a non-factorable blob, every term is just replaced by a sum over sub diagrams,
e.g.

Φ4W J
4 → ∑

i
Φi
4W i J

4 . (6.84)

It is important to realise that both the Φ andW can be calculated independent
of the path structure, giving a result depending on nJ , rJ and ϕJ . We will call
the latter the path constants, which fully determine a piecewise linear path. If
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we have made a full calculation for a given path, we can easily port the result to
another path, simply by inputting the new path constants.

Diagrams with Final-State Cuts

So far we have only calculated amplitudes. To get probabilities from these, we can
do this in the standard way, viz. squaring diagrams and combining them order
by order (squared terms and interference terms), or we could treat the squared
diagram as one Wilson line—with double the number of segments—where the
segments to the right of the cut are the hermitian conjugate of those to the le .
¿e choice is a matter of personal taste. We choose to continue with the latter
case, where we now have three distinct sectors of diagrams: a sector Ule where
the blob is only connecting segments le of the cut, a sector Uright where the blob
is only connecting segments right of the cut (this is just the hermitian conjugate
of the former, but possibly with di�erent path parameters rJ , nJ , and ϕJ), and a
sector Ucut where the blob is connecting segments both le and right of the cut.
In other words:

U = Ule + Ucut + Uright. (6.85)

For the �rst two nothing changes, the calculations go as before. For the example
of the 4-gluon blob, the �rst sector U4le is almost exactly equal to Equation 6.82,
but the sums run up only toMc , the number of segments before the cut, instead
ofM. ¿e last sector U4right is simply the hermitian conjugate of this, starting at
Mc+1 :¹7
U4right = M∑

Mc+1Φ
†
4W† J

4 + M∑
Mc+2

J−1∑
Mc+1 [Φ†

3 1W†KJ
3 1 +Φ†

2 2W†KJ
2 2 ]

+ M∑
Mc+3

J−1∑
Mc+2

K−1∑
Mc+1Φ

†
2 1 1W† LKJ

2 1 1 + M∑
Mc+4

J−1∑
Mc+3

K−1∑
Mc+2

L−1∑
Mc+1Φ

†
1 1 1 1W†OLKJ

1 1 1 1 + symm.
For the remaining sector Ucut we need to de�ne a cut blob. Given a blob, several
possible cut blobs might exist, depending on the number of gluons to the le 
and right of the cut. E.g. the leading order 4-gluon cut blobs are given by

[ 31stAugust 2014 at 23:41 –classicstyle]

=

[ 31stAugust 2014 at 23:41 –classicstyle]

+ cross, (6.86a)

17 At �rst sight one might expect that Hermitian conjugation also �ips the order of the segments,
but as explained in the paragraph above Equation 6.73 they can be treated as commutative.
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[ 31stAugust 2014 at 23:41 –classicstyle]

=

[ 31stAugust 2014 at 23:41 –classicstyle]

+

[ 31stAugust 2014 at 23:41 –classicstyle]

+ cross, (6.86b)

where the crossings are to be made on the sides of the cut separately. Also note
that when the cut blob is more complex, it should be summed over all possible
cut locations. Consider e.g. the fermionic part of the NLO 2-gluon cut blob:

[ 31stAugust 2014 at 23:41 –classicstyle]

=

[ 31stAugust 2014 at 23:41 –classicstyle]

+

[ 31stAugust 2014 at 23:41 –classicstyle]

+

[ 31stAugust 2014 at 23:41 –classicstyle]

. (6.87)

Note that even if a blob has no lines crossing the cut, it will be considered a cut
blob as long as it has gluons on both the le and the right side, as e.g. the �rst
term in the r.h.s. of Equation 6.86b. As the blob itself connects the le and the
right sector (even if internally it doesn’t literally), this blob is associated to the
sector Ucut .
Now concerning the latter sector, we investigate howmany diagrams are added

in comparison to Equation 6.74 due to the cut. First note that a Wilson line
segment itself is never cut.¹8 A semi-in�nite line (lower bound or upper bound)
cannot be cut due to the symmetric nature of a squared amplitude, and although
a �nite line can be cut, we can always write it as a convolution of two semi-in�nite
lines, placing the cut in between.¹9 Another remark is that we cannot simply
use relation Equation 6.73 as before, because it could change the cut topology.
Cut diagrams are sorted depending on how its gluons are distributed on the
le resp. right side of the cut, and connected to the appropriate cut blob. For
instance the second diagram of Equation 6.74, namelyW4

3 1 , can be cut in one
way only, connecting the Wilson line to the cut blob in Equation 6.86a. But the
fourth diagram,W4

2 1 1 , can be cut in two ways: cutting with one gluon on the
le (written asW4

2 1∣1 and connected to the blob in Equation 6.86a), or cutting
with two gluons on the le (written asW4

2∣1 1 and connected to Equation 6.86b).
Other cut topologies can be related by Hermitian conjugation when switching
le and right sides, e.g.

18 A cut line does appear in the context of in�nite Wilson lines as we saw in Equation 6.63, but this
is a di�erent type of cut (not a �nal-state cut), and anyway we are not (yet) including in�nite
Wilson lines in this framework.

19 In the TMD framework it is common to associate a cut �nite line with a true cut propagator,
but this is merely a matter of naming conventions. E.g. in Subsection Gauge Invariant Operator
De�nition on page 233 and onwards we make the de�nition of a collinear PDF (a cut diagram
itself) gauge-invariant by adding a �nite Wilson line that is cut. In literature (see e.g. [33]) it is
then common to also integrate over the exponential coming from Equation 6.27b leading to a
delta function, which in turn can be interpreted as the Feynman rule for a cut propagator (see
Equation 6.63). We prefer to avoid this approach, as it is more general to leave aµ unintegrated.
We will however adapt the same pictorial representation of a cut �nite Wilson line, see e.g.
Figure 8.1, but we remind ourselves that it is just a cut between two lower-bound segments.
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WLKJ
1 1∣2 =W† JKL

2∣1 1 . (6.88)

In the case of the 4-gluon blob, the following diagrams have to be added to
Equation 6.74:

(6.89)

Now we have the necessary ingredients to write the cut sector for the 4-gluon
blob:

U4cut = M∑
Mc+1

Mc∑
1
[(WKJ

3∣1 + h.c.) +WKJ
2∣2]

+ M∑
Mc+2

J−1∑
Mc+1

Mc∑
1
[(WLKJ

2 1∣1 + symm.) +WLKJ
1 1∣2 ] + M∑

Mc+1
Mc∑
2

K−1∑
1
h.c.

+ M∑
Mc+3

J−1∑
Mc+2

K−1∑
Mc+1

Mc∑
1
WOLKJ

1 1 1∣1 + M∑
Mc+1

Mc∑
3

K−1∑
2

L−1∑
1
h.c.

+ M∑
Mc+2

J−1∑
Mc+1

Mc∑
2

L−1∑
1
WOLKJ

1 1∣1 1 (6.90)

Although this might look quite complex, note that it only is the way how to
combine the diagrams that is a bit involving. And even then, it is a matter of
good bookkeeping, making it look a lot worse than it is.
One �nal remark: in Equation 6.85 we assumed that the sectors Ule and Uright

only use regular blobs, while the sector Ucut only uses cut blobs. While the latter
is always true—as we cannot connect a segment before the cut with a segment
a er the cut without including the cut line—the former is only partially correct.
It is possible that the le (or right) sector connects to a blob that is cut before or
a er all gluons. Let us illustrate this. Consider e.g. a trivial example, namely the
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interaction between aWilson line and a quark line. Ignoring the self-interactions
of the quark, we have the following possible probability diagrams at NLO:

¿is means we have four di�erent blobs, namely two 1-gluon blobs:

= , (6.91a)

= , (6.91b)

and two 2-gluon blobs:

= , (6.92a)

= . (6.92b)

¿e two 1-gluon blobs and the �rst 2-gluon blob will be used in the Ule andUright sectors, while the second 2-gluon blob is the only blob used in the Ucut
sector.
Note that it is not for every blob possible to draw a cut fully to the right or le .

E.g. the LO 2-gluon self-interaction blob doesn’t have this possibility, because if
we would try to draw such a blob with the cut fully to the le , i.e.

= , (6.93)

we immediately see that this is not a valid Feynman diagram, as the amplitude
on the le side would represent two real gluons popping out from nothing. We
thus conclude that self-interaction blobs cannot have cuts fully to the le or
right.
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Figure 6.8: An incoming quark radiating two so gluons.

6.6 eikonal approximation

Before we delve into the calculational techniques to work with Wilson lines—as
we will do in the next chapter—we will motivate the usefulness of Wilson lines
by one of their most important applications, namely as a resummation of so 
and collinear gluons.
In the eikonal approximationwe assume a quarkwithmomentum large enough

to neglect the change in momentum due to the emission or absorption of a so 
gluon. Even a er multiple so interactions it won’t deviate much from its path,
which we then take to be unaltered. Such a quark is called eikonal.
Let us investigate this a bit further. We take an incoming (hence real) quark

with momentum p that radiates two so gluons with momentum q1 and q2.
¿is is illustrated in Figure 6.8 (where the blob represents all possible diagrams
connected to the quark propagator). ¿is diagram is equal to

F
i(/p − /q1 − /q2)(p − q1 − q2)2 + iє i g tbγν

i(/p − /q1)(p − q1)2 + iє i g taγµu(p) . (6.94)

Making the so approximation is the same as neglecting /qi with respect to /p,
and q2i with respect to p⋅q j, giving

F
i pργργν−2 p⋅q1 − 2 p⋅q2 + iє i g tb i pσγσγµ−2 p⋅q1 + iє i g tau(p) ,

where we used p2 = 0 because this is the momentum of a real quark. Because of
the Dirac Equation A.20 in momentum representation, i.e. /p u(p) = 0, we can
add a term i pσγµγσ to the numerator of the rightmost fraction:

F
i pργργν−2 p⋅q1 − 2 p⋅q2 + iє i g tb i pσ {γ

σ , γµ}−2 p⋅q1 + iє i g tau(p) . (6.95)

Next we use the anticommutation rule Equation A.18 and write the momentum
as pσ = ∣p∣ nσ , with nσ a normalised directional vector, in order to get

F
i pργργν−2 p⋅q1 − 2 p⋅q2 + iє i g tb −inµ

n ⋅q1 − iє i g tau(p) . (6.96)
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Figure 6.9: A quark radiating n so gluons can be represented as a bare quarkmultiplied
with a Wilson line going from −∞ to 0.

Because the rightmost fraction doesn’t contain any Dirac structure anymore, we
can repeat the same steps on the le most fraction. ¿is gives:

F −i
n ⋅(q1 + q2) − iє i gnν tb −i

n ⋅q1 − iє i gnµ tau(p) . (6.97)

What we see is that the Dirac propagators have been replaced by Wilson line
propagators, and the Dirac-gluon couplings by Wilson vertices. By using the
eikonal approximation, we literally factorised out the gluon contribution from
the Dirac part.
Of course this remains valid when radiating more gluons. In the latter case,

the resulting formula is straightforward:

(i g)n F tan⋯ta1 u(p) −inµn
n ⋅ n∑ qi − iє⋯

nµ2
n ⋅(q1 + q2) − iє nµ1

n ⋅q1 − iє .
¿is is exactly the result for an incoming bare quark connected to the blob,
multiplied with a Wilson line going from −∞ to 0 (we know that the external
point has to be zero because there is no exponential):

F U(0 ;−∞) u(p) . (6.98)

However, when using the momentum representation for the external point,
the latter gives a factor δ(ω)(q), so that we can write this relation as an exact
convolution:

F(p) ∫ dωq(2π)ω U(q)u(p − q) = F(p) (U ⊗ u) (p) , (6.99)

where q can be interpreted as the sum of the gluon momenta. ¿is is illustrated
in the diagram in Figure 6.9. Note that Equations 6.98 and 6.99 don’t give a
bare multiplication either, because the ta i are placed between the u(p) of the
external quark and the blob. Writing out the Dirac and Lie indices makes this
clear:

(F) jβ δβα (tan⋯ta1) ji(u(p))iα i g nµn

n ⋅ n∑ qi + iє⋯
i g nµ1
n ⋅q1 + iє .
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Figure 6.10: In the so limit, a bare quark can be represented as an eikonal quark.

From this result, we introduce the concept of an eikonal quark. ¿is is a quark
that is only interacting so ly with the gauge �eld, and thus doesn’t deviate from
its straight path. It can be understood as a bare quark convoluted with a Wilson
line to all orders:

Eikonal Quark

∣ψ ieik.⟩ = U i j(0 ;−∞) ⊗ ∣ψ j⟩ . (6.100)

In other words, the net e�ect of multiple so gluon interactions on an eikonal
quark is just a colour rotation (nothing but a phase). It is common to denote an
eikonal quark with a double line, but this gives rise to ambiguities: the double
line was already used to denote a Wilson line propagator. ¿ese are, although
related, not the same. ¿e eikonal line represents a quark (carrying spinor
indices) resummed with so gluon radiation to all orders, while the Wilson
line propagator represents gluon radiation at a speci�ed order (not necessarily
so ), still to be multiplied with the quark (carrying no spinor indices itself). In
short, Wilson line propagators are used in the calculation of an eikonal line. To
appreciate the di�erence, have a look at Equation 6.100: the eikonal quark is the
combination U i j(0 ;−∞)⊗ ∣ψ j⟩, while the Wilson line propagators are components
of U(0 ;−∞).
To avoid confusion, we will draw an eikonal line in red, and always explicitly

draw an arrowhead (representing the quark’s momentum �ow):i
i
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AWilson line propagator, i.e. i

n ⋅q + iє . (6.101b)

But keep in mind that these notations are commonly interchanged in literat-
ure. Using our notation for the eikonal line, we can write down the eikonal
approximation diagrammatically as in Figure 6.10.
A last remark: in the derivation of the eikonal approximation,more speci�cally

Equation 6.95, we used the fact that the quark in question is external, by adding
a term γµ /p u(p) = 0. ¿is is a crucial step, without which we wouldn’t have been
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able to resum all gluons into a Wilson line, i.e. Wilson lines as a resummation of
gluon radiation can only appear next to quarks that are on-shell.
It is possible to resum gluon radiation into a Wilson line even if it is not

so . E.g. in the collinear approximation, we allow for large radiated momenta q
which are collinear to p, i.e. if pµ = ∣p∣ nµ then qµ = ∣q∣ nµ in the same direction.
¿e Dirac equation tells us that /p u(p) = 0 and thus /n u(p) = 0, which implies
we can add a term γµ/q u(p) to Equation 6.94. If we keep the quasi on-shell
constraint, q2 ≈ 0 as compared to p ⋅ q, this again leads to a Wilson line, but this
time with possibly big q momentum components (as long as they are collinear
to p).



7
SIMPLIFYING WILSON LINE CALCULATIONS

In the former chapter we deeply investigated piecewise linear Wilson lines. We
derived Feynman rules for the eight di�erent possible linear topologies (four
types plus their path reversals), and discovered how to relate them to each
other. Finally, by collecting a set of diagrams per blob we wish to connect to a
given Wilson line, we were able to develop a framework to signi�cantly simplify
calculations if the Wilson line has a lot of segments. Moreover, and this was
the most important result, from the moment we have made a calculation with
a given blob, we can easily port the result to any piecewise linear Wilson line.
However, there is a �y in the ointment. Calculating these general integrals is
quite complicated, because we have to keep the path constants (nJµ, rJµ and ϕJ)
as general as possible, while normally in a calculation these are �xed in such a
way that the integral simpli�es a lot (e.g. n2=0, n⊥=0). ¿is chapter is devoted
to a few tricks that can help in simplifying the calculations encountered with
piecewise linear Wilson lines.
In Section 7.1, we develop an advanced technique to simplify any product or

trace of fundamental Lie generators. As we separated out the colour structure in
the previous chapter, this section can be a big help in calculating these factors. In
Section 7.2, we show how to properly de�ne the contents of the blobs introduced
in the previous chapter.Wedo this by using the example of self-interaction blobs—
which contain no external lines and hence represent interactions between the
Wilson line and itself—for a 2-gluon blob and a 3-gluon blob. In Section 7.3 we
explore the validity of a Wick rotation in the context of Wilson lines, and adapt
the formulation where necessary. And �nally in Section 7.4, we make the �rst
steps to calculate a common general Wilson line integral, and narrow it down to
an easy example, a 1-gluon cusp correction, which we fully calculate for general
segment directions, be it purely light-like, transversal, or mixed.

195
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7.1 advanced colour algebra

¿e �rst step of any calculation in the piecewise framework is the calculation
of path functions (see e.g. Equations 6.78). ¿ese functions contain a colour
part and a part related to the line structure. ¿e colour part is given by (see
Equation 6.69a):

c = tan⋯ ta1 ca1⋯an .
¿e n-generator product is simply the colour structure of the n-th order expan-
sion term of the Wilson line, while the factor ca1⋯an is the colour structure of
the blob. Let’s see if we can somehow simplify this term.

Calculating Products of Fundamental Generators

Similarly to what we did with the Fierz identity in Equation A.78, any product of
colour generators can be written as a linear combination of the identity operator
and the generators, because the latter span the full product space. In other words:

ta1 ta2⋯tan = Aa1a2⋯an1 + Ba1a2⋯anb tb .
As Aa1a2⋯an and Ba1a2⋯anb are just coe�cients, tracing the r.h.s. simply gives
Aa1a2⋯an tr(1), because the single generator a er Ba1a2⋯anb is traceless. In a
similar waywe can recover Ba1a2⋯anb bymultiplying the product with a generator
before making the trace. I.e. :

tr(ta1 ta2⋯tan) = Nc Aa1a2⋯an ,
tr(ta1 ta2⋯tan tb) = 1

2
Ba1a2⋯anb .

But the l.h.s. of the latter can also be calculated as one order higher, i.e.

ta1 ta2⋯tan tb = Aa1a2⋯anb1 + Ba1a2⋯anbc tc ,
giving

tr(ta1 ta2⋯tan tb) = Nc Aa1a2⋯anb ,
⇒ Aa1a2⋯an ≡ 1

2Nc
Ba1a2⋯an .

Only one of these is linearly independent. We will adopt the notation

Ca1a2⋯an N= Nc Aa1a2⋯an , (7.1)
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with C standing for ‘colour factor’. Note the di�erence with Equation 6.68, i.e.
a capital C is the colour factor that represents an n-generator product, while a
lower case c represents the colour structure of a given blob. We can now rewrite
the �rst equation as:

ta1⋯tan = Ca1⋯an 1
Nc

+ 2Ca1⋯anb tb , (7.2a)

Ca1⋯an = tr(ta1⋯tan) . (7.2b)

As the colour factor identically equals the trace, it naturally has the same
properties, namely cyclicity and Hermiticity:

Ca1a2⋯an = Ca2a3⋯ana1 = . . . , (7.3a)

Ca1a2⋯an = C an⋯a2a1 . (7.3b)

¿e �rst colour factors are straightforward to calculate:

C0 = Nc , (7.4a)
Ca = 0 , (7.4b)

Cab = 1
2
δab , (7.4c)

Cabc = 1
4
habc . (7.4d)

To calculate higher orders, we use Equation A.75 to deduce a recursion formula
for traces in the fundamental representation—and hence for colour factors—by
applying it on the last two generators (the last two indices of a colour factor):

Ca1⋯an = δan−1an
2Nc

Ca1⋯an−2 + han−1anb
2

Ca1⋯an−2b . (7.5)

¿is gives for instance

Cabcd = 1
4Nc

δabδcd + 1
8
hab xhx cd ,

Cabcde = 1
8Nc

(habcδde + δabhcde) + 1
16
hab xhx c yhy de ,

Cabcde f = 1
8N2

c
δabδcdδe f + 1

32
hab xhx c yhy d zhz e f

+ 1
16Nc

(hab xhx cdδe f + habchde f + δabhcd xhx e f ) .
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One extremely useful observation is that inner summations only appear between
consecutive h’s, and never with a δ. ¿is allows us to de�ne the following short-
hand notations:

δ N= δa ia i+1 ,
h N= ha ia i+1a i+2 ,

hh N= ha ia i+1 xhx a i+2a i+3 ,
hhh N= ha ia i+1 xhx a i+2 yhy a i+3a i+4 ,
⋯

so that we can rewrite the former result as (note that the order of the δ’s and h’s
is signi�cant because of the indices):

C2 = 1
2
δ , (7.6a)

C3 = 1
4
h , (7.6b)

C4 = 1
4Nc

δδ + 1
8
hh , (7.6c)

C5 = 1
8Nc

(hδ + δh) + 1
16
hhh , (7.6d)

C6 = 1
8N2

c
δδδ + 1

16Nc
(hhδ + h h + δhh) + 1

32
hhhh . (7.6e)

If we generalise this to an n-th order trace, we get from Equation 7.5:

Calculation of Colour Factors

n even ∶ Ca1⋯an =
n
2 −1∑
i=0

1

2
n
2 +iN n

2 −i−1
c

⎛⎝all allowed δ, h combinationsbuilt from 2i h’s
⎞⎠ , (7.7a)

n odd ∶ Ca1⋯an =
n−3
2∑
i=0

1

2
n+1
2 +iN n−1

2 −i−1
c

⎛⎝all allowed δ, h combinationsbuilt from 2i + 1 h’s
⎞⎠ . (7.7b)

where the δ, h combinations need to have n open indices, using

δ 2 open indices ,
h 3 open indices ,

hh 4 open indices ,

hhh 5 open indices ,
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etc.

and where it is forbidden to put any δ or h in between two contracted h’s. So
for instance hδh and hhh are not allowed. With this in mind, we can tackle any
trace without the need for recursive calculations. For example:

Ca1⋯a10 = 1
32N4

c
δδδδδ + 1

64N3
c
(hhδδδ + δhhδδ + δδhhδ + δδδhh

+ h hδδ + hδhδ + hδδh + δh hδ + δhδh + δδh h) + 1
128N2

c
(hhhhδδ

+ δhhhhδ + δδhhhh + hhh hδ + hhhδh + δhhh h + h hhhδ+
+ hδhhh + δh hhh + hh hhδ + hhδhh + δhh hh + hh h h + h hh h

+ h h hh) + 1
256Nc

(hhhhhhδ + δhhhhhh + hhhhhh + hhhhhh
+ hhhh hh + hh hhhh + hhh hhh) + 1

512
hhhhhhhh .

¿is looks quite complex, but is in its essence not that di�cult, as we only have
6 ‘types’ of terms, depending on the number of h’s in a certain term. ¿e result
will simplify drastically if there exist symmetries between the indices of Ca1⋯a10 .
As a result from Equation 7.5 we can use a trick to double check our result,

namely that the total number of terms should equal the (n−1)-th Fibonacci
number (counting 0 as the zeroth Fibonacci number). Indeed, for the 10-th
order trace we have 34 terms.
Making contractions over the indices of one colour factor is straightforward

using the formulae in the end of Appendix A.6. E.g.

Cabab = 1
4Nc

δabδab + 1
8
hab xhx ab .

¿e last term can be calculated by using Equation A.87e:

hab xhx ab = hab xhx ba = − 4
Nc
δbb = −8CF ,

giving

Cabab = 1
4Nc

(N2
c − 1) − CF = − 12CF . (7.8)

Similarly, if we �ip the last two indices of the colour factor we have

Cabba = 1
4Nc

δabδba + 1
8
hab xhx ba .
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¿is time the last term can be calculated by using Equation A.87d:

hab xhx ba = 4 (N2
c − 2)CF ,

giving

Cabba = Nc C2F . (7.9)

Because of the cyclicity these two are the only independent fully contracted
fourth order colour factors. We will conclude this subsection with a list of
properties for the colour factors. First, a listing of some common contractions
of the �rst to � h order colour factors:

Caa = Nc CF , Caba = 0 , Caxxb = 1
2
CF δab , (7.10a)

Caxbx = − 1
4Nc

δab , Cabab = − 1
2
CF , Cabba = Nc C2F , (7.10b)

Cabcxx = CF Cabc , Cabxcx = − 1
2Nc

Cabc , Caxxyy = 0 , (7.10c)

Caxyxy = 0 , Caxyyx = 0 , Cabcdxx = CFCabcd , (7.10d)

Cabcxdx = − 1
2Nc

Cabcd , Cabxcdx = 1
8
δabδcd − 1

2Nc
Cabcd , (7.10e)

and the sixth order colour factors:

Cabxxyy = 1
2
C2F δab , Cabxyxy = − CF

4Nc
δab , Cabxyyx = 1

2
C2F δab , (7.11a)

Caxbxyy = − CF
4Nc

δab , Caxbyxy = 1
8N2

c
δab , Caxbyyx = − CF

4Nc
δab , (7.11b)

Caxxbyy = 1
2
C2Fδab , Caxybxy = 1

8
N2
c +1
N2
c

δab , Caxybyx = 1
8N2

c
δab , (7.11c)

Caabbcc = Nc C3F , Cabacbc = CF
4Nc

, Caabcbc = − 1
2
C2F , (7.11d)

Cabccba = Nc C3F , Cabcabc = N2
c + 1
4Nc

CF . (7.11e)

We also list some contractions between two colour factors:

CaxCxb = 1
4
δab , CabCab = Nc

2
CF , CaxyCxyb = − 1

4Nc
δab , (7.12a)

CaxyC yxb = N2
c −2
8Nc

δab , CabcCabc = −CF
2
, CabcCcba = N2

c −2
4

CF , (7.12b)

and between a colour factor and a standard colour constant:
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Cab ta tb = Nc
2
CF

1

Nc
, Caxy f xyb = i Nc

4
δab , (7.13a)

Cabc f abc = i N2
c
2
CF , Cabxy f xyc = i Nc

8
habc , (7.13b)

Cabcd f abc = 0 , Cabcd f abx f xcd = −N3
c
4
CF . (7.13c)

For contractions with longer colour factors, we can simply use the Fierz
identities (see Equation A.77). Expressed in function of colour factors, these are:

Ca1⋯amxam+1⋯apxap+1⋯an = 1
2
Ca1⋯amap+1⋯anCam+1⋯ap − 1

2Nc
Ca1⋯an , (7.14a)

Ca1⋯amxxam+1⋯an = CF Ca1⋯an , (7.14b)

Ca1⋯amxCxam+1⋯an = 1
2
Ca1⋯an − 1

2Nc
Ca1⋯amCam+1⋯an . (7.14c)

Calculating Traces in the Adjoint Representation

In the adjoint representation Equation 7.2a is not true, because the set {1, Ta}
isn’t su�cient to reproduce all possible products of adjoint generators. Still,
it would be useful to �nd a method to calculate adjoint traces. Unfortunately,
this is not so trivial, as we have no useful expression for the anticommutation
relations—which we need to get a recursion relation as in Equation 7.5. Instead
of a brute-force calculation, we will relate traces in the adjoint representation
to traces in the fundamental using a ni y trick. First, note that in general the
product space of the fundamental and the anti-fundamental is isomorphic to
the sum space of the adjoint and the identity:

F ⊗ F ≃ A⊕ 1 , (7.15)

from which we can derive (UA denotes ‘the group element U expressed in the
adjoint representation’):

tr(UA) = tr(UF) tr(UF) − 1 . (7.16)

For the trivial group element U = 1, we get indeed dA = d2F − 1. To calculate
the n-th order trace, it is su�cient to take U = n∏

i
etaRαai , expand it and compare

terms of the same order in αi . Furthermore we can use

UF = U†
F = U−1

F ,
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which implies

et
a1αa11 ⋯etan αann = e−tan αann ⋯e−ta1αa11 .

For example, the fourth-order trace in the adjoint can be calculated as follows:

tr(eT aαa1 eT
bαb2 eT

cαc3eT
dαd4 ) = tr(etaαa1 etbαb2 etcαc3etdαd4 ) tr(e−tdαd4 e−tcαc3e−tbαb2 e−taαa1 ) − 1 ,

αa1 αb2αc3αd4 tr(TaTbT cTd) = αa1 αb2αc3αd4 [ tr(ta tb tc td)Nc + Nc tr(td tc tb ta)
+ 2 tr(ta tb) tr(tc td) + 2 tr(ta tc) tr(tb td)
+ 2 tr(ta td) tr(tb tc)] .

Using this trick we can calculate any trace in the adjoint representation in
function of traces in the fundamental representation.Also note thatwe can derive
equations similar to Equation 7.16 using di�erent representation combinations.
For example in SU(3) we have

3⊗ 3 ≃ 6⊕ 3 ,

implying

tr(U2F) = tr(UF) tr(UF) − tr(UF) .
Now back to the adjoint generators. We can generalise their trace as

Traces of Adjoint Generators

tr(Ta1⋯Tan) = Nc( tr(ta1⋯tan) + (−)n tr(ta1⋯tan) )
+ n−2∑
m=2 (−)n−m

n!
m! (n −m)! tr(t(a1⋯tam ∣) tr(tam+1⋯tan)o) . (7.17)

We introduced two new notations: �rst we have the ‘conjugated’ trace, which is
simply the trace in reversed order:

tr(ta1⋯tan) = tr(tan⋯ta1) .
¿e only thing that changes when reversing a trace of fundamental generators,
is that every h gets replaced by its complex conjugate h (hence the notation
tr). ¿e result can then be simpli�ed further using relations as h− h = 2i f ,
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hh + hh = 2 (dd− f f ) , etc. ¿e second notation we introduced, ( ∣ )o , is an
‘ordered’ symmetrisation which for a general tensorM is de�ned as:

M(a1⋯am ∣ am+1⋯an)o = m! (n −m)!
n!

× ⎛⎝Ma1⋯an + all permutations for which the �rst m
indices and the last n−m indices are
ordered with respect to (a1⋯an)

⎞⎠ . (7.18)

For instance:

M(ab ∣N cd)o = 1
6
(MabN cd +MacNbd +MadNbc +MbcNad +MbdNac +McdNab) .

One handy property is that when A and B are commutative, we have:

A(a1⋯am ∣Bam+1⋯an)o = B(a1⋯an−m ∣Aan−m+1⋯an)o ,
e.g. (δ∣h)o = (h∣δ)o . To conclude, let us list some traces:¹

Ca1a2
A = Ncδ , (7.19a)

Ca1a2a3
A = Nc

4
(h − h) , (7.19b)

Ca1a2a3a4
A = 1

2
(δδ + 3(δδ)) + Nc

8
(hh + hh) , (7.19c)

Ca1a2a3a4a5
A = 1

8
[(h − h) δ + δ (h − h) + 10 (δ∣(h − h))o]
+ Nc
16

(hhh − hhh) , (7.19d)

Ca1a2a3a4a5a6
A = 1

4Nc
(δδδ + 15 (δδδ)) + 1

16
[(hh + hh) δ

+ (hh + hh) + δ (hh + hh) + 15 (δ∣(hh + hh) )o
− 20 (h∣h)o] + Nc

32
(hhhh + hhhh) , (7.19e)

where we introduced the notation

Ca1⋯an
A

N= tr(Ta1⋯Tan) , (7.20)

in analogy with the fundamental representation.

1 Note that (δ∣δ)o = (δδ), for any number of δ’s.
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7.2 self-interaction blobs

Now that we have developed some useful tools for working with the colour
algebra, we make a list of path functions for some common blobs. We will list
the Wilson self-interaction blobs—i.e. all blobs that connect the Wilson line to
itself, not to e.g. a fermion—up to NNLO. ¿ese are the blobs that are used in
the calculation of so factors and Wilson loops. Note that we always take the
convention that gluon momenta are pointing outwards from the Wilson line,
into the blob.

Two-Gluon Blob

¿e 2-gluon blob up to NNLO is simply the gluon propagator plus one-loop and
two-loop corrections:

= + + + .

So the formula for the blob is simply given by

Fabµ1µ2(k1, k2) = δabDµ1ν(k1) δ(ω)(k1 + k2)Bνµ2(k1) , (7.21)

where B resums all corrections:
Bνµ(k) = gνµ + [iΠNLO

νρ (k) −ΠNLO
νσ1 (k)Dσ1σ2(k)ΠNLO

σ2ρ (k)
+ iΠNNLO

νρ (k) + . . . ]Dρ
µ(k) , (7.22)

and where Π is the 1PI diagram. We anticipated the fact that we can factor
out the colour structure to be δab. ¿is is only logical, as there are no other
elements in the algebra that have exactly two adjoint indices open (and that
cannot be reduced to something proportional to δab). ¿is also means that
the path function de�ned in Equations 6.78 is indeed valid, because the colour
structure is (see Equation 6.69a):

c = ta tbδab = CF 1 ,
and what is more, it is valid to all orders for the 2-gluon self-interaction blob,
following our reasoning above. Connecting this blob to a Wilson line is trivial
using the methods developed in Section 6.5. ¿is gives:

U2 = M∑
J
Φ2(J)W J

2 + M∑
J=2

J−1∑
K=1Φ1 1(J ,K)W JK

1 1 , (7.23)
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where Φ andW are given by Equations 6.78 and Equation 6.81:

2-Gluon Self-Interaction Blob

J
k1 k2

∶ (7.24a)

Φ2(J) = CF ,
W J

2 = ∫ dωk1(2π)ω dωk2(2π)ω Il.b. J2 (k1, k2) Fµ1µ2(k1, k2) ,
= −i g2 nµ1J nµ2J 1

η
µ2є∫ dωk(2π)ω 1

nJ ⋅k + iηDµ1ν(k)Bνµ2(k) ,

K J
k1 k2

∶ (7.24b)

Φ1 1(J ,K) = (−)ϕJ+ϕKCF ,
W JK

1 1 = ∫ dωk1(2π)ω dωk2(2π)ω Il.b.K1 (k1) Il.b. J1 (k2) Fµ1µ2(k1, k2) ,
= −g2 nµ1K nµ2J µ2є∫ dωk(2π)ω ei(rK−r J)⋅k

nK ⋅k + iη 1
nJ ⋅k − iηDµ1ν(k)Bνµ2(k) ,

where ϕJ is de�ned in Equation 6.79, and Il.b. Jn is given in Equation 6.26. In
Sections 7.3 and 7.4 we will investigate some calculational tools to do these
momentum integrations. Equations 7.24 are of course still gauge-invariant
statements, as all gauge-dependent content is contained in Dµν and Bµν.
Now let us investigate the contents of the 2-gluon blob a bit more precise. ¿e

one-loop diagrams are the fermion loop, ghost loop (in non-axial gauges), and
the two possible gluon loops:

N= + + + ,

which are (see Equation 4.36 for the fermion loop):

iΠNLO
ν1ν2 ∣ferm. = g2

2
µ2є∫ dωq(2π)ω tr(γν2∆F(q)γν1∆F(q + k)) , (7.25a)

iΠNLO
ν1ν2 ∣ghost = g2Ncµ2є∫ dωq(2π)ω (q + k)ν1 qν2ΣF(q + k)ΣF(q) , (7.25b)
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iΠNLO
ν1ν2 ∣3gluon = − g

2

2
Nc ∫ dωq(2π)ω Aν1ρ1σ1 Dρ1ρ2(q)Dσ1σ2(q+k)Aν2ρ2σ2 , (7.25c)

Aνρσ = gνρ(q − k)σ − gρσ(2q + k)ν + gσν(q + 2k)ρ ,
iΠNLO

ν1ν2 ∣4gluon = −i g2Nc (gν1ρgν2σ − gν1ν2 gρσ) µ2є∫ dωq(2π)ω Dρσ(q) . (7.25d)

In Feynman gauge (and using dimensional regularisation, see Subsection Regu-
larisation on page 91 and onwards), it is not so di�cult to calculate these NLO
contributions. ¿e sum of all contributions equals (see e.g. Equations 4.37 for
the fermion loop):²

iΠNLO
µν = i (gµνk2 − kµkν) αsπ [5Nc − 2N f

12
( 1
є
− γE + ln 4π + ln µ2) + Nc

12
− I] ,

I = 1

∫
0

dx
⎡⎢⎢⎢⎢⎣Nc ( 14 + x(1 − x)) ln∆(0) − x(1 − x)

N f∑
q
ln∆(m2

q)
⎤⎥⎥⎥⎥⎦ ,

where

∆(m2) N= m2 − x(1 − x)k2 .
We can solve I in the same way as we did in Equations 4.39. However, the
k2-integration that emerges when connecting the blob will be quite complicated
due to the logarithm of square roots. For this reason, we leave the x-integration
unde�ned until a er the momentum integration.
¿e NNLO 1PI diagram is a lot more involving. We will not calculate it—as we

don’t need it—but just list its 15 sub diagrams:

N= + + +
+ + + +

+ + + +

+ + + .

2 ¿ere is a very important caveat: when calculating blob diagrams that will be inserted in other
diagrams, it is always preferable not to expand the UV poles, because a priori the parent diargam
and its poles are not known, i.e. we don’t now yet to which orde we have to keep the �nite terms.
Leaving є unexpanded avoids this problem.
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We already deduced from �rst principles that at any order the colour structure
has to be proportional to δab. Using Equations A.84 to A.89, we can easily
double-check this:

tr(ta tx tb tx) = − 1
4Nc

δab ,

tr(tb tx ty) f ayx = −i Nc
4
δab ,

tr(ty tz) f axy f bzx = −Nc
2
δab ,

f xay f ycz f zbw f wcx = N2
c
2
δab ,

f avw f xby f ywz f zvx = N2
c
2
δab ,

f awv f bzw f xzy f yvx = N2
c δab ,

f xay f ycz f zbw f wcx = N2
c
2
δab ,

f vaw f wbz f xzy f yvx = N2
c δab ,

and similarly for the seven remaining diagrams.

¿ree-Gluon Blob

¿e 3-gluon blob up to NNLO is simply the 3-gluon vertex plus one-loop correc-
tions:

= + + .

So the formula for the blob is given by

Fabcµ1µ2µ3(k1, k2, k3) = f abcDµ1ν1(k1)Dµ2ν2(k2)Dµ3ν3(k3)
δω(k1 + k2 + k3) Γν1ν2ν3(k1, k2, k3) ,

where Γ resums all corrections:

Γµνρ(k, p, q) = ΓLOµνρ(k, p, q) + ΓLO+Bµνρ (k, p, q) + ΓNLOµνρ (k, p, q) +⋯ (7.26a)

ΓLOµνρ(k, p, q) = g [gµν(k−p)ρ + gνρ(p−q)µ + gρµ(q−k)ν] . (7.26b)
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Again we anticipated the fact that we can factor out the colour structure to be
f abc . ¿e same arguments as for the 2-gluon blob are however no longer valid,
as now there exists a second structure—independent of f abc—with three adjoint
indices, namely dabc . It just happens that up to �rst loop the colour structure
only depends on f abc , of which we took advantage to factor it out. Just remember
that this might no longer be possible at second loop (if this is indeed the case,
we will have to split the blob as a sum of two colour-factorable sub-blobs, as
explained in Section 6.4). Again the path function de�ned in Equations 6.80 is
indeed valid, because the colour structure is (see Equation 6.69a):

c = tc tb ta f abc = Ccba f abc 1
Nc

+ 2Ccbax f abc tx = −i Nc
2
CF 1 ,

where we used Equation 7.2a to write the generator product as a sum of colour
factors, and used the relations in Equations 7.13 to simplify the result. Remember
that we need to read a Wilson line as a Dirac line, i.e. from right to le , to get
the correct result. Here this can be seen in the order of the generators; reversing
the order would give a minus sign di�erence.
Investigating the colour structure, we have three di�erent possibilities: all

gluons connected to one segment, two gluons to one segment and one to another,
or all to a di�erent segment. Reversing the direction of a segment line is the same
as �ipping the order of the colour indices that are connected to it andmultiplying
with -1 for each gluon. For the situation where all gluons are connected to one
segment, �ipping this segment leaves the result invariant (see Equation 6.71).
For the situation 1+2, �ipping the segment with one gluon only gives a sign
di�erence (because reversing one index doesn’t change anything):

(−)1 c = i Nc
2
CF 1 ,

and �ipping the segment with two gluons reverses these indices, also giving a
sign di�erence:

(−)2 tc tb ta f acb = Ccba f acb 1
Nc

+ 2Ccbax f acb tx = i Nc
2
CF 1 .

And for the situation 1 + 1 + 1, �ipping any segment trivially gives a sign dif-
ference. So these e�ects can be combined into the path function as given in
Equations 6.80.
¿e full Wilson line result can be calculated using the methods developed in

Section 6.5:

U3 = M∑
J
Φ3W J

3 + M∑
J=2

J−1∑
K=1 (Φ2 1W JK

2 1 + J↔K) M∑
J=3

J−1∑
K=2

K−1∑
L=1 Φ1 1 1W JKL

1 1 1 , (7.27)
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where Φ andW are now given by Equations 6.80 and Equation 6.81:

3-Gluon Self-Interaction Blob

J
k1 k3

∶ (7.28a)

Φ3(J) = −i Nc2 CF ,
W J

3 = ∫ dωk1(2π)ω dωk2(2π)ω dωk3(2π)ω Il.b. J3 (k1, k2, k3) Fµ1µ2µ3(k1, k2, k3) ,
= i g3 nµ1J nµ2J nµ3J 1

η
µ3є∫ dωk1(2π)ω dωk2(2π)ω 1

nJ ⋅k1−iη 1
nJ ⋅(k1+k2)−iη

Dµ1ν1(k1)Dµ2ν2(k2)Dµ3ν3(k1 + k2) Γν1ν2ν3(k1, k2,−k1−k2) ,
K J
k1 k3

∶ (7.28b)

Φ2 1(J ,K) = −i(−)ϕJ+ϕK Nc
2
CF ,

W JK
2 1 = ∫ dωk1(2π)ω dωk2(2π)ω dωk3(2π)ω Il.b.K1 (k1) Il.b. J2 (k2, k3) Fµ1µ2µ3(k1, k2, k3) ,

= −g3nµ1K nµ2J nµ3J µ3є∫ dωk1(2π)ω dωk2(2π)ω ei(rK−r J)⋅k1
nK ⋅k1+iη 1

nJ ⋅k1−iη 1
nJ ⋅(k1+k2)−iη

Dµ1ν1(k1)Dµ2ν2(k2)Dµ3ν3(k1 + k2) Γν1ν2ν3(k1, k2,−k1−k2) ,
L K J

k1 k3
∶ (7.28c)

Φ1 1 1(J ,K , L) = −i(−)ϕJ+ϕK+ϕL Nc2 CF ,
W JKL

1 1 1 =∫ dωk1(2π)ω d
ωk2(2π)ω d

ωk3(2π)ω Il.b. L1 (k1)Il.b.K1 (k2)Il.b. J1 (k3)Fµ1µ2µ3(k1, k2, k3) ,
= −g3nµ1L nµ2K nµ3J µ3є∫ dωk1(2π)ω dωk2(2π)ω ei(rL−r J)⋅k1

nL ⋅k1+iη e
i(rK−r J)⋅k2
nK ⋅k2+iη 1

nJ ⋅(k1+k2)−iη
Dµ1ν1(k1)Dµ2ν2(k2)Dµ3ν3(k1 + k2) Γν1ν2ν3(k1, k2,−k1−k2) .
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where ϕJ is de�ned in Equation 6.79, and Il.b. Jn is given in Equation 6.26. Again
these results are still gauge-invariant.
Now let us investigate the contents of the 3-gluon blob a bit more precise.

¿ere are two one-loop contributions, viz. a ‘pure’ contribution where the vertex
point is substituted by a loop, and a contribution where the propagator in one
of the legs is evaluated at NLO. ¿e latter is really straightforward to calculate,
because the result was already calculated in Equation 7.22:

ΓLO+Bµνρ (k, p, q) = BNLOµσ (k)ΓLOσνρ(k, p, q) + BNLOνσ (p)ΓLOµσρ(k, p, q)+ BNLOρσ (k)ΓLOµνσ(k, p, q) . (7.29)

¿e pure contribution is however a bit more complicated. ¿e loops are—just
as was the case for the propagator—a fermion loop, ghost loop, and the two
possible gluon loops:

N= + + + ,

¿is result is quite challenging to calculate and spans several pages (see e.g.
[41, 42]). It is instructive to take out the pole part, as this is the most interesting
part. In covariant gauges, it is given by:

ΓNLO UV
µνρ (k, p, q) = 1

є
αs
4π

[2
3
Nf − Nc (23 + 3

4
ξ)] ΓLOµνρ(k, p, q) , (7.30)

where ξ = 0 in Feynman gauge. Note that when choosing the gauge de�ned by
ξ = 8

9
(Nf

Nc
− 1) , (7.31)

which is ξ = 8
9 for Nf = 6, there are no ultraviolet divergences.

7.3 wick rotations

In this section we will investigate the possibility to use a Wick rotation when
doing integrations with Wilson lines. We cannot blindly make the substitution
k0 = ik0E as in Appendix B.3, because the rotation might hit the poles. To see
what we mean with this statement, let us �rst investigate how a regular Wick
rotation works.
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Regular Wick Rotation

Naively, one could think that in a Minkowskian integral

∫dωk f (k2) (7.32)

the substitution k0 = ik0E would su�ce to change it into an Euclidian integral
i ∫dωkE f (−k2E) , (7.33)

but this is of course not true, as a complex substitution changes the contour
of the integration (in the same way a real substitution can change the integra-
tion borders). ¿e transformation is hence only valid if we can prove that the
integration over the real axis equals the one over the complex axis. For most
calculations in quantum �eld theory, this is trivial, as they will primarily contain
integrals where the integrand is a combination of Feynman propagators. ¿ese
can always be brought into the form

∫ dωk(2π)ω 1(k2 − ∆ + iε)n , (7.34)

by completing the square and using Feynman parameterisation. ¿is expression
has two manifest poles of order n:³

k0 = ±√k2 + ∆ − iε ≈ ±√k2 + ∆ ∓ iε . (7.35)

¿ese poles lie in the second and fourth quadrant (the numbering of the quad-
rants follows the angular magnitude, i.e. anticlockwise, starting in the upper
right quadrant). Note that even when ∆ < −k2, the poles will lie in the second
and fourth quadrant, because then

k0 = ±√k2 + ∆ − iε ≈ ±i√−k2 − ∆ ∓ ε .
If we now choose the contour as in Figure 7.1, the contour integral vanishes
because it doesn’t enclose any poles. We then have:

∫∮C = ∫CR + ∫C1 + ∫CI + ∫C2 ≡ 0 ⇒ ∫CR
= − ∫CI . (7.36)

3 Where the second step is made using the expansion
√
x − i ε ≈

√
x − i ε

2
√
x and absorbing

√
x

in ε.
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−Ek + iε
Ek − iε

CR
CI C1

C2

III

III IV

Figure 7.1: ¿e contour chosen for a Wick rotation. Because it doesn’t enclose any
poles, the contour integral vanishes. If the integrand behaves asO(1/k2), the
real integral CR equals the imaginary integral CI . Note that although this
is a contour with a self-intersection, we can split it at (0, 0) into two valid
contours, giving the same result (see Figure 7.3).

¿e integrations over the arc segments vanish because the integrand is ofO(1/(k0)2n). ¿e minus sign in front of the integral over CI �ips its borders,
so that we indeed have

∫ dωk(2π)ω 1(k2 − ∆ + iε)n = (−)n i ∫ dωkE(2π)ω 1(k2E + ∆)n . (7.37)

We dropped the pole prescription in the r.h.s. as it is no longer needed.
Note that with this contour, it is indeed required that the integrand is ofO(1/(k0)2), because e.g. exponential damping won’t be su�cient. Suppose that

we have an integration of the form

∫ dωk(2π)ω k0(k2 − ∆ + iε)2 ei k⋅x ,
which is ofO(1/k0). To calculate the integrations over C1 and C2, we use analytic
continuation to parameterise k0 in polar representation as

k0 = Rei θ .
¿e k0 integration over C1 then becomes:
lim
R→∞ iR

π
2

∫
0

dθ ei θ Rei θ

R2e2i θ − k2 − ∆ + iε eiR(cos θ+i sin θ)x0e−i k ⋅x ∼ lim
R→∞ e−R x0 sin θ .
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¿e sign of sin θ is �xed, because

θ = 0 . . . π
2

⇒ sin θ > 0 .
Hence this integral only vanishes for x0 > 0. On the other hand, the integration
over C2 has θ = −π/2 . . . − π and thus sin θ < 0, so this integral only vanishes for
x0 < 0. We cannot have both x0 > 0 and x0 < 0, at the same time, so exponential
damping cannot make the integrations over the arcs vanish.4
¿ere are hence two requirements to be allowed to make a Wick rotation:

a. ¿e integrand should scale asO( 1(k0)2 ),
b. ¿e integrand should only have poles in the 2nd and 4th quadrant.

It is however possible to relax the second requirement by adapting the Wick
rotation formula a bit, as we will see in what follows.

Wick Rotation with Wilson Lines

Propagators fromWilson lines will introduce a linear dependence on k0 in the
denominator. Consider e.g. the NLO self-energy of a Wilson line segment (see
Equation 7.24a):

J
k1 k2

= −i g2 (nJ)2 1η ∫ dωk(2π)ω 1
nJ ⋅k + iη 1

k2 + iε , (7.38)

where the gluon propagator is expressed in Feynman gauge. If (nJ)0 = 0, the
Wilson line segment doesn’t introduce additional poles, and we can safely make
a Wick rotation. So from now on we suppose that (nJ)0 ≠ 0. ¿en the integrand
has three poles:

k0 = ±√k2 − ∆ ∓ iε , k0 = 1
n0

(n ⋅k − iη) . (7.39)

¿e problematic pole is the last one, as it can lie in all quadrants, depending on
the sign of n0 and n ⋅k , as illustrated in Figure 7.2. ¿e troublesome quadrants
are the �rst and the third; the integral has its poles in these quadrants when
n ⋅k ≤ 0. We can separate this values by splitting the integral in three parts using

4 Unless we forge some unphysical exponential of the form ei ∣k0 ∣x0−i x ⋅k .
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n0 < 0
n ⋅k < 0n0 < 0

n ⋅k > 0
n0 > 0

n ⋅k < 0 n0 > 0
n ⋅k > 0

Figure 7.2: ¿e pole of the Wilson propagator can lie in any quadrant, depending on
the signs of n0 and n ⋅k . ¿e problematic poles are those in the �rst and
third quadrants. ¿ese are the poles with n ⋅k < 0. ¿e troublesome poles
are marked in red.

1 = θ(n ⋅k) + θ(−n ⋅k) + δ(n ⋅k):5
∫ dωk(2π)ω θ(n ⋅k)

nJ ⋅k + iη 1
k2 + iε + ∫ dωk(2π)ω θ(−n ⋅k)

nJ ⋅k + iη 1
k2 + iε

+ ∫ dωk(2π)ω δ(n ⋅k)
nJ ⋅k + iη 1

k2 + iε . (7.40)

¿e �rst integral has no poles in the �rst and third quadrants and can hence be
Wick rotated without problem. ¿e second integral can be calculated by using
the Residue theorem:

∫∮C = ∫CR + ∫CI ≡ 2πi Res ⇒ ∫CR
≡ 2πi Res− ∫CI . (7.41)

However, here we are skipping an important step: the contour in Figure 7.1 is
only valid because we can split it into two contours without self-intersections.
¿e lower le contour is de�ned clockwise, so its Residue gains a minus sign
(this doesn’t matter in case of a regular Wick rotation, as then the residues are
zero anyway). So we split the contour into a positive contour C+ and a negative
contour C−, as in Figure 7.3:

∫∮C+ = ∫C+R
+ ∫C+I

≡ 2πi Res+ ⇒ ∫C+R
≡ 2πi Res+ − ∫C+I

, (7.42a)

∫∮C− = ∫C−R
+ ∫C−I

≡ −2πi Res− ⇒ ∫C−R
≡ −2πi Res− − ∫C−I

, (7.42b)

5 If n ⋅k = 0, the pole lies on the contour, which is treated di�erently. For this reason we chose to
de�ne θ(0) = 0.
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C+R
C+I

C−R
C−I

C1

C2
Figure 7.3: When there are extra poles in the �rst or third quadrant, we need to split the

contour in its subcontours.¿e lower le contour, C−, is evaluated clockwise,
hence its Residue gains a minus sign.

∫CR
= ∫C+R

+ ∫C−R
= 2πi Res+ −2πi Res− − ∫CI . (7.42c)

We will never have Res+ and Res− at the same time, as these are two versions
of the same Residue, depending on the sign of n0 (see Figure 7.2), which we
assumed to be non-zero (because if it is zero, we don’t need to do this calculation
anyway as we can just Wick-rotate the integral without problem). So we can
write the Residue as:

2πi Res+ −2πi Res− = ( θ(−n0) − θ(n0)) 2πi Res , (7.43)

where the full Residue is given by

2πi Res = i ∫ dω−1k(2π)ω−1 n0 θ(−n ⋅k)(n ⋅k − iη)2 − (n0 k)2 , (7.44)

hence we can write

2πi Res+ −2πi Res− = −i ∫ dω−1k(2π)ω−1
∣n0∣ θ(−n ⋅k)

(n ⋅k − iη)2 − (n0 k)2 . (7.45)

We dropped the iε pole-prescription, as it is no longer needed (the integration
over k0 has been done). We cannot drop the iη, as it will act as a so regulator.
We can repeat the same calculation for the third integral in Equation 7.40, but

because the pole then lies on the contour, the residue only contributes a factor π
instead of 2π:

πi Res+ −πi Res− = −i ∫ dω−1k(2π)ω−1
∣n0∣ δ(n ⋅k)

(n ⋅k − iη)2 − (n0 k)2 . (7.46)
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Combining the three terms in Equation 7.40, we can write a Wick rotation with
aWilson line propagator as a regular Wick rotation plus a correction termWP :

Wick Rotation with Wilson Propagator

∫ dωk(2π)ω 1
nJ ⋅k + iη 1

k2 + iε = i ∫ d
ωkE(2π)ω 1

nJE ⋅kE − iη
1
k2E

− iWP , (7.47a)

WP = ∫ dω−1k(2π)ω−1
∣n0∣

(n ⋅k−iη)2−(n0 k)2 ( θ(−n ⋅k)+ 1
2
δ(n ⋅k)) . (7.47b)

It is interesting to see that the factor ( θ(−n ⋅k) + 1/2 δ(n ⋅k)) in the de�nition
of WP can be replaced by a single θ-function, if we adopt the convention
θ(0) = 1/2.
Equations 7.47 easy generalise to the integral of a Wilson line propagator and

any function f that doesn’t has poles in the �rst or third quadrants:

∫ dωk(2π)ω 1
nJ ⋅k + iη f (k) = −i ∫ d

ωkE(2π)ω 1
nJE ⋅kE − iη f (ik

0
E , kE) − iWP , (7.48)

where now WP is given by (assuming f is symmetric in k0):

WP = ∫ dω−1k(2π)ω−1 1∣n0∣ ( θ(−n ⋅k) + 1
2
δ(n ⋅k)) f (k)∣

k0→ 1
n0

(n ⋅k−iη) . (7.49)

However, in generalWP is quite di�cult to calculate—especially in dimensional
regularisation—because of the angular part in n ⋅k. In the Section 7.4 we will in-
vestigate amore brute-force approach.We can rewrite Equation 7.49 as (adopting
the convention θ(0) = 1/2):

WP = ∫ dωk(2π)ω f (k) δ+(n ⋅k + iη) , (7.50)

which we can interpret as the ‘real emission’ of a Wilson line segment. We have
argued before (on page 188) that there is no such thing as a cut Wilson segment,
so this interpretation cannot be rigorous. Indeed, the δ+ implies a θ-function
with a complex shi , i.e. θ(n0k0 + iη), which is not well-de�ned (and we have
no trick to deal with it as we did have in the case of a complex δ-function). So
we leave Equation 7.50 as a vague physical interpretation without mathematical
rigour, at most a curious coincidence.
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Light-Cone Coordinates: Double Wick Rotation

When using LC coordinates, we have to make two consecutive Wick rotations,
as now the �rst two components of the momentum have a positive sign. Let us
investigate again a general Feynman propagator integral as in Equation 7.34:

∫ dωk(2π)ω 1(k2 − ∆ + iε)n .
Let us �rst rotate the k+ component. It has a pole in

k+ = 1
2k− (k2⊥ + ∆ − iε) ,

which lies in the second or fourth quadrant, as long as ∆ ≥ −k2⊥. In the latter
case we can safely Wick rotate it by identifying k+ = ik+E :

∫ dωk(2π)ω 1(k2 − ∆ + iε)n = i ∫ dω−1k dk+E(2π)ω 1(2ik+Ek− − k2⊥ − ∆ + iε)n .
But now the pole of k− is given by

k− = 1
2ik+E (k2⊥ + ∆ − iє) = 1

2k+E ( − i (k2⊥ + ∆) − є) , (7.51)

which now lies in the �rst or third quadrant for ∆ ≥ −k2⊥. Luckily, this doesn’t
pose a problem, as this is a second, independent integration, and we can just
choose a di�erent contour, like in Figure 7.4. ¿en we have

∫∮C = ∫CR + ∫C1 + ∫CI + ∫C2 ≡ 0 ⇒ ∫CR
= − ∫CI , (7.52)

as before. But now we don’t have to switch the borders of the integral overCI , so we retain the minus sign. So a er making the second Wick rotation by
identifying k− = ik−E , we have:

∫ dωk(2π)ω 1(k2 − ∆ + iε)n = (−)n ∫ dωkE(2π)ω 1(k2E + ∆)n .
¿e only di�erence with a Wick rotation in Cartesian coordinates is the lack of
the i in front. ¿is result was only valid for ∆ ≥ −k2⊥. But in case ∆ < −k2⊥, we
just start with the second contour and end with the original contour, to get the
same result. So for any function f that scales asO(1/k2), we have:
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CR
CI

C1

C2
III

III IV

Figure 7.4: ¿e contour chosen for the second Wick rotation when working in LC
coordinates. Because of the shi k+ = ik+E , the poles have switched quadrants,
so the contour needs to be �ipped.

Wick Rotation in lc-Coordinates

∫ dωk(2π)ω f (k2) = ∫ dωkE(2π)ω f (−k2E) . (7.53)

Adding a Wilson line propagator will however complicate the calculation, as we
will get two independent correction terms, one per rotation.

7.4 wilson integrals

One common integral when dealing with Wilson lines is the following one:

I = ∫ dωk(2π)ω
n∏
i=1

1
ni ⋅(k + Ki) + Ai + iσiη

m∏
j=1

1
(k + Pj)2 + B j + iε e

i r⋅k , (7.54)

constructed from n ‘linear propagators’ (Wilson line propagators) and m
‘squared propagators’ (regular Feynman propagators). ¿e +iε are merely pole
prescriptions, but the ±iη act as so regulators and can have positive or negative
signs. We encapsulated their sign into the σi = ±1 in front, such that we can
assert that η > 0. We also naturally assume n ≥ 1, m ≥ 1, and Ki , Pi ,Ai , Bi ∈ R,
and will use light-cone coordinates. Furthermore Ai and B j cannot depend on
k.
As this framework to work with Wilson lines has been developed only recent,

general results have not yet been reached. In this section, we brie�y sketch the
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�rst steps to solve this general integral, and continue with a simpler case, namely
that of the LO 2-gluon blob at r = 0 (i.e. the two segments are connected). We
will use this result in Section 10.2 to calculate the cusp anomalous dimension.
¿e �rst step in calculating the integral in Equation 7.54 is to use Schwinger

parameterisations (see Equations B.10), and write it as:

I = ( n∏ σi)(−i)n+m∫ dωk(2π)ω
∞
∫
0

dα1⋯dαn dβ1⋯dβm
e
i
n∑
i
σiα i[n i ⋅(k+K i)+A i]+i m∑

j
β j[(k+Pj)2+B j]+i r⋅k− n∑

i
α iη

.

Note that we already took the limit ε → 0. We can do this without problem,
as it is merely a prescription, telling us which contour to use when doing the
integration. Although we didn’t use contour integration, the prescription served
its purpose: the sign of the Schwinger parameterisation follows the sign of the
pole prescription. By completing the square, we rewrite the exponential as

i (∑ β j)(k + ∑ β jPj∑ β j + ∑ σiαini
2∑ β j + r

2∑ β j)
2 − i (∑ β jPj)2∑ β j − i (∑ σiαini)2

4∑ β j
− i r2

4∑ β j − i∑
σiαiβ jni ⋅Pj∑ β j − i∑ σiαini ⋅r

2∑ β j − i∑ β jPj ⋅r∑ β j+ i∑ σiαi (ni ⋅Ki + Ai) + i∑ β j (P2j + B j) −∑ αiη .

A er making the shi 

k → k + ∑ β jPj∑ β j + ∑ σiαini
2∑ β j + r

2∑ β j ,
the k-integration is just a Gaussian, which we can solve by making a Wick
rotation:

∫ dωk(2π)ω ei(∑ β j)k2 = i ∫ dωkE(2π)ω e−i(∑ β j)k2E ,

= − i(4π)2 (4πi)є (∑ β j)є−2 .
To be mathematically rigorous, we have to mention that a purely imaginary
Gaussian integral is divergent. Luckily, this is easily solved by regulating the
integral with an in�nitesimal negative shi :

lim
ε→0 ∫ d

ωkE(2π)ω e−i[(∑ β j)−i δ]k2E (7.55)
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¿e validity of regulating an integral (and taking the limit δ → 0) in the middle
of a calculation can be questioned. But in dimensional regularisation it can be
proven that all complex Gaussian integrals are well-de�ned, even when purely
imaginary [31]. ¿e result so far is

I = ( n∏ σi)(−i)n+m+1 (4πi)є(4π)2
∞
∫
0

dα1⋯dαn dβ1⋯dβm (∑ β j)є−2 eiE , (7.56)
where the exponent is given by:

E = n∑
i
αi [σi (ni ⋅Ki + Ai) + iη] + m∑

j
β j [P2j + B j] − (∑ β jPj)2∑ β j

− (∑ σiαini)2
4∑ β j − r2

4∑ β j − ∑
σiαiβ jni ⋅Pj∑ β j − ∑ σiαini ⋅r

2∑ β j − ∑ β jPj ⋅r∑ β j . (7.57)

¿e appearance of a lot of factors of the form (∑ β j) is a hint for the next step:
we will make the substitution β j = y jL, such that∑ β j = L (see Equations B.11).
¿e integral then becomes:

I = N ∞
∫
0

dα1⋯dαn dy1⋯dym dL δ(1 −∑ y j) Lm+є−3eiE , (7.58)

where N and the exponent are:

N = ( n∏ σi)(−i)n+m+1 (4πi)є(4π)2 , (7.59)

E = n∑
i
αi [σi (ni ⋅Ki+Ai)+iη] + L m∑

j
y j (P2j +B j) − L (∑ y jPj)2

− 1
4L

(r +∑ σiαini)2 −∑ σiαi y jni ⋅Pj −∑ y jPj ⋅r . (7.60)

From this point on, things are getting a bit more di�cult, as the exponent
contains terms linear in L, but terms linear in 1/L as well. We continue with a
much easier situation, viz. that of an LO 2-gluon blob connecting 2 adjoining
segments.

2-Gluon Blob Connecting Two Adjoining Segments

¿e integral we need to calculate is given by (see Equation 7.24b):

W JK
1 1 = −g2 nµ1K nµ2J µ2є∫ dωk(2π)ω ei(rK−r J)⋅k

nK ⋅k + iη 1
nJ ⋅k − iηDµ1ν(k) . (7.61)
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¿is is a speci�c form of our ‘master’ integral, with

n = 2 , m = 1 , Ki = 0 , Ai = 0 , Pj = 0 , (7.62a)
B j = 0 , r = rK− rJ , σK = +1 , σJ = −1 . (7.62b)

Our result so far in this speci�c example is then

W JK
1 1 = −i g2 nK ⋅nJ µ2є (4πi)є(4π)2

∞
∫
0

dα1 dα2 dβ βє−2eiE , (7.63)

where the exponent is given by:

E = − 1
4β

(α1nK − α2nJ + r)2 + iα1η + iα2η . (7.64)

We now make the substitution

β̃ = 1
β
, dβ̃ = − 1

β2
dβ .

¿is gives (dropping the factors in front):

I = ∞
∫
0

dα1 dα2 dβ̃ β̃−єe− i
4 β̃(α1nK−α2nJ+r)2−α1η−α2η .

¿is is a complex Γ representation (see Equations B.6), which is convergent for
0 < є < 1. ¿e result is now:

I = Γ(1 − є) (−4i)1−є ∞
∫
0

dα1 dα2 (α21 n2K + α22n2J + r2
−2α1α2nK ⋅nJ + 2α1nK ⋅r − 2α2nJ ⋅r)є−1 e−α1η−α2η .

Next we again use x-L parameterisation :

α1 = xL , α2 = (1 − x)L , L = 0 . . .∞ , x = 0 . . . 1 , dα1 dα2 = dx dL L ,
which gives:

I = Γ(1 − є) (−4i)1−є 1

∫
0

dx
∞
∫
0

dL L [L (xnK − xnJ) + r]2(є−1) e−Lη , (7.65)
where x is just a short-hand notation:

x N= 1 − x . (7.66)
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Now we apply the additional demand that the Wilson segments are adjoining,
viz. rK = rJ and hence r = 0. ¿e L integration is then again a Gamma function
integral representation, and gives a factor η−2є Γ(2є):

I = Γ(1 − є)Γ(2є)( 1
η2

)є (−4i)1−є 1

∫
0

dx (xnK − xnJ)2(є−1) . (7.67)

In the case of on-LC segments, i.e. n2K = n2J = 0, the x-integral is just a Beta
function (see Equation B.7a):

1

∫
0

dx (xnK − xnJ)2(є−1) = (−2nK ⋅nJ)є−1 1

∫
0

dx xє−1xє−1 ,
= (−2nK ⋅nJ)є−1 B(є, є) ,
= (−2nK ⋅nJ)є−1 Γ(є)Γ(є)Γ(2є) . (7.68)

We just have to collect all missing factors from the intermediate steps to get the
on-LC result. From Equation 7.63 we have a factor

−i g2nK ⋅nJµ2є (4πi)є(4π)2 .
Next we have from Equation 7.67 a factor

−4iΓ(1 − є)Γ(2є)(− 1
4iη2

)є ,
and last we have theMS subtraction (which is a division by Sє, see Equation 4.65)
that gives an extra Γ(1 − є)/(4π)є. ¿ese three factors together give:

−αs
π
nK ⋅nJΓ(1 − є)Γ(1 − є)Γ(2є)(− 14 µ

2

η2
)є . (7.69)

¿e full on-LC result is then

W JK
1 1 ∣LC = αs

2π
Γ(1 − є)Γ(1 − є)Γ(є)Γ(є)(nK ⋅nJ

2
µ2

η2
)є . (7.70)

Expanding in function of the regulator gives our �nal result for the 2-gluon blob
at LO connecting two adjoining on-LC segments:
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2-Gluon Blob Connecting 2 On-lc Segments

W JK
1 1 ∣LC = αs

2π

⎡⎢⎢⎢⎢⎣
1
є2
+ 1
є
(ln nK ⋅nJ

2
+ ln µ2

η2
) + 1

2
(ln nK ⋅nJ

2
+ ln µ2

η2
)2 + π2

3

⎤⎥⎥⎥⎥⎦ . (7.71)

Note that the convention in Equation 4.65 subtracts the most �nite terms
possible when having a double pole. ¿is is due to the fact that

Γ(1 − є)Γ(1 − є)Γ(є)Γ(є) = 1
є2
+ π2

3
+O(є2) . (7.72)

If we would use the regular convention as in Equation 4.64, the subtraction
would be less strong because

(e−γE)є Γ(1 − є)Γ(є)Γ(є) = 1
є2
− 1
є
2γE + 2γ2E + π2

4
+O(є) ,

which leaves an extra pole term and an extra term with γE . Also note that
although the result seems to be divergent in the limit nK ⋅nJ → 0, this is perfectly
�nite. ¿e seemingly divergent behaviour is an artefact from the regulation. If
nK ⋅nJ = 0, the original contribution in Equation 7.24b is zero before we need to
start a regulation procedure.

Now we will repeat this calculation, starting from Equation 7.67, but with o�-
LC segments. If n2K , n2J ≠ 0, we can parameterise the scalar product in function
of a Minkowskian angle χ between the two segments:

cosh χ def= nK ⋅ nJ∣nK ∣ ∣nJ ∣ , (7.73)

so that we can rewrite

(xnK − xnJ)2 ≡ x2n2K − 2xxnKnJ cosh χ + x2n2J , (7.74)

where now nK
N= ∣nK ∣. We will rewrite the x-integral in function of a new angle

ψ, that we introduce by the relation:

xnK sinhψ = xnJ sinh(χ + ψ) . (7.75)
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Or in other words:

x = nJ sinh(χ + ψ)
nK sinhψ + nJ sinh(χ + ψ) , (7.76a)

x = nK sinhψ
nK sinhψ + nJ sinh(χ + ψ) , (7.76b)

ψ = arcoth [csch χ xnK
xnJ

− coth χ] , (7.76c)

= 1
2
ln xnK − xnJ e−χ

xnK − xnJ eχ , (7.76d)

where we used the hyperbolic sum rule

sinh(χ + ψ) = sinh χ coshψ + sinhψ cosh χ . (7.77)

We can now simplify

(xnK − xnJ)2 = x2n2K − 2xxnKnJ cosh χ + x2n2J ,
= n2Kn2J sinh

2 χ

(nK sinhψ + nJ sinh(χ + ψ))2 .
To make the integral substitution, we �rst note that

dψ = −nKnJ sinh χ(xnK − xnJ)2dx ,
ψ(x = 0) = −χ ψ(x = 1) = 0 ,

giving eventually:

1

∫
0

dx (xnK−xnJ)2(є−1) = − (nKnJ sinh χ)2є−1 0

∫−χdψ (nK sinhψ+nJ sinh(χ+ψ))−2є .
To calculate this integral, we expand it in є:

0

∫−χdψ (nK sinhψ+nJ sinh(χ+ψ))−2є = χ+2є
−χ
∫
0

dψ ln [nK sinhψ+nJ sinh(χ+ψ)] .
Using the exponential representation of the hyperbolic sine, i.e.

sinhψ = 1
2
(eψ − e−ψ) , (7.78)

we rewrite the argument of the logarithm as
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ln [nK sinhψ + nJ sinh(χ+ψ)] = ln 12eψ [nK+nJ eχ − (nK+nJ e−χ) e−2ψ] ,
= − ln 2 + ψ + ln [nK+nJ eχ − (nK+nJ e−χ) e−2ψ] .

¿e integral over the �rst terms is trivial. Using the short-hand notations a =
nK+nJ eχ and b = nK+nJ e−χ, the integral over the logarithm can be done by
making the substitution t = −b e−2ψ . We have (see Equation B.2e):

− 1
2

−b
∫−b e2χ
dt ln(a + t)

t
= 1
2
[ln be2χ ln a − Li2 (b e2χa ) − ln b ln a + Li2 (ba)] ,

= χ ln (nK+nJ eχ) + 1
2
[Li2 (nK+nJ e−χnK+nJ eχ ) − Li2 ( nJ+nK eχ

nJ+nK e−χ )] .
We can require nK and nJ to have the same length, i.e. ∣nK ∣ ≡ ∣nJ ∣, because it is
just a path parameterisation where only their direction matters (and their length
is not zero). ¿en the result simpli�es into

χ ln nK + χ ln (1 + eχ) − 1
2
(Li2 eχ − Li2 e−χ) .

So the �nal result for the x-integration is then

1

∫
0

dx (xnK − xnJ)2(є−1) = −(n2Kn2J sinh2 χ)є
nKnJ sinh χ

χ (1 + єΥ) , (7.79a)

Υ = 2 ln 2 + ln n2K + 2 ln (1 + eχ) + χ − 1
χ
(Li2 eχ − Li2 e−χ) . (7.79b)

Now we add the missing factors from the intermediate steps (see Equation 7.69).
We will write nK ⋅ nJ in function of the Minkowskian angle, i.e. nK ⋅ nJ =
nKnJ cosh χ, which will combine with the 1/sinh χ into a coth χ. ¿is gives:

αs
π
χ cothχ Γ(1 − є)Γ(1 − є)Γ(2є)(−n2Kn2J

4
sinh2χ µ

2

η2
)є (1 + єΥ) . (7.80)

To allow for an easy comparison with the on-LC case, we rewrite the sinh inside
the є exponential as

−n2Kn2J sinh2χ = n2Kn2J (1 − cosh2χ) = n2Kn2J − (nK ⋅nJ)2 .
Expanding in function of є, the result becomes:
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2-Gluon Blob Connecting 2 O�-lc Segments

W JK
1 1 ∣LC = αs

2π
χ cothχ

⎡⎢⎢⎢⎢⎣
1
є
+ ln n2Kn2J − (nK ⋅nJ)2

4
+ ln µ2

η2
+ Υ⎤⎥⎥⎥⎥⎦ . (7.81)

When comparing to the on-LC result in Equation 7.71, we see that the most
important di�erence is that in the on-LC case there is a double pole in є that
is not present in the o�-LC case. ¿is is true in general: light-like Wilson
line segments will introduce additional divergences. Indeed, if one of the
segments—or both—goes on-LC, the angle becomes in�nite:

χ = arcosh nK ⋅nJ∣nK ∣ ∣nJ ∣ ∼ − log(∣nK ∣ ∣nJ ∣) on-LCÐÐÐ→ ∞ . (7.82)

¿is is the key manifestation of LC-divergences. ¿ere is no way of retrieving
the on-LC-result from the o�-LC result, as we are missing a double pole and
mixed terms.

Another possibility is a situation where one of the segments is on-LC and
the other is not. ¿is is a bit complicated, as the Minkowskian angle is still not
well-de�ned, but neither can we use the Beta function integral representation
as we were able to in the on-LC case (see Equation 7.68). Luckily, using a bit of
trickery we can do something similar using the incomplete Beta function (see
Equation B.7c). We start again from Equation 7.67, but assume now that n2J = 0.
It doesn’t matter which segment we take on-LC, the results are the same, but
when choosing n2J = 0, the term with x drops from the calculation, which is
easier. ¿e x-integration is now:

1

∫
0

dx (xnK − xnJ)2(є−1) = 1

∫
0

dx (x2n2K − 2xx nK ⋅nJ)є−1 ,
= (2nK ⋅nJ)є−1 1

∫
0

dx xє−1 (2nK ⋅nJ+n2K
2nK ⋅nJ x − 1)є−1 .

Next we make the substitution

t = 2nK ⋅nJ+n2K
2nK ⋅nJ x N= ñ x , ⇒ dx = 1

ñ
dt ,
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which gives

1

∫
0

dx (xnK − xnJ)2(є−1) = (2nK ⋅nJ)є−1 1
ñє

ñ

∫
0

dt tє−1(t − 1)є−1 ,
= (2nK ⋅nJ)є−1 1

ñє
B(ñ; є, є) . (7.83)

B(ñ; є, є) is the incomplete Beta function. It has a series expansion given by
Equation B.7f:

B(ñ; є, є) = 1
є
ñє(1 − ñ)є (1 + ∞∑

m=0
B(є + 1,m + 1)
B(2є,m + 1) ñm+1) . (7.84)

We can expand the fraction of the two Beta functions, which we have to do up
to second order in є (because we have a double pole, one in front of the Beta
function expansion and on from Γ(2є) in Equation 7.67):

B(є + 1,m + 1)
B(2є,m + 1) = Γ(є + 1)

Γ(2є) Γ(2є +m + 1)
Γ(є +m + 2) ,

≈ 2є 1
m + 1 + 2є2 [ 1

m + 1 (
m∑
k

1
k
) − 1(m + 1)2 ] . (7.85)

¿e in�nite sums running over m are just straightforward convergent series.
¿e �rst and the last are just the �rst and the second polylogarithms (see Equa-
tion B.8a and Equations B.8), while the second sum is a bit less trivial as it is a
chained sum:

∞∑
m=0

ñm+1
m + 1 =

∞∑
m=1

ñm

m
= Li1(ñ) = − ln(1 − ñ) , (7.86a)

∞∑
m=0

ñm+1(m + 1)2 =
∞∑
m=1

ñm

m2 = Li2(ñ) , (7.86b)

∞∑
m=0

ñm+1
m + 1

m∑
k

1
k
= 1
2
ln2(1 − ñ) . (7.86c)

So the expansion of the incomplete Beta function is now:

B(ñ; є, є) ≈ 1
є
ñє(1 − ñ)є [1 − 2є ln(1 − ñ) + є2 ln2(1 − ñ) − 2 є2 Li2(ñ)] .

Putting everything together, we have (adding the factor in front from Equa-
tion 7.69):

− αs
2π
Γ(1−є)Γ(1−є)Γ(2є) 1

є
(n2K
4
µ2

η2
)є [1 + 2 є ln(−2nK ⋅nJ

n2K
) + є2B̃] , (7.87)
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with

B̃ = ln2 (−2nK ⋅nJ
n2K

) − 2Li2 (2nK ⋅nJ + n2K2nK ⋅nJ ) .

Giving the �nal result:

2-Gluon Blob Connecting an O�-lc Segment to an On-lc Segment

W JK
1 1 ∣ 1

2 LC
= − αs

4π
[ 1
є2
+ 1
є
(ln (nK ⋅nJ)2

n2K
+ ln µ2

η2
) + �n.] , (7.88)

where the �nite terms are given by:

ln2 (−nK ⋅nJ
2

) − ln2 n2K
4
+ 1
2
(ln n2K

4
− ln µ2

η2
)2

+ ln (nK ⋅nJ)2
4

ln µ
2

η2
− 2Li2 (2nK ⋅nJ + n2K2nK ⋅nJ ) + π2

2
(7.89)

To conclude: general results are not that straightforward to calculate as theymight
seem at �rst sight, because the integrals at hand are quickly getting involving. On
the other hand, once calculated in a given gauge, they never have to be calculated
again as the results can be easily applied to any Wilson line structure using the
framework developed in the previous chapter.



8
INTRODUCTION TO TMDS

In this chapter, we will give a brief review of the basics of the TMD formalism.We
investigate situations where the common collinear factorisation as introduced
in Sections 5.2 and 5.3 is no longer adequate, and has to be replaced by a new
factorisation approach that introduces transverse momentum dependence in the
PDF. ¿e main goal is to have a good description for processes that are not fully
inclusive, but where e.g. a �nal hadron is identi�ed. In such a process we cannot
integrate over k⊥ because the �nal hadron will have a manifest k⊥-dependence.
We start this chapter with a revision of DIS, where we now can construct a

gauge-invariant operator de�nition for the PDFs.¿enwemove to a less inclusive
experimental setup, viz. SIDIS, and introduce PDFs that are k⊥-dependent, the
so-called TMDs, and construct operator de�nitions for these as well. In the last
section of this chapter, we investigate the evolution of TMDs, and construct
equations that will be used similarly to the DGLAP equations in the collinear
case.
As always, we don’t go too much into detail but try to give a broad picture.

¿e formalism of TMDs has gone through a lot of evolution in twenty years. ¿ey
were originally introduced in e.g. [43–47], later adapted into a gauge-invariant
approach [48–56], and the most recent de�nitions are found in e.g. [33, 57–64].
For a good treatment of the renormalisation of TMDs, see e.g. [65–70].

8.1 revision of dis

Before we start with the investigation of the TMD framework, we will review DIS
in a more formal way. ¿is will allow us to construct gauge-invariant operator
de�nitions for the PDFs, which will show to be indicative for the construction of
TMDs later on.

229
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Operator De�nition for PDFs

As we have shown in Section 5.1, we can assume that the photon scatters o� a
quark withmassm inside the proton, ifQ2 is su�ciently large.¿e �nal state can
therefore be split in a quark with momentum p and the full remaining state with
momentum pX . Constructing the (unpolarised) hadronic tensor (Equation 5.32)
for this setup is straightforward. First we remark that pulling a quark out of the
proton at a spacetime point (0+, 0−, 0⊥) is simply ψα(0) ∣P⟩. ¿en we construct
the diagram for the hadronic tensor, the so-called ‘handbag diagram’, step-by-
step:

X
k = ⟨X∣ψα(0) ∣P⟩ ,

X

p

k
ν

= uλβ(p) (γν)βα ⟨X∣ψα(0) ∣P⟩ ,
p

k k
ν µ

∼ [γµ (/p +m) γν]βα ⟨P∣ψβ(0) ∣X⟩ ⟨X∣ψα(0) ∣P⟩ ,
where we omitted the prefactor, sums and integrations over X and p and the
δ-function. Including these, the full hadronic tensor is given by

W µν = 1
4π∑q e2q ∑∫

X
∫ d3p(2π)32p0 ∫d4z ei(P+q−pX−p)⋅z

× [γµ (/p +m) γν]βα ⟨P∣ψβ(0) ∣X⟩ ⟨X∣ψα(0) ∣P⟩ , (8.1)

where∑∫ is de�ned in Equation 5.35. Next we replace the integral over p with an
on-shell condition

∫ d3p(2π)32p0 → ∫ d4p(2π)4 δ+(p2 −m2) ,
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where δ+ is de�ned in Equation A.57. We introduce the momentum k = p − q,
giving

W µν = 1
4π∑q e2q ∑∫

X
∫ d4k(2π)3 δ+((k + q)2 −m2) ∫d4z ei(P−k−pX)⋅z

× [γµ (/k + /q +m) γν]βα ⟨P∣ψβ(0) ∣X⟩ ⟨X∣ψα(0) ∣P⟩ .
Now the next steps are the same as in Equation 5.33, using the translation operator
and the completeness relation:

Hadron Tensor and Quark Correlator

W µν = 1
2∑q e2q ∫d4k δ+((k + q)2) Tr(Φq γµ (/k + /q) γν) , (8.2a)

Φq
αβ

N= ∫ d4z(2π)4 e−i k⋅z ⟨P∣ψβ(z)ψα(0) ∣P⟩ . (8.2b)

Φ is the quark correlator, which will be used as a basic building brick to
construct PDFs. Note that its Dirac indices are de�ned in a reversed way, this is
deliberately to set the trace right. ¿is result is quite a general result, valid for a
range of processes.
Using Equation 5.13 and neglecting terms ofO(1/Q), we can approximate the

δ-function in Equation 8.2a as

δ((k + q)2) ≈ P+ δ(ξ − x) ,
which again sets ξ ≡ x as in the FPM. ¿is then gives

W µν ≈ 1
4∑q e2q Tr(Φq(x) γµ P+

P ⋅q (/k + /q) γν) , (8.3)

where the integrated quark correlator is de�ned as

Φ(x) = ∫dk −d2k⊥ Φ(x , k−, k⊥) ,
= 1
2π ∫dz − e−i xP+z− ⟨P∣ψβ(0+, z−, 0⊥)ψα(0) ∣P⟩ . (8.4)

A last simpli�cation that we can make is to assume that the outgoing quark is
moving largely in theminus direction; kµ+qµ ≈ k−+q−.¿is is easily understood
in the in�nite momentum frame, where the quark ricochets back a er being
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struck head-on by the photon. However, it is a valid simpli�cation in any frame,
which can be shown by making a 1

Q expansion ofW µν.
With this assumption we get

P+
P ⋅q (/k + /q) ≈ γ+ P+P ⋅q (k2 + k2⊥

2ξP+ + q−) ,

≈ 1 ,
giving the �nal result for the unpolarised hadron tensor in DIS at leading twist
(this means up toO( 1

Q )):
W µν ≈ 1

4∑q e2q Tr(Φq(x) γµγ+γν) . (8.5)

Now let us investigate the unintegrated quark correlator Equation 8.2b a bit
deeper. Since it is a Dirac matrix, we can expand it in function of Lorentz
vectors, pseudovectors and Dirac matrices. ¿e variables on which it depends
are pµ , Pµ and Sµ (the latter is a pseudovector in the case of fermionic hadrons).
Our basis is then (see Equation A.28) spanned by

{pµ , Pµ , Sµ}⊗ {1, γ5, γµ , γµγ5, γµν} ,
where γµν = γ[µγν]. ¿e next steps go completely analogously to our derivation
of the structure functions from the hadron tensor in Subsection A More Formal
Approach on page 127 and onwards. ¿e conditions to satisfy are

Hermiticity: Φ(p, P, S) ≡ γ0Φ†(p, P, S)γ0 , (8.6a)
Parity: Φ(p, P, S) ≡ γ0Φ(p̃, P̃,−S̃)γ0 . (8.6b)

For instance the integrated quark correlator can be expanded up to leading twist
as

Φ(x , P, S) = 1
2
( f1(x)γ− + g1L(x)SLγ5γ− + 1

2
h1(x) [/ST , γ−] γ5) , (8.7)

where the three integrated PDFs f1, g1L and h1 are the unpolarised resp. helicity
resp. transversity distributions. ¿ey can be recovered from the quark correlator
by projecting on the correct gamma matrix:

f1 = 1
2
Tr(Φ γ+) , (8.8a)

g1L = 1
2
Tr(Φ γ+γ5) , (8.8b)

h1 = 1
2
Tr(Φ γ+iγ5) . (8.8c)
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Gauge Invariant Operator De�nition

A general Dirac �eld transforms under a non-Abelian gauge transformation as
(see Equation 2.47a):

ψ(x)→ ei gα
a(x)taψ(x) (8.9a)

ψ(x)→ ψ(x) e−i gαa(x)ta . (8.9b)

As a result, the quark correlator is not gauge-invariant:

Φ → ∫ d4z(2π)4 e−i k⋅z ⟨P∣ψβ(z) e−i gαa(z)taei gαa(0)taψα(0) ∣P⟩ .
But we know from Equation 6.4d that a Wilson line U(x ; y) transforms as

U(x ; y) → ei gα
a(x)ta U(x ; y) e−i gαa(y)ta .

Hence the following de�nition for the quark correlator is gauge-invariant:

Gauge Invariant Quark Correlator

Φ def= ∫ d4z(2π)4 e−i k⋅z ⟨P∣ψβ(z) U(z ; 0)ψα(0) ∣P⟩ . (8.10)

Note that the gauge transformation of U only depends on its endpoints. Al-
though the latter are fully �xed by the quark correlator, there is still freedom in
the choice of the path, in�uencing the result. ¿e gauge-invariant correlator is
thus path dependent, because of the path dependence of the underlying Wilson
line. ¿is will play a big role when working with the k⊥-dependent correlator,
which we will investigate further in Section 8.2.
Although the requirement of gauge invariance for the correlator leaves the path

unspeci�ed, it is the precise development of factorisation proofs that uniquely
dictates which path should be used in the de�nition of PDFs. For the integrated
quark correlator the path is separated along the z− direction, as in Equation 8.4,
which leads to a straightforward Wilson line structure:¹

Φ(x) = 1
2π ∫dz− e−i xP+z− ⟨P∣ψβ(0+, z−, 0⊥) U−(z ; 0)ψα(0) ∣P⟩ ,

U−(z ; 0) = Pe−i g
z−
∫
0
dλ A+(0+ , λ, 0⊥)

(because n−⋅A = A+).
1 In the context of PDFs, Wilson lines are commonly called gauge links. We won’t use this termino-
logy in this thesis.
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a) b)

Figure 8.1: a) ¿e gauge invariant quark correlator function, with a cut Wilson line.
b) ¿eWilson lines inside the de�nition of the correlator account for the
resummation of so gluons.

In the Light-Cone gauge, we have A+ = 0 and thus U− = 1, reducing the quark
correlator to the de�nition in Equation 8.4. As long as one stays in the A+ = 0
gauge, it is perfectly valid to neglect the Wilson line inside the PDFs. ¿e line
is a �nite line, so using the transitivity property we can split it at +∞ (see e.g.
Equation 6.47) and write it as:

U−(z ; 0) = [U−(+∞ ; z)]† U−(+∞ ; 0) . (8.11)

It is common to draw the Wilson line as a �nite line being cut. Following the
discussion on page 188, we know that the cut passes in between two semi-in�nite
lines, but we keep the representation of a cut �nite line for convenience. ¿is is
illustrated in Figure 8.1. Remember from Equation 6.100 that a quark dressed
with a Wilson line can be considered an eikonal quark, essentially being a
quark with so and collinear gluon resummation. ¿e physical interpretation
for the quark correlator is nothing di�erent: it represents all so and collinear
interactions between the struck quark and the proton.
We inserted the Wilson line somewhat ad-hoc: we were looking for an object

having the correct transformation properties to make the quark correlator gauge
invariant, and the Wilson line happens to be such an object. It is however not so
di�cult to prove this in a more formal way, using the the eikonal approxima-
tion. Consider the diagram in Figure 8.2, where one so gluon before the cut
connects the struck quark with the blob. ¿e hadronic tensor is then (see also
Equation 8.5):

W µν ∼∑
q
e2q
1
2
Tr(ΦA

ρ (k, k − l) γµγ+γρ /p − /l +m
(p − l)2 −m2 + iєγν) ,

where the quark-quark-gluon correlator is given by

ΦA(k, k− l) = 1
2 ∫

d4z(2π)4 d4u(2π)4 e−i k⋅ze−i l ⋅(u−z) ⟨P∣ψβ(z) gAρ(u)ψα(0) ∣P⟩ .
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k − l l

p − l p

Figure 8.2: A �rst order correction to the PDF.

Remember that we have an on-shell quark so that we can use the eikonal ap-
proximation. ¿e γ+ is what’s le of the real quark, a er making the sum over
polarisation states:

∑us(p)us(p) = /p +m → p−γ+ , (8.12)

so we can use γ+ as though it were an u(p) on which to perform the eikonal
approximation (as in Equation 6.95). ¿en we can make the approximation

γ+γρ /p − /l +m
(p − l)2 −m2 + iє ≈ γ+ −nρ

n ⋅ l − iє . (8.13)

¿is is indeed a Wilson line propagator. An important remark: the de�nition ofU†(+∞ ; z) also incorporates an exponential coming from the Feynman rule for
the external point. ¿is exponential has been extracted from U (it is e−i xP+z−),
but this remains valid by momentum conservation. ¿e choice to extract the
exponential from the Wilson line is by historic convention.
It is straightforward to generalise this to any number of gluons, where gluons

on the le of the cut will be associated with a line from 0 to +∞, and gluons on
the right of the cut with a line from +∞ to z. In other words:

W µν ∼∑
q
e2q
1
2
Tr(Φρ(x) γµγ+γν) ,

where now the quark-quark-gluon correlator is resummed to all orders:

Φ = 1
2π ∫dz− e−i xP+z− ⟨P∣ψβ(0+, z−, 0⊥) U−†(+∞ ; z) U−(+∞ ; 0)ψα(0) ∣P⟩ . (8.14)

¿is is indeed the anticipated result. Using Equation 8.8a, we can give a gauge-
invariant formulation of the unpolarised integrated quark parton density func-
tion:
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X

Figure 8.3: Boson-gluon fusion in DIS.

Unpolarised Collinear Quark pdf

fq/p(x) = 1
4π ∫dz− e−i xP+z− ⟨P∣ψ(z−) U−†(+∞ ; z)γ+ U−(+∞ ; 0)ψ(0) ∣P⟩ , (8.15)

where the subscript in fq/p is a common convention to denote “the integrated
quark PDF for a quark with �avour q inside a proton”.
But what about the gluon PDF? Until now we totally ignored the possibility

of the photon hitting a gluon inside the proton, because it is a higher order
interaction. But while we are moving towards a more realistic approach of QCD,
we cannot ignore gluon densities any further. A photon can hit a gluon by
interchanging a quark.¿is is the boson-gluon fusion process mentioned before,
and is illustrated in Figure 8.3. To construct the integrated gluon PDF, we start
in the light-cone gauge A+ = 0 such that we can ignore Wilson lines for now.
¿ere is a constraint equation on A− relating it to the transverse gauge �eld,
implying that the latter are the only independent �elds. ¿en following the
same derivation as in Subsection Operator De�nition for PDFs on page 230 and
onwards, we �nd (see [71] for the original derivation):

fg/p(ξ) = 1
2π ∫dz− ξP+ e−i ξP+z− ⟨P∣Aia(z−)Aia(0) ∣P⟩ .

¿e factor ξP+ is typical for �elds with even-valued spin. To make this gauge
invariant, we cannot simply insert a Wilson line as before, because the gauge
�elds transform with an extra derivative term. However, the gauge �eld density
Fµν transforms without such a derivative. We can easily relate the two:

Faµν = ∂µAaν − ∂νAaµ + g f abcAbµAcν
Fa+i = ∂+Aai (A+ = 0)
⇒ Aai = 1

∂+ F+i , (8.16)
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which we can use to rede�ne the gluon PDF. Inserting a Wilson line (in the
adjoint representation, as it has to couple to gluons) then gives our �nal result
for the integrated gluon PDF:

Unpolarised Collinear Gluon pdf

fg/p(ξ) = 1
2π ∫ dz

−
ξP+ e−i ξP+z− ⟨P∣ F+i b(z−) UA ba(z− ; 0) F+i a(0) ∣P⟩ . (8.17)

¿ere are a few subtleties when dealing with gluon PDFs (like the di�erence
between the Weizsäcker-Williams and dipole gluon distributions, see [72]), but
discussing these issues would lead us too far away from our main topics of
interest.

8.2 semi-inclusive deep inelastic scattering

Collinear factorisation is a well-explored and experimentally veri�ed framework,
but it only works when integrating out all �nal states. Keeping these �nal states,
i.e. fully exclusive DIS, would maximally break collinear factorisation. In this
section we investigate an intermediate solution, where we identify exactly one
hadron in the �nal state, and integrate out all other states. ¿is is called semi-
inclusive deeply inelastic scattering (SIDIS). Because there is no restriction on
the momentum of the �nal hadron, it can acquire a transversal part.
To put it more formally: in DIS we were able to describe our process on a

plane, because it only has two independent directions, viz. the direction of the
incoming proton (which is parallel to the incoming electron) and the direction
of the outgoing electron.We have chosen a frame where the plus andminus com-
ponents of the momenta span this plane, such that the transversal components
are zero. In SIDIS a third direction emerges from the momentum of the identi�ed
hadron, which doesn’t necessarily lie in the plane spanned by the incoming and
outgoing electron. In this frame, the �nal hadron will have a non-zero transverse
momentum component.
As we will discover in this section, the breaking of collinear factorisation is not

an insurmountable task to overcome; we can adapt our factorisation framework
to allow for k⊥-dependence, such that the convolution between the hard part and
the PDF—now also dependent on k⊥, and thus from now on called a transverse
momentum density (TMD)—is a convolution over k⊥. In this thesis we will not
delve into the technicalities for k⊥-factorisation, as they are quite intricate and
would lead us too far.
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Figure 8.4: Kinematics of semi-inclusive deep inelastic electron-proton scattering.

Conventions and Kinematics

Di�erent conventions exist in literature concerning the naming of the di�erent
TMDs and azimuthal angles. We will follow the Trento conventions, as de�ned
in [56]. Furthermore, concerning the labelling of momenta, we will follow the
same convention as used in [59]. In a SIDIS process, we have an electron with
momentum l that scatters of a proton with momentum P. ¿e mediated photon
has momentum q, and hits a parton with momentum k, that has momentum
p a er scattering (i.e. p = k + q). ¿e struck parton then fragments into a
hadron with momentum Ph . ¿is is shown in Figure 8.4. Note that we now have
two density functions; one that represents the probability to �nd a parton in
the proton (the TMD), and one that represents the probability for a parton to
fragment in a speci�c hadron (the fragmentation function (FF)). For simplicity
we assume the �nal hadron to be a spin 0 hadron, like a pion. We use x and
y as de�ned in Equation 5.4 and Equations 5.5, and we de�ne a new Lorentz
invariant z:

z = P ⋅Ph
P ⋅q . (8.18)

¿e value for z can be measured in experiment; it will approximate the fractional
momentum of the detected hadron relative to its parent parton, in the same way
x approximates the fractional momentum of the struck quark relative to the
parent proton. Intuitively, we can add an FF Dq(z) to Equations 5.47, giving a
PM collinear estimate for F2 in SIDIS:

FPM2 =∑
q
e2q x f q(x)Dq(z) , (8.19)

which gives us using Equation 5.43 a �rst estimate for the SIDIS cross section:

d3σ
dx dy dz

≈ 4πα2 s
Q4 (1 − y + y2

2
)∑

q
e2q x f q(x)Dq(z) . (8.20)
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Figure 8.5: In the rest frame of the proton, Ph⊥ is the projection of Ph onto the plane
perpendicular to the photon momentum. ¿e azimuthal angle ϕh is the
angle between Ph⊥ and the lepton plane.

Another important variable is the azimuthal angle ϕh, which is de�ned as

cos ϕh = − l̂ ⋅Ph∣Ph⊥∣ ,
where ∣Ph⊥∣ is the length of the transversal component of the momentum of the
outgoing hadron:

∣Ph⊥∣ =√−g⊥ µν Pµh Pνh .
¿e geometrical construction of the azimuthal angle is shown in Figure 8.5. We
can now construct the cross section:

d6σ
dx dy dz dϕh dP2h⊥ = α2

2z x s Q2 LµνW
µν , (8.21)

where we approximated

d3Ph ≈ dz d2Ph⊥ Ehz .
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Structure Functions

¿e hadronic tensor is de�ned as (compare it to Equation 5.33):

W µν N= 4π3∑∫
X

δ(4)(P + q − pX − Ph) ⟨P∣ J†µ(0) ∣X , Ph⟩ ⟨X , Ph ∣ Jν(0) ∣P⟩ ,
= 1
4π ∫d4r eiq⋅r ⟨P∣ J†µ(r) ∣Ph⟩ ⟨Ph ∣ Jν(0) ∣P⟩ . (8.22)

As we will see in Subsection Transverse Momentum Dependent PDFs on page
242 and onwards, this is a bit simplistic as we cannot integrate out the X states
without a�ecting Ph, but the general idea is correct. Note that because we do
not integrate over Ph (we measure it in the �nal state), we cannot drop the state∣Ph⟩ ⟨Ph ∣. ¿is leads to an important di�erence as compared to the hadronic
tensor in DIS, viz. that we cannot naively impose the same constraints as in
Equation 5.38a, because time-reversal invariance isn’t automatically satis�ed. We
can restore this invariance by changing it slightly, namely we require invariance
under the simultaneous reversal of time and of initial and �nal states.
For the parametrisation of the hadronic tensor, we use the same orthonormal

basis as before, viz. Equations 5.27, but nowwe have an additional physical vector
at our disposal, which we can use to construct the fourth basis-vector:

ĥµ N= gµν⊥ Ph ν∣Ph⊥∣ . (8.23)

ĥµ is a spacelike unit vector:

ĥµ ĥµ = −1 . (8.24)

Watch out, as although we normalised this vector, it is not fully orthogonal! We
have as expected

ĥ ⋅ t̂ = 0 , ĥ ⋅q̂ = 0 ,
but it is not orthogonal to l̂ µ:

ĥ ⋅ l̂ = cos ϕh . (8.25)

¿is is a deliberate choice, because now we have the azimuthal dependence
hard-coded inside our new basis. Note that

− l̂ µ⊥ ε⊥ µν ĥν = sin ϕh , (8.26)
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which implies that ϕh is fully de�ned in the region 0 . . . 2π. We can parametrise
W µν in the same way as we did in Equation 5.39, now with ĥ added. ¿is gives
(for the unpolarised case):

W µν = z
x
[−gµν⊥ FUU ,T + t̂µ t̂ν FUU ,L + 2t̂(µ ĥν) Fcos ϕhUU

+ (2ĥµ ĥν + gµν⊥ ) Fcos 2ϕhUU − 2i t̂[µ ĥν] Fsin ϕhLU ] (8.27)

¿e subscript UU denotes a structure function for an unpolarised beam on an
unpolarised target, while the labelling in function of ϕh will be motivated by
contracting with the lepton tensor Equation 5.31:

LµνW µν = 4 z s
y

[(1 − y + y2

2
) FUU ,T +√

1 − y (2 − y) cos ϕh Fcos ϕhUU

+ (1 − y)FUU ,L + (1 − y) cos 2ϕh Fcos 2ϕhUU + λ y√1 − y sin ϕh Fsin ϕhLU ] .
As anticipated, Fcos ϕhUU has a factor cos ϕh in front, and so on. Note that F

sin ϕh
LU is

the structure function for a longitudinally polarised lepton beam (on an unpo-
larised proton target), which is con�rmed by the factor λ in front (originating
from the last term in the lepton tensor Equation 5.31). ¿e cross section is then
given by Equation 8.21:

d6σ
dx dy dz dϕh dP2h⊥ = 2α2

x y Q2 [(1 − y + y2

2
)FUU ,T + (1 − y)FUU ,L

+ λ y√1 − y sin ϕh Fsin ϕhLU + (1 − y) cos 2ϕh Fcos 2ϕhUU+ √
1 − y (2 − y) cos ϕh Fcos ϕhUU ] , (8.28a)

d3σ
dx dy dz

= 4πα2

x y Q2 [(1−y + y2

2
)F̃UU ,T + (1−y)F̃UU ,L] , (8.28b)

where we integrated over Ph⊥ in the last step, which got rid of the ϕh-dependence.
¿e tilde structure functions are the integrated versions:

F̃UU ,T(x , z,Q2) = ∫d2Ph⊥ FUU ,T(x , z,Q2, Ph⊥) , (8.29)

and similarly for F̃UU ,L. From the logical demand

∑
h
∫dz z d3σSIDIS

dx dy dz
≡ d2σDIS
dx dy

,
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Figure 8.6: Leading order diagram for the hadronic tensor in SIDIS.

we can relate the SIDIS structure functions to the DIS structure functions:

∑
h
∫dz z F̃UU ,T(x , z,Q2) ≡ FT(x ,Q2) , (8.30a)

∑
h
∫dz z F̃UU ,L(x , z,Q2) ≡ FL(x ,Q2) . (8.30b)

Transverse Momentum Dependent PDFs

We can construct the diagram for the hadronic tensor following the same step-
by-step procedure we used in DIS (see Subsection Operator De�nition for PDFs
on page 230 and onwards), this time adding a fragmentation function, as is
illustrated in Figure 8.6. Remember that the amplitude for extracting a quark
from a proton with momentum P is

ψα(0) ∣P⟩ .
¿en the amplitude for a quark fragmenting in a hadron with momentum Ph is
of course

⟨Ph ∣ψα(0) .
So we simply have:

X
k
ν

= (γν)βα ⟨X∣ψα(0) ∣P⟩ ,
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X

Y
p

k
ν

Ph

= ⟨Y , Ph ∣ψβ(0) ∣0⟩ (γν)βα ⟨X∣ψα(0) ∣P⟩ .

¿eQED-vertex adds a δ-function, andmaking the �nal-state cut adds two �nal-
state sums (using the notation de�ned in Equation 5.35) and two δ-functions:

W µν = 1
2∑q e2q∫d4k d4p∑∫X ∑∫Y δ(4)(P−k−pX) δ(4)(Ph+pY−p) δ(4)(k+q−p)

× ⟨P∣ψ ∣X⟩ γµ ⟨0∣ψ ∣Y , Ph⟩ ⟨Y , Ph ∣ψ ∣0⟩ γν ⟨X∣ψ ∣P⟩ .
Next we will separate the proton content from the fragmentating hadron content,
applying on each the same steps as before (expressing the δ-function as an
exponential, using the translation operator and the completeness relation).¿en
we get the general leading order result:

Quark Correlator and Quark Fragmentator

W µν = 1
2∑q e2q ∫d4k d4p δ(4)(k+q−p) tr(Φ(k, P)γµ∆(p, Ph)γν) , (8.31a)

Φαβ(k, P) = ∫ d4r
16π4

e−i k⋅r ⟨P∣ψβ(r)ψα(0) ∣P⟩ , (8.31b)

∆αβ(p, Ph) = ∫ d4r
16π4

e−i p⋅r ⟨0∣ψα(0) ∣Ph⟩ ⟨Ph ∣ψβ(r) ∣0⟩ . (8.31c)

Next we choose a frame where the parton in the TMD carries a fraction ξ of the
proton’s plus momentum, and where the �nal hadron carries a fraction ζ of the
fragmentating parton’s minus momentum, i.e.

kµ = (ξP+, k2 + k2⊥
2 ξP+ , k⊥) , pµ = (ζ p2 + p2⊥

2P−h ,
P−h
ζ
, p⊥) , (8.32)

such that we can write (neglecting terms that are 1
Q suppressed):

δ(4)(k + q − p) ≈ δ(k+ + q+) δ(q− − p−) δ(2)(k⊥ + q⊥ − p⊥) ,
≈ 1
P+P−h δ(ξ − x) δ( 1

ζ
− 1
z
) δ(2)(k⊥ + q⊥ − p⊥) .
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We transform the integral measures as

d4k = P+dξ dk− d2k⊥ , d4p = dp+ dζ P−h
ζ2
d2p⊥ .

¿en we can rewrite the hadronic tensor as:

W µν =∑
q
e2q ∫d2k⊥ z tr(Φ (x , k⊥, P) γµ∆ (z, k⊥+q⊥, Ph) γν) , (8.33)

where we de�ned the k⊥-dependent correlators as:
Φ(ξ, k⊥, P) N= ∫ d3r8π3 e−i xP+r−+i k⊥⋅r⊥ ⟨P∣ψ(0+, r−, r⊥)ψ(0) ∣P⟩ , (8.34a)

∆(z, p⊥, Ph) N= 1
2 z ∫

d3r
8π3

e−i P
−
h
z r++i k⊥⋅r⊥ ⟨0∣ψ(0) ∣Ph⟩ ⟨Ph ∣ψ(r+, 0−, r⊥) ∣0⟩ .

(8.34b)

We can parametrise the quark correlator and fragmentator functions in terms
of TMDs and FFs, precisely as we did with the quark correlator in the case of
DIS. Keeping only the contributions at leading-twist, we obtain the following
unpolarised TMDs and FFs [58]:

Φ(ξ, k⊥) = 1
2
f1 (ξ, k⊥) γ− + i

2
h⊥1 (ξ, k⊥) /k⊥mp

γ−, (8.35a)

∆(ζ , k⊥) = 1
2
D1 (ζ , k⊥) γ+ + i

2
H⊥1 (ζ , k⊥) /k⊥mh

γ+. (8.35b)

¿e correlator is built from the unpolarised TMD f1 (ξ, k⊥) and the so-called
Boer-Mulders TMD h⊥1 (ξ, k⊥). ¿e fragmentator is built from the unpolarised
TMD FF D1 (ζ , k⊥) and the so-called Collins function H⊥1 (ζ , k⊥). If we plug this
result in Equation 8.21 and Equation 8.28b, and use the approximation

q⊥ ≈ −Ph⊥z , (8.36)

we get the factorisation formula for the unpolarised transversal structure func-
tion in SIDIS:

Factorisation in sidis

FUU ,T =∑
q
e2q x f

q
1 ⊗ Dq

1 . (8.37)

where we de�ned the convolution over transverse momentum as

f q1 ⊗ Dq
1 = ∫d2k⊥ d2p⊥ δ(2)(k⊥−p⊥− 1zPh⊥) f q1 (x , k⊥)Dq

1 (z, p⊥) , (8.38)
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Figure 8.7: Structure of the Wilson lines in the TMD de�nition.

which is a regular convolution with ‘open’ variable 1
zPh⊥. Other structure func-

tions arisewhen convoluting polarised TMDs (which arisewhen the target hadron
is polarised), which we don’t treat in this thesis.
¿is factorisation formula is however not yet fully rigorous, and we will im-

prove it in Section 8.3.

Gauge Invariant De�nition for TMDs

Just as was the case in the previous section for DIS, our TMDs and FFs de�ned so
far (Equations 8.34) are not gauge invariant, and are only valid in the light-cone
gauge A+ = 0. Gauge invariance can be restored by inserting a Wilson line:

Φ(ξ, k⊥, P) = ∫ d3r8π3 e−i ξP+r−+i k⊥⋅r⊥ ⟨P∣ψ(r) U(r ; 0)ψ(0) ∣P⟩ , (8.39)

where now the space-time point separation no longer lies on the light-cone, i.e.
the Wilson line has to connect the point (0+, 0−, 0⊥) with the point (0−, r+, r⊥).
But a Wilson line is path-dependent, implying that di�erent path choices give
di�erent results. How do we choose a path, or at least motivate our choice? Just
as was the case for the collinear PDF, the gauge invariance requirement doesn’t
put any constraints on the path. ¿e correct path can however be retrieved by
explicit calculations of a full process. Di�erent processes might require di�erent
paths, that can be quite complex (see e.g. [73–75]). ¿is is an active topic of
interesting research these days, as it is intimately bound to the validity of TMD
factorisation.
In the collinear case we were able to interpret the Wilson line as a colour

rotation on the quark, making it an eikonal quark. We then split the Wilson
line into two parts at in�nity. ¿is splitting had two advantages, �rst that we
could associate a line with the quarks on each side of the cut diagram separately,
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and second that we could use easy Feynman rules. In the TMD de�nition for
unpolarised SIDIS, we can do something analogous. We add a light-like line to
each quark:

U−(+∞− , 0⊥ ; 0− , 0⊥) ψ(0+, 0−, 0⊥) , (8.40a)

ψ(0+, r−, r⊥) U−†(+∞− , r⊥ ; r− , r⊥) . (8.40b)

But now we have because of the transverse separation

U(r ; 0) ≠ U−†(+∞− , r⊥ ; r− , r⊥) U−(+∞− , 0⊥ ; 0− , 0⊥) .
So we need a Wilson line to connect the transverse ‘gap’, i.e.

U(r ; 0) = U−†(+∞− ; r−) U⊥(r⊥ ; 0⊥) U−(+∞− ; 0−) .
We will split this line at +∞⊥ for the same reasons as before. Adding this to
Equations 8.40 gives:

U⊥(+∞− ,+∞⊥ ;+∞− , 0⊥) U−(+∞− , 0⊥ ; 0− , 0⊥) ψ(0+, 0−, 0⊥) , (8.41a)

ψ(0+, r−, r⊥) U−†(+∞− , r⊥ ; r− , r⊥) U⊥†(+∞− ,+∞⊥ ;+∞− , r⊥) , (8.41b)

leading to the �nal de�nition for the gauge invariant TMD quark correlator:

Gauge Invariant tmd Quark Correlator

Φ = ∫ d3r8π3 e−i xP+r−+i k⊥⋅r⊥ ⟨P∣ψ(r) Ũ†(+∞ ; r) Ũ(+∞ ; 0)ψ(0) ∣P⟩ , (8.42a)

Ũ(+∞ ; 0) = U⊥(+∞− ,+∞⊥ ;+∞− , 0⊥) U−(+∞− , 0⊥ ; 0− , 0⊥), (8.42b)

Ũ†(+∞ ; r) = U−†(+∞− , r⊥ ; r− , r⊥) U⊥†(+∞− ,+∞⊥ ;+∞− , r⊥). (8.42c)

What about the physical interpretation? Consider again the one-gluon exchange
as depicted in Figure 8.2. We saw in Equation 8.13 that the net contribution for a
so or collinear gluon is a factor

g ∫ d4 l
16π4

/A /p − /l(p − l)2 + iε ≈ −g ∫ d4 l
16π4

n ⋅A
n ⋅ l − iε , (8.43)

where l µ is the momentum of the exchanged photon and nµ = pµ∣p∣ the direction
of the outgoing quark. We were able to make this simpli�cation because in the
correlator this correction stands to the right of a factor u(p), such that we can
make use of the fact u(p)/p = 0:

u(p) /A/p = u(p) ( /A/p + /p /A) = 2u(p)p⋅A .
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a) b)

Figure 8.8: a) In SIDIS, the longitudinal Wilson line inside the fragmentation function
represents a resummation of so and collinear gluons connected to the
incoming quark. b) In Drell-Yan, the longitudinal Wilson line inside one
TMD represents a resummation of so and collinear gluons connected to
the parton extracted from the other TMD.

As we saw before, this contribution calculated to all orders leads to the light-like
Wilson line. In the collinear case this was the end of the story. But now that we
are in the TMD case, we cannot simply take the exchanged gluon to be collinear,
instead, we need to add to Equation 8.43 a term

g ∫ d4 l
16π4

/A/l
2p⋅ l + l2⊥ − iε ≈ g ∫

d2 l⊥
4π2

γµ/l⊥
l2⊥ − iεA

µ⊥(0+,∞−, l⊥)
It is not so straightforward to prove (see e.g. [55]), but this parts will sum up
to a transversal Wilson line. So in the end, inside the TMD we have both a
resummation of collinear gluons—coming from the line parts U− and U−†—and
a resummation of so transversal gluons, coming from the Ũ and Ũ† parts.
Note however that by choosing an appropriate gauge, it is possible to cancel the
contribution of one type of these lines, e.g. in the LC gauge only the transversal
parts remain (with advanced or retarded prescriptions the LC gauge can cancel
the transverse segment as well). Of course, the same reasoning can be repeated
for the fragmentation function, but then the light-like Wilson lines will lie in
the plus direction. ¿is is illustrated in Figure 8.8a.
To end this section, we give an example for the use of Wilson lines in the

Drell-Yan process. In this setup, two protons (or a proton and an antiproton) are
collided and create a photon or weak boson by quark-antiquark annihilation.We
thus need two TMDs, which are both in the initial state. ¿e longitudinal part of
theWilson line used to make the TMD gauge invariant represents a resummation
of gluons connected to the parton struck from the other TMD. ¿is is illustrated
in Figure 8.8b. Because of the fact that the Wilson line now represents initial
state radiation, the line structure will be di�erent. More speci�cally, the path will
�ow towards −∞ before returning, as shown in Figure 8.9.¿is has an important
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(0+, 0−, 0⊥)
(0+, r−, r⊥)

(0+,−∞−, 0⊥)

(0+,−∞−,+∞⊥)

Figure 8.9: Structure of Wilson lines in the DY TMD de�nition. Because of the initial-
state interactions in DY, the direction of the Wilson line is reversed, going
now towards −∞.

consequence: two out of the eight (unpolarised and polarised) TMDs are T-odd
and will have a sign change with this line structure as compared to SIDIS (the
Boer-Mulders TMD from Equations 8.35 is an example). ¿is would imply that
TMDs are process-dependent, and not universal as they ought to be. So far it is
not experimentally veri�ed whether these T-odd TMDs have a non-zero value,
although there is a growing amount of evidence that they exist (in particular
the so-called Sivers function). ¿ey are not universal, but they are manageable
because the non-universality can usually be calculated (like the sign change in
DY w.r.t. SIDIS). ¿e latter is however not yet con�rmed by experiment.

8.3 evolution of tmds

One thing that remains to be de�ned beforewe can really use TMDs in experiment,
is their evolution. In the collinear case, the evolution of PDFs is fully governed
by the DGLAP equations. To do something similar for TMDs, we �rst have to take
a new look at our crude factorisation formula in Equation 8.37, because we will
have to adapt it due to the singularity structure of the TMDs involved.
As theWilson line structure is now such that the light-like lines do not overlap

(see Figure 8.7), we are le with overlapping LC divergences (originating from
the double pole in Equation 7.71) and additional IR divergences. ¿e latter can
be managed by extracting all so contributions into a so-called so factor S. It
is typically calculated as a v.e.v. of the complex square of two Wilson lines with
one cusp. ¿is is illustrated in Figure 8.10.
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so limitÐÐÐÐ→
n

ñ

n

ñ

Figure 8.10: In the so limit, all possible so contributions between the quark legs
are resummed into on-LCWilson line segments. ¿is gives rise to the so 
function as depicted on the right.

On the other hand, the LC divergences can be managed in di�erent ways. ¿e
most common way is to regulate the ‘on-LC-ness’ of the LCWilson line segment
by slightly putting it o�-LC and introducing a regulator ζ:²

ζ def= k ⋅n∣n∣ , (8.44)

that measures how much o�-LC the segment is. As always, k is the momentum
of the struck parton before the interaction, and n is the direction of the Wilson
line segment (the same direction as the struck quark a er the interaction). ¿e
on-LC segment is retrieved in the limit ζ →∞ (which is equivalent to n2 → 0).
A similar regulator is introduced for the LC-divergences in the FF:

ζh
def= p⋅ñ∣ñ∣ , (8.45)

¿ese two regulators will act as rapidity cut-o�s, so ening the overlapping
divergences. ¿e TMD and FF then gain an extra dependence on ζ resp. ζh:

f (x , k⊥, ζ , µ2) , D(z, p⊥, ζh , µ2) . (8.46)

Now we can give a rigorous de�nition for the factorisation of the SIDIS cross-
section:

Factorisation in sidis

∂2σγ∗p
∂z ∂q2⊥ ∼ ∣H(µ2F)∣2 ∫d2k⊥ d2p⊥ d2 l⊥ δ(2)(k⊥−p⊥+ l⊥+q⊥)

×∑
q
e2q f q(x , k⊥, ζ , µ2F)Dq(z, p⊥, ζh , µ2F)S(l⊥, µ2F) . (8.47)

¿is is illustrated in Figure 8.11. ¿e hard part is perturbatively calculable and

2 Not to be confused with the ζ momentum fraction in P−h = ζ p−, that is integrated over in the FF.
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f

S

D

H H

Figure 8.11: Factorisation in SIDIS: the bull diagram. All IR divergences are absorbed in
the so factor S, that hence only interacts with the TMD and FF. Note that
there is no real radiation coming from the hard part.

normalised:

∣H(µ2F)∣2 = 1 +O(αs) , (8.48)

and does not contain real radiation. ¿is factorisation formula is only valid at
small transverse momenta (of the order of the proton mass or smaller), and has
been proven at one loop and leading twist.³
¿e factorisation formula can be simpli�ed by Fourier transforming into

impact parameter space, as the δ-function makes that all densities depend on
the same impact parameter b⊥. Furthermore, it is convenient to rede�ne the
TMD and FF in order to absorb the so function:

f q(x , b⊥, ζ , µ2F) def=√
S(b⊥, µ2F) f q(x , b⊥, ζ , µ2F) , (8.49a)

Dq(z, b⊥, ζh , µ2F) def=√
S(b⊥, µ2F) Dq(z, b⊥, ζh , µ2F) . (8.49b)

¿ere are some subtleties in doing this—as one also has to divide out all self-
energy contributions—but we don’t delve into these technicalities. ¿e factorisa-
tion formula is then:

∂2σγ∗p
∂z ∂q2⊥ ∼ ∣H(µ2F)∣2 ∫d2b⊥ e−ib⊥⋅q⊥∑

q
e2q f q(x , b⊥, ζ , µ2F)Dq(z, b⊥, ζh , µ2F) . (8.50)

We can now derive evolution equations in a similar way as in the DGLAP case,
viz. by demanding that the cross section is independent on the factorisation
scale µF and the rapidity cut-o�s ζ and ζh. It can then be shown that:

3 In the regime with large transversal momenta, regular collinear factorisation can be applied.
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cs Evolution Equations for tmds and ffs

∂
∂ln ζ

ln f (x , b, ζ , µ) = K(b, µ) , (8.51a)

∂
∂ln µ

ln f (x , b, ζ , µ) = γF(ζ , µ) , (8.51b)

which are known as the Collins-Soper (CS) evolution equations. ¿e same
equations apply for D as well (with ζ replaced by ζh), as for any TMD or FF.
K(b, µ) is the CS kernel, and γF is the anomalous dimension of the TMD. ¿e
kernel is perturbatively calculable but only for small q⊥ (but this is something
we don’t mind, as at large q⊥ TMD-factorisation is broken anyway). ¿e kernel
and the anomalous dimension satisfy the following RGE:

cs Renormalisation Group Equation

∂K(b, µ)
∂ln µ

= ∂γF(ζ , µ)
∂ln ζ

= γK(αs) , (8.52)

where γK is the anomalous dimension of the kernel. It is easily calculated at
one-loop to equal:

γK = −2αs CF
π

+O(α2s ) . (8.53)

We will show in Section 11.4 that there is an easy relation between the anomalous
dimension of the kernel and the cusp anomalous dimension (where the latter is
introduced in Section 10.2):

γK ≡ −2Γcusp , (8.54)

where the factor 2 arises from the fact that there are 2 cusps in the squared
amplitude (between the incoming quark and the outgoing Wilson line).
We can solve the CS evolution equations for f :

f (ζ , b, µ) = f (ζ0, b, µ0) eK(b,µ0) ln ζ
ζ0
+ µ
∫
µ0
dln µ′ (γF(ζ ,µ′)−γK(µ′) ln ζ

µ′ )
, (8.55)

where the exponential factor evolves the TMD from (ζ0, µ0) to (ζ , µ).

About the Rapidity Cut-O�s

Before we end this chapter, we make a few remarks on the rapidity cut-o�s. First
we note that they have a signi�cant physical meaning, namely they disentangle
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di�erent gluon contributions and sort them in the right density, the TMD or the
FF. Let us illustrate this a bit more elaborately. Suppose the incoming quark is
in the LC plus direction, then the outgoing quark is in the LCminus direction.
Naively, we would assume that all radiation from the incoming quark goes into
the TMD, and all radiation from the outgoing quark goes into the FF:

But this is of course not true, as the Wilson line in the TMD is in the LCminus
direction, and resums gluons that are collinear to the incoming quark:

But a gluon that is radiated from the incoming quark ánd collinear to the in-
coming quark, is absorbed by the TMD’s evolution (following the same idea as
in Figure 5.10) and hence also enters the TMD:

So we conclude that it doesn’t matter from which line the gluon is radiated, but
that it is its direction that matters, i.e. collinear to the incoming quark. In other
words, all gluons radiated in the LC plus direction go into the TMD. A similar
reasoning can be applied to the FF, such that all gluons radiated in the LCminus
direction go into the FF. To know what to do with gluons that are not collinearly
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radiated, we look at their rapidity Y . ¿e LC plus direction is associated with
Y = +∞ and the LCminus direction with Y = −∞, so it is tempting to absorb
all gluons with positive Y into the TMD and all gluons with negative Y into the
FF. But then we are absorbing too much, because gluons with small rapidity
(positive or negative) are hard, and have to remain in the hard part. ¿is is
exactly what ζ and ζh do, as they separate these di�erent regions:

Y < ζh → FF , (8.56a)
ζh < Y < ζ → H , (8.56b)

ζ < Y → TMD , (8.56c)

from which also naturally follows

ζ ζh ≡ Q2 , (8.57)

because hard gluons are parameterised by Y ≤ Q. We can show this pictorially:

HFF TMD

Y

ζh ζ

Another remark about the rapidity cut-o�s is that—as we mentioned when
introducing them—there are di�erent ways to treat the LC divergences. ¿e
main reason why one would like to use a di�erent method is that calculations
with o�-LC segments are much more involving than with on-LC segments (as
we experienced ourselves when calculating the results in Equation 7.71 and
Equation 7.81).
One method is to adapt the renormalisation procedure to subtract the double

pole as well, as is commonly done withWilson loops (see Section 10.2). However,
as this has to be done consistently on all contributions of the TMD, it quickly
becomes quite cumbersome.
Another method—which is quite recent—is to extract besides the so factor

a collinear factor from the squared amplitude as well. It will have a similar
singularity structure, and all rapidity divergences cancel out when combining
diagrams.
Last, we discovered that by applying geometrical evolution on the TMD, the

area derivation (which lies at the basis of the geometric evolution) removes a
pole as well. ¿is is investigated in deep detail in Chapter 11.



9
QCD TOWARDS SMALL-x

In this chapter we will brie�y review the small-x framework, which describes the
behaviour of QCD in the asymptotic limit xB → 0. We will see how in this limit
the gluon density dominates, and satis�es evolution equations in x, the so-called
BFKL equations. ¿e gluon density grows exponentially without bound until it
would start violating causality. At this moment, gluon recombination e�ects
start to dominate and act as a damping e�ect on the exponential growth. ¿ey
manifest themselves as extra non-linear terms in the evolution equations, which
are then known as the BK equations, while the full framework that includes these
non-linear terms is known as saturation.
For further reading, see e.g. [76–78] for a general reading, [79–81] on the BFKL

equation, [82–85] on the BK equation, [86–93] on saturation and [94–104] for a
more present-day approach to saturation.

9.1 evolution in longitudinal momentum fraction

Let us now go back to the case of DIS, and instead of adding transversal mo-
mentum dependence, we investigate what happens in the small-x limit. As
we know, the DGLAP evolution equations are fully governed by the splitting
functions (see Equations 5.71):

Pqq(x) = CF 1 + x21 − x ,

Pqg(x) = 1
2
(x2 + (1 − x)2) ,

Pgq(x) = CF 1 + (1 − x)2
x

,

Pg g(x) = 2Nc ( x
1 − x + 1 − x

x
+ x(1 − x)) .

254
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x

Pgq

Pg g
Pg g
Pg g

x

Pg g

Pg g
Pg g
Pg g

Figure 9.1: Two typical ladder diagrams: at small-x only gluons survive, both in the
case of an initial quark or gluon.

It is clear that in the limit x → 0, only the singular terms in Pgq and Pg g remain:

Pgq(x) x→0ÐÐ→ CF
1
x
, (9.1a)

Pg g(x) x→0ÐÐ→ 2Nc
1
x
. (9.1b)

It doesn’t matter whether we start with a quark or a gluon, at small-x only the
splitting functions that result in a gluon remain. ¿is is illustrated in Figure 9.1,
which are known as ladder diagrams. ¿e small-x DGLAP evolution equations
are (see Equation 5.70):

∂
∂ln µ2

qi(x , µ2) = 0 , (9.2a)

∂
∂ln µ2

g(x , µ2) = αs
2π

1

∫
x

dξ
ξ

⎡⎢⎢⎢⎢⎣CF
ξ
x∑j q j (

x
ξ
, µ2) + 2Nc ξx g (xξ , µ2)

⎤⎥⎥⎥⎥⎦ . (9.2b)

We can then solve these for the gluon distribution:

xg(x , µ2) = Q̃(x , µ2) + αs Nc
π

µ2

∫
µ20

dln µ′2
1

∫
x

dξ
ξ

ξg (x
ξ
, µ′2) , (9.3a)

Q̃(x , µ2) = αs CF
2π

ln µ
2

µ20

1

∫
x

dξ ∑ q j (xξ ) . (9.3b)

Note that because of its vanishing energy evolution, the quark density has no
energy dependence at small-x.¿is also implies that Q̃ is negligible, as it remains
constant while g grows exponentially. So we can safely assume that in the small-x
limit the evolution of the gluon density is given by:
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xg(x , µ2) = αs Nc
π

µ2

∫
µ20

dln µ′2
1

∫
x

dξ
ξ

ξg (x
ξ
, µ′2) . (9.4)

¿is integral equation is of the so-called Fredholm type:

ϕ(x) = f (x) + λ b

∫
a

dy K(x , y)ϕ(y) ,
where λ < 1 is an expansion parameter. It is even of double-Fredholm type, as
this form holds in x and µ2 at the same time. Fredholm type integrals can be
solved by iteration (giving a Liouville-Neumann series). If we de�ne:

u0(x) = f (x) ,
u1(x) = ∫dy K(x , y) f (y) ,
u2(x) = ∫dy1 dy2 K(x , y1)K(y1, y2) f (y2) ,
. . . ,

the solution of a Fredholm type integral is given by

ϕ(x) ≡ ∞∑
i=0 λ

iui(x) . (9.5)

As the starting distribution for the gluon density we just take a constant:

f (x) = xg0(x , µ2) = C .
¿e Neumann series is hence given by (using λ N= αsNc

π ):

u0(x , µ2) ≡ C ,
u1(x , µ2) ≡ C

µ2

∫
µ20

dln µ′2
1

∫
x

dln ξ = C ln µ
2

µ20
ln 1
x
,

u2(x , µ2) ≡ C
µ2

∫
µ20

µ′2

∫
µ20

dln µ′2 dln µ"2
1

∫
x

1

∫
ξ1

dln ξ1 dln ξ2 = C ( 1
2
ln2 µ

2

µ20
)( 1

2
ln2 1

x
) ,

un(x , µ2) ≡ C ( 1
n!
lnn µ

2

µ20
)( 1

n!
lnn 1

x
) .
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Q0

∆r⊥ ∼ 1
Q0

Q

∆r⊥ ∼ 1
Q

Figure 9.2: An illustration of the e�ect of the DGLAP evolution on the contents of a
proton. Shown here is the transversal plane, as the proton has little or no
longitudinal extent because it is highly boosted. On the le , a probe at low
energy Q0 does not have much resolution, hence it can only interact with
the valence quarks. On the right, a probe atmuch higher energyQ >> Q0 has
much more resolving power and can observe the sea quarks and gluons as
well. Because of the increased energy scale, the spatial extent of the partons
decreases (as observed by the probe). Hence the higher Q, the more the
proton gets �lled with smaller partons.

¿e full result for the gluon distribution is then given by Equation 9.5:

Gluon Distribution at Small-x

xg(x , µ2) = C ⎛⎜⎝e
√

αs Nc
π ln µ2

µ20
ln 1

x
⎞⎟⎠
2

. (9.6)

¿is is called the double leading-logarithm approximation (DLLA). ¿e inter-
pretation of this result is of paramount importance. First of all, it is literally a
resummation of gluon radiations—where each gluon in the ladder contributes a
factor αsNc

π ln µ2
µ20
ln 1

x—with an additional factor 1/(n!)1/(n!) for a ladder with n
gluons (this is due to the ordering of the gluons). Furthermore, this equation
tells us that the gluon density increases as Q2 increases and/or x decreases. ¿e
�rst is just a re-expression of the DGLAP evolution (more correct its small-x
approximation as in Equation 9.2a). It orders successive gluon radiation in
function of energy:¹

µ20 << µ21 << ⋯ << Q2 . (9.7)

¿e e�ect of the DGLAP evolution on the contents of a proton is illustrated in
Figure 9.2. A proton that is highly boosted in the longitudinal direction will
have little or no longitudinal extent. ¿e transversal plane remains una�ected,

1 Note that for the upper energy scale µ2 one normally chooses the hard scale Q2.
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so the proton resembles a pancake: �at and round. At a low scale Q0, the hard
probe (a virtual photon) does not have enough resolving power to deeply probe
the proton, hence it only observes the valence quarks. At much higher energies
Q >> Q0, the probe is able to resolve much shorter distances ∆r⊥, and can
interact with sea quarks and gluons as well (the latter via boson-gluon fusion).
From the point of view of the probe, when increasing Q, the proton gets more
constituents that are of a smaller spatial extent.
¿e fact that xg(x) increases when x decreases also implies a strong ordering

in x:

1 >> x1 >> x2 >> ⋯ >> x . (9.8)

So pureDGLAP implies a strong ordering in µ2, while theDLLA (which isDGLAP at
small-x) implies a strong ordering both in µ2 and x. ¿e third option—relaxing
the ordering condition on µ2 and only keeping ordering in x—is possible as
well, and is very useful as it de�nes an evolution in x—only in x, independent
of µ2. However, as in DGLAP k⊥-dependence was resummed due to its strong
ordering in µ2, relaxing this condition means that we can only de�ne evolution
equations in x if we add k⊥-dependence to the gluon density, and de�ne it by the
requirement that a er k⊥-integration we should retrieve the original integrated
gluon density:

xg(x ,Q2) def= 1
π

Q2

∫d2k⊥ f (x , k⊥,Q2) , (9.9)

where the factor 1/π will cancel a er integrating the angular part. Note that the
integration has an upper cut-o� Q2, and that we de�ned f with a scale factor of
x inside. ¿e unintegrated gluon density satis�es the so-called Balitsky-Fadin-
Kuraev-Lipatov (BFKL) evolution equation:

bfkl Equation

∂
∂ln 1

x
f (x , k2⊥) = αs Nc

π2 ∫ d2q⊥(k⊥−q⊥)2 [ f (x , q2⊥) − 1
2
k2⊥
q2⊥ f (x , k2⊥)] , (9.10)

where all instances of the gluon density are evaluated at the same scale µ2. As
there is now no ordering in transverse momenta, the partons generated by the
BFKL equations will retain their transverse size a er evolution. ¿is is the most
important di�erence as compared to DGLAP, and is illustrated in Figure 9.3. It
directly implies that for a given Q de�ning the spatial extent of all partons there
exists an xS which is the unitary limit, i.e. for all x < xS at the given Q, the
probability to �nd a parton in the proton becomes bigger than one. A di�erent
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x0

∆r⊥ ∼ 1
Q

x

∆r⊥ ∼ 1
Q

Figure 9.3: An illustration of the e�ect of the BFKL evolution on the contents of a proton.
On the le , a probe with large momentum fraction x0 probes the gluon
density at large-x so it will only see a few partons. On the right, a probe
with a much smaller fraction x << x0 hits the proton and hence directly
probes the gluon density at much smaller x. At small-x, the gluon density is
exponentially larger and hence the probe sees a lot more partons. However,
there spatial extent remains of the same order as before, as the energy scale
remains unchanged. It seems as if the partons overlap each other. ¿is is
not a problem as long as unitary is not violated, i.e. as long as there are not
more partons than reasonably ‘�t’ inside the proton. As a rule of thumb, we
estimate the unitary condition to be violated when the total surface of the
partons is bigger than the surface of the proton. In this case, an approach
including saturation is needed.

approach is needed to avoid this scenario, namely the framework of saturation
which we will treat in the next section.
When using the unintegrated gluon density to describe the proton, collinear

factorisation is replaced by k⊥-factorisation. As we are mainly working with the
gluon distribution, the elementary process is that of boson-gluon fusion (see
Figure 5.11), for which the factorised cross section is given by:

σ(ep → e qq) = ∫ dyy dx
x
dQ2 d2k⊥ σ̂(ŝ, k⊥,Q2) f (x , k⊥,Q2) . (9.11)

It has however only been proven at small-x. ¿is is one of the main di�erences
with the TMD framework, where factorisation has been proven independently
of x, but only up to certain orders of 1/Q.
We can express the di�erences between DGLAP, DLLA and BFKL by the resum-

mation of logarithms they induce. ¿eir are two types of logarithms that can
possibly contribute to the resummation factor, namely the transverse logarithms
ln µ2

µ20
and the longitudinal logarithms ln 1

x . How these are resummed depends
on which are dominant in combination with αs. In the DGLAP case x is �xed
and αs << 1, hence

αs ln
1
x
<< 1 . (9.12)
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Figure 9.4: A QCD evolution roadmap. Evolving the parton density at constant x to-
wards increasing Q2 leads to an increase in the number of partons and a
decrease of their spatial extent, saturation is never reached. ¿is evolution
is governed by the DGLAP equations. Evolving the parton density at con-
stant Q2 towards decreasing x also leads to an increase in the number of
partons but keeps their spatial extent �xed, hence for small enough x the
parton density becomes saturated. ¿is evolution is governed by the BFKL
equations. ¿e DLLA is a combined evolution in x and Q2. When Q2 is too
low, a perturbative approach is no longer possible and di�erent approaches
are needed.

Because αs runs in function of Q2, we have that

αs ln
µ2

µ20
∼ 1 , (9.13)

which implies we have to resum these contributions. In the BFKL case it is the
other way round, and we have to resum the contributions

αs ln
1
x
. (9.14)

In the DLLA both contributions separately are subleading:

αs ln
1
x
<< 1 , αs ln

µ2

µ20
<< 1 .
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but their combination has to be resummed:

αs ln
1
x
ln µ

2

µ20
∼ 1 . (9.15)

We have collected these insights in Figure 9.4, where the di�erent evolutions are
depicted graphically.

9.2 the bk equation and saturation

We have seen that in the small-x limit the gluon density grows exponentially,
ultimately violating the unitarity bound. We need to somehow adapt the BFKL
equation to tame the exponential growth. But let us �rst have a look at the origin
of this problematic behaviour. Both DGLAP and BFKL (and DLLA) are constructed
from the splitting functions (see Equations 5.71) as a starting point. However,
these don’t give a full description of the possible processes inside the proton, as
they only describe splittings, hence augmentations of the number of partons.
However, these splitting functions could also be read in the inverse way, as
recombinations of partons. It are these e�ects that are missing in DGLAP and
BFKL, and one can show that they become dominant once the proton is getting
saturated.
If we write the BFKL Equation 9.10 schematically as a convolution over a kernel,

i.e. :

∂
∂ln 1

x
f = αs Nc

π2
KBFKL ⊗ f , (9.16)

the recombination e�ects will manifest themselves as a quadratic term:

∂
∂ln 1

x
f = αs Nc

π2
KBFKL ⊗ [ f − f 2] . (9.17)

¿is equation is known as the Balitsky-Kovchegov (BK) equation. It is quite
complicated to fully express it in function of the unintegrated density. Instead,
calculations in the saturation framework are mostly done in the so-called dipole
picture. In this picture, we boost to a frame where the struck parton before
and a er the interaction can be represented as a created pair (a dipole). ¿is is
illustrated in Figure 9.5 for a quark dipole (the dipole can be a gluon dipole as
well). Working with dipoles has a lot of advantages, one of these is e.g. that gluon
radiation is colour coherent, which means that successive radiations are angular
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⇒ ⇒
Figure 9.5: Illustration of the dipole picture. We boost to a frame where the incoming

parton becomes outgoing, such that we can interpret the diagram as a
photon �uctuating into a dipole. ¿e third diagram shows the dipole as an
index diagram (where only the colour structure is drawn). Index diagrams
are introduced in Section 10.1.

ordered towards smaller angles when radiated from the dipole and towards
larger angles when radiated before the dipole:

ψ
θ

θ < ψ , (9.18a)

ψθ θ > ψ . (9.18b)

It is possible to de�ne evolution equations based on colour coherence, the so-
called Catani-Ciafaloni-Fiorani-Marchesini (CCFM) evolution equations. ¿ese
aremuchmore di�cult to solve, but they are the best way to implement evolution
in Monte Carlo generators (the relevant generator is called cascade).
¿e basic dynamical object in the dipole picture is the dipole scattering amp-

litudeN (x , r⊥). ¿is amplitude is supposed to have a unitary bound, i.e.N ≤ 1.
¿e dipole cross section is then given by

σ(x , r⊥) ≡ σ0N (x , r⊥) , (9.19)

which can be related to the unintegrated gluon density by:

σ (x , r⊥) = 4παs
3 ∫ d

2k⊥
k4⊥ f (x , k2⊥) (1 − ei k⊥⋅r⊥) , (9.20a)

f (x , k2⊥) = 3
16π3 αs

k2⊥Fk⊥ [∆σ (x , r⊥)] , (9.20b)

where ∆ is the Laplacian operator in cylinder coordinates. ¿e scattering amp-
litude can also depend on an impact parameter b⊥, which represents the trans-
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versal distance between the centre of the dipole and the target. ¿e regular
densities are then retrieved by integration over b⊥ with an extra factor 2:

f (x , r⊥) = 2π
∞
∫
0

db2 f (x , r⊥, b2) (9.21)

σ (x , r⊥) = 2π
∞
∫
0

db2 σ (x , r⊥, b2) (9.22)

We can express the BFKL equation in function of the dipole amplitude:

Dipole bfkl Equation

∂
∂ln 1

x
N (r⊥, b⊥, x) = αs Nc

2π2 ∫d2z⊥ r2⊥
r21⊥ r22⊥ [N1 +N2 −N ] , (9.23)

where

r⊥ N= x1⊥−x0⊥ , r1⊥ N= x1⊥−z⊥ , r2⊥ N= z⊥−x0⊥ , (9.24a)

b⊥ N= 1
2
(x1⊥+x0⊥) , b1⊥ N= 1

2
(x1⊥+z⊥) , b2⊥ N= 1

2
(z⊥+x0⊥) , (9.24b)

N N= N (r⊥, b⊥, x) , N1
N= N (r1⊥, b1⊥, x) , N2

N= N (r2⊥, b2⊥, x) .(9.24c)
We can interpret the dipole BFKL equation as a dipole splitting into two dipoles,
as illustrated in Figure 9.6. It is now not di�cult to add the quadratic term that
ensures saturation, leading to the BK equation in the dipole picture:

Dipole bk Equation

∂
∂ln 1

x
N = αs Nc

2π2 ∫d2z⊥ r2⊥
r21⊥ r22⊥ [N1 +N2 −N −N1N2] , (9.25)

¿e BK equation naturally introduces the saturation scale Qs(x) at which
saturation e�ects become important. It is a curve in the (Q , x) kinematical
plane (see Figure 9.4), and its de�nition is model-dependent. It acts as an IR
cut-o�, screening the non-perturbative part, hence making saturation physics
consistently perturbative.
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x1⊥
b⊥
x0⊥

0⊥

dipole

target

bfklÔ⇒

x1⊥
b1⊥

z⊥
b2⊥
x0⊥

0⊥

dipole

dipole

target

Figure 9.6: In the dipole picture, the BFKL evolution is an evolution in dipoles, i.e. new
dipoles are created during the evolution. A gluon that is radiated from the
dipole can be represented as two fundamental lines (see Equation 10.13).
¿is essentially splits the dipole in two at the point z⊥, as is illustrated in
the second diagram.

Comparison to Population Statistics

In order to understand a bit more how the quadratic term induces saturation, we
make a comparison to mathematical biology, where a similar procedure is used.²
¿emost basic model for population growth links the growth to the population
density (the more animals are present, the more animals reproduce and the
more o�springs will arise):

Ṅ(t) = κ N(t) ⇒ N(t) = N0 eκt . (9.26)

¿is cannot be a realistic model, as it is possible for the population to overpop-
ulate: if there are too many animals, the lack of food and limited space will
decrease the growth. ¿e simplest way to implement this is to let the growth
parameter decrease for increasing N :

κ → κ (1 − N) .
¿is introduces the quadratic term to the growth equation, which is commonly
known as the logistic equation:

Ṅ(t) = κ [N(t) − N2(t)] ⇒ N(t) = eκt

eκt + 1−N0
N0

. (9.27)

2 It is not the case that the addition of the quadratic term to the BFKL equation is motivated from
biology. ¿e quadratic term follows directly from the recombination e�ects of the partons. We
just make the comparison here to simplify understanding the e�ect at hand.
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Figure 9.7: Comparison between regular exponential growth (in blue) and the logistic
equation (in green) for two initial values (N0 = 0.1 and N0 = 0.25). Note
that the logistic growth saturates towards the same value (here equal to 1),
independently of the initial condition.

¿e comparison between the two formulae is made in Figure 9.7. ¿e important
thing to remark is that the logistic equation always saturates towards the same
value, independently of N0. ¿e same is of course true with the BK equation.

¿e GBWmodel

¿e BK equation is an exact analytical equation, but di�cult to deal with. It is
however possible to create models that are inspired on the mechanism in the
BK equations to describe similar saturated behaviour. ¿e most easy (and most
well-known) saturation model is the Golec-BiernatWüstho� (GBW) model [105].
It parameterises the dipole amplitude as:
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gbwModel

N (x , r⊥) = 1 − e− 1
4

r2⊥
R20(x) , (9.28)

where the saturation radius is modelled as

R20(x) def= 1
Q2
0
( x
x0

)λ . (9.29)

¿e factor in front is just a constant to set the scale:

Q0
def= 1 GeV . (9.30)

¿e saturation radius is intimately related to the saturation scale:

Q2
s ≡ 1

R20
. (9.31)

When comparing to data, the dipole cross section is used:

σ(x , r⊥) = σ0 (1 − e− 1
4 r

2⊥Q2
s ) (9.32)

Note that the dipole amplitude has as requested a unitary bound N ≤ 1. ¿e
model has been compared to HERA data, and the parameters σ0, x0 and λ have
been �t [85, 106]:

σ0 = 23.03mb , λ = 0.288 , x0 = 3.04 ⋅ 10−4 , (9.33)

with χ2 = 1.18, deeming it a good �t. ¿e dipole cross section is plot in Fig-
ure 9.8 for a few values of x. ¿e cross section value at the saturation radius is
independent of x:

σs = σ0 (1 − e− 1
4 ) ≈ 5.09 . (9.34)

Using Equations 9.20, we can calculate the unintegrated gluon density in the
GBWmodel:

f (x , k2⊥) = 3σ0
4π2αs

R20(x) k4⊥e−R2
0(x) k2⊥ . (9.35)

It is however common in literature to de�ne the gluon density with an extra
factor (1 − x)7, motivated by power counting:

f (x , k2⊥) = 3σ0
4π2αs

(1 − x)7 R20(x) k4⊥ e−R2
0(x) k2⊥ , (9.36)

which is the de�nition we will use in the next section.
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Figure 9.8: Plot of the GBW dipole cross section for x = 10−2 , . . . , 10−6. ¿e red dots are
the saturation radii for the given x.

9.3 transversal energy flow

It is not so obvious to look for BFKL and BK signatures in data. Measurements
of the F2 structure function at HERA show a rise for decreasing x which is in
perfect agreement with BFKL predictions. However, F2 is not suited—due to its
inclusive nature—to discriminate between conventional dynamics and BFKL, as
the observed rise can as well be explained using regular DGLAP evolution. An
adequate approach is to include �nal-state properties in the measurement. A
good example is the transversal energy �ow coming from a small-x gluon ladder,
which has already successfully been used to look for BFKL signatures in HERA
data [106–109]. We will apply this formalism to include saturation e�ects.
Because in BFKL and BK there is no longer an ordering in µ2, we expect to

�nd more transversal energy in the central region, between the main jet and the
proton remnants, as illustrated in Figure 9.9. ¿e de�nition of the ET �ow is
given by [108]:

ξ j
∂ET
∂ξ j

= 1
σ ∫dk2⊥ j ξ j

∂2σ
∂ξ j ∂k2⊥ j ∣k⊥ j∣ , (9.37)

where σ is the total cross section in the range (x ,Q2), and a sum over j is
implied. In order to clarify the notation a bit, we drop the ⊥-notation on the



9.3 transversal energy flow 268

main jet

⋮
⋮ ξ j ∑

i
ET i

X

Figure 9.9: De�nition of the transversal energy �ow. In a boson-gluon fusion process,
the energies of the gluons radiated in the ladder are summed to give the full
ET �ow. We expect to �nd more transversal gluons in a BFKL framework.

momenta. Just remember that every momentum represents only its transversal
component. We can express the di�erential cross section as a function of the
di�erential structure functions:

∂2σ
∂ξ j ∂k2j

= 4πα2

xQ4

⎡⎢⎢⎢⎢⎣(1 − y)
∂2F2

∂ξ j ∂k2j
+ 1
2
y2 ∂

2(2xF1)
∂ξ j ∂k2j

⎤⎥⎥⎥⎥⎦ , (9.38a)

y = Q2

xs
. (9.38b)

We need the total cross section to use it as a normalisation in the denominator
of (9.37). It is given by:

σ = 4πα2

xQ4

(1,Q2)
∫(x ,0)
dξ j dk2j

⎡⎢⎢⎢⎢⎣(1 − y)
∂2F2

∂ξ j ∂k2j
+ 1
2
y2 ∂

2(2xF1)
∂ξ j ∂k2j

⎤⎥⎥⎥⎥⎦ ,
= 4πα2

xQ4 [(1 − y) (FT (x ,Q2) + FL (x ,Q2)) + y2

2
FT (x ,Q2)] .

We can express the di�erential structure functions as:

ξ j
∂2F1,2
∂ξ j ∂k2j

= 3 αs
π2

1
k2j
∫ d

2kp
k2p

d2kγ
k2γ
F1,2 ( xξ j , k2γ ,Q2)

× f (ξ j , k2p) δ(2)(kj−kγ−kp) .
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Fi and f are the so gluon resummations above resp. below the j-th gluon.¿is
gives:

ξ j
∂ET
∂ξ j

= 3 αs
π2

1
F (x ,Q2) ∫dk2j d

2kp
k2p

d2kγ
k2γ

1√
k2j

×F ( x
ξ j
, k2γ ,Q2) f (ξ j , k2p) δ(2)(kj−kγ−kp) ,

F = (1 − y + y2

2
) FT + (1 − y) FL ,

F = (1 − y + y2

2
)FT + (1 − y)FL .

To integrate the δ-function over kj, we shi the k j-integration back to its com-
ponent form:

dk2j = 1
2π

dk2j dϕ = 1
π
k j dk j dϕ = 1

π
d2kj ,

ξ j
∂ET
∂ξ j

= 3 αs
π3

1
F ∫ d

2kp
k2p

d2kγ
k2γ

1√(kp + kγ)2 F ( x
ξ j
, k2γ ,Q2) f (ξ j , k2p) ,

= 3αs
2π2

1
F ∫ dk

2
p

k2p
d2kγ
k2γ

dφ F ( x
ξ j
, k2γ ,Q2) f (ξ j , k2p)

× 1√
k2p + k2γ + 2kpkγ cosφ .

¿e integration over φ can still be done exactly, using:

2π

∫
0

dφ√
A+ B cosφ = 4√

A+ B K ( 2B
A+ B) ,

ξ j
∂ET
∂ξ j

= αs
π2

6
F ∫ dk

2
p

k2p

dk2γ
k2γ
F ( x

ξ j
, k2γ ,Q2) f (ξ j , k2p)
× 1
kp + kγ K ( 4kpkγ(kp + kγ)2) ,

where K(m) is the complete elliptic integral of the �rst kind, which is divergent
for m ≥ 1 (see Equations B.9). Next we use the transformation kp = aL and
kγ = (1 − a)L as de�ned in Equations B.11:
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ξ j
∂ET
∂ξ j

= αs
π2

24
F

1

∫
0

∞
∫
0

da dL
a(1 − a)L2 F ( x

ξ j
, (1−a)L,Q2) f (ξ j , aL)K (4a(1−a)).

¿is integral is divergent at a = 1
2 , and at the borders a = 0, a = 1 and L = 0. We

expect however that the divergences at the borders will cancel out, because
generally we can factorise out at least kp from f and kγ from F without
introducing (additional) divergences in f or F .

Calculation of the Structure Functions

We can calculate FT and FL in coordinate space or in momentum space. In
coordinate space we use the dipole cross section and the photon wave functions
(of qq �uctuations) to get:

FT ,L (x ,Q2) = Q2

2π αem
∑
q
∫ ρ dρ ∣Ψq

T ,L (z, ρ)∣2 σ (x̃q , ρ) (9.39a)

∣Ψq
L (z, ρ)∣2 = 6αem

4π2
e2q

1

∫
0

dz 4z2 (1 − z)2 Q2K2
0 (єρ) (9.39b)

∣Ψq
T (z, ρ)∣2 = 6αem

4π2
e2q

1

∫
0

dz [(z2 + (1 − z)2) є2K2
1 (єρ) +m2

qK2
0 (єρ)] (9.39c)

є2 = z (1 − z)Q2 +m2
q (9.39d)

where we added a mass correction to x:

x̃q = Q2 + 4m2
q

Q2 x (9.40)

Inmomentum space we use the unintegrated PDF and the photon impact factors
to get (see [110]):

FT ,L (x ,Q2) = Q2

8π2αem
∑
q
∫ dk

2

k4
Φq
T ,L (k2,Q2) f (x̃q , k2) , (9.41a)

Φq
L (k2,Q2) = 16π αem αse2q

1

∫
0

dz dζ Z−1 [z (1 − z) ζ2 (1 − ζ)2 k2Q2] , (9.41b)

Φq
T (k2,Q2) = 2π αem αse2q

1

∫
0

dz dζ Z−1 [(z2 + (1 − z)2) (ζ2 + (1 − ζ)2) ζ (1 − ζ) k2Q2
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+ (ζ2 + (1 − ζ)2)m2
q k2 + 4z (1 − z) ζ (1 − ζ)m2

q] , (9.41c)

Z = (z (1 − z) k2 + ζ (1 − ζ)Q2 +m2
q) (ζ (1 − ζ)Q2 +m2

q) . (9.41d)

Numerical Evaluation of the ET-Flow

To evaluate the ET-Flow integral, we cut out a small region around a = 1
2

ξ j
∂ET
∂ξ j

= ∆єI + αs
π2

24
F (x ,Q2)

⎛⎜⎜⎝
1
2−є
∫
0

+ 1

∫
1
2+є

⎞⎟⎟⎠
∞
∫
0

da dL
a(1 − a)L2

×F ( x
ξ j
, (1 − a)L,Q2) f (ξ j , aL)K (4a (1 − a)) ,

for some є which is small enough to make ∆єI reliable, but not too small to make
sure that the main integration part will still converge fast enough. We expand
the elliptic function around 1 to approximate ∆єI:

∆єI = αs
π2

24
F (x ,Q2)

1
2+є
∫

1
2−є

∞
∫
0

da dL F ((1 − a)L) f (aL)
a(1 − a)L2 K (4a (1 − a)) ,

= αs
π2

96
F (x ,Q2)

є

∫−є
∞
∫
0

da dL
F (( 12 − a) L) f (( 12 + a) L)(1 − 4a2) L2 K (1 − 4a2) ,

K (1 − 4a2) ≈ ln 2 − ln ∣a∣ + (ln 2 − 1 − ln ∣a∣) a2 + 9
4
(ln 2 − 7

6
− ln ∣a∣) a4 .

Furthermore we use the following approximation formula (for given N , where
a > 0):
a

∫−adx f (x) ln ∣x∣ ≈ a
N
f (0) ln a

2πN
+ a
N

N∑
i=−N ,i≠0wi f (i aN ) ln ∣i a

N
∣ (9.42)

w∣N ∣ = 5
12

w∣N−1∣ = 13
12

w∣i∣ = 1 ∀i ≠ N , i ≠ N − 1 (9.43)

We use simpli�ed quark masses and �xed coupling constants:

mq = {0.15, 0.15, 1.5, 0.15} , αem = 1
137

, αs = 0.2 .
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For the gluon density, we use the GBWmodel (see Equation 9.36), and for F we
use a model that is inspired on the GBWmodel [111]:

FGBW (z, k,Q) = Nd (Q2) σ0
2π2αs

(1 − z)5 Q2k4R20(z) e−k2R2
0(z) , (9.44)

with the same parameters as the GBW gluon density and

Nd (Q2) ≈ 1.46 . (9.45)

Our results are shown in Figure 9.10. In the large-xB regime more transversal
gluons are radiated at higher Q2 compared to low Q2, while the small-xB regime
is insensitive to Q2.
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Figure 9.10: Plot of the transversal energy �ow in the GBWmodel for 4 values of Q2.
We see that in the large-xB regime more transversal gluons are radiated at
higher Q2, while the small-xB regime is insensitive to Q2.
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(continuation of Figure 9.10)



Part III

WILSON LOOPS AND EVOLUTION



10
WILSON LOOPS AND LOOP SPACE

In this chapter we will introduceWilson loops as elementary bricks that allow us
to fully recast QCD in loop space using the multicolour limit, essentially trading
coordinate dependence for path dependence. We start by introducing the large-
Nc framework, which—although unrealistic—can give more insight to the non-
perturbative behaviour of QCD. We will mostly follow the excellent lecture notes
by Makeenko [112] in this section. Next we will treat the renormalisation of
Wilson loops, and investigate how the energy evolution is governed by Γcusp, the
cusp anomalous dimension.
It will provide us with a solid base to our investigation of the geometric

evolution of Wilson loops in Chapter 11. As always we try to avoid going too
deep into details. See e.g. [113–124] for a more profound treatment of the topics
covered in this and the next chapter.

10.1 large Nc-limit

We saw in Subsection Running Coupling in QCD: Asymptotic Freedom on page
116 and onwards that QCD is asymptotically free due to the particular beha-
viour of the strong coupling αs, which invalidates any perturbative approach at
energies smaller than ΛQCD. ¿ere is however another possibility, that avoids
this invalidation by promoting the number of colours Nc to a variable. If we
then expand the interaction exponential ei SI in function of Nc , we can keep the
expansion convergent—even when αs is larger than one—by making Nc large
enough to compensate for αs. To see this, we note that the former enters in the
denominator of the evolution of the latter (see Equation 4.84):

αs(µ) = αs 0
1 − αs 0

4π b0 ln
µ2
µ20

,

276



10.1 large Nc-limit 277

where

bsu(n)0 = − 11
3
Nc + 2

3
Nf .

In other words, if αs tends towards values bigger than one, we have to increase
Nc just enough to compensate for the growth in αs , hence keeping the expansion
convergent. It is then logical that in the limitNc →∞ the expansion is convergent
to all orders in αs [125], i.e. the large-Nc limit gives a non-perturbative description
of QCD.
Of course this is not a realistic treatment, as we know that the number of

colours is �xed to 3, and it becomes even less realistic at energies where αs ≳ 1.
However, it can tell us a lot about the dominant regions in certain processes.

Colour Representation

To use the large-Nc framework in practice, we �rst investigate the method of
colour representations, where the colour part of a diagram is depicted and cal-
culated separately from the rest of a Feynman diagram. For this purpose, we
de�ne a so-calledmatrix-�eld by absorbing a Lie generator in the gauge �eld,
such that the latter has manifest fundamental indices but no adjoint indices:

Aµi j
def= Aµa (ta)i j . (10.1)

To calculate the matrix-�eld propagator, we use the Fierz identity (see Equa-
tion A.77):

⟨Ai jµ(x)Aklν (y)⟩ = ( 1
2
δ i lδk j − 1

2Nc
δ i jδkl)Dµν(x , y) . (10.2)

If we now focus on the colour structure—that is we forget the momentum
part and express the propagator in index space, using only the fundamental
indices—we can write the matrix-gluon propagator as

Matrix-Field Propagator

i
j

l
k

= 1
2
i
j

l
k
− 1
2Nc

i
j

l
k
, (10.3)

where the green lines are ‘quark-like’ lines, i.e. they have the same colour
structure as quarks (being in the fundamental representation), but of course
not the same momentum nor Dirac structure. Although the Kronecker δ’s
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seem to indicate that there is some freedom in the direction of the arrow, we
have to impose that the matrix-gluon can be written as two quark-like lines in
opposite directions. ¿is is motivated by the hermiticity of Ai jµ , that amounts an
interchange of i and j to a complex conjugation. Another way to see this is to
realise that the fundamental index literally represents colour �ow, and a gluon
always carries a colour and an anticolour.
We can use this pictorial representation to investigate the colour structure of

e.g. quark-antiquark scattering (with an additional factor i g per vertex):

= − g2
2

⎛⎜⎝ − 1
Nc

⎞⎟⎠ (10.4)

¿e square then becomes:

RRRRRRRRRRRRRR
RRRRRRRRRRRRRR
2

= g4

4

⎛⎜⎜⎜⎝ − 2
Nc

+ 1
N2
c

⎞⎟⎟⎟⎠ (10.5)

Note that there is no di�erence between the yellow and the green lines—both
are fundamental index lines—but we keep the di�erence as a reminder of the
original line. ¿e major simpli�cation of this technique now lies in the fact that
every loop (which is just de�ned as a closed index line) contributes the same
factor Nc , independent of its underlying physical origin. ¿is is because both
internal loops and external particles are summed over colour, giving a factor
δ ii = Nc . Furthermore, we can move index lines at will if we don’t tear them,¹
such that the topological equivalence lies only in the counting of loops, and
not in the form of these loops. From the moment an index line is closed, it is
considered a loop, no matter how this loop looks.
In the case of Equation 10.5, the �rst and the last term have two loops and

hence each contribute a factor N2
c , while the second term has only one loop and

contributes a factor Nc . ¿e result is then

RRRRRRRRRRRRRR
RRRRRRRRRRRRRR
2

= g4

4
(N2

c − 2 + 1) = g4

2
NcCF , (10.6)

which is indeed the correct result. O en we will average over incoming colour,
implying that we divide by an additional Nc , giving the common result g

4

2 CF .

1 Because there is no coordinate dependence, only fundamental index dependence.
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We don’t need squared amplitudes to make use of colour representations,
e.g. the colour structure for the quark self-energy can be calculated in an easy
manner as well:

= − g2
2

( − 1
Nc

) ,

= − g2
2

(Nc − 1
Nc

) ,
= −g2CF . (10.7)

¿is is a logical result, because the two vertices give a total colour factor ta ta = CF .
¿e colour representation method works, and is a very useful tool to investigate
the colour structure of a diagram (and it is especially bene�cial for complex
diagrams). Let us verify a few more relations. A tadpole is indeed zero:

= i g
2

⎛⎝ − 1
Nc

⎞⎠
= i g
2

(1 − Nc
Nc

) = 0 .
¿e gluon propagator with a quark loop is just a factor times the gluon propag-
ator:

= − g2
4

( − 2
Nc

+ 1
N2
c

) ,

= − g2
2

( 1
2

− 1
2Nc

) ,
= − g2

2

¿is is just a demonstration of tr ta tb = 1
2δ

ab. ¿e 3-gluon vertex gets a partic-
ularly easy matrix depiction. To calculate it, we note that in the matrix-�eld
representation it is given by

j, i l , k

m, n

= g f abc tai jtbkl tcmn . (10.8)

Using Equation A.84a, we can simplify this into
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g f abc tai jt
b
kl t

c
mn = −i gtai jtbkl (tamx tbxn − tbmx taxn) ,

= − i
4
g [δi lδ jmδnk − 1

Nc
(δi jδmlδnk + δinδ jmδkl) + 1

N2
c
δi jδklδmn]

+ i
4
g [δinδ jkδlm − 1

Nc
(δi jδmlδnk + δinδ jmδkl) + 1

N2
c
δi jδklδmn] ,

= − i
4
g (δi lδ jmδnk − δinδ jkδlm) .

In other words, pictorially we have

3-Matrix Vertex

= − i g
4

⎛⎜⎝ − ⎞⎟⎠ (10.9)

¿e gluon propagator with a gluon loop is then easily calculated:

= − g2
16

(2 − 2 ) ,

= − g2
4
Nc

⎛⎝ 12 i
j

l
k
− 1
2Nc

⎞⎠ ,

= − g2
4
Nc .

¿e calculation of the 4-gluon vertex goes similar to the 3-gluon vertex, but is a
bit more involved. In matrix-�eld representation, the former is given by

l , kj, i

o, pm, n

= −i g2 f abx f xcd tai jtbkl tcmn tdop + cross. (10.10)

Because we have

− i g2 f abx f xcd tai jtbkl tcmn tdop = i g216 [δi lδ joδknδmp − δinδ jkδloδmp
−δi lδ jmδkpδon + δipδ jkδlmδon] ,

we can write
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4-Matrix Vertex

= i g2
16

⎛⎜⎝ − + − + cross.
⎞⎟⎠ (10.11)

Colour Representation in the Large-Nc Limit

Let us now investigate how the colour representation simpli�es in the large-Nc
limit. ¿e most important simpli�cation is in the matrix propagator, which is
now

⟨Ai jµ(x)Aklν (y)⟩ → 1
2
δ i lδk jDµν(x , y) , (10.12)

or symbolically:

= 1
2

. (10.13)

Furthermore, we focus on the gauge sector of QCD, i.e. Nf = 0. ¿is will allow
us to make a straightforward power counting of index diagrams. First we note
that from Equation 4.84 automatically follows that in the large-Nc limit

αs ∼ 1
Nc

. (10.14)

In gauge-only QCD, there are three vertex functions: the 3-gluon vertex and the
ghost vertex, which both give a factor N−1/2

c , and the 4-gluon vertex, which gives
a factor N−1

c . Every closed loop gives an additional factor Nc , as it is a trace of
the fundamental identity matrix. With this information, we can power count
any index diagram. Take for instance the gluon loop correction to the gluon
propagator, where now the second diagram vanishes in the large-Nc limit:

.

¿e two 3-gluon vertices add a factor N−1
c , and the inner loop adds a factor Nc .

In other words, while in standard pQCD this is an NLO diagram, in the large-Nc
approach it contributes already at LO. ¿is might sound a bit strange at �rst, but
is something typical for multicolour frameworks. More generally, we state that
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in the large-Nc limit only planar diagrams contribute to the LO result. Indeed, if
we consider e.g. the planar diagram

,

we immediately see that it is an LO diagram (we have N−1
c from the 4-gluon

vertex, N−3
c from the six 3-gluon vertices, and N4

c from the four closed loops).
On the other hand, a possible non-planar counterpart of this diagram is

,

and this is an NNLO result because it scales asO(N−2
c ), as there is only one inner

loop (by following the inner index line, we see that it is indeed the contour of
a single loop). ¿is is easily generalised. For any planar diagram it is true that
adding a loop corresponds to adding two 3-gluon vertices or one 4-gluon vertex.
Hence the order of any n-loop planar diagram (with two external gluons) is

n-loop planar diagram ∼ (g2Nc)n ∼ O(1) . (10.15)

For non-planar diagrams we use a mathematical tool. In general, it is possible
to draw any non-planar diagram without self-crossings on a general Riemann
surface with a certain genus h, where the latter corresponds to the number of
holes in the surface. E.g. a sphere has genus h = 0, and a torus (a doughnut) has
genus h = 1. ¿e non-planar diagram sketched above can be drawn on a torus
without self-crossings, hence it has genus h = 1. It can be shown [112] that for
any diagram (with two external gluons) its large-Nc scaling behaviour is given
by

genus-h diagram ∼ (N−2
c )h . (10.16)

Already now we can draw two important conclusions:

a. ¿e expansion in 1/Nc rearranges perturbation theory diagrams in function
of their topology.
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b. Only planar diagrams survive the large-Nc limit, and more speci�c all
planar diagrams survive this limit.¿is can be translated directly to regular
pQCD: a planar diagram is always dominant with respect to a non-planar
diagram.

¿is in an important result, as there are far less planar diagrams than non-planar
ones. ¿e number of all planar diagrams with n loops grows as en, while the
number of all general diagrams with n loops grows as n!. Take e.g. the ladder
diagrams in quark-antiquark scattering consisting of n gluons. ¿ere is only
one planar ladder diagram for every n, but there are n!−1 non-planar ladder
diagrams.
Equation 10.16 can be easily extended to any number of external gluons. We

have [112]:

genus-h diagram for an n-point Greens’ function ∼ (Nc)1− n
2 −h . (10.17)

Furthermore, re-introducing quarks is trivial: We allow every single line to be a
quark as well. Quark loops are always vanishing in the large-Nc limit, as they
add vertices but no index loops. Consider e.g. the quark loop correction to the
gluon propagator:

= − g2
4

∼ O(N−1
c ) , (10.18)

So we don’t have to take them into account at LO. In practice, a Greens’ function
will always be ‘closed’ by external quark or gluon lines. E.g. a possible closed
3-point function can be drawn as

In order to avoid introducing self-crossings (which would make the diagram
non-planar, and hence vanishing in the large-Nc limit), we contract the indices
of the external lines in a cyclic order. Every closed Greens’ function gains a factor(i g)n per external leg, coming from the n vertices needed to close the function.
¿e inner part of the diagram can be associated with a colour trace of the gauge
�elds, i.e.

Gn
µ1⋯µn(x1, . . . , xn) ≡ 1

Nc
(i g)n tr ⟨A1⋯An⟩ , (10.19)
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where the factor 1/Nc follows from the normalisation condition

G0 def= 1 . (10.20)

With this de�nition, all Green’s functions contribute at LO so that they are �nite
(except G1, which is a tadpole and hence vanishes). Now to get a general result,
we integrate over all possible external path insertion points xi . Note that these
points are bound to the path C formed by the external lines, hence the integration
is a contour integral along C. As the cyclic ordering of the fundamental indices is
automatically implied by an ordering along the path C, making the integrations
path-ordered is su�cient to avoid self-crossings.¿e n-th order Green’s function
is then given by:

P ∫∮C dxµ11 ⋯ ∫∮C dxµnn Gn
µ1⋯µn(x1, . . . , xn) . (10.21)

Note that all coordinates are integrated out, and all indices are traced. ¿e only
variable that remains is the path C, the topological outline of the external lines.
¿e full QCD result for a set of external lines on a path C is then an all-order
resummation of all closed Greens’ functions that are connected to this path:

∞∑
n
P ∫∮C dxµ11 ⋯ ∫∮C dxµnn Gn

µ1⋯µn(x1, . . . , xn) . (10.22)

But this is exactly the de�nition of the gauge-invariant Wilson loop:

Gauge-Invariant Wilson loop

UC = ∞∑
n
P ∫∮C dxµ11 ⋯ ∫∮C dxµnn Gn

µ1⋯µn(x1, . . . , xn) , (10.23a)

≡ 1
Nc

tr ⟨0∣P ei g ∫∮C dxµ Aµ ∣0⟩ , (10.23b)

∼ + ⋯ + + + ⋯ + + ⋯ (10.23c)

where the path C is depicted naively as a circle.
Another useful property is the factorisation of correlators. If we consider a

general correlator that is a product of colourless operators:

⟨O1⋯On⟩ , (10.24)

it can be shown [112] that all possible LO diagrams built from this operators
consist of exactly n separable sub-diagrams, i.e. that all (partially) connected
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diagrams are ofO(N−1
c ) or smaller. ¿is immediately implies that the correlator

factorises:

⟨O1⋯On⟩ = ⟨O1⟩⋯ ⟨On⟩ +O( 1
N2
c
) . (10.25)

¿is will be particularly interesting when considering Wilson loops that are
de�ned over separated loops, i.e.

⟨0∣ 1
Nc

tr e
i g ∫∮C dxµ Aµ⋯ 1

Nc
tr e

i g ∫∮C dxµ Aµ ∣0⟩ =
1
Nc

tr ⟨0∣ ei g ∫∮C dxµ Aµ ∣0⟩⋯ 1
Nc

tr ⟨0∣ ei g ∫∮C dxµ Aµ ∣0⟩ +O( 1
N2
c
) (10.26)

We have shown that in the large-Nc limit all information on the gauge sector of
QCD is fully encoded in Wilson loops, trading coordinate dependence for path
dependence. In other words we have shown that it is possible to fully recast QCD
in loop space in the multicolour limit. Unfortunately, it seems to be impossible
to make the same connection between QCD and loop space for �nite Nc . It is
however possible to get partial results for QCD objects from calculations in
loops space, by treating the loop space approach as an e�ective theory within
some (quite stringent) conditions. E.g. Tsou succeeded in calculating the CKM
and MNSmatrices to good agreement with experimental data using loop space
variables [126]. Motivated by this, we now take Wilson loops as basic building
bricks in QCD, and investigate their properties.

10.2 renormalisation of wilson loops and Γcusp

A �rst di�culty that we encounter when working with Wilson loops is that—
due to their non-locality—they are not necessarily renormalisable using regular
methods due to the emergence of extra rapidity divergences (which are linked
to the Wilson line regulators η in e.g. Equation 6.27a). ¿is isn’t a problem in
regular pQCD (where Wilson loops are used as so factors for TMDs) because
they will cancel with extra divergences from the collinear TMD factor. However,
if we want to recast QCD with Wilson loop as its basic elements, the latter have
to be well-de�ned themselves, before cancellation. It has been shown [117–121,
124, 127, 128] that a Wilson loop ismultiplicatively renormalisable to all orders
of perturbation theory if the path has a �nite number of self-intersections and
cusps. Furthermore, the Wilson loop can be made �nite if the path is smooth
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Figure 10.1: A Wilson loop with a cusp in its path. ¿e two legs are semi-in�nite lines,
that are connected at in�nity (illustrated by the dashed line). ¿e blobs are
just a representation of the two possible inner diagrams: we can have blobs
connected to one of the legs, and blobs connecting both legs.

(without cusps and self-interactions). In the latter case, the renormalisation of
the Wilson loop reduces to the regular renormalisation procedure.
So for a smooth path C, the renormalised Wilson loop will depend on the

renormalised coupling and the renormalisation scale:

UCR (gR , µ) , (10.27)

but not on the regulator є as it is �nite in the limit є → 0. However, when
the path is not smooth but contains a �nite number of cusps², parameterised
by Minkowskian angles χi , it will contain extra singularities that cannot be
removed with the regular renormalisation procedure. Consider e.g. the diagram
in Figure 10.1, which is a smooth path except for the upper cusp point. A er
regular renormalisation, the loop isn’t �nite yet but still depends on the regulator:

UCχ
R̃

(gR , µ, є) . (10.28)

¿is is due to an extra singularity that originates from the cusp.Wehave tomodify
our renormalisation scheme to also absorb this singularity into a multiplicative
factor Zcusp:

UCχR (gR , µ) = Zcusp(χ, gR , µ, є)UCχR̃ (gR , µ, є) . (10.29)

2 A cusp is characterised by a non-continuous derivative.
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¿emultiplicatively renormalisedWilson loopwith one cusp satis�es an adjusted
Callan-Symanzik equation (see Equation 4.81):

( ∂
∂ln µ

+ β(gR) ∂
∂gR

+ Γcusp(χ, gR)) lnUR ≡ 0 , (10.30)

where we could interpret the origin of Γcusp as an order-by-order combination
of the anomalous dimensions of the di�erent �elds inside the exponential. From
a loop space point of view, it can only depend on the cusp angle χ, as there are
no other path parameters that de�ne the cusp. ¿e precise form of the path
cannot have an in�uence on Γcusp, as the latter vanishes for all smooth paths,
independent of their speci�c structure. ¿e only di�erence now is the addition
of a cusp, which is path-local. We can zoom in on the cusp, until its only de�ning
parameter is its angle, hence its in�uence on the Wilson loop renormalisation
as well can only depend on the angle.
Note that the Callan-Symanzik equation gets a Γcusp contribution for every

cusp inside the path. For a contour with several cusps, it has to be adapted to

⎛⎝ ∂
∂ln µ

+ β(gR) ∂
∂gR

+ ∑
cusps

Γcusp(χ, gR)⎞⎠ lnUR ≡ 0 ,
¿e cusp anomalous dimension is de�ned as the logarithmic energy derivative
of the regularly renormalised Wilson loop (see also SubsectionMass Dimension
Analysis on page 96 and onwards for an introduction to mass dimensions):

Cusp Anomalous Dimension

Γcusp
def= − lim

є→0
d

dln µ
lnUR̃(gR , µ, є) , (10.31)

where U is de�ned on a path with exactly one cusp. When expanding the loop
in orders of αs, we �nd (extracting αs from the contributions for clarity):

ln [1 + αs U1 + 1
2
α2s U2 +O(α3s )] = αs U1+ 1

2
α2s (U2 − U21 )+O(α3s ) , (10.32)

which is a helpful tool to simplify the Callan-Symanzik equation and the de�ni-
tion of the cusp anomalous dimension.
We can now easily calculate Γcusp at one loop using the path structure as in

Figure 10.1 forUR̃ . It has been shown in [124] that—at least at LO—the self-energy
blobs reduce to the opposite of the vertex correction blob evaluated at zero angle,
i.e. :

UR̃ = UR̃∣self + UR̃∣vertex = UR̃(χ) − UR̃(0) . (10.33)
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We already calculated UR̃(χ) in Chapter 7, it is exactly the LO 2-gluon blob
connecting two adjoining o�-LC segments as given in Equation 7.81:

W JK
1 1 ∣LC = αs

2π
χ cothχ

⎡⎢⎢⎢⎢⎣
1
є
+ ln n2Kn2J − (nK ⋅nJ)2

4
+ ln µ2

η2
+ Υ⎤⎥⎥⎥⎥⎦ . (10.34)

¿e only thing missing is the path function, which we get from Equation 7.24b:

UR̃(χ) = Φ1 1(J ,K)W JK
1 1 , (10.35a)

Φ1 1(J ,K) = (−)ϕJ+ϕKCF . (10.35b)

¿e path goes from −∞ to the cusp along a direction nµ , and from the cusp back
to −∞ along a di�erent direction ñµ. ¿e path segments are hence:

n, r,
ñ, r.

We know we can rewrite the �rst segment as (see Equation 6.66a):

= ∣n→−n .
Because we have two similar segments, the path function remains positive, i.e.
Φ1 1(J ,K) = CF . ¿e sign di�erence in n results in a sign di�erence in χ because

n → −n ⇒ n ⋅ñ → −n ⋅ñ ⇒ χ → −χ.
In other words (note that cosh(−χ) = cosh χ):

UR̃(χ) = − αs2πCF χ cothχ
⎡⎢⎢⎢⎢⎣
1
є
+ ln n2Kn2J − (nK ⋅nJ)2

4
+ ln µ2

η2
+ Υ⎤⎥⎥⎥⎥⎦ . (10.36)

Now we apply Equation 10.33 and use the limit

lim
χ→0 χ coth χ = 1 , (10.37)

to get

UR̃ = − αs2πCF (χ cothχ − 1)
⎡⎢⎢⎢⎢⎣
1
є
+ ln n2Kn2J − (nK ⋅nJ)2

4
+ ln µ2

η2
+ Υ⎤⎥⎥⎥⎥⎦ . (10.38)

To get the cusp anomalous dimension is now only a matter of changing the sign
and taking the derivative to ln µ (also using Equation 10.32). ¿is gives:
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Cusp Anomalous Dimension at One Loop

Γcusp = αs
π
CF (χ cothχ − 1) . (10.39)

Note that it is divergent in the limit χ → ∞ (the on-LC limit), so we need to
recalculate it in this limit. ¿is is not surprisingly, as also the contributions
themselves are totally di�erent in the o�-LC limit (single pole) and the on-LC
limit (double pole).

Renormalisation of Wilson Loops on the Light-Cone

Having segments that are light-like further complicates matters, because besides
extra cusp divergences we now also have additional light-cone divergences that
emerge from the divergent limit χ →∞. ¿is time we cannot simply adapt the
regular renormalisation procedure, as Equation 10.30 is no longer valid due
to the emergence of a double pole—already at one loop (see Equation 7.71).
Hence we need to rede�ne the renormalisation procedure in order to subtract
the double pole [129].
¿e cusp angle is de�ned as (see Equation 7.73):

cosh χ def= n ⋅ñ∣n∣ ∣ñ∣ .
It diverges in case of light-like segments because then ∣n∣, ∣ñ∣ → 0, hence the
non-divergent part of the on-LC cusp angle is given by n⋅ñ. To subtract the extra
LC divergences, the Callan-Symanzik equation is rede�ned with an additional
derivative to the non-divergent cusp angle part:⎡⎢⎢⎢⎢⎣

∂
∂ln n ⋅ñ ( ∂

∂ln µ
+ β(gR) ∂

∂gR
) + ∑

cusps
Γcusp(χ, gR)⎤⎥⎥⎥⎥⎦ lnU

LC
R ≡ 0 , (10.40)

where [n⋅ñ] stands for one of the pole prescriptions as de�ned in Equations 3.142
(most commonly, the principal value prescription is chosen in this case). In
practice, it implies that the cusp anomalous dimension is now de�ned with an
additional derivative:

On-lc Cusp Anomalous Dimension

ΓLCcusp
def= − lim

є→0
d

dln µ
d

dln n ⋅ñ lnUR̃(gR , µ, є) , (10.41)

where again U is de�ned over a path with exactly one cusps, as for example
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Figure 10.1. In the next chapter n⋅ñ will take the role of the Mandelstam energy s.
¿e result for light-like segments is given by Equation 7.71 (we already dropped
the terms that won’t contribute):

W1 1∣LC = αs
2π

⎡⎢⎢⎢⎢⎣
1
є
ln µ

2

η2
+ 1
2
(ln n ⋅ñ

2
+ ln µ2

η2
)2⎤⎥⎥⎥⎥⎦ .

¿e path structure remains the same as in the o�-LC case, so we have:

UR̃ = − αs2πCF
⎡⎢⎢⎢⎢⎣
1
є
ln µ

2

η2
+ 1
2
(ln n ⋅ñ

2
+ ln µ2

η2
)2⎤⎥⎥⎥⎥⎦ . (10.42)

Taking the double derivative is just straightforward (again using Equation 10.32):

On-lc Cusp Anomalous Dimension at One Loop

Γcusp = αs
π
CF . (10.43)

For easy reference later, we also list the on-LC Γcusp at two loop [124, 130]:

On-lc Cusp Anomalous Dimension at Two Loop

Γcusp = α2s
4π2

CF [(679 − π2

3
)Nc − 10

9
Nf ] . (10.44)

¿is is of course scheme-dependent. ¿e given result has been calculated in the
regular MS-scheme.



11
GEOMETRIC EVOLUTION

Aswe saw before in the previous chapter, aWilson Loop is a fully gauge-invariant
object, and can as such be used as a basic building block to fully recast QCD
in loop space. Objects in loop space can then exhibit dualities to objects in
coordinate space. In this chapter we address a connection between the energy
evolution of polygonal light-like Wilson exponentials and the geometry of loop
space. As the former have a singularity structure similar to TMDs, this connection
might induce a duality between energy evolution and geometric evolution.
We will start this chapter with a short motivation for our interest in the geo-

metric behaviour of Wilson loops. Next we investigate the dynamical behaviour
of Wilson loops in loop space, which will lead to the so-called MM equation that
describe loop evolution in function of the area of the path. However, the MM
equation has its limitations, and are expected to be invalid for the most common
interesting paths, namely paths containing cusps. We follow a slightly di�erent
approach by investigating the geometrical evolution of a Wilson quadilatiral on
the null plane, which will lead to a conjectured evolution equation, that we can
apply on TMDs as well.

11.1 motivation: wilson loops in super yang-mills

Recently, a lot of research is aimed at the investigation of a duality between
planarWilson loops and gluon scattering amplitudes inN = 4 Super Yang-Mills
theory [131–141]. ¿e duality connects N-gluon planar scattering amplitudes
to Wilson loops consisting of N light-like segments, see Figure 11.1. We will
investigate this topic as a motivation for our interest in Wilson loops.

291
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p1 p2

p3p4

⇔
r1 r2

r3r4

υ1

υ2

υ3

υ4

Figure 11.1: ¿e N-gluon planar scattering amplitude in SYM is dual to a Wilson loop
with N light-like segments. ¿is is illustrated here for N = 4. ¿e gluon
momenta p i are dual to the segment separation vectors υ i = r i+1 − r i of the
Wilson loop.

Super Yang-Mills ¿eory

Super Yang-Mills is the supersymmetric extension to Yang-Mills theory, with a
strong conformal symmetry. It cannot be a realistic theory—as it describes un-
broken supersymmetry—but can be used as a toy theory to investigate problems
that are di�cult to approach in realistic theories. In any conformal theory, all
physics are scale-invariant. ¿e latter naturally implies that it is independent on
distance coordinates, and that all information is encoded in the angles describing
the system. Furthermore, as an unbroken supersymmetric theory, all particles it
describes have the same mass (and are hence massless).
SYM is interesting in its own right, as it is associated with a lot of other theories.

It is the theory living on the boundary of a 5-dimensional anti-de Sitter space (a
common compacti�cation of the 10-dimensional type IIB string theory), and,
using the holographic principle, it fully describes the latter. It is also deeply
connected toN = 8 supergravity, one of the easiest �eld theories that include
gravity. Finally, it can also (partially) be related to QCD, which is where our
interest lies. As it appears, the leading transcendentality component [142] is
exactly the same in QCD as in SYM. ¿e important fact is that calculations in SYM
are much easier than in the other theories,¹ such that we can gain new insights
in calculational techniques and possibly �nd dualities between objects in SYM
and realistic theories like QCD.

1 As an illustration: calculations in SYM have been done up to six loops. ¿e techniques developed
to achieve this, can be partially adapted to use them in more realistic theories.
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Planar Scattering Amplitudes

We will investigate planar gluon scattering by looking at on-shell scattering. An
on-shell gluon is fully determined by its momentum pi (with p2i = 0), its helicity
hi = ± and its colour index ai . Due to the underlying symmetries in SYM, the
amplitude is constrained by its helicity structure: amplitudes where all gluons,
or all but one, have the same helicity vanish, i.e. :

M++⋯+ =M−+⋯+ =M−−⋯− =M+−⋯− = 0 , (11.1)

where the amplitudes are understood as the sum over all crossings. ¿is im-
mediately implies that e.g. up to 5 gluons, the only non-vanishing amplitudes
are the 4-gluon amplitudeM−−++ and the 5 gluon amplitudesM−−+++ andM++−−−. ¿ese are so-called maximally helicity violating—as is any diagram
where 2 particles have helicity opposite to the remaining n−2 particles—because
they maximally violate helcity conservation at tree level. Such amplitudes can
be calculated with the Parke-Taylor formula [143]:

∣M−−+⋯+∣2 = 4
n
(N2

c −1)( g2Nc2
)n−2∑
permutations

1
p1 ⋅p2 p2 ⋅p3⋯ pn ⋅p1 + O(N−2

c , g2) .
As SYM is fully massless, it will su�er from IR divergences. It can be shown that
e.g. for the 4-gluon amplitude the divergences can be separated out, and the
amplitude takes the surprisingly simple form

lnM4 = IR div. + 1
2
Γcusp ln2

s
t
+ const , (11.2)

where s and t are the Mandelstam energy variables:

s = (p1 + p2)2 , (11.3a)
t = (p1 + p3)2 . (11.3b)

Watch the sign in the de�nition of t, this is opposite to the regular de�nition.
¿is separation of IR divergences has been proven up to 3 loops in [144], and
only two years later up to 4 loops in [145]. Similar relations have been proven
for higher n. It is exactly this expression that will be related to a rectangular
light-like Wilson loop [133]:

lnM4 = lnU +O(N−2
c ) , (11.4)

where the rectangular Wilson loop is de�ned as a loop over the rectangular
contour as depicted in Figure 11.1, traced over colour indices and evaluated in
the ground state:

U def= 1
Nc

tr ⟨0∣Pei g ∫∮ dzµ Aµ ∣0⟩ . (11.5)
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¿e contour is built from 4 segments with separation vectors

υi
def= ri+1 − ri . (11.6)

¿e segments are assumed to be light-like, and hence υ2i
def= 0. Using dimensional

regularisation to regulate the IR-divergences one can show that at 1-loop the SYM
scattering amplitude equals (see [133, 134], and compare with Equation 11.2):

lnM4 = Γcusp [− 1
є2IR

( −s
µ2IR

)єIR − 1
є2IR

( −t
µ2IR

)єIR + 1
2
ln2 s

t
+ const] . (11.7)

On the other hand, we will show in Section 11.3 that the �rst order contribution
of the rectangularWilson loop is equal to (now using dimensional regularisation
in the regular way, viz. to treat the UV divergences):

lnU = αs
π
Nc
2

[− 1
є2UV

[ − (υ1+υ2)2 µ2UV]єUV − 1
є2UV

[ − (υ2+υ3)2 µ2UV]єUV
+ 1
2
ln2 (υ1+υ2)2(υ2+υ3)2 + const] . (11.8)

Furthermore, because in the large Nc-limit

CF = Nc
2
+O(N−2

c ) ,
we can write the factor in front as

αs
π
Nc
2

= Γcusp +O(N−2
c ) .

So we see that Equation 11.4 indeed holds—at most up to a constant term—if
we identify the separation vectors with the on-shell momenta:

υi ≡ pi , (υ1+υ2)2 ≡ s , (υ2+υ3)2 ≡ t . (11.9)

More speci�cally, we can state that there exists a duality between a rectangular
light-like Wilson loop and the 4-gluon planar scattering amplitude in super
Yang-Mills theory, that relates the gluon momenta pi to the segment lengths υi ,
and the IR singularities of the amplitude to the UV singularities of the loop in
the following way:

єIR ≡ єUV , µIR ≡ µ−1UV . (11.10)

¿is relation has been proven at higher orders as well, both at weak and strong
coupling. Unfortunately, this relation only holds in a supersymmetric theory.
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Korchemskaya and Korchemsky showed that when considering QCD the relation
only holds in the Regge limit [146]. However, the investigation of Wilson loops
in QCD is interesting anyway, as they share e.g. the same singularity structure as
TMDs, and can be used to calculate so factors.

11.2 wilson loops in loop space

In the previous chapter we have made the �rst steps to show howWilson loops
can be used as elementary building bricks to completely recast QCD in loop
space (see also [113–123]). In this section we will investigate this a bit deeper, and
look at their geometric behaviour. To achieve this, the de�nition of a Wilson
loop needs to be extended to make it (possibly) dependent on multiple contours.
We de�ne a n-th order Wilson loop (consisting of n sub-loops) as:²

nUC1 ,...,Cn = ⟨0∣ΦC1 . . . ΦCn ∣0⟩ , (11.11)

where each sub-loop is de�ned as

ΦC = 1
Nc

tr P Exp⎧⎪⎪⎪⎨⎪⎪⎪⎩i g ∫∮C dz µAµ(z)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (11.12)

¿us each sub-loop is Lorentz and Dirac invariant, but only together they are
evaluated in the ground state to form a n-th order Wilson loop. Note that a 1U
loop coincides with our original de�nition in Equation 10.23b (when evident
from context, we will just write it asU). Treating these n-th orderWilson loops as
elementary objects in loop space, we note that all gauge kinematics are encoded in
a 1U loop (which we have shown in Chapter 2, where we even usedWilson loops
to introduce the gauge �eld to beginwith). On the other hand, all gauge dynamics
are governed by a set of geometrical evolution equations, the Makeenko-Migdal
(MM) equations [147–151]:

Makeenko-Migdal Equation

∂ν δ
δσµν(z) 1UC = g2Nc ∫∮C du µ δ(4)(z − u) 2UCzu Cuz . (11.13)

Here a path C gets deformed by taking two opposite points z and u, and bringing
them in�nitesimally close, such that we separate a newly-formed closed contour

2 We write the loop order index on the le of U to avoid confusion with the expansion order index
as in Equation 6.12.
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from the original one. In other words, we deform the contour C into two closed
contours Czu and Cuz that are still connected in one point.
Of special importance are the two geometrical operations we introduced in

the MM equations, namely the path derivative ∂µ and the area derivative δ
δσµν(z)

[147–151]:

∂µΦC = lim∣δzµ ∣→0
Φδz−1µ C δzµ −ΦC∣δzµ∣ , (11.14)

δ
δσµν(z)ΦC = lim∣δσµν(z)∣→0

ΦC δC −ΦC∣δσµν(z)∣ . (11.15)

¿e path derivative resembles most our standard notion of a derivative: it
measures the variation of the contour while keeping the area constant:

∂µΦC = lim→0
−

.

On the other hand, the area derivative is the most intuitive interpretation of a
geometric derivative: it quanti�es the variation of a contour by comparing the
original contour C with a new contour containing small (non area-conserving)
deformations δC:

δ
δσµν(z)ΦC = lim→0

−
.

When parameterising the path as zµ(λ), the area derivative can also be expressed
in the so-called Polyakov form, which can be helpful for certain calculations:

δ
δσµν(z(λ)) = λ−i ε

∫
λ+i ε

dκ δ(κ − λ) δ
δxµ(κ) δ

δxν(λ) . (11.16)

Although theMM equations provide an elegant method to describe the evolution
of a generalised Wilson loop solely in function of its path, they have their limita-
tions. For starters, they are not closed since the evolution of U depends on 2U .
Formally, this limitation is super�uous in the large Nc limit since then we can
make use of the factorisation property 2UC1 ,C2 ≈ UC1 UC2 (see Equation 10.26),
making the MM equations closed. ¿e remaining limitations on the MM equa-
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tions are more severe. For one, the evolution equations are derived by applying
the Schwinger-Dyson equations

⟨0∣∇µFµν ∣0⟩ = i ⟨0∣ δ
δAν

∣0⟩ (11.17)

on the Mandelstam formula
δ

δσµν(z)ΦC = ig tr(FµνΦCz) , (11.18)

and using Stokes’ theorem (see e.g. [112] for a nice derivation). ¿e Mandelstam
formula relates the geometric behaviour of a loop to its gauge content. However,
it is not known whether it remains well-de�ned for all types of paths, while
similar issues arise with the area derivative. In particular, all contours containing
one or more cusps induce some problematic behaviour, as it is (at least) not
straightforward to de�ne continuous area di�erentiation inside a cusp, nor it
is to continuously deform a contour in a general topology [C][16, 17, 152–154].
¿is is somewhat bothersome, as most interesting dynamics lie in contours with
cusps. ¿ere are similar problems with Stokes’ theorem. It is however possible
to generalise the latter to be valid for any continuous path containing a �nite
number of cusps. A last concern is that there are no known general solutions to
the MM equations in 4D Minkowskian spacetime. Recently a few developments
in the �eld of twistor theory have shown theMM equations to be valid, but when
implemented in a completely di�erent space, viz. twistor space.

11.3 evolution of light-like rectangular loops

In order to maximally simplify the MM equations, we restrict ourselves to the
investigation of rectangular loops with light-like segments. ¿is restriction
lowers the dimensionality to a 2-dimensional case, and it �xes the cusp angles
to constant values that are conserved under any valid path or area variation,
hence removing any angle-dependent contributions that would make the area
derivation operator ill-de�ned.
¿e loop structure for rectangular on-LCWilson loops is shown in Figure 11.2a.

Because of the light-like segments, the Wilson loop is automatically planar, and
for simplicity we choose it to lie on the null-plane, i.e. r⊥ i = 0. ¿e loop is fully
de�ned by its four cusp points r1, . . . , r4 but it will be convenient to express
the result in function of the variables υ1, . . . , υ4 that are de�ned as segment
separation vectors:

υi
def= ri+1 − ri . (11.19)
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r2 r3

r4r1

υ2

υ3

υ4

υ1N+

N−

a)

δσ−+

−δσ+−

b)

Figure 11.2: a) Rectangular Wilson loop with light-like segments, on the null plane
(r⊥ i = 0). ¿e segment separation vectors are de�ned in Equation 11.19.
From a geometrical point of view, the loop is fully characterised by the two
indipendent LC directions N±. b) Geometric evolution of the loop.

Comparing this de�nition with the path parameterisations as we are used to
from Chapter 6, we see that the separation vectors are just a rescaling of the path
direction vectors:

υi = ∣ri+1−ri ∣ ni . (11.20)

Because the segments are light-like, this directly implies that the squares of the
separation vectors vanish:

υ2i ∼ n2i ≡ 0 . (11.21)

We prefer these variables over the direction vectors, so that we can express the
result in function of the Mandelstam energy variables (see Equations 11.3):

s = (υ1 + υ2)2 = 2υ1 ⋅υ2 , t = (υ2 + υ3)2 = 2υ2 ⋅υ3 . (11.22)

From a geometrical point of view, the loop is fully characterised by the two inde-
pendent LC directions N+ and N−. ¿ese directions are related to the separation
vectors, and more speci�cally we normalise them to equal the latter:

N+ = υ1 = −υ3 , N− = υ2 = −υ4 . (11.23)

¿e area di�erentiations are now well-de�ned at the cusp points. In every cusp
there are two area derivatives, di�erent on the le side or the right side of the
cusp. Only two area derivatives are linearly independent:
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Figure 11.3: At LO, the rectangularWilson loop has three types of diagrams: a self-energy
diagram that vanishes in the on-LC case, a cusp correction, and a correction
containing two cusps.

δσ−+ = N−δN+ , (11.24a)
δσ+− = N+δN− . (11.24b)

¿e area derivatives are illustrated in Figure 11.2b. To see how each side of a cusp
has a di�erent area derivative, we investigate the area derivatives in the point r2:

δσ(r2)R = δσ−+ , δσ(r2)L = −δσ+− , (11.25)

¿e minus sign in δσ(r2)L comes from our choice of N+ and N− in Figure 11.2a.

Rectangular Light-Like Loop Calculation at One-Loop

We now calculate the one-loop contribution of this loop in Feynman gauge.
We will do this calculation in coordinate space, as at one-loop calculations
with Wilson loops (and �nite Wilson lines in general) tend to be easier in
coordinate representation (however at higher orders, momentum representation
is preferable). In coordinate representation, the gluon propagator in Feynman
gauge equals:

Dab
µν(x − y) = −gµνδab (πµ2)є4π2

Γ(1 − є) 1[−(x − y)2 + iε]1−є . (11.26)

¿e NLO contribution is then given by (remember that colour indices are traced
over and divided by Nc):

1
2
(i g)2CF P ∫∮ dxµ dyν Dµν(x−y) , (11.27)

We have three types of diagrams, as illustrated in Figure 11.3. ¿e �rst type—the
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self-energy diagrams—vanish because the segments are light-like υi ⋅υi = υ2i = 0.
¿e contribution of the second diagram is

Ucusp = −g2CF (πµ2)є4π2

1

∫
0

dλ dκ υi ⋅υi+1 Γ(1 − є)[−(ri + υiλ − ri+1 − υi+1κ)2 + iε]1−є . (11.28)
We can rewrite the denominator as

−(ri + υiλ − ri+1 − υi+1κ)2 = −(υi(λ − 1) − υi+1κ)2 ,= 2υi ⋅υi+1(λ − 1)κ ,
where the last step is valid because the separation vectors are light-like. ¿e
contribution is now

Ucusp = − 12 g2CF (πµ
2)є

4π2
Γ(1 − є)(−2υi ⋅υi+1)є 1

∫
0

dλ 1(λ − 1)1−є
1

∫
0

dκ 1
κ1−є ,

= − 1
2
g2CF

(πµ2)є
4π2

Γ(1 − є)(−2υi ⋅υi+1)є 1є2 . (11.29)

To sum over the four cusps, we relate 2υi ⋅υi+1 to the Mandelstam variables (see
Equation 11.22):

s = 2υ1 ⋅υ2 = 2υ3 ⋅υ4 , t = 2υ2 ⋅υ3 = 2υ4 ⋅υ1 ,
so that we have

∑Ucusp = −αsπ CF(πµ2)єΓ(1 − є) 1є2 ((−s + iε)є + (−t + iε)є) . (11.30)

In principle the last diagram in Figure 11.3 vanishes as well because of the light-
like segments, but it is however interesting to calculate it, as at higher orders it
might give a non-zero contribution. It is given by:

U2cusp = g2CF (−πµ2)є4π2

1

∫
0

dλ dκ υi ⋅υi+2Γ(1 − є)(ri + υiλ − ri+2 − υi+2κ)2(1−є) ,
∑U2cusp = αs

2π
CF(πµ2)є (ln2 st + π2) . (11.31)

Note that this contribution indeed vanishes, as s = −t and hence
ln2 s

t
+ π2 = ln2(−1) + π2 = 0 ,
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because we are evaluating logarithms in the region [0, 2π] (and hence ln(−1) =
iπ). So the full contribution up to �rst order is simply:

U = 1 − αsCF
π

(2πµ2)єΓ(1 − є) [ 1
є2

(− s
2
)є + 1

є2
(− t

2
)є] .

Expressing this result in function of the LC directions N+ and N−, we get:
U = 1 − αsCF

π
(2πµ2)є Γ(1 − є) [ 1

є2
(−N+N−+ iε)є+ 1

є2
(N+N−+ iε)є] .

We saw in the previous chapter that an on-LCWilson loop cannot be renorm-
alised in the regular way, but needs an additional derivative ∂/∂n ⋅ ñ (see Equa-
tion 10.40). But n⋅ñ is in this case exactly N+N−. Inspired by the area derivatives
in Equations 11.24, we de�ne a logarithmic area derivative as

Logarithmic Area Derivative

δ
δ ln σ

def= σ+− δ
δσ+− + σ−+ δ

δσ−+ = N− δ
δN− + N+ δ

δN+ . (11.32)

It lowers the divergence with one order:

δ
δ ln σ

lnU = −2αsCF
π

(2πµ2)є Γ(1−є) 1
є
[(−N+N−+ iε)є + (N+N−+ iε)є] ,

such that we can now apply regular renormalisation by making a logarithmic
energy derivation and taking the limit є → 0:

d
dln µ

δ
δ ln σ

lnU = −4αsCF
π

= −4Γcusp . (11.33)

Not only is this in perfect agreement with the on-LC Callan-Symanzik Equa-
tion 10.40, the important fact is that we derived this result from a geometrical
point of view, using the area in�nitesimals Equations 11.24 which we calculated
from Equation 11.15. In other words, we established a connection between the
geometry of loop space and the dynamical properties of its fundamental objects,
viz. light-like Wilson loops, by constructing its geometric evolution.
It is logical to interpret Equation 11.33 as a resummation of all cusps in the

path. In other words, for any closed polygonal path that is planar and consists of
light-like segments, we have

Geometric Evolution of On-LC Planar Loop

d
dln µ

δ
δ ln σ

lnU = − ∑
cusps

Γcusp . (11.34)

¿is is a really strong result. Not only does it provide a description of the
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geometrical behaviour of light-like objects in loop space, it also holds at all
orders. To motivate this, we express the on-LC cusp anomalous dimension as
the asymptotic limit of the angle-dependent cusp anomalous dimension for
large angles [129]:

Γcusp(χ, αs) χ→∞ÐÐÐ→ χ Γcusp(αs) , (11.35)

where Γcusp(αs) is the on-LC cusp anomalous dimension. We know that in the
LC limit, the angle is not well de�ned because it develops additional divergences
due to ∣n∣, ∣ñ∣ → 0, which we can parameterise as (see Equation 7.73 for the
de�nition of the cusp angle):

χ = cosh−1 n ⋅ñ∣n∣ ∣ñ∣ ∣n∣,∣ñ∣→0ÐÐÐÐ→ (n ⋅ñ)є
є

= σє

є
, (11.36)

where σ = n ⋅ñ is the area of the loop. ¿en we can rewrite Equation 11.35 as

Γcusp(χ, αs) χ→∞ÐÐÐ→ σє

є
Γcusp(αs) , (11.37)

¿e area derivation removes the pole:

δ
δ ln σ

Γcusp(χ, αs) = σє Γcusp(αs) є→0ÐÐ→ Γcusp(αs) . (11.38)

Finally, we �ll in the original de�nition of the angle-dependent cusp anomalous
dimension (see Equation 10.31):

∑
cusps

Γcusp(χ, αs) = − limє→0 d
dln µ

lnU , (11.39a)

δ
δ ln σ

d
dln µ

lnU = − ∑
cusps

δ
δ ln σ

Γcusp(χ, αs) = − ∑
cusps

Γcusp(αs) , (11.39b)
which is indeed our result in Equation 11.34.

11.4 geometric evolution of tmds

¿emost important point about this whole derivation is that this and the former
chapter are equally valid when applied to regular Wilson lines, as intuitively we
can ‘close’ anyWilson line structure by connecting its endpoints at in�nity (which
doesn’t add any gauge content, see Equation 6.27c). ¿is is especially interesting
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for TMDs and their associated so factors, whose singularity structures are fully
determined by their Wilson line structures.
¿e singularity structure of a TMD is quite intricate. Typically, there are 3

classes of divergences at one loop:

a. Regular UV poles, which can be subtracted by a normal renormalisation
procedure.

b. Pure rapidity divergences which depend on an additional rapidity cut-o�
but don’t necessarily violate regular renormalisation. ¿ese are the diver-
gences associated with the ζ and ζh regulators, and they are manageable
as they are resummed using the CS evolution equation.

c. Overlapping divergences which are a combination of the former two, that
stem from (partially) light-like Wilson line segments. ¿ese are compar-
able to the typical LC double poles, and similarly break regular renormal-
isation. In the standard TMD formalism, these are avoided by putting the
segments slightly o�-shell using the ζ and ζh regulators.

We will now motivate that instead of avoiding overlapping divergences, we can
allow the Wilson segments inside a TMD to be on-LC, if we treat its evolution
geometrically. ¿e TMD rapidity cut-o� is given by (see Equation 8.44)

ζ = lim∣n∣→0
k ⋅n∣n∣ = lim∣n∣→0

N+N−
∣n∣ , (11.40)

so that di�erentiating w.r.t. ln ζ can be written as

δ
δ ln ζ

= ζ δN+
δζ

δ
δN+ + ζ δN−

δζ
δ

δN− ,
= N+ δ

δN+ + N− δ
δN− .

Comparing this to Equation 11.32, we immediately see that

δ
δζ

≡ δ
δ ln σ

. (11.41)

Our conjecture in Equation 11.34 then tells us that the TMD has to satisfy

d
dln µ

δ
δ ln σ

ln f = − ∑
cusps

Γcusp . (11.42)

But howmany cusps does the TMD have? Let us have a look at the possibilities in
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χ? χ?

a)

χ χ

b)

χ χ

c)

Figure 11.4: a) ¿e only two cusps in a TMD are spurious cusps. b) When including
the FF, two cusps appear. c) We conclude that the TMD (and the FF as well)
contains two ‘hidden’ cusps, which are parameterised by the angle between
the LCWilson line and the incoming (resp. outgoing) quark.

Figure 11.4. ¿e �rst thing we need to realise, is that there exist di�erent types of
cusps. What we will call an externally driven cusp, is a cusp that is somehow the
emergence of a physical interaction. Consider e.g. Figure 11.1, where we could
interpret the rectangular loop as the so part of the 4-gluon scattering diagram
with a quark box. ¿e cusps in the so part (the rectangular loop) are just the
remnants of the quark-gluon interactions of the box. If we would e.g. remove
the gluon on the top le , the Wilson line path on the le would have continued
in a straight line (but probably in a di�erent direction) up to the next cusp. If we
re-add the fourth gluon in the hard part, the fourth cusp reappears in the so 
part as well. ¿at is why we call it externally driven.
Another type of cusp that might appear is what we will call a spurious cusp.

For starters, it is not externally driven, but merely a result from a mathematical
trick. One such example is a cusp that is formed at in�nity. ¿e Feynman rule in
Equation 6.27c tells us that the part of a Wilson line that is connected to in�nity
does not transfer momentum, and equals just a factor 1. ¿is directly implies
that we can connect di�erent Wilson line segments at in�nity at will, and this
is a perfect example of a spurious cusp. ¿e important consideration is that
a spurious cusp cannot contribute to the geometric evolution of Wilson line
structures.³¿is is why it is important to make the distinction between di�erent
type of cusps.
¿e most common Wilson line structure of a TMD, as represented in Fig-

ure 11.4a, has two cusps, but both of these cusps are positioned at∞−, and are
hence spurious cusps. Where then are the cusps that drive the geometric evolu-
tion of the TMD? In fact, our focus is too narrow, and we should look at the full
picture. In SIDIS we have both a TMD and an FF at the same time, so we should

3 ¿e motivation for this statement is that we can create as many spurious cusps at will without
changing the kinematics nor dynamics of the system.
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look at them together. If we ignore the transversal parts of the Wilson line,4 the
TMD contains a Wilson line in the n− direction, and the FF contains a line in
the n+ direction. ¿ese two lines meet in a cusp, exactly a cusp is externally
driven, as it is the remnant of the interaction with the virtual photon. ¿is is
illustrated in Figure 11.4b (where again the transversal parts are omitted as they
don’t contribute to the cusp-discussion). So the geometric evolution is clearly
visible if we combine both the TMD and the FF.
We now conjecture a third type of cusp, what we will call a hidden cusp. It

is the imprint from the externally driven cusp in Figure 11.4b acting on the
TMD and the FF separately. It is externally driven, as it directly in�uenced by the
virtual photon, but it is not a cusp between Wilson lines only—instead it is a
cusp between a Wilson line and a quark line. ¿is is illustrated in Figure 11.4c
(where we reinserted the transversal parts for generality). When considering
the Wilson line structure of a TMD, this cusp is easily overlooked, as it is merely
an imprint of the cusp in Figure 11.4b. ¿is is why we call it hidden. But it is not
unimportant—in fact it is indispensable—as the geometric evolution of a TMD
is fully governed by its two hidden cusps.
¿e geometric evolution for the TMD is hence given by

Geometric Evolution for TMD

d
dln µ

δ
δ ln σ

ln f = −2Γcusp . (11.43)

At 1-loop we have Γcusp = αs CF
π and hence our conjecture is in perfect agreement

with the CS Equation 8.52, because trivially (see Equation 8.53):

γK ≡ −2Γcusp . (11.44)

¿is result has been con�rmed at 2-loop by Dr. Igor Cherednikov and Tom
Mertens [153]. So to summarise:

a. Our conjecture holds, and is as expected applicable on arbitrary Wilson
line structures with LC segments, like TMDs.

b. We can treat the nasty overlapping divergences coming from LC segments
by using a geometric description, hence avoiding the need to calculate
di�cult o�-LC segments.

c. ¿ere is a one-to-one correspondence between the rapidity derivative and
our logarithmic area derivative. ¿is also implies we can apply geometric
evolution on the TMD to calculate the CS kernel (Equation 8.51a).

4 Which we can safely do in the discussion on the cusps, as they only contribute spurious cusps.



CONCLUSION AND OUTLOOK

In this thesis we deeply investigated some technicalities of QCD. In particu-
lar, the main mathematical object of interest in this thesis was a Wilson line—
prominently present in many QCD calculations—and to some extent its more
exotic nephew, the Wilson loop. A er giving a very broad introduction to the
mechanics behind QFT in general and QCD in particular in Chapters 1 to 5, we
went on to construct a new framework to work with aforementioned Wilson
lines in Chapters 6 and 7. ¿is framework is only applicable on piecewise linear
Wilson lines, but luckily this is the only type of line that appears in real-life
physics in the absence of an external �eld, as the path of a Wilson line is gener-
ally dictated by external driving forces. In the absence of a continuous external
�eld, the Wilson path will lie in a straight line, until it is spontaneously driven
in another direction (e.g. due to the interaction with a photon), leading to a
piecewise linear path.
We have spent quite some time in Chapter 6 to introduce Wilson lines in a

detailed and rigorous way, as general as possible within the piecewise linear
assumption. While standard references generally introduce Wilson lines for a
speci�c path direction, e.g. in the LC minus direction, the Feynman rules in
Equations 6.27 and all other formulae in Chapters 6 and 7 are valid for any
linear path, be it light-like, transversal, or a mixture of both. We have put some
emphasis on the �nite and fully in�nite linear lines, to introduce them with
strong mathematical rigour. What remains of Chapter 6 was devoted to the
introduction of our new framework, relating di�erent path topologies and com-
bining segments into a piecewise line. In Chapter 7 we �rst introduced a new
technique to calculate products and traces of fundamental Lie generators, with
Equation 7.2a and Equations 7.7 as the main result. In the remaining part of
Chapter 7 we have put our framework into practice, and have almost a full result
at NLO in Equations 7.71, 7.81 and 7.88—where full implies applicable to any
piecewise linear Wilson line that exists.
In Chapters 8 and 9 we reviewed two common frameworks in QCD. Chapter 8

was an investigation of the TMD framework, where Wilson lines are heavily used
in the gauge invariant de�nitions of the density functions. In the end of this

306
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chapter, we elaborated a bit on the singularity structure and evolution of TMDs,
as it is fully governed by the underlying Wilson line structure. Chapter 9 was
an investigation of the small-x approach, where the behaviour of (integrated
and unintegrated) PDFs is described at small-x. In the end of this chapter, we
elaborated on a way to observe saturation in experiment by measuring the
transversal energy �ow and using theGBWmodel. Although seemingly unrelated
to the rest of this thesis, the small-x framework has a strong use of Wilson lines
as well—and hence also has potential use in our new framework—be it at a lesser
extent than the TMD framework.
Finally, in Chapters 10 and 11 we investigated a special class of Wilson lines—

de�ned on a closed path—calledWilson loops.¿ey are ideal tools to investigate
the renormalisation properties of objects built on a Wilson line structure, like
TMDs and the loops themselves. Renormalisation is governed by the cusp anomal-
ous dimension, if using an adapted renormalisation procedure where additional
divergences are subtracted as well. ¿e loop is then said to be multiplicatively
renormalisable. In the case of TMDs this additional renormalisation is avoided
by use of the CS RGE and either an o�-LC shi or an intercancellation between
di�erent sub-factors. In Chapter 11 we moved to loop space in order to describe
the evolution of Wilson loops in a geometrical way. We focussed on rectangu-
lar planar light-like loops, and derived geometrical evolution equations in a
way similar to the regular MM equations, but avoiding mathematical tools that
would be ill-de�ned for a cusped contour. In the end, we de�ne the logarithmic
area derivative in Equation 11.32 and conjecture in Equation 11.34 a geometrical
evolution driven by the cusp anomalous dimension and the number of cusps.
We show that it holds for the quadrilateral loop, but also for the TMD as it is in
perfect agreement with the CS evolution equations. In this way we have directly
shown that there is another way to treat the additional divergences of TMDs:
instead of an o�-LC shi or an intercancellation of sub-factors, we can subtract
these divergences using our geometrical approach.
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outlook

¿e two main results in thesis—the piecewise linear Wilson framework and the
geometric evolution—are still in a stage of active research, as both can be further
explored and applied, as well as strengthened by going to higher orders. While
my supervisor Dr. Igor Cherednikov and fellow Ph.D. student TomMertens have
chosen to continue the research on loop space and the geometrical behaviour of
Wilson lines/loops—further adapting the conjecture in Equation 11.34 to make
it mathematically more stable—I prefer to continue with the piecewise linear
Wilson line framework. I am currently �nishing theNLO calculations in Feynman
gauge, and will a erwards continue with the �rst calculations at NNLO, as well
as start calculating some other blobs, di�erent from the self-interaction blobs,
as e.g. blobs connecting an external quark [15]. But my main aim at the moment
is to li this framework out from the pure theoretical regime, into more applied
physics. To achieve this, I recently engaged myself into two new collaborations.
¿e �rst is together with Dr. Ahmad Idilbi, Dr. Miguel García-Echevarría, Prof.
Dr. Ignazio Scimemi and Dr. Alexey Vladimirov, on the calculation of the TMD
collinear and so factors at NNLO [14]. It is a direct application of the framework
developped in Chapters 6 and 7. ¿e second is together with Prof. Dr. Leonard
Gamberg and Dr. Marc Schlegel, on an investigation of the duality between the
GPD E and the Boer-Mulders and Sivers TMDs [13]. For this calcuation a lensing
function is used which is originally approximated, but can be calculated in a
more direct way using Equations 7.7.
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A
CONVENTIONS AND REFERENCE FORMULAE

a.1 notational conventions

We will use a few di�erent equal sign, to clarify some of our statements. In
particular:

a. = “. . . is equal to . . . ” ,

b. ≡ “. . . is required to be equal to . . . ” ,

c. def= “. . . is de�ned as . . .or . . . is de�ned to equal . . . ” ,

d. sup= “assume . . . to be equal to . . . ”

e. N= “. . . is written as . . . ” ,

f. ?= “. . . is maybe equal to . . . ” (statement has still to be veri�ed) .

In general, we use the same conventions as in [18]. We will e.g. never use the
comma notation to denote derivatives (as it is too easily confused withmisplaced
commas). We will work in natural units:

ħ = c = ε0 = kB = 1 . (A.1)

¿is means in particular that the electromagnetic �ne structure constant is given
by

α = g2

4π
≈ 1
137.04

. (A.2)

Although is α originally only associated to the electromagnetic force, it is com-
mon to de�ne a similar constant for the strong force:

αs
N= g2

4π
. (A.3)

Concerning indices and general variable namings, we try to be as consistent as
possible (which is sometimes di�cult due to the limited amount of characters
available in the alphabet). In particular, we will use:

310
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a. r, s, t, u, v ,w , x , y, z for coordinates ,
b. k, l , p, q for momenta ,
c. µ, ν, ρ, σ for Minkowskian indices ,
d. i , j, k, l for Euclidian indices ,

and for the spatial part of 4-vectors ,
and for fundamental indices (Lie algebra) ,
and for enumerations in sums and products ,

e. a, b, c, d , e , f , g for adjoint indices (Lie algebra) ,
f. x , y, z,w for summations of adjoint indices (Lie algebra) ,
g. α, β, γ, δ for Dirac indices .
h. n for any integer greater than zero ,

and for any directional 4-vector ,
i. J ,K , L,O for Wilson line segments .

We will mainly work in the path integral formalism (see Chapter 3). ¿is implies
that �elds aren’t operators, but merely coordinate or momentum functions. It also
implies that we can treat them a plain numbers, commuting with everything.
¿ere are two exceptions: spinor �elds anticommute by de�nition, and non-
Abelian gauge �elds are contracted with Lie generators. However, there is a
strong conceptual di�erence between these �elds, and operator �elds. E.g. the
generator can be extracted from gauge �elds:

Aµ ≡ Aaµ ta , (A.4)

where now Aaµ is again just a number (while in canonical quantisation also this
part would remain an operator). ¿is might be a bit confusing, as the gauge
�elds are sometimes used as ‘operators’, i.e. with the generators absorbed in the
�eld, as it can reveal certain relations a bit easier (see e.g. Equations 1.56). Just
remember that in our treatment they are never operators in a literal way. ¿e
same is true for spinor �elds, as their anticommuting behaviour can simply be
attributed to the Grassmanian coe�cients (just numbers) that de�ne it (see e.g.
Equation 3.83).
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a.2 vectors and tensors

For the Minkowski metric, we take the common convention

gµν =
⎛⎜⎜⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠
, (A.5)

where Greek indices run over 0, 1, 2, 3 (for t, x , y, z). To denote only the spatial
components, we use Roman indices, like i, j, etc. We use the Einstein notation
convention throughout the whole thesis, meaning that repeated indices are to be
summed over. A 4-vector is denoted in italic, a 3-vector in bold and a 2-vector
(the transversal components) in bold and with a subscript ⊥:

pµ = (p0, p1, p2, p3) = (p0, p) = (p0, p⊥, p3) , (A.6)

while a length is mostly denoted in italic, be it a length of a 4-, 3- or 2-vector.
¿e di�erence should be clear from context, but when needed for clarity, we use∣p∣ and ∣p⊥∣. ¿e scalar product is fully de�ned by the metric:

x ⋅p = x0p0 − x ⋅p . (A.7)

¿is implies that we can de�ne a vector with a lower index as

pµ = gµνpν = (p0,−p1,−p2,−p3) = (p0,−p) = (p0,−p⊥,−p3) , (A.8)

such that

x ⋅p = xµpµ . (A.9)

Note that the index switches places when moving the coordinate to the denom-
inator, as is e.g. the case for the derivative:

∂
∂xµ

N= ∂µ . (A.10)

¿e position 4-vector combines time and 3-position, while the 4-momentum
combines energy and 3-momentum:

xµ = (t, x) pµ = (E , p) . (A.11)

A particle that sits on its mass-shell (on-shell for short) has

p2 = E2 − ∣p∣2 = m2 . (A.12)
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All real particles (having timescales and distances larger than the quantum level)
are on-shell.
Last we de�ne the symmetrisation (. . .) and antisymmetrisation [. . .] of a

tensor as

A(µν) = 1
2
(Aµν + Aνµ) , (A.13a)

A[µν] = 1
2
(Aµν − Aνµ) . (A.13b)

A rank-2 tensor has the peculiar property that it can be split exactly in its
symmetric and antisymmetric parts

Aµν = A(µν) + A[µν] . (A.14)

¿is is in general not true for tensors of higher rank. Symmetrising an antisym-
metric tensor returns zero, this implies:

A(µν)B[µν] = 0 . (A.15)

It is straightforward to generalise the de�nition of symmetrisation to tensors of
higher rank:

A(µ1⋯µn) = 1
n!

(Aµ1⋯µn + all permutations) , (A.16a)

A[µ1⋯µn] = 1
n!

(Aµ1⋯µn − all odd perm. + all even perm. ) . (A.16b)

a.3 spinors and gamma matrices

Any �eld with half-integer spin, i.e. a Dirac �eld, anticommutes:

ψ(x)ψ(y) = −ψ(y)ψ(x) x ≠ y . (A.17)

We de�ne gamma matrices by their anticommutation relations

{γµ , γν} ≡ 2 gµν 1 , (A.18)

with the following additional property:

(γµ)† = γ0γµγ0 . (A.19)
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¿en we can de�ne the Dirac equation for a particle �eld ψ:

(i /∂ −m)ψ = 0 . (A.20)

where the slash is a shortcut notation for

/∂ = γµ∂µ . (A.21)

We can identify an antiparticle �eld with ψ if we de�ne:

ψ = ψ†γ0 , (A.22)

which satis�es a slightly adapted Dirac equation:

i∂µψ γµ +mψ = 0 . (A.23)

We can expand Dirac �elds in function of a set of plane waves:

ψ(x) = us(p) e−i p⋅x (p2 = m2, p0 > 0) , (A.24a)
ψ(x) = vs(p) e+i p⋅x (p2 = m2, p0 < 0) , (A.24b)

where s is a spin-index. If we de�ne

u = u†γ0 , v = γ0v† , (A.25)

we can �nd the completeness relations by summing over spin:

∑
s
us(p)us(p) = /p +m , (A.26a)

∑
s
vs(p)vs(p) = /p −m . (A.26b)

We will identify

a. u with an incoming fermion,

b. u with an outgoing fermion,

c. v with an incoming antifermion,

d. v with an outgoing antifermion.

If we de�ne

γ5 N= iγ0γ1γ2γ3 = − i
4!
εµνρσγµγνγργσ , (A.27a)

γµν N= γ[µγν] = 1
2
(γµγν − γνγµ) , (A.27b)

we can construct a complete Dirac basis:

1, γµ , γµν , γµγ5, γ5 . (A.28)

We will identify



A.3 spinors and gamma matrices 315

a. 1 with a scalar,

b. γµ with a vector,

c. γµν with a tensor,

d. γµγ5 with a pseudo-vector,

e. γ5 with a pseudo-scalar.

Furthermore, γ5 has the following properties:

(γ5)† = γ5 , (γ5)2 = 1 , {γ5, γµ} = 0 . (A.29)

Let’s list some contraction identities for gamma matrices in ω dimensions:

γµγµ = ω , (A.30a)
γµγνγµ = (2 − ω)γν , (A.30b)

γµγνγργµ = 4 gνρ + (ω − 4)γνγρ , (A.30c)
γµγνγργσγµ = −2γσγργν + (4 − ω)γνγργσ . (A.30d)

And some trace identities:

tr(1Dirac) = 4 , (A.31a)
tr(odd number of γ’s) = 0 , (A.31b)

tr(γµγν) = 4 gµν , (A.31c)
tr(γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσ gνρ) , (A.31d)

tr(γµ1γµ2⋯γµn−1γµn) = tr(γµnγµn−1⋯ γµ2γµ1) . (A.31e)

Let us �nish this section by listing some useful relations:

/k/k = k2 , /k/p + /p/k = 2p⋅k , γµ /k = 2kµ − /kγµ , (A.32a)

/p/k/p = 2p⋅k /p − p2/k , /p/k/q/p = 2p⋅q /p/k − 2p⋅k /p/q + p2/k/q , (A.32b)
/k/p/q + /q/p/k = 2p⋅q /k − 2q ⋅k /p + 2k ⋅p /q . (A.32c)
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a.4 light-cone coordinates

Light-cone coordinates form a useful basis to represent 4-vectors. For a random
vector kµ, they are de�ned by

k+ = 1√
2

(k0 + k3) , (A.33a)

k− = 1√
2

(k0 − k3) , (A.33b)

k⊥ = (k1, k2) . (A.33c)

We will represent the plus-component �rst, i.e.

kµ = (k+, k−, k⊥) . (A.34)

One o en encounters in literature the notation (k−, k+, k⊥), but this is merely
a matter of convention. ¿e factor 1√

2
normalises the transformation to unit

Jacobian, such that

dωk = dk+ dk− dω−2k⊥ . (A.35)

It is straightforward to show that the scalar product has the form

k ⋅p = k+p− + k−p+ − k⊥ ⋅p⊥ , (A.36a)
k2 = 2k+k− − k2⊥ . (A.36b)

¿is implies that the metric becomes o�-diagonal:

gµνLC =
⎛⎜⎜⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠
. (A.37)

We will drop the index LC when clear from context. Note that this basis is not
orthonormal. Note also that

gµν gνρ = δµρ , gµν gµν = 4 , (A.38)

just like the Carthesian metric. We can also de�ne two light-like basis-vectors:

nµ+ = (1+, 0−, 0⊥) , (A.39a)
nµ− = (0+, 1−, 0⊥) . (A.39b)
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¿ese are light-like vectors, and maximally non-orthogonal:

n2+ = 0, n2− = 0, n+ ⋅n− = 1 . (A.40)

Watch out, as lowering the index switches the light-like components because of
the form of the metric:

n+ µ = (0+, 1−, 0⊥) , (A.41a)
n− µ = (1+, 0−, 0⊥) , (A.41b)

such that they project out the other light-like component of a vector:

k ⋅n+ = k−, k ⋅n− = k+ . (A.42)

In other words, we can write

k = (k ⋅n−) n+ + (k ⋅n+) n− − k2⊥ . (A.43)

For Dirac matrices in LC-coordinates, we have

{γ+, /k} = 2 g+µkµ = 2k+ ⇒ γ+/k = 2k+ − /kγ+ . (A.44)

Note that

(γ+)2 = (γ−)2 = 0 , 1
2
{γ+, γ−} = 1 ,

such that Equation A.18 remains valid in light-cone coordinates.
We can use the light-like basis vectors to construct a metric for nothing but

the transversal part:

gµν⊥ = gµν − 2 n(µ+ nν)− (A.45a)

=
⎛⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠
. (A.45b)

Note that

gµν⊥ g⊥ νρ = δµρ − nµ+n− ρ − nµ−n+ ρ , gµν⊥ g⊥ µν = 2 . (A.46)

Last we can de�ne an antisymmetric metric:

εµν⊥ = ε+−µν (A.47a)

=
⎛⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎟⎟⎟⎠
, (A.47b)
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where we adopt the convention ε0123 = ε+−12 = +1.

a.5 fourier transforms and distributions

¿eHeaviside step function is de�ned as

θ(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x < 0
1 x > 0 , (A.48)

and is unde�ned for x = 0 (sometimes it is hard-coded to equal 0, 1 or 1/2, but
we leave it unde�ned). It can be used to limit integration borders:

+∞
∫−∞dx θ(x − a) f (x) = +∞

∫
a

dx f (x) , (A.49a)

+∞
∫−∞dx θ(a − x) f (x) = a

∫−∞dx f (x) . (A.49b)

¿e Dirac δ-function is de�ned as the derivative of the θ-function:

δ(x) = d
dx

θ(x) , ⇒ ∫dx δ(x) = 1 , (A.50)

and is zero everywhere, except at x = 0. A generalisation to n dimensions is
straightforward:

∫dnx δn(x) = 1 . (A.51)

¿e most important use of the Dirac δ-function is the si ing property, which
follows straight from Equation A.51:

∫dnx f (x) δn(x − t) = f (t) . (A.52)

However, for non-in�nite borders, the si ing property gains additional θ-
functions:

b

∫
a

dx δ(x − c) f (x) = θ(b − c) θ(c − a) f (c) . (A.53a)

Similar properties can be derived for the θ-function:
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b

∫
a

dx θ(x−c) f (x) = θ(a−c) b

∫
a

dx f (x) + θ(b−c) θ(c−a) b

∫
c

dx f (x) , (A.53b)
b

∫
a

dx θ(c−x) f (x) = θ(c−b) b

∫
a

dx f (x) + θ(b−c) θ(c−a) c

∫
a

dx f (x) . (A.53c)
When dealing with on-shell conditions, we o en encounter the combination of
a Heaviside θ and a Dirac δ function. To save space, we de�ne the short-hand
notation

δ+(p2 −m2) N= δ(p2 −m2) θ(p0) . (A.54)

When working in LC-coordinates, the integration over p0 is replaced by an
integration over p+, hence in this case we de�ne the short-cut as

δ+(p2 −m2) N= δ(p2 −m2) θ(p+) . (A.55)

Another short-hand notation we will o en use to save space is

δ(n)(x) N= (2π)n δ(n)(x) , (A.56)

because a δ-function is o en accompagnied with powers of 2π.¿e combination
of the two is trivial:

δ+(x) N= 2π δ(p2 −m2) θ(p+) . (A.57)

When dealing with Fourier transforms, we will use the following conventions:

f̃ (k) = ∫d4x f (x) ei k⋅x , (A.58a)

f (x) = ∫ d4k(2π)4 f̃ (k) e−i k⋅x . (A.58b)

¿e tilde will always be omitted, as the function argument speci�es clearly
enough whether we are dealing with the coordinate or momentum representa-
tion. Note that due to the Minkowski metric, Fourier transforms over spatial
components have the signs in their exponents �ipped:

f (x) = ∫ d3k(2π)3 f̃ (k) ei k ⋅x , (A.59a)

f̃ (k) = ∫d3x f (x) e−i k ⋅x , (A.59b)
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and the same for two-dimensional Fourier transforms. When necessary to em-
phasise the Fourier transform itself, we will use the notation

Fk [ f (x)] N= ∫d4x f (x) ei k⋅x , (A.60)

F −1
x [ f (k)] N= ∫ d4k(2π)4 f (k) e−i k⋅x . (A.61)

An ‘empty’ Fourier transform gives a δ-function:

Fk [1] = ∫dnx ei k⋅x ≡ (2π)n δ(n)(k) , (A.62a)

F −1
x [1] = ∫ dnk(2π)n e−i k⋅x ≡ δ(n)(x) , (A.62b)

and the Fourier transform of 1/k leads to a Heaviside θ-function:
Fx [ 1k ] ≡ θ(x) = − lim

ε→0
1
2πi

+∞
∫−∞dk

1
k + iε e−i kx , (A.63a)

= − lim
ε→0

1
2πi

+∞
∫−∞dk

1
k − iε ei kx , (A.63b)

where the integration should be made by choosing the appropriate complex
contour. A Dirac δ-function having a complex argument is in general not well-
de�ned, as its exponential representation is divergent:¹

δn(x + i y) ?= ∫ dnk(2π)n e−i k(x+i y) = F −1
x [ek y] . E (A.64)

But we will allow this notation anyway, because sometimes a function acts
as a nascent δє-function, which implies that—in combination with the si ing
property—it behaves exactly the same as a regular δ-function (mostly under
certain conditions). It is possible that such nascent δє-functions allow for com-
plex arguments, and still retain their si ing property (see e.g. the discussion of
the in�nite Wilson line on page 174). It is for these situations that we allow the
notation of a complex δ-function, but we keep in mind that it can only be used
together with the si ing property, and has no exponential representation.

1 ¿e only non-divergent Fourier transform of a linear real exponential is that of e−a∣x ∣ with a > 0.
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To conclude this section, we list two other common transformations. First we
have the Laplace transform:

f (x) = 1
2πi

c+i∞
∫

c−i∞
dns f (s) es⋅x , (A.65a)

f (s) = ∞
∫
0

dnx f (x) e−s⋅x , (A.65b)

and second the Mellin transform:

f (x) = 1
2πi

c+i∞
∫

c−i∞
dns f (s) x−s , (A.66a)

f (s) = ∞
∫
0

dnx f (x) xs − 1 , (A.66b)

which is quite common in QCD (it is e.g. the driving transform behind the
convolution in the DGLAP equations, see Equations 5.45). Both for the inverse
Laplace integral as the inverse Mellin integral, c is chosen such that it is bigger
than all singularities in f (s).

a.6 lie algebra

Representations

Let’s revise some basic colour algebra. As is well known, the group which governs
QCD is SU(3), but for the sake of generality we list some basic rules and derive
some properties for SU(N) (more speci�cally, for su(n), the corresponding Lie
algebra of SU(N)).¿e latter is fully de�ned by dA = N2−1 linearly independent
Hermitian generators ta and their commutation relations

[ta , tb] = i f abc tc , (A.67)

where the f abc are real and fully antisymmetric constants (the so-called structure
constants). ¿e structure constants themselves satisfy the Jacobi identity:

f ab x f x cd − f ac x f x bd + f ad x f x bc = 0 . (A.68)
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From a mathematician’s point of view, any set of generators (not necessarily
Hermitian) that satisfy the commutation relations and the Jacobi identity de�ne
a Lie algebra.
In practice we will work with representations of the algebra, where the gen-

erators are represented by dR × dR Hermitian matrices, with dR the dimension
of the representation. Two representations of particular interest are �rst the
fundamental representation which has dimension dF = N .² It has the additional
unique property that its matrices, if complemented with the identity matrix,
form a set

(1, ta) .
that acts as a basis for the generator products under matrix multiplication.
¿e second important representation is the adjoint representation, which is

constructed from the structure constants:

(Ta)bc = −i f abc ,
and has dimension dA = N2 − 1. We will make the distinction in notation by
writing the fundamental with lowercase t and the adjoint with uppercase T .
Note that in literature several di�erent notations exist (e.g. tF and tA).

Properties

All matrices are traceless in every representation:

tr(ta) = 0 . (A.69)

¿e trace of two matrices is zero if they are di�erent:

tr(ta tb) = DR δab . (A.70)

DR is a constant depending on the representation. In the fundamental represent-
ation this is by convention almost always DF = 1

2 . Summing all squared matrices
gives an operator that commutes with all other generators (and combinations of
generators), the so-called Casimir operator

ta ta = CR 1 , (A.71)

2 A small remark: whenworking inQCD, It is common to denote the dimension of the fundamental
representation by Nc , as it represents the number of colours used in the theory. In this section of
the appendix we will use the notation N to keep it general, but in the body of this thesis we will
use the notation Nc to enhance interpretation.
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Again, CR is a constant depending on the representation. Both constants can be
easily related

ta ta = CR1⇒ tr(ta ta) = CR tr(1) = CR dR , (A.72a)

tr(ta tb) = DR δab ⇒ tr(ta ta) = DR δaa = DR dA , (A.72b)

⇒ CR
dA

= DR
dR

.

¿ese properties are valid for any representation, not only the adjoint. Let us
now list the constants for the fundamental and the adjoint representation:

DF = 1
2
, DA = 2DF dF = N ,

CF = DF
dA
dF

= N2 − 1
2N

, CA = DA = N ,

dF = N , dA = d2F − 1 = N2 − 1 .
Because in the fundamental representation we have a basis that spans its full
product space, we can derive additional properties that are not valid in other
representations. First of all, the anticommutator has to be an element of the
algebra, and thus a linear combination of the identity and the generators:

{ta , tb} = 1
N
δab 1 + dabc tc . (A.73)

¿e constant in front of the identity was calculated by taking the trace and
comparing to Equation A.70, while dabc can be retrieved, as well as f abc , from

f abc = − i
DR

tr([taR , tbR]tcR) , (A.74a)

dabc = 2 tr({ta , tb}tc) . (A.74b)

Equation A.74a is valid in any representation, while Equation A.74b only makes
sense in the fundamental representation.
Because almost every calculation ends with a full colour trace, having the

identity matrix written implicitly is dangerous, as one might forget to add the
factor N coming from its trace. For this reason we will o en write 1

N together,
as it is a factor that is trace-normalised to one.
It is easy to check that the dabc are fully symmetric and that they vanish when

contracting any two indices:

daab = dbaa = daba = 0 .
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It is interesting to note that in SU(2) all dabc vanish. By combining the commut-
ation rules with the anticommutation rules we can �nd another useful property:

ta tb = {ta , tb} + [ta , tb]
2

= 1
2
δab 1

N
+ 1
2
habc tc , (A.75)

where we de�ned

habc = dabc + i f abc . (A.76)

habc is Hermitian and cyclic in its indices:

habc = hbac = hcba = hacb ,
habc = hbca = hcab ,
haab = hbaa = haba = 0 .

A last useful property is the Fierz identity

(ta)i j (ta)kl = 1
2
δi lδ jk − 1

2N
δi jδkl . (A.77)

It is straightforward to prove this identity; �rst we write a general element of the
fundamental representation as

X = c0 1 + ica ta , (A.78)

which is true only in the fundamental representation.³¿e c0 and ca are easily
calculated:

c0 = 1
N
tr(X) ,

ca = −2i tr(Xta) .
We then get the requested by calculating ∂(X)i j

∂(X)k l = δ ikδ jl . ¿e Fierz identity is
especially handy to rearrange traces containing contractions:

tr(A ta B ta C) = 1
2
tr(AC) tr(B) − 1

2N
tr(ABC) , (A.79a)

tr(ta B ta) = CF tr(B) , (A.79b)

tr(A ta B) tr(C ta D) = 1
2
tr(ADCB) − 1

2N
tr(AB) tr(CD) , (A.79c)

where A, B,C ,D are expressions built from ta ’s. But it can be used for standard
products as well, e.g.

taA ta = N
2
tr(A) 1

N
− 1
2N

A . (A.80)

3 ¿is is because in other representations the set {1, taF} doesn’t span the full product space.
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Useful Formulae

To conclude, we list—without proof—some useful properties of the constants
f abc , dabc and habc .Most of these are easy to prove by straightforward calculation,
but see [155] for a nice approach using tensor products for the more di�cult
ones.
¿e Jacobi identity can be extended to include dabc , now with all positive

signs:

f ab xdx cd + f ac xdx bd + f ad xdx bc = 0 . (A.81)

If we want to �nd a Jacobi identity with habc , we have to add the hermitian
conjugate due to the sign change:

f ab xhx cd + f ac xhx bd + f ad xhx bc = 0 . (A.82)

A Jacobi identity with only dabc also exists, but only in SU(3):
dab xdx cd +dac xdx bd +dad xdx bc = 1

3
(δabδcd + δacδbd + δadδbc) . (A.83)

Contracting any of the structure constants with a generator gives:

f ab x tx = −i (ta tb − tb ta) , (A.84a)

dab x tx = ta tb + tb ta − δab 1
N
, (A.84b)

hab x tx = 2ta tb − δab 1
N
, (A.84c)

hab x tx = 2tb ta − δab 1
N
. (A.84d)

Contracting any of the structure constants with two generators gives:

f a xy tx ty = i N
2
ta , (A.85a)

da xy tx ty = N2 − 4
2N

ta , (A.85b)

ha xy tx ty = − 2
N
ta , (A.85c)

ha xy tx ty = N2 − 2
N

ta . (A.85d)
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Contracting any of the structure constants with three generators gives:

f x yz tx ty tz = i N2

2
CF

1

N
, (A.86a)

dx yz tx ty tz = N2 − 4
2

CF
1

N
, (A.86b)

hx yz tx ty tz = −2CF 1N , (A.86c)

hx yz tx ty tz = (N2 − 2)CF 1N , (A.86d)

Tracing any two structure constants gives:

f x a y f y b x = −Nδab , (A.87a)

dx a y f y b x = 0 , (A.87b)

dx a yd y b x = N2 − 4
N

δab , (A.87c)

hx a yhy b x = 2N2 − 2
N

δab , (A.87d)

hx a yhy b x = − 4
N
δab , (A.87e)

hx a yhy b x = 2N2 − 2
N

δab . (A.87f)

And tracing any three structure constants gives:

f x a y f y b z f z c x = −N
2
f abc , (A.88a)

dx a y f y b z f z c x = −N
2
dabc , (A.88b)

dx a yd y b z f z c x = N2 − 4
2N

f abc , (A.88c)

dx a yd y b zdz c x = N2 − 12
2N

dabc , (A.88d)

hx a yhy b zhz c x = 2N2 − 3
N

habc , (A.88e)

hx a yhy b zhz c x = − 2
N

(2habc + habc) , (A.88f)

hx a yhy b zhz c x = − 2
N

(habc + 2habc) , (A.88g)

hx a yhy b zhz c x = 2N2 − 3
N

habc . (A.88h)

Tracing four structure constants quickly becomes messy, so we only list a few f
and d combinations:
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f x a y f y b z f z c w f w d x = δadδbc + 1
2
(δabδcd + δacδbd)

+ N
4

( f ad x f x bc + dad xdx bc) , (A.89a)

f x a y f y b z f z c wdw d x = N
4

( f ad xdx bc − dad x f x bc) , (A.89b)

f x a y f y b zdz c wdw d x = 1
2
(δacδbd − δabδcd) − N2 − 8

4N
f ad x f x bc

− N
4
dad xdx bc , (A.89c)

f x a yd y b z f z c wdw d x = 1
2
(δabδcd−δacδbd)−N

4
( f ad x f x bc+dad xdx bc) , (A.89d)

(A.89e)

a.7 summary of the noether theorems

We make a short summary of the Noether theorems we de�ned in Chapter 1
Given the following transformation:

xµ → xµ + єaXµ a , (A.90a)
ϕi → ϕi + єaΦa

i + (∂µєa)Ωµ a
i , (A.90b)

the Noether theorems on page 14 and 27 state that if the Lagrangian remains
invariant up to a divergence, i.e.

δL ≡ ∂µ (єaKµ) , (A.91)

we can construct the following quantities (the Noether tensor resp. Noether
current resp. Noether charge):

Fµν a def= ∂L
∂∂νϕi

Ωµ a
i , (A.92a)

J µ a def= ∂L
∂∂µϕi

Φa
i + δL

δϕi
Ωµ a
i − ( ∂L

∂∂µϕi
∂νϕi −L δµν)Xν a−Kµ a , (A.92b)

Qa def= ∫d3x J 0 a , (A.92c)
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that are conserved

∂µ∂νFµν a ≡ 0 , (A.93a)
∂µJ µ a ≡ 0 , (A.93b)

Q̇a ≡ 0 , (A.93c)

and satisfy the additional relation

∂νFνµ a ≡ J µ a . (A.94)

Furthermore, the equations of motion are given by

δL
δϕi

Φa
i ≡ ∂µ ( δLδϕiΩµ a

i ) , (A.95)

where the variational derivative is given by:

δL
δϕi

def= ∂L
∂ϕi

− ∂µ ∂L
∂∂µϕi

. (A.96)

In case of a local internal symmetry, the de�ned charges don’t have a physical
interpretation and can be ignored. In case of a global symmetry, we have Ωµ a

i =
0, implying there is no Noether tensor (and the relation in Equation A.94 is
invalidated). ¿e ELEMs then simplify into

δL
δϕi

≡ 0 .
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a.8 feynman rules for qcd

¿e full Lagrangian for QCD is given by:

L = ψ (i /∂ −m)ψ − 1
4
(∂µAaν − ∂νAaµ)2 + g ψ /Aψ

− g f abc (∂µAaν)AµbAνc − 1
2
g2 f abx f xcdAaµAbνAµcAνd , (A.97)

where /A N= Aaµ γµ ta. ¿e sum over gluon polarisation states depends on the
gauge, and equals (where in both equations we have made the additional gauge
choice ξ = 0):

∑
pol
εµ(k)εν(k) = −gµν (Lorentz) (A.98a)

∑
pol
εµ(k)εν(k) = −gµν + 2k(µnν)

n ⋅k (LC) (A.98b)

where the light-cone gauge is de�ned by the vector n− as n− ⋅A = A+ = 0. ¿e
Lagrangian gives rise to the following (extensive) list of Feynman rules (see the
next doublepage):
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Feynman Rulesi
i

“gfx/tikz/Notations/FeynmanRule1” — 2014/9/17 — 15:52 — page 189 — #1 i
i

i
i

i
i

i , s
p = usi(p) (initial) (A.99a)i

i
“gfx/tikz/Notations/FeynmanRule2” — 2014/9/17 — 15:53 — page 189 — #1 i

i

i
i

i
i

i , s
p = usi(p) (�nal) (A.99b)i

i
“gfx/tikz/Notations/FeynmanRule3” — 2014/9/17 — 15:53 — page 189 — #1 i

i

i
i

i
i

i , s
p = vsi(p) (initial) (A.99c)i

i
“gfx/tikz/Notations/FeynmanRule4” — 2014/9/17 — 15:53 — page 189 — #1 i

i

i
i

i
i

i , s
p = vsi(p) (�nal) (A.99d)i

i
“gfx/tikz/Notations/FeynmanRule5” — 2014/9/17 — 15:54 — page 189 — #1 i

i

i
i

i
i

µ, a k = εaµ(k) (initial) (A.99e)i
i

“gfx/tikz/Notations/FeynmanRule6” — 2014/9/17 — 15:54 — page 189 — #1 i
i

i
i

i
i

µ, ak = εaµ(k) (�nal) (A.99f)

i j
p = i δ i j /p +m

p2 −m2 + iє (A.99g)i
i

“gfx/tikz/Notations/FeynmanRule7bis” — 2014/9/17 — 16:10 — page 190 — #1 i
i

i
i

i
i

i j
p = δ i j δ+(p2 −m2) (/p +m) (A.99h)i

i
“gfx/tikz/Notations/FeynmanRule8” — 2014/9/17 — 16:44 — page 190 — #1 i

i

i
i

i
i

a, µ b, νk Lorentz= −i δab
k2 + iε [gµν − (1 − ξ) kµkν

k2
] (A.99i)i

i
“gfx/tikz/Notations/FeynmanRule9” — 2014/9/17 — 16:48 — page 190 — #1 i

i

i
i

i
i

a, µ b, νk LC= −i δab
k2 + iε[gµν − 2k(µnν)k ⋅ n + ξ k2 kµkν(k ⋅ n)2 ] (A.99j)i

i
“gfx/tikz/Notations/FeynmanRule8bis” — 2014/9/17 — 16:49 — page 190 — #1 i

i

i
i

i
i

a, µ b, νk Lorentz= −δab δ+(k2) gµν (A.99k)i
i

“gfx/tikz/Notations/FeynmanRule8bisbis” — 2014/9/17 — 16:49 — page 190 — #1 i
i

i
i

i
i

a, µ b, νk LC= −δab δ+(k2)(gµν − 2k(µnν)
k ⋅ n ) (A.99l)

a b
k = i δab

k2 + iε (only Lorentz gauges) (A.99m)

k, n = i
n ⋅k + iη (A.99n)i

i
“gfx/tikz/Notations/FeynmanRule9bisbisbis” — 2014/9/17 — 11:36 — page 189 — #1 i

i

i
i

i
i

k, n = δ(n ⋅k + iη) (A.99o)

µ

i j = i gEMµєEM γµ δi j (A.99p)
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Feynman Rules

µ, a

i j = i gµє γµ (ta) ji (A.99q)

µ, b

a ck
= gµє f abc kµ (only Lorentz gauges) (A.99r)

µ, a

i jk, n

k = i gµє nµ (ta) ji (A.99s)

k
r = ei r⋅k (A.99t)

+∞ = 1 (no momentum �ow) (A.99u)i
i

“gfx/tikz/Notations/FeynmanRule11” — 2014/9/17 — 11:37 — page 189 — #1 i
i

i
i

i
i

µ, a

ν, b ρ, c

k
p q = gµє f abc[ gµν(k−p)ρ + gνρ(p−q)µ+gρµ(q−k)ν] (A.99v)

µ, a

ν, b ρ, c

σ , d

= −i g2µ2є[ f abx f xcd (gµρgνσ−gµσ gνρ)− f acx f xbd (gµσ gνρ−gµνgρσ)+ f adx f xbc (gµνgρσ−gµρgνσ) ]
(A.99w)

Furthermore:

a. Momentum conservation is imposed at every vertex.

b. Loop momenta have to be integrated with an additional factor 1/(2π)4.
c. Fermion loops (hence ghost loops as well) add an additional factor -1.

d. All Feynman rules are complex conjugated when on the right side of a �nal-
state cut. Additionally, the 3-gluon vertex and the ghost vertex change sign
if on the right side of a �nal-state cut.

e. ¿e �nal result has to be divided by the symmetry factor of the diagram. For
a cut diagram: multiply with a symmetry factor for each side.

f. For each set of k indistinguishable particles in the �nal state, divide by k! .

g. Impose momentum conservation between initial and �nal states.

h. Divide by the �ux factor. It is 4
√(p1 ⋅ p2)2 −m2

1m2
2 when there are exactly

two incoming particles.



B
INTEGRATIONS

In this appendix we list come common techniques to solve integrals, and give
some reference formulae as well.

b.1 reference integrals

We start with regular integrals, sorted by type. Note that we omitted the constant
term +c that appears in inde�nite integrals because of space constraints.
Algebraic Integrals

¿e easiest type of algebraic integrals are binomial integrals:

∫dx (xn+α)m = m∑
0

(m
k
) 1
nk+1xnk+1am−k , (B.1a)

∫dx (xn+α)m xn = m+1∑
0

(m+1
k

) k
m+1 1

nk+1xnk+1am+1−k , (B.1b)

∫dx (xn+α)m (x p+b)r = m∑
k=0

r∑
l=0(

m
k
)(r
l
) 1
nk+pl+1xnk+pl+1am−kbr−l . (B.1c)

Next we have rational integrals. First some properties of complex logarithms:

arctan x = i
2
ln 1 − ix
1 + ix (B.1d)

artanh x = 1
2
ln 1 + x
1 − x (B.1e)

ln (−1) = iπ + 2ikπ ln (1) = 2ikπ (B.1f)

ln (i) = iπ
2
+ 2ikπ ln (−i) = 3 iπ

2
+ 2ikπ (B.1g)

333
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For the correct derivation of complex logarithms, use polar representation:
i = ei( π2 +2kπ) ⇒ ln (i) = iπ

2 +2ikπ. We evaluate logarithms in the region [0, 2π].
Rational integrals will almost always result in a combination of polynomials
and/or logarithms:

∫dx 1
1 + x2 = i

2
ln 1 − ix
1 + ix , (B.1h)

∫dx 1
1 − x2 = 1

2
ln 1 + x
1 − x , (B.1i)

∫dx 1
ax2+bx+c =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1√
∆
ln

√
∆ −(2ax+b)√
∆ +(2ax+b) ∆ > 0 ,

−2
2ax+b ∆ = 0 , (∆ = b2 − 4ac)
i√
∆
ln

√
∆ −i(2ax+b)√
∆ +i(2ax+b) ∆ < 0 ,

(B.1j)

∫dx x
ax2+bx+c =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2a ln (ax2+bx+c) + b

2a
√
∆
ln

√
∆ +(2ax+b)√
∆ −(2ax+b) ∆ > 0 ,

1
a ln (2ax+b) + b

a
1

2ax+b ∆ = 0 ,
1
2a ln (ax2+bx+c) − ib

2a
√−∆ ln

√−∆ −i(2ax+b)√−∆ +i(2ax+b) ∆ < 0 ,
(B.1k)

∫dx xn

x − a = an ln(x − a) + n−1∑
k=0 a

k xn−k
n − k , (B.1l)

∫dx xn(x − a)2 = n an−1 ln (x − a) + an

a − x +
n−1∑
k=1

k
n − k ak−1xn−k , (B.1m)

∫dx xn
m∏(x−ai) = m∑

i=1
ani∏

j≠i(ai−a j)
ln(x−ai) + n−1∑

k=1
m∑
i=1

aki∏
j≠i(ai−a j)

xn−k
n−k . (B.1n)

Algebraic integrals with real exponents lead to a Beta function (see Equa-
tion B.7a) or an incomplete Beta function (see Equation B.7c):

∞
∫
0

dx xα(x + a)β = a1+α−β B(β − α − 1, α + 1) , (B.1o)

∞
∫
c

dx (x + a)α(x + b)β = (b − a)1+α−β B(b − a
b + c ; β − α − 1, α + 1) . (B.1p)

Logarithmic Integrals

¿emost common logarithmic integrals contain a logarithm and a polynomial:
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∫dx xn ln ∣x+α∣ = 1
n+1 ⎛⎝(xn+1−(−α)n+1) ln ∣x+a∣ − n+1∑

1

xk (−α)n+1−k
k

⎞⎠ , (B.2a)

∫dx xn ln ∣x+α
x−α ∣ n odd= 1

n+1 ⎛⎝(xn+1−αn+1) ln ∣x+a
x−a ∣ + 2

n/2∑
0

x2k+1αn−2k
2k+1 ⎞⎠ , (B.2b)

∫dx xn ln ∣x+α
x−α ∣ n even= 1

n+1 ⎛⎝xn+1 ln ∣x+a
x−a ∣ + αn+1 ln ∣x2−a2∣ + n/2∑

1

x2kαn+1−2k
k

⎞⎠ .

(B.2c)

We also list a few integrals of a logarithm divided by x:

∫dx ln(x − a)
x − a = 1

2
ln2(x − a) , (B.2d)

∫dx ln(x − a)
x − b a ≠ b= ln(x − b) ln(b − a) − Li2 (x − ba − b) , (B.2e)

∫dx ln(x − a)(x − a)2 = − 1
x − a (ln(x − a) + 1) , (B.2f)

∫dx ln(x − a)(x − b)2 a ≠ b= 1
b − a [ln(x − b) − x − a

x − b ln(x − a)] , (B.2g)

∫dx ln(x − a)(x − a)(x − b) a ≠ b= 1
b − a [ ln(x − b) ln(b − a) − 1

2
ln2(x − a)

Li2 (x − ba − b)] , (B.2h)

∫dx ln(x + a)(x − b)(x − c) a ≠ b ≠ c= 1
b − c [ ln(x − b) ln(b − a) − ln(x − c) ln(c − a)

−Li2 (x − ba − b) + Li2 (x − ca − c)] , (B.2i)

where Li2 is the dilogarithm, a speci�c form of the polylogarithm Lis (see Subsec-
tion Polylogarithms on page 341 and onwards). Note that the distinction between
a = b and a ≠ b is mathematically not needed, but we prefer to explicitly state
the di�erent integral as the limit b → a is not so obvious.

Cyclometric Integrals

We list two important cyclometric integrals:
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∫dx arctan x = x arctan x − 1
2
ln (1 + x2) , (B.3a)

∫dx artanh x = x artanh x + 1
2
ln (1 − x2) . (B.3b)

Gaussian Integrals

Gaussian integrals are by far the most common integrals in physics in general.
We list the most common one-dimensional integrals:

+∞
∫−∞dx e−ax2 =√π

a
, (B.4a)

+∞
∫−∞dx e−ax2+bx+c =√π

a
e
b2
4a +c , (B.4b)

∞
∫
0

dx x2ne−ax2 = 1
2
(2n − 1)!!
2nan

√π
a
= 1
2
Γ (n + 1

2)
an+ 1

2
, (B.4c)

∞
∫
0

dx x2n+1e−ax2 = 1
2
n!
an+1 = 1

2
Γ (n + 1)
an+1 , (B.4d)

∞
∫
0

dx xne−ax2+bx+c = 1
2
e
b2
4a +c n∑

0
(n
k
)( b

2a
)n−k Γ ( k+12 )

a
k+1
2

, (B.4e)

and the most common multidimensional integrals:

∫dnx e−x iAi jx j =
√

πn
detA

, (B.4f)

∫dnx e−x iAi jx j+b ix i+c =
√

πn
detA

e
1
4 b

i(A−1)i jb j+c , (B.4g)

∫dnx xµ1⋯xµne−x iAi jx j n even=
√

πn
detA

A−1(µ1µ2A−1µ3µ4⋯A−1µn−1µn) , (B.4h)

where always only the symmetric part of A contributes to the determinant. One
special integral is one that is encountered o en when variables are chained:

∫dx1⋯dxn ei λ[(x1−a)2+(x2−x1)2+⋯+(b−xn)2] =
√

1
n + 1 ( iπλ )n ei λ

n+1 (b−a)2 . (B.4i)
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Gaussian integrals can also be expressed as integrations over complex variables.
¿en the square root is gone, and an in is added:

∫dnz dnz e−z iAi jz j = (2π i)n
detA

, (B.4j)

∫dnz dnz e−z iAi jz j+w iz i+z iu i = (2π i)n
detA

ew
i(A−1)i ju j . (B.4k)

Discrete Integrals

For completeness and because we need it in Chapter 2, we give the discrete
approximation to the integral over an in�nitesimal line segment [a, a + є]:

a+є
∫
a

dx f (x) ≈ є f (a + є
2
) . (B.5a)

A macroscopic integral can then be approximated as a sum of such in�nitesimal
segments:

b

∫
a

dx f (x) ≈ n∑
i
(xi−xi−1) f (xi + xi−12

) , (B.5b)

where x0 = a and xn = b. We can use the samemethod to discretise line integrals:
a+є
∫
a

dx µ fµ(x) ≈ єµ fµ (a + є
2
) , (B.5c)

b

∫
a

dx µ fµ(x) ≈ n∑
i
(xi−xi−1)µ fµ (xi + xi−12

) . (B.5d)

b.2 special functions and integral transforms

In this section we list some common integral relations and transforms, and
special functions.
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Gamma Function

¿e Gamma Funcion is probably the most well-known special function. It is
de�ned as

Γ(z) def= ∞
∫
0

dt tz−1e−t Re(z) > 0 . (B.6a)

For n ∈N0 it is related to the factorial:

Γ(n) = (n − 1)! (B.6b)

and has a similar ‘factorial’ property, but for all z:

Γ(z + 1) = z Γ(z) . (B.6c)

We can also relate it to the double factorial (now for n ∈N, i.e. n can be zero):
Γ (n + 1

2
) =√

π (2n − 1)!!
2n

, (B.6d)

where the double factorial multiplies every second number:

a!! def= a(a − 2)(a − 4)⋯ (B.6e)

which gives the logical relation

a! ≡ a!! (a − 1)!! (B.6f)

An important value of the Gamma function is

Γ ( 1
2
) =√

π , (B.6g)

which is just a re-expression of a Gaussian integral. ¿ere are four inter-related
re�ection formulae:

Γ(z)Γ(1 − z) = π
sin(πz) , (B.6h)

Γ(z)Γ(−z) = − π
z sin(πz) , (B.6i)

Γ (z + 1
2
) Γ ( 1

2
− z) = π

cos(πz) , (B.6j)

Γ(2 z) = 1√
π
22z−1 Γ(z)Γ (z + 1

2
) . (B.6k)
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¿e Gamma function has poles in 0 and all negative integers. It can however be
expanded around these poles:

Γ(є − n) = (−)n
n!

( 1
є
+ ψ(0)(n+1) +O(є)) n ∈N0 , (B.6l)

where ψ(0) is the digamma function, de�ned as the logarithmic derivative of
the Gamma function:

ψ(0)(z) def= Γ′(z)
Γ(z) . (B.6m)

For integer values n > 0 it equals
ψ(0)(n) = −γE + n−1∑

j=1
1
j
. (B.6n)

¿e Gamma function is especially useful when solving integrals, as we can o en
express the integral at hand in the form Equation B.6a. For easy reference, we
list a representation with a quadratic exponential:

∞
∫
0

dt tα−1 e−t2 = 1
2
Γ (α

2
) Re(α) > 0 . (B.6o)

We can extend Equation B.6a to allow for a complex contour. ¿is gives the
following complex Gamma representations, that are bound to strict convergence
criteria:
∞
∫
0

dt tα−1 ei(A+iB)t = Γ(α) iα (A+ iB)−α ∀A, B > 0,Re(α) > 0 , (B.6p)

∞
∫
0

dt tα−1 e−i(A−iB)t = Γ(α)(−i)α (A+ iB)−α ∀A, B > 0,Re(α) > 0 , (B.6q)

∞
∫
0

dt tα−1 e±iAt = Γ(α)(±i)αA−α ∀A, 0 <Re(α) < 1 . (B.6r)

Note that integrals with an exponent ei(A−iB) or e−i(A+iB) are divergent for B > 0.
For easy reference, we also list some complex quadratic representations:
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∞
∫
0

dt tα−1 ei(A+iB)t2 = 1
2
Γ (α

2
) i α2 (A+ iB)− α

2 ∀A, B > 0,Re(α) > 0 , (B.6s)

∞
∫
0

dt tα−1 e−i(A−iB)t2 = 1
2
Γ (α

2
) (−i) α

2 (A− iB)− α
2 ∀A, B > 0,Re(α) > 0 , (B.6t)

∞
∫
0

dt tα−1 e±iAt2 = 1
2
Γ (α

2
) (±i) α

2 A− α
2 ∀A, 0 <Re(α) < 2 . (B.6u)

Beta Function

¿e Beta function is de�ned as

B(α, β) def= 1

∫
0

dt tα−1(1 − t)β−1 Re(α),Re(β) > 0 , (B.7a)

It can be expressed in terms of Γ-functions:

B(α, β) ≡ Γ(α)Γ(α)
Γ(α + β) . (B.7b)

When solving complex integrals, it is sometimes convenient to use the incom-
plete Beta function, which is de�ned as

B(z; α, β) def= z

∫
0

dt tα−1(1 − t)β−1 , (B.7c)

such that

B(1; α, β) ≡ B(α, β) . (B.7d)

A useful property is its mirror symmetry:

B(x; α, β) = B(1 − x; β, α) , (B.7e)

which follows directly from the de�nition. Especially helpful is its series expan-
sion (see [156]):

B(x; α, β) = 1
α
xα(1 − x)β (1 + ∞∑

n=0
B(α + 1, n + 1)
B(α + β, n + 1)xn+1) . (B.7f)
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Polylogarithms

When integrating logarithms, the result will o en depend on the so-called
polylogarithm, which is de�ned by its series expansion:

Lis(z) def= ∞∑
k=1

zk

ks
. (B.8a)

It can also be de�ned as a recursive integral:

Lis+1(z) = z

∫
0

dt Lis(t)
t

. (B.8b)

For s ≤ 1 and s integer, the polylogarithm can be expressed as a regular function:

Li1(z) = − ln(1 − z) , (B.8c)

Li0(z) = z
1 − z , (B.8d)

Li−n(z) = (z ∂
∂z

)n z
1 − z . (B.8e)

¿e polylogarithm of 0 is always 0 itself, and the polylogarithm of 1 equals the
Riemann ζ-function:

Lis(0) = 0 , (B.8f)
Lis(1) = ζ(s) . (B.8g)

Of particular interest is the following asymptotic behaviour:

Lis(eє) = Γ(1 − s)(−є)s−1 , (B.8h)

which is valid for ∣є∣→ 0 andRe(s) < 1. ¿e polylogarithm emerges naturally in
the solution to Bose-Einstein and Fermi-Dirac integrals:

∞
∫
0

dk ks

ek−µ − 1 = Γ(s + 1) Lis+1(eµ) , (B.8i)

∞
∫
0

dk ks

ek−µ + 1 = −Γ(s + 1) Lis+1(−eµ) , (B.8j)

where Γ is just the Gamma function.
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¿e most common polylogarithm is the dilogarithm Li2. ¿ree particular
values are:

Li2(1) = ζ(2) = π2

6
, Li2(0) = 0 , Li2(−1) = −π212 . (B.8k)

It satis�es some additional useful properties:

Li2(z) + Li2(−z) = 1
2
Li2(z2) , (B.8l)

Li2(z) + Li2(1 − z) = π2

6
− ln z ln(1 − z) , (B.8m)

Li2(z) + Li2 ( 1z) = −π
2

6
− 1
2
ln2(−z) , (B.8n)

Li2(1 − z) + Li2 (1 − 1
z
) = − 1

2
ln2 z , (B.8o)

Li2(−z) − Li2(1 − z) + 1
2
Li2(1 − z2) = −π212 − ln z ln(1 + z) . (B.8p)

However only the �rst two relations are valid for the full complex plane.

Elliptic K-Function

¿e elliptic K-function is de�ned as:

K(k) def= 2π

∫
0

dφ 1√
1 − k sin2 φ . (B.9a)

It is divergent for k = 1 and becomes complex for k > 1. A related integral is

2π

∫
0

dφ 1√
a + b cosφ = 4√

a + b K ( 2b
a + b) , (B.9b)

which is divergent for a = ±b.
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Integral Transforms

An integral transform that we will use a lot, is the so-called Schwinger paramet-
erisation, which is a complex exponential integral representation for a denomin-
ator (where k ∈ R and ε > 0):

1
k + iε = −i

∞
∫
0

dα ei(k+i ε)α , (B.10a)

1
k − iε = i

∞
∫
0

dα e−i(k−i ε)α . (B.10b)

We can summarise this if we de�ne σ = ±1 to be the sign in front of iє:
1

k + iσε = −iσ
∞
∫
0

dα ei σ(k+i σε)α . (B.10c)

Note that we can use lower half integrals as well:

1
k + iε = −i

0

∫−∞dα e−i(k+i ε)α , (B.10d)

1
k − iε = i

0

∫−∞dα ei(k−i ε)α . (B.10e)

It is possible to de�ne a similar parameterisation with a real exponential, but
then the sign of k matters:

1
k
= ∞
∫
0

dα e−kα k > 0 , (B.10f)

1
k
= − ∞

∫
0

dα ekα k < 0 . (B.10g)

Having to split up an expression in two terms in function of the sign of k is a bit
cumbersome, which is why we won’t use the latter parameterisation.
Another parameterisation we will o en use is the so-called xL parameterisa-

tion, that is used to simplify integrals of the form
∞
∫
0

∞
∫
0

dα dβ f (α, β) . (B.11a)
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¿e trick is to use the parameterisation:

α = x L , β = (1 − x)L , dα dβ = L dL dx . (B.11b)

¿e integral then simpli�es into

1

∫
0

dx
L

∫
0

dL L f (xL, (1 − x)L) , (B.11c)

which is o en easier to solve when starting with the L integration. It can be
easily generalised to any number of integrations:

(n − 1)! 1

∫
0

dx1 ⋯dxn
L

∫
0

dL δ(1 − n∑ xi) Ln−1 f (x1L, . . . , xnL) . (B.11d)

¿e normalisation comes from the fact that
1

∫
0

dx1 ⋯dxn δ(1 − n∑ xi) = 1(n − 1)! . (B.11e)

One word of caution however, as the δ-function will chain its in�uence in all
the xi integrations. ¿is is due to the fact that for non-in�nite borders, the
si ing property gains additional θ-functions (see Equations A.53). ¿is implies
in general:
1

∫
0

dx1 ⋯ 1

∫
0

dxn δ(1 − n∑ xi) f (x1, . . . , xn)

= 1

∫
0

dx1
1−x1
∫
0

dx2
1−x1−x2
∫
0

dx3 ⋯
1−n−2∑ x i

∫
0

dxn−1 f (x1, . . . , xn−1, 1−n−1∑ xi) , (B.11f)

= 1

∫
0

dt1 dt2 ⋯dtn−1 tn−21 tn−32 ⋯tn−2
× f (1−t1, t1(1−t2), t1t2(1 − t3), . . . , t1t2⋯tn−1) .

(B.11g)

To get to the last step, we used the transformation

xi = ⎛⎝
i−1∏
j
t j
⎞⎠(1 − ti) .



B.3 dimensional regularisation 345

Each of these three expression can be more easy to use or not, depending on the
structure of f .
If we combine the Schwinger and the xL-parameterisation, we get the well-

known Feynman parameterisation:

1
A
1
B
= 1

∫
0

dx 1(xA+ (1 − x)B)2 . (B.12a)

We can easily generalise this for n fractions, each with a power mi :

1
Am1
1 ⋯Amn

n
= Γ ( n∑mi)
Γ(m1)⋯ Γ(mn)

1

∫
0

dx1 ⋯dxn δ(1 − n∑ xi) xm1−1
1 ⋯ xmn−1

n

( n∑ xi Ai)∑m i
. (B.12b)

Whether we use the Schwinger parameterisation, the xL-parameterisation or
the Feynman parameterisation is situation-dependent, but remains above all a
matter of personal taste. Closely related to these parameterisations is the fact
that we can use the Gamma function to our advantage:

1
Aα

= 1
Γ(n)

∞
∫
0

dt tα−1 e−A t , (B.13)

which can be a huge simpli�cation when A is not too complicated.
Totally unrelated to the integral transformations but still worth mentioning,

an important property of line integrals is the gradient theorem:

b

∫
a

dxµ ∂µ f (x) ≡ f (b) − f (a) . (B.14)

b.3 dimensional regularisation

Dimensional regularisation is introduced in SubsectionRegularisation on page 91
and onwards. Here we will list some common loop integrals as a quick reference.
Most common loop integrands can be transformed into the form (k2 − ∆)−n,
for which we will give a set of solutions. Furthermore, integrands with momenta
in the numerator can be simpli�ed as well. First of all, terms with an odd power
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of k vanish by symmetric integration. Also by symmetry arguments, we can
replace:

kµkν → k2

ω
gµν , (B.15a)

kµkνkρkσ → k4

ω(ω + 2) (gµνgρσ + gµρgνσ + gµσ gνρ) . (B.15b)

¿e most straightforward way to use dimensional regularisation, is when the
integrand only depends on k2. Because then we can make aWick rotation, move
to spherical coordinates and calculate the angular part separately:

∫ d
ω−1Ω(2π)ω = 2(4π) ω

2 Γ (ω2 ) . (B.16)

Dimensional regularisation is o en accompanied by a subtraction scheme. We
will only use the MS scheme, and mostly with Collins’ convention of dividing
the result by a factor

Sє = (4π)є
Γ(1 − є) . (B.17)

¿e more common regular subtraction is done by dividing by

Sє = (4πe−γE)є , (B.18)

but we prefer Collins’ convention as it works better with the double poles that
originate from LC segments.

Euclidian Integrals

Let us now list some common Euclidian integrals in dimensional regularisation.
On the second line of each integral we give the condition for it to be divergent
and the expansion in the poles for the latter case.

∫ d
ωkE(2π)ω 1(k2E + ∆)n = 1(4π) ω

2

Γ (n − ω
2 )

Γ(n) ∆
ω
2 −n , (B.19a)

( d ≥ 2n
d even ) = ∆ d

2 −n
(4π) d

2

(−) d
2 −n

(n−1)! ( d2 −n)!
⎛⎜⎝
1
є
− γE +

d
2 −n∑ 1

j
+ ln 4π − ln∆⎞⎟⎠ ,

∫ d
ωkE(2π)ω k2E(k2E + ∆)n = 1(4π) ω

2

ω
2
Γ (n − ω

2 − 1)
Γ(n) ∆

ω
2 +1−n , (B.19b)
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( d ≥ 2n−2
d even ) = ∆ d

2 +1−n
(4π) d

2

ω
2

(−) d
2 +1−n

(n−1)! ( d2 +1−n)!
⎛⎜⎝
1
є
− γE +

d
2 +1−n∑ 1

j
+ ln 4π − ln∆⎞⎟⎠ ,

∫ d
ωkE(2π)ω k4E(k2E + ∆)n = 1(4π) ω

2

ω(ω+2)
4

Γ (n − ω
2 − 2)

Γ(n) ∆
ω
2 +2−n , (B.19c)

( d ≥ 2n−4
d even ) = ∆ d

2 +2−n
(4π) d

2

ω(ω+2)
4

(−) d
2 −n

(n−1)! ( d2 +2−n)!
⎛⎜⎜⎝
1
є
−γE+

d
2 +2−n∑ 1

j
+ ln 4π − ln∆⎞⎟⎟⎠ .

We can generalise an Euclidian dimensionally regulated integral to real positive
values of the exponents, as

∫ d
ωkE(2π)ω (k2E)α(k2E + ∆)β = 1(4π) ω

2
∆

ω
2 +α−β Γ (α + ω

2 ) Γ (β − α − ω
2 )

Γ (ω2 ) Γ (β) . (B.20)

From this we can deduce that

∫dωkE (k2E)α = 0 , (B.21)

because in the denominator we have Γ(β) β→0ÐÐ→ 1/β, hence the fraction goes to
zero in this limit. ¿is is valid ∀α ≥ 0. For any function that only depends on
the square of the momenta, we can write:

∫ d
ωkE(2π)ω kµ1E ⋯kµnE f (k2E) =
δ(µ1µ2⋯δµn−1µn) 1

(4π) ω
2

Γ ( n2 + 1
2)

Γ (ω2 + n
2 )

2√
π

∞
∫
0

d f kω−1+nE f (k2E) , (B.22)

for n even (for odd n the integral is zero). Note that in the case of aMinkowskian
integral, the δ-functions are replaced with gµν ’s.

Wick Rotation and Minkowskian Integrals

Calculating Minkowskian loop integrals can be straightforwardly done by Wick
rotating the momenta to Euclidian space, by making the substitution

k0 def= ik0E k2 = −k2E . (B.23)
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¿ere are some intricalities with Wick rotations, as one has to make sure not to
cross the poles. See Section 7.3 for a digression on this topic. Furthermore, one
has to be consistent in the whole formulation. E.g. δ-functions change as well
under a Wick rotation:

δ(n)(k) = iδ(n)E (kE) . (B.24)

To see this, we move to the exponential representation of the δ-function:

δ(n)(k) = ∫ dnx(2π)n ei k⋅x = i ∫ dnxE(2π)n e−i kE ⋅xE = iδ(n)E (kE) .
¿eMikowskian loop integrals are then the same as the Euclidian ones, up to a
possible sign di�erence:

∫ dωk(2π)ω 1(k2 − ∆)n = i (−)n(4π) ω
2

Γ (n − ω
2 )

Γ(n) ∆
ω
2 −n , (B.25a)

( d ≥ 2n
d even ) = i ∆ d

2 −n
(4π) d

2

(−) d
2

(n−1)! ( d2 −n)!
⎛⎜⎝
1
є
− γE +

d
2 −n∑ 1

j
+ ln 4π − ln∆⎞⎟⎠ ,

∫ dωk(2π)ω k2(k2 − ∆)n = i (−)n+1(4π) ω
2

ω
2
Γ (n − ω

2 − 1)
Γ(n) ∆

ω
2 +1−n , (B.25b)

( d ≥ 2n−2
d even ) = i ∆ d

2 +1−n
(4π) d

2

ω
2

(−) d
2

(n−1)! ( d2 +1−n)!
⎛⎜⎝
1
є
− γE +

d
2 +1−n∑ 1

j
+ ln 4π − ln∆⎞⎟⎠ ,

∫ dωk(2π)ω k4(k2 − ∆)n = i (−)n(4π) ω
2

ω(ω+2)
4

Γ (n − ω
2 − 2)

Γ(n) ∆
ω
2 +2−n , (B.25c)

( d ≥ 2n−4
d even ) = i ∆ d

2 +2−n
(4π) d

2

ω(ω+2)
4

(−) d
2

(n−1)! ( d2 +2−n)!
⎛⎜⎜⎝
1
є
−γE+

d
2 +2−n∑ 1

j
+ ln 4π − ln∆⎞⎟⎟⎠ .

We list some other common Minkowskian integrals:

∫ dωk(2π)ω ln(k2 − a) = − i(4π) ω
2
Γ (−ω

2
) a

ω
2 , (B.26a)

∫ dωk(2π)ω eak
2−ib⋅k = i(4π) ω

2
a− ω

2 e
b2
4a , (B.26b)

∫ dωk(2π)ω 1(−k2)α e−ib⋅k = i
4απ

ω
2

Γ (ω2 − α)
Γ(α) 1(−b2) ω

2 −α . (B.26c)
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Two transversal integrations:

∫ d
ω−2k⊥(2π)ω−2 e−iαk

2⊥ = 1(4π) ω
2 −1

1(iα) ω
2 −1 , (B.27a)

∫ d
ω−2k⊥(2π)ω−2 1(k2⊥)α ei k⊥⋅b⊥ =

1
4απ

ω
2 −1

Γ (ω2 − α − 1)
Γ(α) 1(b2⊥) ω

2 −α−1 . (B.27b)

One integral that frequently appears a er making a (dimensionally regulated)
transverse momentum integration is:

∫ dk
+ dk−(2π)2 ei(a k+k−+p+k−+p−k++i ε) = 1

2π
1
a
e− i

a p
+p− . (B.28)

b.4 path integrals

Here we list some results with path integrals from Section 3.1.

Properties

Every path integral is required to be linear and translation invariant. A rotation
of the �elds gives an extra determinant in front. ¿ese properties can be written
together as:

∫Dϕ (aF[ϕ] + bG[ϕ]) = a ∫Dϕ F[ϕ] + b ∫Dϕ G[ϕ] , (B.29a)

∫Dϕ F[Lϕ + χ] = det L ∫Dϕ F[ϕ] , (B.29b)

where we used the short-hand notation

Lϕ N= ∫d4x L(y, x)ϕ(x) , (B.30)



B.4 path integrals 350

inside the functional F. We will keep using this short-hand, just remember that
the �elds are integrated over their coordinates. ¿e real scalar Gaussian path
integral is given by:

∫Dϕ eϕKϕ = NG 1√
detK

, (B.31a)

ϕKϕ N= − ∫d4x d4y ϕ(x)K(x , y)ϕ(y) , (B.31b)

NG = lim
n→∞

√
πn . (B.31c)

If there is an extra linear term in the Gaussian exponent, we can complete the
square:

∫Dϕ e−ϕKϕ+Jϕ = e 1
4 JK

−1 J ∫Dϕ e−ϕKϕ . (B.32)

We can use this property to calculate Gaussian integrals with extra �eld factors
in front of the exponential:

∫Dϕ ϕ1⋯ϕn e−ϕKϕ = δ
δJ1

⋯ δ
δJn

e
1
4 JK

−1 J ∣
J=0 ∫Dϕ e−ϕKϕ , (B.33)

= (n − 1)!!
2
n
2

K−1(i1 i2⋯K−1in−1 in) ∫Dϕ e−ϕKϕ . (B.34)

Complex scalar Gaussian path integrals are calculated in a similar way:

∫DϕDϕ e−ϕKϕ = NG
detA

, (B.35a)

NG = lim
n→∞(2π i)n , (B.35b)

∫DϕDϕ e−ϕKϕ+Jϕ+Jϕ = eJK−1 J ∫DϕDϕ e−ϕKϕ , (B.35c)

∫DϕDϕ ϕi1ϕ j1⋯ϕinϕ jn e−ϕKϕ = δ
δJi1

δ
δJ j2

⋯ δ
δJin

δ
δJ jn

eJK
−1 J ∣

J ,J=0
× ∫DϕDϕ e−ϕKϕ . (B.35d)

In analogy with the discrete integration, we can give a path integral de�nition
for the functional δ-function:

δ(ϕ) = ∫Dω e
i ∫d4x ϕ(x)ω(x)

. (B.36)
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