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SAMENVATTING

De theorie van de sterke kernkracht, kwantum chromodynamica (QCD), is niet
zo grondig begrepen als we zouden willen, ook al lijkt dit op het eerste zicht
misschien wel het geval. Voor een correcte interpretatie van moderne experi-
menten in de zoektocht naar nieuwe fysica, is een diepgaand inzicht in QCD
noodzakelijk, omdat het het onderliggende mechanisme is van hadronbotsingen
die de basis vormen van deze experimenten. Elke berekening in QCD kan ruw-
weg in twee delen opgesplitst worden: een perturbatief deel dat met behulp van
standaard veldentheorie berekend kan worden, en een deel dat volledig vervat
zit in zogenaamde parton dichtheidsfuncties (PDFs). Deze objecten kunnen niet
berekend worden, maar wel afgeschat (door ze te discretiseren op een rooster)
of gemodelleerd (en gematched met data). Maar bovenal is het mogelijk om
exacte evolutievergelijkingen af te leiden die ons toe staan gemodelleerde data
te extrapoleren van de ene energieschaal naar de andere.

Er bestaan verschillende methodes om het gedrag van PDFs te beschrijven.
Eén van deze is de small-x methode, die vooral probeert om voorspellingen in
diep inelastische verstrooiingsexperimenten te maken die ook geldig blijven bij
hoge energieén en dichtheden. Daarom ligt zijn grootste toepassingsgebied in
nucleaire en zware-ionen fysica. We wijden één hoofdstuk aan een introductie
van deze methode. Een andere aanpak is het transversale impulsdichtheid (TMD)
formalisme, dat een volledig driedimensionele kijk op de inhoud van het proton
probeert te geven. Dit formalisme haalt nieuwe informatie uit semi-inclusieve
experimenten door extra deeltjes in de eindtoestand waar te nemen. Deze thesis
speelt zich vooral in dit formalisme af, en hoewel het niet zozeer TMDs zelf
behandelt is het volledig opgebouwd rond één van de belangrijkste bestanddelen
van TMDs, namelijk Wilson lijnen.

Wilson lijnen zijn opvallende wiskundige objecten. Als pad-geordende expo-
nenten van de ijkvelden bevatten ze alle kinematische en dynamische informatie
van de ijktheorie. Ze vervangen codrdinaten door pad athankelijkheid, en geven
zo een meetkundige beschrijving van QCD. Ze zijn bovendien onmisbaar in
een ijkinvariante definitie van bilokale operatoren, en dus ook in een conse-
quente beschrijving van elke ijktheorie. Zolang er geen externe velden zijn zal
een Wilson lijn altijd een lineair pad volgen tot ze plots in een andere richting
wordt gestuurd door een kortstondige externe impuls. In deze thesis stellen we
een nieuwe methode voor om stuksgewijs lineaire Wilson lijnen op een eenvou-
dige manier te berekenen. Deze methode heeft reeds veelbelovende resultaten
en een hele reeks toepassingen. Een bijzonder type Wilson lijnen zijn Wilson
lussen, gedefinieerd op een gesloten pad. Ze kunnen gebruikt worden als basis
elementen om ijktheorie te beschrijven zonder coérdinaten of velden, waar alle
dynamica door hun meetkundige evolutie gestuurd wordt. Hierop verder bou-
wend onderzoeken we het meetkundig gedrag van TMDs, wat tot eenvoudigere
evolutievergelijkingen zal leiden, en ons dus een stap dichter brengt bij een
volledig inzicht in QCD.

iii



ABSTRACT

Although at first sight maybe not so obvious to the unaccustomed eye, the
quantum field theory of the strong force, quantum chromodynamics or QCD
for short, is not as thoroughly understood as we would like it to be. A deep
understanding is imperative to properly interpret modern experimental searches
for new physics, as QCD is the theory that underlies the hadronic collisions
that drive the experiment. Roughly speaking, every QCD calculation consists of
two parts, a perturbative part, calculable by standard non-Abelian field theory
methods, and a non-perturbative part, described by parton density functions
(PDFs). These non-perturbative objects are not calculable, but can be estimated
(on a lattice) or modelled (and fitted to data). But more importantly, it is possible
to derive exact evolution equations. For a PDF that is fitted to data at a given
scale, these can be used to predict it at any scale.

There exist several frameworks to investigate the behaviour of PDFs. One
of these is the small-x approach, which mainly aims at maintaining correct
predictions in deep inelastic scattering (DIS) even at high energies and high
densities. For this reason, its main applications lie in nuclear and heavy ion
physics. We devote one chapter to an introduction to small-x physics. Another
popular framework is the transverse momentum density (TMD) formalism,
which tries to give a complete 3-dimensional description of the contents of
the proton. Instead of limiting itself to deep inelastic scattering, it will acquire
information on the structure of the proton by observing particles in the final
state, using semi-inclusive experiments. This thesis is mainly situated in this
formalism, and although it won’t deal much with TMDs themselves, it is centred
around one of its key ingredients, namely Wilson lines.

Wilson lines are curious mathematical objects. Path-ordered exponentials of
the gauge fields, they contain all kinematical and dynamical information of the
gauge sector. They replace coordinate dependence with path dependence, and
allow as such for a geometrical approach to QCD. They are indispensable for
a gauge invariant description of bilocal operators, and hence for a consistent
definition of any gauge theory. In the absence of external fields, all Wilson lines
will be piecewise linear, that is, linear until abruptly forced in another direction
by instantaneous external influences. Being the main topic of this thesis, we
will demonstrate a new approach to simplify calculations with piecewise linear
Wilson lines, that has promising results and a whole spectrum of applications.

A special class of Wilson lines are closed lines, or Wilson loops. They can
be used as basic objects to fully describe gauge theory without coordinates
nor fields. Dynamics are governed by their geometrical evolution, and inspired
by this we investigate the geometrical behaviour of TMDs. This will lead to
evolution equations that are easier to handle, bringing us one step closer to a
full understanding of QCD.
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The ultimate units of matter are infinite in number, are indivisible
and cannot be merged, but all things are formed by their plaiting.

— Anuonpitog, as cited by Arist. de caelo III 4.303a5; 67A15.

FOREWORD

As far as written history knows, Democritos was the first philosopher to postulate
the idea that everything that exists—all matter—is built from extremely small
entities that are &topog—atomos, ‘indivisible’ In a time where the concept of a
‘particle’ is non-existent, where matter is always conceived as either solid (earth),
liquid (water), gaseous (air) or plasma (fire) without the addition of any internal
structure, making such a postulate is not only a bold leap forward, but it also
testifies of great intuition for physics and life, for it has taken more than two
millennia to prove him right.

Far more important is the implication it had on (meta)physics, as now the
quest of understanding the universe became the quest for the smallest, the search
for elementary particles. Many, many years later, this quest was toughened by
the additional search after the true nature of light (and forces in general), the
scientific community being divided into a group of particle-believers (led by
Newton) and a group of wave-believers (led by Huygens). Along came quantum
mechanics, demonstrating that forces are particles as well, but just behaving as a
wave. Everybody happy, end of story.

Not exactly, because something fundamentally had changed since Democritos’
postulate. Something so deeply rooted in physics that today we take it for granted.
It is the quest to understand every fundamental gear that makes the universe
tick, to understand the elementary forces and the elementary particles they do
bind and influence. Not to be satisfied, unless we understand every tiny piece
of the elementary workings of the universe (which in my humble opinion is a
dream that is asymptotically free), always smaller and smaller. For this reason a
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large part of the modern day physics community will remain to be devoted to
elementary particles and their forces.

This thesis is no exception to that rule. It is a product made to contribute
in the search to solve one of elementary particle physics’ main issues that is
not fully understood, namely the behaviour of the strong force. On paper, we
elementary particle physicists have it all figured out." We have deciphered the
underlying theory for the afore mentioned force, viz. the so-called ‘theory of
colour’ or quantum chromodynamics (QCD). But we cannot wield it. Because
this theory—which we know has to be the correct one—is of such calibre that
it tends to blow itself up. It works as long as we don’t focus on the contents of
hadrons (non-elementary particles like a proton). But that’s where the core of
the problem lies. Thanks to Democritos’ legacy, we want to delve into it, deeper
and deeper, smaller and smaller. We want to take a proton and—because we
know it isn’t elementary—break it open to investigate its contents. And that’s
where QCD starts complicating things—the more we zoom in to smaller and
smaller scales, the more substructures we will find, until suddenly we find more
particles than can reasonably fit inside one proton. Did our theory break? No,
we just cannot wield it.

That is, we cannot blindly wield it. But we can manage it. For starters, we
separate out the well-understood hard scattering from the interesting hadron
contents. This is the core principle of modern QCD and is known as factorisation,
and it has a strong mathematical background supporting it. A large fraction of
the present day scientific QCD community is devoted to finding an accurate de-
scription of the 3-dimensional hadron content, be it in coordinate space (known
as the GPD framework) or momentum space (known as the TMD framework).
This thesis is part of the latter framework, be it on a more technical note. It
is a dissertation on the topic of Wilson lines, which are paramount to define
gauge-invariant TMDs, objects that will be used to describe the contents of a
hadron. The usability of Wilson lines is however not limited to the investigation
of the contents of the hadron. In the small-x formalism for instance—which
is a formalism where one investigates QCD by zooming in and zooming in, it
hence naturally adds a saturation mechanism to avoid the above scenario of an
‘overfull’ proton—Wilson lines emerge as a resummation of all gauge interactions
on a given particle. Hence the investigation and simplification of Wilson line
calculations is bound to be beneficial for a lot of people.

If we may just ignore gravity, which is so weak compared to the other three forces that we can
put it to zero anyway (for all practical calculations at the subatomic scale).



OUTLINE OF THE THESIS

I realise that this thesis is quite extensive, but this is mainly due to the fact that I
tried to make it into a reference work as well. Having struggled myself trying to
get acquainted with QCD and TMDs (coming from a Supergravity background),
I hope that this thesis can serve future students as a helpful entry work.

The thesis is roughly divided into 3 parts. Part i is a basic introduction to
QFT in general and QCD in particular. I start with an enumeration of possible
symmetries in QFTs in Chapter 1, describing different terms in the Lagrangian
and exploring Noether’s theorems. In Chapter 2 I construct a general su(n)
gauge theory purely from geometrical arguments. This is not new research, but
not so easily found in existing literature. It is also a natural first introduction
to both Wilson lines and Wilson loops, as they are the geometrical objects that
bring the gauge field into play. Chapter 3 is a detailed chapter that introduces
quantisation using path integrals. It is an almost insurmountable task to quantise
Wilson lines using canonical quantisation because the time ordering coming
from the quantisation may interfere with the path ordering from the Wilson line.
Quantisation with path integrals avoids this problem. Chapter 4 is a continuation
on the quantisation procedure, as it shows some typical quantum effects which
we will need in later chapters, like the anomalous mass dimension and the final-
state cut. In the last chapter of this part, Chapter 5, I give a brief introduction on
how factorisation emerges in QCD using the most common experimental setup
to introduce it (namely DIS).

Part ii is what I would call the core of this thesis, and it contains the latest
of my research. In Chapter 6 I reintroduce Wilson lines in a more formal way,
and derive Feynman rules that are as general as possible. The description of
the finite and infinite Wilson lines in Section 6.3 is as far as I know unique,
in that sense that it has never been done before with the same mathematical
rigorousity. The Sections 6.2, 6.4 and 6.5 form the basis for a new methodology
to calculate piecewise linear Wilson lines (the most common type) in an easier
way. This was the main topic of my research in the last year, and has lead to a
few papers [4, 6, 12]. These first results provide a firm basic and will be extended
and developed further in my current and planned work. Section 6.6 describes
the eikonal approximation which is a common tool to approximate all gauge
interactions on a quark. Chapter 7 is a collection of tools to simplify calculations
with Wilson lines—like a direct, non-recursive calculation of colour traces in
Section 7.1 [5]—and some first results of the new methodology. The full chapter
is new research, and although the results in Section 7.4 are already known, the
methodology used to calculate them is not and might lead to new insights. The
two chapters that follow are both frameworks in QCD that rely on Wilson lines.
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The TMD framework is introduced at a basic level in Chapter 8.1 first review DIS in
a more formal way, giving an operator definition for the PDF, using Wilson lines
to make it gauge invariant. Next we apply the same principle to SIDIS, leading to
operator definitions for TMDs. In the last section I briefly review the evolution
of TMDs, as I will come back to it when investigating the geometrical evolution
of Wilson loops in Chapter 11. The last chapter in this part is Chapter 9, where
the small-x framework is reviewed. This framework describes the behaviour
of QCD in the limit of a small longitudinal momentum fraction. This chapter
includes in Section 9.3 a small research project which I did together with Dr.
Krzysztof Kutak in the first three months of my Ph.D. It is the calculation of the
transversal energy flow in a saturation framework.

Part iii is all about Wilson loops and their geometric evolution, which are
results from a collaboration with Dr. Igor Cherednikov, Tom Mertens and Pieter
Taels [2, 3, 7-11]. In Chapter 10 I review how Wilson loops can be used as basic
building bricks to recast QCD in loop space. I start with an introduction on col-
our diagrams—which are useful in any QCD calculation—and investigate these
diagrams in the large- N, limit, which naturally leads to the emergence of Wilson
loops. In the second part of this chapter, I review the necessary procedures in
order to renormalise Wilson loops. This is a section of high relevance, as the
singularity structure of Wilson lines—and hence of e.g. TMDs—is completely
analogous to that of Wilson loops. I have put some special attention on light-like
segments, as the latter are most relevant both for TMDs and the geometric evol-
ution of loops. And last, in Chapter 11, I present our results on the geometric
behaviour of Wilson loops. I start with a motivation based on a duality between
super Yang-Mills and loop space, and continue with the investigation of rect-
angular light-like loops. This eventually leads to our conjecture of a geometric
evolution equation, which is motivated to be valid at all orders. The chapter
ends with an application of the geometric evolution on TMDs. This research
has since been continued by Tom Mertens and Igor Cherednikov with a larger
focus on the mathematical preliminaries of loop space, further strengthening
the conjecture [16, 17].

This thesis is concluded with two appendices that contain a lot of reference
formulae, and are meant both as a support for the calculations in this thesis, and
as a general reference.

—Frederik Van der Veken, December 2014.
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INTRODUCTION TO QFT AND QCD



SYMMETRIES IN QUANTUM FIELD THEORIES

Before we tackle more advanced concepts and delve into the core of this thesis,
we need to review some basic knowledge of quantum field theories (QFTs) and
QCD, which is what the following five chapters are devoted to. Our approach will
be a bit different from the common way to do this, because we like to stress the
naturalness and elegance of a QFT. In this chapter, we almost purely deal with the
field aspect of QFTs, treating them as classical fields and keeping quantisation for
Chapter 3. The main topic of interest is Noether’s theorem, which describes the
deep relation between the symmetries of a theory and its conserved quantities.

Assuming that the reader already is acquainted with quantum field theories
to a basic level, we will try to avoid too much details and sketch the main lines
instead. There are many excellent introductory books to this subject, see e.g.
[18-22] for a more profound treatment.

1.1 CLASSICAL FIELD THEORY

Let us start by constructing the essential tools to work with QFTs. While in
quantum mechanics (QM) everything was built around the Hamiltonian, and
basic physical quantities were represented by 3-vectors, in QFT the basic object
will be the Lagrangian and physical quantities will be represented in a Lorentz-
covariant way, by 4-vectors.

The fundamental variables in QFT are fields, defined in function of spactime
coordinates x*. After quantisation, excitations of these fields will be identified
as particles (see Chapter 3). A field is a function in a Hilbert space that is quad-
ratically integrable, i.e. for two fields ¢, and ¢, the integral

[ 4316400
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1.1 CLASSICAL FIELD THEORY

has to be finite. The most important practical consequence is that any field has
to vanish at +oo in each of its coordinates.

We consider a system that is fully described by a set of n fields {¢; }. We don’t
specify the nature of the fields, they can be of any form including scalar, spinor or
vector fields. Non-scalar fields can be expressed in function of their components—
scalar quantities on their own—so that the full system only contains scalar fields
or scalar field components (e.g. two vector fields form a set of 8 field components).
Any obtained results will hence be applicable to spinor and vector fields as well.

The cornerstone in any field theory is the action §, the time integral of the
Lagrangian L. To represent the latter in a Lorentz-covariant way, we define the
Lagrangian density L as the spatial extension of the Lagrangian, depending
on the set of fields { ¢; }, their derivatives {ay¢i}, and possibly directly on the
spacetime coordinates x¥:

L(t) = / Ex L0x, 00,01 (L1)

The action is simply the integral of the Lagrangian density over the position
four-vector:

S= /d4x L(x, i, 0,¢i) . (1.2)

Since for the remainder of this thesis we will only work with the Lagrangian
density, we will simply refer to it as the Lagrangian.

Equations of Motion

What really characterises a Lagrangian, is its behaviour—or more generally the
action’s behaviour—under specific transformations, be it transformations acting
on the coordinates, or transformations acting on the fields. The Newtonian
principle of least action states that, for a transition between two states, nature will
always select the path that minimises the action. Transformations leaving the
action invariant, commonly called symmetries, are hence favoured. Translated
to fields, the least action principle tells us that the requirement of invariance

It is possible to relax this requirement by a proper modification of the theory. In fact, e.g. in axial
gauges (like the light-cone gauge) it is impossible to let the field vanish at both boundaries in x°.
The technicalities of this adaptation are beyond the scope of this thesis, and whenever working
in axial gauges, we will treat the fields as well-behaving.



1.1 CLASSICAL FIELD THEORY
of the action will lead to a set of equations describing the motion of the fields.
Mathematically, this invariance is expressed as

8§=8"-S=0. (1.3)

The variation of the action is of course fully determined by the variation of the
Lagrangian, but we cannot simply integrate over L,

5S + fd4x 5L,

because the integration measure d*x and the integration region Q transform as
well:

0S8 = fd4x' E(x'“,¢§(x’),ay¢;(x'))— fd4x E(x",gbi(x),a”(/)i(x)) .
Q Q
Because in the first integral x” is just a dummy variable, we can rename it x:
4S8 = fd4x L (x*, ¢5(x), 0udp}(x)) - fd4x L(x, ¢i(x),04¢i(x)) »
Q Q

but the integration regions remain different. It can be shown (see e.g. [23]) that
up to first order:

f d*x L(x) = /d4x 0y (0x4L) ,
0+60 Q

such that we can write
8S = /d4x [£(x, $1(x), 0487 (x)) £ (¥, i(x), Dughi(x)) +0, (8xL) | .
Q

Note that the difference between the two Lagrangians acts only on the form of
the fields, not on their arguments. Ignoring for a moment the last term, we can
thus write

oL oL
o = 25 g,
a6 """ 3o,

where the transformation only acts on the field structure itself, not on x:

Agi(x) = ¢'(x) - ¢(x). (1.4)

A,



1.1 CLASSICAL FIELD THEORY

There is a small subtlety here. If we would literally follow the variational chain
rule, the second term of §£ would be linear in Ad,,¢;. This is not the same as
what we wrote, because the variation operator acts on the derivative as well, i.e.
Ad,¢; = d,A¢;+ corrections. However, we restrict ourselves to transformations
of the field ¢; , avoiding transformations that would act on the derivative field
separately. Every transformation of the form

$i(x) > ¢i(x) = ¢i(x) + Agi(x),

will induce a variation in the derivative field literally of the form d,A¢;, hence
we can drop the correction terms. See e.g. [23-25] for a mathematical proof of
this statement. The variation of the action now simplifies into

oL
4
58 = /d aqslA‘/” aaH¢IaA¢,+a(£8x”)]

Using Leibniz’ rule, we can collect terms linear in A¢;, and write what remains
as a divergence of some quantity J¥. We will collect the transformation of the
integration region in 8L :

0L oL
= — . 4
oL (a i 8,188” i)A¢,+ayj . (1.5)

J# is the so-called Noether current:*

oL
b= —— A¢; oxt, .6
J 39,0 ¢+ L6x (1.6)

named after Emmy Noether. We will see in Section 1.2 that it is a key concept
when exploring the effect of the action’s symmetries. By absorbing the trans-
formation of the integral into 6L, we can now simply integrate over it:

88:/d4x 5L,
oL oL
= [d* ( -9 )Ai 9, "],
f"[agbi “Gapgs ) NPT O ]
Cfal (9L oL |
- fatx (a¢>,- a,,aam)m. (17)

2 Seee.g. [25].
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where we were allowed to drop the term 0, J* because all fields in the Lag-
rangian are supposed to be well-behaving, and thus have to vanish at +co. Equa-
tion 1.7 holds for arbitrary A¢;, implying that the integrand must be zero if we
want to satisfy the condition 6S = 0. This gives rise to the famous classical
Euler-Lagrange equations of motion (ELEMs):

Euler-Lagrange Equations of Motion

JENRS 09

which will be of great use when dealing with specific types of fields.

Characteristics of the Lagrangian

In any Lagrangian, we can classify the possible terms that it contains into three
categories. These are kinetic terms, mass terms, and interaction terms. The
first two are terms that are quadratic in the fields, while the latter can be any
combination of fields.

Kinetic and mass terms describe the behaviour of the field when free of
interaction with other fields. Kinetic terms are built from two fields of the same
type and describe the dynamics of this field. After quantisation, they will give
rise to the propagator, which is the amplitude of the field to go from one state to
another. The dynamical structure of the kinetic terms requires the presence of
field derivatives. On the other hand, mass terms are built from two fields of the
same type as well, but describe the statics of this field. After quantisation, they
will give rise to a constant factor in the propagator, viz. the mass. One could
interpret the mass as the constant of proportionality at which the field struggles
with itself when moving.’

It should be noted that the requirement of quadratic terms to be of the same
type can be relaxed, i.e. it is possible for so-called mixing to occur. Mixing of
kinetic terms would imply one type of field to dynamically create its propagation
by the aid of another type of field. This would mean that the first field would
dynamically transform in the second while propagating. Example theories where
kinetic mixing is allowed include most supersymmetric and supergravity theor-

Recently, evidence from the LHC at CERN has proven the existence of a new kind of particle, the
Brout-Englert-Higgs particle. This is a scalar field excitation, and as such can acquire a non-zero
vacuum expectation value (v.e.v.). By interacting with other fields it passes this v.e.v. as a mass
term. So in the Standard Model (SM), any mass term isn't interpreted as a struggle of a field with
itself, but as a struggle of a field with the Higgs field.
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ies, where the fields inside the kinetic terms are multiplied with a so-called Kéhler
metric tensor. To some extent, the recently discovered neutrino oscillation at
OPERA could also be interpreted as a mixing of kinetic terms.*

A mixing of mass terms is more common, as it simply implies that mass
eigenstates and flavour eigenstates don't coincide. After orthogonalisation, it
is possible to recover mass terms that are expressed diagonally in the fields.
However, this immediately implies that interaction terms are no longer diagonal
in flavour, i.e. the process under consideration won't conserve flavour. The
paramount example is that of quarks in the weak interaction, where interactions
between different quarks can mix with proportionality factors given by the CKM
matrix.

The last possible type of terms in the Lagrangian, interaction terms, are built
from at least three fields that can, but don’t have to, be of the same type. Terms
built from a single field aren’t allowed in the Lagrangian (unless for real scalar
fields). If our theory has to be renormalisable (see Section 4.1), a maximum of
four bosonic fields, or two fermionic fields and one bosonic field is imposed,
by arguments of Mass Dimension analysis (see 96). Interaction terms tell us
how the different fields couple to each other by giving the correct constant of
proportionality. If no interaction terms between two fields are present, they
simply don’t interact with each other (as is the case with e.g. leptons and gluons).

It is not a necessary condition for a field to have quadratic terms in the Lag-
rangian. But any field that lacks these, automatically lacks a dynamic description.
Such a field is thus necessarily an external field, for which the dynamics are
defined outside of the system under consideration.’ As we will deal in this thesis
exclusively with Lagrangians describing systems at a global scale, we won't treat
external fields.

But for small distances, the mixing parameters are extremely small as compared to the non-
mixing parameters, making the mixing undetectable at standard collision experiments. For
this reason, one prefers to write down the neutrino Lagrangian without mixed kinetic terms,
preferring to interpret the oscillation as a mixed long-distance evolution of quantum states. Also,
the quantisation procedure puts the constraint that mixing can only occur for neutrinos that are
not massless. This constrained can be relaxed in e.g. supersymmetric theories.

It is technically possible that a field has only mass terms without dynamics. Such a field is called
an auxiliary field, and is unphysical, as it can be removed from the Lagrangian by filling in its
ELEMs (Equation 1.8). This will lead to extra mass or interaction terms for the other fields.
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Scalar Fields

Let us now investigate an example of possible field terms in the Lagrangian. We
start with a real scalar field, which has no components and thus no substructure.
From classical mechanics, it is known to have the Lagrangian

1 1
E?)calar _ an(/) all(p _ E;,’,12¢2 ) (1.9)

We can interpret the first term as the energy cost of moving the field in spacetime,
and the second term as the energy cost for the field simply to exist. Using the
ELEMs that we derived in Equation 1.8, we construct the so-called Klein-Gordon
equations:

(D + mz) $=0 (1.10)

The square is a common notation to denote the fully contracted second derivative,
ie. O = d,0". Note that scaling both the kinetic and the mass terms in the
Lagrangian with the same factor won’t change the Klein-Gordon equation. The
factor 1/2 is chosen to be consistent with common literature.® In the case of a
complex scalar field, the Lagrangian is normally expressed without this factor in
front.”

£Bcalar _ ay(/) aﬂ¢* _ m2 |¢|2 . (1.11)

As a complex field, it exists of two independent fields, namely its real and ima-
ginary parts, but most of the time we prefer to express it in function of the field
and its complex conjugate. Now there are two Klein-Gordon equations, one for
each field:

(D + mz) $=0 (1.12a)
(D + mz) ¢ =0 (1.12b)

The Lagrangian £ describes the free field,® without interactions. We can add
for instance a four-field interaction term as follows (going back to a real scalar

field):

1

—/\(/54 . (1.13)

scalar_l u _l 242
L _zayqsaqs 2m¢ 2

6 It is commonly chosen to be 1/2 in order to have a propagator without coefficients in front.
7 For the same reason as above.
8 We will always use the label ° to indicate a free field theory.
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Then the Klein-Gordon equation is no longer homogeneous, but gains a source
term:

(D + mz) ¢= —%/\ ¢3. (1.14)

The important observation is that the free fields, obeying Equation 1.10, can
be expanded as a Fourier series and quantised accordingly (in the canonical
quantisation framework), or can be evaluated as Gaussian path integrals (in the
path integral framework). This is not possible for the interacting fields, obeying
Equation 1.14. Instead one has to separate out the interaction part from the
Lagrangian, quantise the free field, and treat the interaction as perturbations on
the free field. See Chapter 3 for more details.

Vector Fields

Another example to investigate is the Lagrangian for vector fields. A vector field
will commonly be associated with a force field, like the electromagnetic force, as
we will discover later on. Both a scalar field and a vector field represent particles
with integer spin, i.e. they are bosonic fields. We therefore expect the Lagrangian
of a vector field to be of the same form of the one of a scalar field. For a real
vector field A, we naively write

?

1 1
Lyeeter = Ea,,AVa”AV - EmZAMA” ,

where we also contracted the v index on the field in the kinetic term, because
the Lagrangian has to be a scalar, and hence cannot have any open indices left.
But there is another contraction possible, namely doing

DA, 0" A

We add this term to the Lagrangian with the same factor in front, but with an
opposite sign

?

1 1 1
ﬁgector 2 anAvaHAv _ 5a‘uAva"A/" - EmZAﬂA/" .

The reason for the opposite sign is to be in accordance with classical electro-
dynamics, where the electromagnetic field tensor is defined as

Fyy=0,A, - 0,A,. (1.15)
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Indeed, we can rewrite this Lagrangian as

vector i
Ly =

L—ILF,,VFW - %mZA JAE

In Chapter 2, we will demonstrate why the factor d,A, 0" A* has to have an
opposite sign, motivated by geometric arguments. There are two more remarks
however. The first one is a really important remark. As we will see in the next
section, any theory that is supposed to represent a realistic quantum system, is
required to be invariant under local phase rotations. It can easily be shown (see
44) that a vector mass isn’t invariant under such a rotation, so we drop this term.
The second remark is just a matter of convention, as it is common to define
the kinetic field term with a minus sign in front.” So we finally have a realistic
free-field vector Lagrangian:

1
Ezector — _ZFMVFHV . (1.16)

Again using Equation 1.8, we can construct the ELEM for A ;:
0 F"" = (g""0-0"9") A, =0. (117)

But this equation cannot be solved, as it is represented by a singular (and hence
non-invertible) matrix. The difficulty resides in the fact that this problem already
arises at the level of the free vector field, leaving us no clue how to continue.
However, there is one key property of the vector field A, that we overlooked: it
is over-determined. As a spin-1 field, it has exactly three independent degrees
of freedom (d.o.f:s). But the Lorentz index y runs over all four dimensions of
spacetime, giving us one d.o.f. too many. We can remove one d.o.f. by enforcing
a constraint equation on A . This is called “gauging away one d.o.f”, or simply
“choosing a gauge”. Two common example are:

A. The Lorentz gauge: 0,A* =0, (1.18a)
B. The axial gauge: n,A* =0, (1.18b)

where n, is any constant directional vector. Using the Lorentz gauge drops the
second term in Equation 1.17, restoring the Klein-Gordon equation:

Note the important difference: the minus sign in front of F*" is merely a scale factor of the
Lagrangian. But the minus inside F*”, as in Equation 1.15, defines the dynamics of the system.
Changing the latter, changes the theory, and we need it to be a minus sign to reproduce the
realistic electromagnetic interaction.

10
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which we know is quantisable. Using the axial gauge gives quantisable results
as well, this is however less straightforward to reveal. Because of this, vector
fields are often called gauge fields, and a theory containing them is called a gauge
theory (especially when the theory is invariant under local transformations, see
further).

There are several possible interaction terms to add to the Lagrangian, but the
most straightforward is to contract one A, with an external current vector J#:

1
Lrecter = —ZFWF’” -J A, (119)
Just as in the case of a scalar field, this renders the ELEM inhomogeneous:
g
ouF*" =T, (1.20)

such that after choosing a gauge we will continue with the quantisation of the free
field, and treat the interaction as perturbations on the free field. If the current is
a scalar quantity, the interaction term contains two vector fields:

1
t
EVeC or — _ZF‘MVFMV _ jA‘uA[J .

Self-interactions of the vector field are possible as well, made with terms of three
or four vector fields, but for this we need to collect several vector fields into one
multiplet. We will illustrate this in Section 1.4.

Spinor Fields

The last example that is relevant for this thesis, is the Lagrangian for spinor fields.
We know for sure that we cannot blindly use the Klein-Gordon Lagrangian for
these, as they represent particles of half-integer spin, i.e. they are fermionic fields.
These fields will be associated with matter (in contract with vector fields, that
are associated with forces).

Because matter particles have half-integer spin, it follows from the Pauli-
exclusion principle that spinor fields anticommute:

y()y(y) = —v(»)y(x),

from which we automatically deduce that the square of a spinor field is zero:

y(x)y(x) =0. (1.21)

11
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From classical quantum mechanics, we know that the Dirac equation for a
fermion field y is given by (see Equation A.20):

(ig-m)y=0, (1.22)

where y is a complex valued spinor field, and ¢ is the contraction of the derivative
with a gamma matrix:

= yﬂa#. (1.23)

A first attempt to construct a Lagrangian that reproduces Equation 1.22 is

ﬁlgirac ; W(la_m)ll/

However, this cannot be right, as here the mass term would be zero by definition,
using Equation 1.21. We thus need a second, independent field, which we will
choose to be the hermitian conjugate of y. From symmetry considerations
concerning the gamma matrices, we add a y°. The conjugate field, of which the
excitation will be identified with an antiparticle, is then defined as ¥ = y'y°,
and obeys a slightly modified Dirac eqation (Equation A.23). See Appendix A.3
and [18] for more on Dirac spinors and gamma matrices. It is now not difficult
to check that the Dirac equations are the ELEMs (Equation 1.8) for the following
Lagrangian:

Lome =y (1& - m) V. (1.24)

A possible interaction term can be introduced by using the Dirac fields as a
current for Equation 1.19, i.e.

T = gty

where we added a dimensionless constant g. The resulting Lagrangian is exactly
the Lagrangian for quantum electrodynamics (QED), describing the electromag-
netic force:

— _ 1
LY =y (id - m)y + gyhy - [ FuF", (1:25)

where the slashed notation is used as before, i.e. A = A, p¥.

12
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1.2 SYMMETRIES OF THE LAGRANGIAN

Let us now investigate how the symmetries of a theory influence the quantities
within. This will eventually lead us to Noether’s famous theorem, that states that
every symmetry can be associated with a conserved current and charge.

Any transformation can be parameterised in function of its effect on the
spacetime coordinates and on the fields:

xt = xt + 6x¥, (1.26a)
¢i > ¢i+0¢;. (1.26b)

The two transformations are not independent, as a coordinate transformation
will also manifest itself as a field transformation:

¢i(x) = ¢i(x +8x) ~ ¢i(x) + 0x" 9, i (x).

Let us add some notational clarity. When writing A¢; , we refer to a transforma-
tion that only affects the form of the field:

Agi = ¢i(x) = ¢i(x),

while d¢; is the full transformation, including the effect from the coordinate
transform:

O¢i = ¢i(x) — ¢i(x).-
In other words, we have (up to first order):
8¢i = A¢i + 0x"0,¢i(x) . (1.27)

Because we absorbed the transformation of the integration parameters into the
variation of £, the variation of the action is easily recovered:

0s = [d'x oL, (128)
where the variation of the Lagrangian is, because of Equation 1.5, simply the
divergence of the Noether current as defined in Equation 1.6:

SL=0,T". (1.29)

To satisty the requirement §S = 0, we see that §£ has to vanish as well, or can
be at most a divergence of any four-vector K¥, i.e.

6L = 9,K" (1.30)

13



1.2 SYMMETRIES OF THE LAGRANGIAN

leaves the action invariant. By subtracting K# from the current and using Equa-
tion 1.27 to remove A¢; ,

qu_ L ¢._(ac

- %% = i L") 6x" — K*, (131)
99,6; 99,9 ¢ )

we have constructed a conserved current, i.e.
0, J"=0. (1.32)

The approach is as follows: we start with a certain transformation, and apply it
to the Lagrangian. If this transformation leaves the Lagrangian invariant, or if it
leaves the Lagrangian invariant up to a divergence, we know that the Noether
current in Equation 1.31 will be conserved.

Also, for every conserved current there is an associated charge

Q(t) = /d3x J°, (1.33)

which is conserved as well:

Q- [@x 97"+ [¢x 87 =0. (1.34)

The first term vanishes by current conservation, and the second by use of Gauss’
divergence theorem and assuming the fields vanish at +oo.
We have now all necessary ingredients to present Noether’s first theorem.

NOETHER’S FIRST THEOREM: Each continuous symmetry trans-
formation that leaves the Lagrangian invariant up to a divergence is
associated with a conserved current as defined in Equation 1.31. The
spatial integral over this current’s zeroth component yields a conserved
charge, as given in Equation 1.33.

It is important that the symmetries have to be continuous symmetries, because
this guarantees that we can start from infinitesimal variations and exponentiate
the result. E.g. we can start with an small translation to describe a macroscopic
shift. But for instance inversion symmetry in three dimensions (parity) is not a
continuous symmetry, so we cannot apply Noether’s theorem on it.
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We can explore and simplify the theorem further, by parameterising the
transformations in Equations 1.26 in function of a set of infinitesimal parameters
& (r=1...R):

Oxt = e, XV, (1.352)
0¢i =€ Dir, (1.35b)
K* = ¢ K. (1.35¢)

The functions X* and ®@;, can depend on the other coordinates resp. fields,
thus allowing transformations to mix coordinates resp. fields. If we plug these
parameterisations in the Noether current, we can extract the common parameter
€, and define a Noether current per component of the symmetry:

Noether Current

JJ‘:ﬁ%—(ag%am—wt‘)ﬂ—lﬁ‘- (136)
u@i 2

These currents will be independently conserved for each symmetry component
r. Note that the expression between parentheses is simply the stress-energy
tensor:

oL
T”v = mav%’ - 555 > (1.37)
uti
so that we can rewrite the current as
T = oL o, - T¢, X - K.
90,

1.3 SPACETIME SYMMETRIES

Let us first investigate how spacetime symmetries influence a theory. We are
looking at any transformation of the form

xt = x# + oxt. (1.38)

But these transformations don’t leave the Lagrangian invariant on their own,
as they propagate into the field transformations because of Equation 1.27. We
thus have to transform the form of the field as well, using A¢; to compensate
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the effect of the coordinate transformation. We won’t delve into the details here,
see e.g. [26] for a good treatment.
The first spacetime symmetry we investigate is a translation, defined as

Xt s xt g gt (139)

for a constant vector a¥. The Lagrangian will be fully invariant (K¥ = 0) if we
let the fotal variation of the field vanish, i.e. §¢; = 0. There are four independent
symmetry components, one for each spacetime direction. It is thus natural
to replace the index r with a Lorentz index v. Using the parameterisation in
Equations 1.35, we identify

N N
e=a’, Xt =6,

Using Equation 1.36 we can construct the Noether current, which is conserved for
any Lagrangian that is invariant under spacetime translations. It is a contraction
of the translation parameter with the energy-momentum tensor of the field ¢;:

T =-a" T, . (1.40)

Because the conservation law states that —a"ay ™ » = 0 must hold for any a”, the
energy-momentum tensor is conserved in all of its components separately:

dyu T, =0. (1.41)

There will be four conserved charges as well, one for each spacetime direction.
The charge of the time component is the Hamiltonian

H-= fdsx 7%, (1.42)

and the charges of the space components of T, are associated with the mo-
mentum components of the field

Pl = /d3x T (1.43)

This already demonstrates the power of Noether’s theorem: we derived the conser-
vation of four-momentum from first principles without specifying a Lagrangian,
only requiring it to be invariant under spacetime translations! Similarly, the
requirement of invariance under Lorentz transformations (rotations and boosts)

xt - M x",

will result in conservation of angular momentum.

16
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Now we turn our attention towards transformations that act on the form of the
field only, i.e. X! = 0 always. If such a transformation is a symmetry; it is called
an internal symmetry.

We consider a set of fields that are in a representation of a Lie algebra (see
Appendix A.6), i.e. they are collected into multiplets:

$1(x)

$n(x)

When a field is organised as a singlet (i.e. exactly one field in the multiplet), the
only possible Lie structure is a (1) algebra. Such a field is called Abelian and is
hence a commutating field, in contrast to fields organised in multiplets that are
called non-Abelian. The latter are inherently more difficult to work with, because
of the non-commutative nature of the underlying generators.

A theory can combine several multiplets, not necessary of the same size. For
simplicity we consider now one such multiplet, but the generalisation to more
is easily made. A field ¢, in a multiplet can transform in function of all fields
in the multiplet (other fields and itself). We call this a rotation of the multiplet,
and write

¢i—>¢,~+ia“(t“)ij¢j, (1.44)

where the ¢* are the generators of the Lie algebra (see Equation 1.5), and the a”
are constant parameters. Note that there are two different indices in use:

A. Theindices 4, j, . .. are for the fields, they can be organised in multiplets of
any representation. The most common choice is the fundamental repres-
entation, where i = 1...n for a n-dimensional Lie algebra. It is common
not to write out these indices.

B. The indices a, b, ... are the contraction of the parameters a? with the
generators. For any representation of a su(n) algebra, there are n* — 1
generators, so a = 1...n* — 1. Most of the time, these indices are written
out.

If the fields are complex, then the conjugate fields simply transform with a minus
sign:

¢; —> ¢; —ia’ (ta)ij ¢*7,

17



1.4 GLOBAL SYMMETRIES

Note that these transformations are just the infinitesimal forms of a global phase
rotation:

¢i N ei(x“(tﬂ)ij(/)]’ i (/);e N e—ia“(tﬂ)ij¢*j . (1.45)

It is called a global transformation, because it holds globally, at every spacetime
point. In contrast, if «* wouldn’t be constant but depending on x, the Noether
theorem has to be adapted, as we will see in the next section.

If we compare the transformation with the parameterisation in Equations 1.35,
we see that

N N . .
ga:(xa (D?:I(ta)ij(p].

Plugging these in Equation 1.36, we find the Noether current for a global phase
rotation for real fields:

oL
90,0

j/f i(t”)ij ¢ (1.46)
Note that that the presence of Lie generators in the current make the latter a non-
commuting operator. This has important consequence for e.g. quantisation, as
in the canonical quantisation framework this fact interferes with the canonical
commutation relations. For complex fields, we have the apparent choice of
putting the minus sign of the conjugate field’s transform in the parameter e?
or in ®¢. But in the definition of Equation 1.36, we have extracted the same
parameter €” everywhere, so we have to move the minus sign into @, giving
the Noether current

oL i oL
=—— i (t".. ¢’ -

T 1(t%);;0" (1.47)
for complex fields.

Why would invariance to phase rotations be relevant from a physical point of
view? Remember that in QM the amplitude ¥ (x) is a complex-valued field that
is only a mathematical construct, while its complex square |¥(x )|* represents
the probability and is a physical observable. But there is some freedom on the
choice of ¥(x ), as multiplying it with a phase factor doesn’t affect the probability.
Le. the transformation ¥(x) — e?¥(x) leaves the probability and hence the
system invariant, and will give rise to conservation laws that can be constructed
by Noether’s theorem.

18
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Free Dirac Lagrangian

To investigate an easy example, take e.g. the Lagrangian for the free Dirac field
as defined in Equation 1.24:

E(I))irac zw(ia_m)w’

where now the field forms a multiplet. The fields carry both Lie indices i, j and
spinor indices «, f3:

[Direc _ i [ ) ﬁa ~8%m ]51‘;“/’;;’ (1.48)

This Lagrangian is manifestly invariant under a phase rotation

i t?

y—-e . (1.49)

There are n> — 1 conserved Noether currents (see Equation 1.46):

T =gy tty, (1.50)

where we have chosen to extract —a“ as the parameter € to get a positive current
(but of course, this is a matter of convention). These currents are commonly
known as the Dirac or vector currents. We can easily check that they are indeed
conserved by using Equations 1.22 and A.23. The associated charges are

Q% = /d3x vty = /d3x v %y, (1.51)

because ¥ = y'y° and (y0)2 = 1. In case of an u(1) symmetry, we can associate
the charge with the number operator:

f(z ) ST 5 b”bs), (1.52)

which holds up to an infinite constant (that vanishes after renormalisation).
The number operator is the baryon number (or lepton number, depending on
the fields). Noether’s first theorem gives us a natural proof that the baryon and
lepton numbers are conserved quantities. Also note that it clearly shows that
what is conserved is the difference between the number of particle states (as Tas )
and antiparticle states (b}, Tbs ). The two separately are not invariant.

We can construct an analogous transformation, using y° as defined in Equa-
tion A.27a:

i 5

y—e* Ny, (1.53)
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a so-called chiral transformation. The transformation of v is a bit more intricate:

—iay®

- = T ; t ; i —
1/// _ V/, _ e‘“”sl// _ (elay5ll/) yO — V/Te_laYB)/O — _V/Tyoe—la)ﬁ _ —V/e ’

where the minus sign in front emerges because y#y> = —)°y# (see Equation A.29).

This implies

iydy > iydy, myy - —myy,

i.e. the Dirac Lagrangian is only invariant under chiral transformations if m = 0.

Indeed, if we calculate the associated current:

T4 =yyty’ iy, (1.54)
its derivative is given by

0u Tt =2myy’thy.

This current is often called the axial vector current, or axial current for short. It
is only conserved for m = 0, as expected from symmetry considerations. Chiral
transformations and y° are essential ingredients for parity-violating theories
like the electroweak theory.

The Yang-Mills Lagrangian

Next we investigate the global symmetries of a general su(n) Lagrangian, also
called the Yang-Mills (M) Lagrangian, which we will construct in the next
chapter, more specifically in Equation 2.45:

_ _ 1
,C:w(ia—m)w+gt//4(1//— EtrFWF‘“’, (1.55)

where the factor g is the coupling strength of the su(n) interaction. The Dirac
fields are organised in a multiplet (see Equation 1.48), and the vector fields are
used as operators:

Ay = A; t?, (1.56a)
Fu = Fi t* = 0,A, - 0,A, —ig[Au Ay] . (1.56b)
The latter makes sure that

1 1 b p 1
5 FuF =2 tr(¢*¢") Fy, P = JEWE
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The Lagrangian has a manifest u(1) symmetry:
l//i ﬁeiaWIU Ay _>Aya

which leads to a conservation of baryon or lepton number, as we saw in Equa-
tion 1.51. However, the YM Lagrangian is not invariant under global su(#n) sym-
metries (with n > 1) that only act on the Dirac fields, as was the case in Equa-
tion 1.49, instead we have to extend the transformation to the vector fields as
well:

yi = yitiga® (1) ,9/, (1.572)
Al > A%+ g fAbA, (1.57b)

where we extracted g from a. This is just a matter of convention. These are the
infinitesimal forms of the rotations

v — eig“ataw, (1.58a)
Y e st (1.58b)
Ay~ eig“ataAM S (1.58¢)
Fuy - eig"‘ataF,w el t" (1.58d)

To see how the exponentiation of the infinitesimal transformation of A, leads
to the rotation in Equation 1.58¢, note that Equation 1.57b can be written in
operator form as

Ay~ Au-ig[Apal.

It is not difficult to show that the Lagrangian in Equation 1.55 is invariant under
the full transformation in Equations 1.58 (the kinetic term of the vector field
is invariant, because it sits inside a trace, which is cyclic). Using again —a“ as
the transformation parameter €%, we can construct n> — 1 conserved Noether
currents:

oL oL
wa _ P+ abc AS
T =legs yrvres 90,45 "
= gyttt y + g fUFH A (1.59)

The associated conserved charges are the charges of the symmetry under con-
sideration. E.g. for su(2) this is the weak hypercharge (and the vector fields
represent the weak bosons), and for su(3) this is the colour charge (and the
vector fields represent the gluons).
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An interesting remark is the fact that the u(1) symmetry leaves the vector
fields invariant. This is a strong fact: all vector fields have a vanishing u(1) charge
(e.g. photons and gluons carry no electromagnetic charge).

It is also interesting to explicitly calculate the ELEM for the vector field. For a
general YM Lagrangian, these are given by

Dsz”"b =-J*, (1.60a)
Dy = 809, — g fUAS, (1.60b)
't =gyt (1.60¢)

and are commonly called the Yang-Mills equations. In operator form, these are:
[DH, F’”] =]t (1.61a)
Dy=0,-igAy, (1.61b)

but watch out, we cannot simply absorb t* in J¥?, because we need a Fierz
identity (see Equation A.77) for this.

1.5 LOCAL SYMMETRIES

Now we move on to the most important concept in QFT, viz. that of gauge
symmetries. In Section 1.4 we motivated the need for global phase invariance
from a QM point of view. But there is no reason why the phase parameter €*
couldn’t be dependent on spacetime coordinates, as the QM amplitude is invariant
under these transformations as well. Motivated by classical QM, we thus require
any realistic QFT to be invariant under a local phase transformation:

Y o> ey, (1.62)

which varies from point to point.

Demanding local phase invariance is a much stricter requirement than global
phase invariance. Indeed, e.g. the simple free Dirac Lagrangian in Equation 1.24
is not locally invariant:

6LDirac — _gwaav/.

The move to local phase invariance has serious implications, as both the ELEM
and Noether’s first theorem are no longer valid.
In order to adapt these theorems, we parameterise any field transformation

in function of spacetime-dependent parameters ¢*(x) and their derivatives
9, (x):
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8¢i = €“DF + (aﬂea) Q?a : )

The only condition on the functions €*(x) is that they are expected to be twice
differentiable. As all local symmetries of interest are automatically internal
symmetries (spacetime are spacetime-dependent anyway, and already treated in
Section 1.4), we can safely assume dx* = 0.

Localised Equations of Motion

The variation of the Lagrangian is given by

L L
0L = 5,' a(sz
36: 21" 39,47 109

u¥i
Filling in the variation in Equation 1.63, we can collect the terms linear in €” and
its derivatives:

0L =A%€" + B*"0,¢e" + C*"""0,0,€", (1.64)
with
A% = oL o7 + oL 0,7, (1.65a)
0¢; 00, ¢;
BH® = EQ’.‘“ L2k of + oL 2,087, (1.65b)
o¢; ' 00,¢; 00, ¢; !
oL
wae - — QY. .6
00,¢; (1650)

The necessary condition for the action to be invariant, is that the variation of
the Lagrangian vanishes up to a divergence, i.e.

88§=0 = 8L=9,(...).
With help of partial integration, we can rewrite Equation 1.64 as
0L = (A“ -0,B"" + a#avcf*”) € +0,(...).

The first terms have to vanish independently of €?, giving us the invariance
requirement

A%~ 9,B % +9,9,C" % = 0.
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Plugging in the definitions of A, B¥, and C*" gives

oL oL oL oL
-0 d%-0,0")V-0,— -0,0,———— | Q¥* =0. (1.66
(aqﬁi ”aamz-)( = 0u0l") ("asbi # ”aavsbi) : (1:66)

The variational derivative of L is defined as (see e.g. [24]):

Variational Derivative

0L u 0L . OL

(1.67)

5pi 0  "09.¢;

In the case of global symmetries, the ELEM are equivalent to the constraint

—=0. (1.68)
d¢i
Hence the variational derivative gives a measure of the extent at which the local
ELEMs diverge from the global ones. We can express the invariance requirement
(Equation 1.66) in function of the variational derivative:

oL oL
®?=9 Qe . 6
8¢ M(5¢i ' ) e

Removing the spacetime dependence of €? recovers the global ELEM as expected,
because then Qi.‘ ® =0, which gives us

oL o=0 oL =
0¢; 0¢;
because it should hold independently of 7.

Consider for instance the Yang-Mills Lagrangian as given in Equation 1.55. It
is invariant under the local gauge transformation

>

v -y +igattly (1.70a)
AZ - AZ +0,a’ (1.70b)

Comparing this with Equation 1.63, we see that the common parameter is given
by €? = a”. For the y field, we have

Q¢ Zigtty Q" =0.

Identifying the transformation component for the field A, might be a bit con-
fusing, as the field itself also carries Lie and Lorentz indices. The field index i on
Q) thus accounts for v and b on the field:

Q4 =0 QYe = el
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Local gauge invariance then implies the following local equations of motion:

oL oL oL
£ t*v| =0 St 5ab
(61// Vs W) (6 5 )
g0, (wy"ty) = g0, (yy"t*y) + 0,0, F*" .

Or, in other words:

8,0, F" 9 = 0. (1.71)

This tells us amongst other things that the field tensor should be antisymmetric.

Noethers Second Theorem

When working with local symmetries, it isn’t always possible to derive con-
served currents and charges, as was the case for global symmetries. However,
the invariance of the Lagrangian under local symmetries will give rise to a set of
differential equations constraining the fields. This is Noether’s second theorem.

Instead of allowing the Lagrangian to vary up to a divergence, we require it to
tully vanish, i.e. 6£ = 0. Comparing this to Equation 1.64, we see that every term
has to vanish separately, because the requirement has to be met independently
of €. This naturally implies A? = 0, B#? = 0, and C*"“ = 0. However, because
C is contracted with a fully symmetric tensor (d,0,), it is sufficient for C to
be fully antisymmetric for the last term to vanish. We thus have the following
requirements:

oL oL
A%=0 = —®f =——0,07, (1.722)
00, 00,¢; "
B**=0 = EQWJ oL an;m = - oL o, (1.72b)
9 00,y 90,6
oL oL
cla QVl=—_—Z Q. .
- 90,¢: ' 0dyg; (172¢)

We define the local Noether current as
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Local Noether Current

oL oL

o7 +

JH = ,
90, i 3¢;

Qf.m . (1.73)

Then the first equation A* = 0 reduces to

oL oL
0,TJ"+ =% -0 Q¥ =o,
AT (asb, ’ )

or, after using the local ELEM (Equation 1.69),

9, T =0, (1.74) ]

again demonstrating current conservation. We could derive a conserved charge
from this current just a before, but it wouldn't make much sense as it isn’t linked
to any physical observable.

We can also construct a Noether tensor, defined as

Local Noether Tensor

Watch the order of the indices! We chose to reverse them (F#” = C**), to make
the identification with the gauge field tensor identical. The third equation
C(#) @ = 0 tells us that it is antisymmetric:

a _ a
F!“’_ Fvu’

and we can use it to rewrite the second equation B#“* = 0 as

[ 0, F"#4% = g#4, (1.76) ]

Current conservation (and the fact that F#” is antisymmetric) implies conserva-
tion of the Noether tensor as well:

0"0"Fy, =0. (1.77)

Note that we can combine the local ELEM with current conservation, to get a
new set of equations:

oL o+ oL
09; 00, ¢;

9,0%=0. (1.78)
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However, most of the time these equations are trivially satisfied and hence carry
no new information. Now we can state Noether’s second theorem:

NOETHER’S SECOND THEOREM: Each continuous local symmetry
transformation that leaves the Lagrangian invariant is associated with a
conserved current as defined in Equation 1.73 and a conserved tensor as
defined in Equation 1.75. They are related to each other by Equation 1.76.
For each symmetry component a, there are local ELEMs acting on all
fields, as given by Equation 1.69.

Can we extend the second Noether theorem for the case where the Lagrangian
is invariant up to a divergence d,, (" K*“)? Filling the definitions of the Noether
current and Noether tensor in Equation 1.64, the variation of the Lagrangian is
given by:

SL = (aﬂjﬂa)ea +(TH4 - 9,FH) aﬂe“+F””ayave“ =9, (e°K*?) .

We see that the Noether equations remain valid if we subtract K¥ from the
current.

Returning to the Yang-Mills Lagrangian in Equation 1.55, the first thing we
note is that the Noether tensor (Equation 1.75) identically equals the gauge field
strength, validating our naming choice. Next we can construct the local Noether
current using the parameterisation in Equations 1.70:

5L
SAb
=gy ty + gyy ity + 9, FHE
= 9,F"a,

848

oL
pa _ : ta
J 1gaaﬂw v+

which is a trivial identity because of Equation 1.76. Also note that indeed Equa-
tion 1.78 doesn’t bring any new information, as it states

-yt (id - m)y-igt®y -yt y =0,
i.e. 0 = 0, which is trivially satisfied.

At first sight, it would seem that Noether’s second theorem isn’t all that helpful,
because it doesn’t give us new information on the theory. But this is because
the Yang-Mills Lagrangian is already a perfectly gauged Lagrangian, a ‘finished’
one. As the power of the second Noether theorem lies in its strong relations

and constraints, it is an especially handy tool to make existing theories gauge
invariant.
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GEOMETRY OF QUANTUM FIELD THEORIES

We will now try to construct the Yang-Mills Lagrangian, as defined in Equa-
tion 1.55, only from geometric arguments and past knowledge from quantum
mechanics. From experiment it is known that matter particles, like leptons and
quarks, have spin 1/2, obeying Fermi-Dirac statistics and the Pauli exclusion
principle. And from QM we know that such particles obey the Dirac equation.

We start by only considering a Dirac field, as in our simple-minded ansatz
we have no idea yet about the true nature of gauge fields, only knowing they
act on particles that are charged under the su(n) symmetry. Our basic building
brick is the free Dirac Lagrangian (Equation 1.24), on which we will impose
invariance under local phase rotations.

2.1 PARALLEL TRANSPORT AND WILSON LINES

In Sections 1.4 and 1.5 we motivated the need for global and local phase invari-
ance with classical quantum mechanics, because the QM probability [¥(x)|* is
supposed to be invariant under phase rotations, both global and local.

We know the free Dirac Lagrangian is not gauge invariant. Consider a local
su(n) phase rotation

1//(x) N eiigtx”(x)t“l//(x) i (2.1)

where g is just a constant (which will be identified later as the coupling constant),
and we leave the sign unspecified. The antiparticle field y transforms with an
opposite sign in the exponent:

Figa®(x)t?

v(x) = y(x)e
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The mass term is behaving nicely and remains unchanged under the transforma-
tion:

Figa®(x)t? e:tig a(x)t?

—myy > -mye y=-myy.

However, the derivative term is giving problems, as it pulls out a factor d,, & from
the exponential:

iydy — iydy - gy dat'y.

The Parallel Transporter

The standard way to proceed, is to introduce a so-called gauge field Aj, that
transforms in such a way that it cancels the problematic terms. But instead of
introducing a field ad hoc, we investigate the problem at hand a bit deeper, and
see if we can pinpoint the erratic behaviour (and solve it) purely by geometric
arguments.

Actually, it is not surprising that the derivative spoils local transformations, as
it is not a local but a bi-local operator, viz. it is defined in two spacetime points
instead of one. The definition of the derivative of y(x) in the direction of a
vector n* is namely

nﬂayt//:ii_r%é(t//(x+en) —y(x)). (2.2)

This definition is not well-defined, as y(x + en) and y(x) obey different trans-
formation laws. In other words, there isn’t a sensible transformation for the
quantity d,y.

If we would have an object that is able to transport the transformation proper-
ties of a field at a point x to those of a field at a point y, we could use it to adapt
the derivative to have a single transformation. Let us assume that we have found
such a quantity U ., that is scalar, only depending on x and y, and transforms
under the symmetry in Equation 2.1 as

M(}’;x) g eiigtx“(y)t” u(y;x)eﬁg“a(x)t” i (2.3)

so we can use it to transport a field at x to a field at y:

Uiy, vy ¥(x) > etiga’ (e’ Uy, vy ¥(x)- (2.4)



2.1 PARALLEL TRANSPORT AND WILSON LINES

For this reason it is often called a parallel transporter, or a comparator. Other
common names are a gauge link, or a Wilson line. We will mostly stick to the
latter naming convention. We will treat them extensively in Chapter 6 and later.
In principle, the requirement in Equation 2.3 is the only constraint on U so
far, leaving a whole list of functions as possible candidates. In an attempt to
narrow down this list, we will add some additional constraints that seem logical
to enforce.

First of all, transporting a field from x to y, and then from y to z, should
yield the same result as transporting it directly from x to z. Hence the parallel
transporter should be transitive:

u(Z;J') u(y;X) - u(z;x) . (2.5)

This is not yet a rigorous definition, but it is accurate enough to help us under-
stand the structure of ¢/ a bit more. Next, if we place the transporter in between
a bi-local product y(y)y(x) to make it invariant, we can use Equation 2.5 to
split it at some point z:

VUGV (x) = () U U p(x). (2.6)
But we could as well redefine y by absorbing the transporter, i.e.
\P(Z) = Z/{(z;x)llj(x) >

allowing us to write the bi-local product as ¥ (z)¥(z). By writing out the barred
field:

W) = Uy, 00 =70 [Upesy |

and identifying with Equation 2.6, we see that the dagger operation switches the
endpoints:

(o] = Uy (27)

Furthermore, moving a field from x to y, and then back to x, should have no
final effect. This immediately implies that ¢/ should be unitary:

Uy Uiy = 1 U, ol Uy =1 (2.8)
@nso =5 T [ (ym)] (ysx) = >
Every unitary object can be represented as a pure phase, i.e.

u(y;x) il eii gf(yx) , (29)
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2.1 PARALLEL TRANSPORT AND WILSON LINES

Figure 2.1: As a parallel transporter transforms in function of its path endpoints only,
all paths shown will give rise to equivalent ¢/, shifting a field at x to a
field at y.

where f is a real function, and the sign in front of i g is for convenience the same
as the one chosen in the transformation Equation 2.1. We extracted the same
factor g from f(y, x) as in the transformation rules. Because of the transitivity
of U, this function has to be transitive with respect to addition, particularly
f(y,x) = f(y,2)+f(z, x). Also, because of the Hermiticity of ¢/, the function f
has to be antisymmetric in its arguments, viz. f(y, x) = —f(x, y). This suggests
something of the form

fnx) 2 f(y) - f(x).

All these prerequisites are typical for a path-dependent function. This is a
function that takes a coordinate as an argument, but is evaluated at the endpoints
of the path. For a path C, we can write this as

C:zl=xt. .y = f(y,x)d:effc(z)ﬁ. (2.10)

We thus succeeded in limiting the list of possible candidates for i, ,) to all
pure phases that are functions of a path connecting x and y. This is illustrated
in Figure 2.1, where every path leads to a different parallel transporter that is a
valid candidate for Z/l(y;x). This is why we added the label C to f; each path can
have its own function. There is no restriction on the possible paths, except that
they should all be continuous and have the same endpoints.

From the physical point of view, this makes a lot of sense. Intuitively, it feels
logical that, when transporting a field from one point to another, this is done in
a continuous way without abrupt jumps, i.e. along a path in spacetime. As the
only property we are interested in is its transformation, depending only on the
endpoints, we end up with an infinite set of possible parallel transporters, each
one defined along a different path, and all equally valid. Whenever it is needed
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2.1 PARALLEL TRANSPORT AND WILSON LINES

y y Y
!
C, C
C zZ zZ
C,
C
X X X
C _ C, C, C, C
UGy = UG Uiy * UG UGy

Figure 2.2: When a parallel transporter is split in a point z that lies on its path, it can be
written as the product of the two new parallel transporters, i.e. it is transitive.
This is not correct when z lies outside the original path.

to make a distinction between parallel transporters on different paths, we can

write U((;;x) to identify the chosen path.

Non-Abelian paths

Now we have to stop for a moment, because there is a really important caveat
that we overlooked. From the transitivity requirement in Equation 2.5, we de-
duced that f(y,x) = f(y,z) + f(z, x). However, because the transformation
exponentials in Equation 2.3 are possibly Lie algebra valued functions, it is to be
expected that f is Lie algebra valued as well. But it that case, we cannot simply
split the exponential, i.e.

SO (@) 4 of (12) of (26)

but we have to use the Baker-Campbell-Hausdorff formula instead, involving
chained commutators of f at different spacetime points.

We decide to turn a different road, and order the f along the path. More
specifically, in the expansion of the exponential, all f are ordered in such a way
that the f that is first on the path (having the largest path parameterisation
parameter) is written leftmost. We will use the symbol P in front of the expo-
nential to show that it is a path-ordered exponential. Path-ordering is treated in
much more detail in Section 6.1 on page 151 and onwards. Then the transitivity
property is valid:

P efx) - pf(12)p of(ax) (2.11)
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Y
C,
z z
G C
X X
B C C
U = U )UG

Figure 2.3: The transitivity rule can be also applied to points outside the path C on
the condition that the path returns on itself, cancelling the overlapping
segments.

There is, however, another caveat: this property is only valid if z already lies on
the path connecting x and y, because we cannot blindly split the path in a point
outside of it, see Figure 2.2. The correct definition of the transitivity property is
then

VO+C=C: UG = US (2.12)

C
se) Uizsny -
Note that it is not impossible to use the transitivity rule with a point outside of
the path. If we multiply both sides of the last equation with 7/ (sz- ,y e get

C C C
Z/{(z2 ) u()’;x) u(z x)° (2.13)

because U2 U [Z/l €2 ] us
(z39) “(y52) ~ 17 (y32) (r32)
that the path Cy can be “split” at a point outside of the path if, and only if, the

path returns on top of itself to cancel the superfluous part, i.e. if

= 1. We can interpret this is as saying

Cl =C- Cz . (2.14)
This is illustrated in Figure 2.3.

Let us now try to parameterise € for a given path C. We approximate the
path connecting x and y by dividing it into #n infinitesimal linear segments:

C()/’ Zf (Xis1> Xi) (2.15)
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This is illustrated in Figure 2.4. From symmetry considerations we expect f € to
depend in the infinitesimal limit on the centre of the segment:*

£ ) £ FE(FL)

Yet this cannot be correct, as now f € is symmetric instead of antisymmetric.
This was to be anticipated as we discarded information, going from a function
of two variables to one of one variable. If we choose to describe a linear line
segment [x, y] in function of its centre (x +7)/2, we have to add the separation
vector y — x as a second variable. But instead of making f€ dependent on the
separation vector, we interpret it as though its structural form itself changes, in
function of the direction it is evaluated over. In other words, we promote f €
to a vector function which we will call A, and contract it with the separation
vector. Then f€ is defined as

C()/, Z(Xﬁ-l_ z) A (x,+12+x,) .

Note that we dropped the label C from A, because the path dependence is
now fully moved to the coordinates x; and x;,;, while the structural form of
A, is path independent. In other words, the same A, is used for every parallel
transporter, for any path, in contrast with €, which is different for every path.
The path dependence manifests itself through the factor (x;1; — x;)* in front,
in the index y of A, and in the argument (xin +x1)/2 of A,.> As we discussed
before, f€(y, x) is expected to be Lie algebra valued, because the transformation
of U is Lie algebra valued as well. It is then logical to put the Lie dependence
inside A, i.e. A, defA“ £,

Taking the lim1t n — oo, the discrete formula becomes a line integral (see
Equation B.5¢), i.e.:

iy, x) = fdz”AZ(z) t7. (2.16)
C

This is in perfect accordance with our physical intuition of a path with fixed
endpoints. Inserting this result in Equation 2.9 gives us the final definition for
the parallel transporter:

Using Ito-calculus, one can show that taking the centre of the segment is even a necessity in
order to get a correct definition.

It is important to realise that although we intentionally named A, (x) as is to simplify identifica-
tion with the gauge field later on, at the moment it is nothing but a generic vector function of x,
without specifying its further structure.
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y Xn
Xn—1
Xn-a
c _c
X2
X1
X Xo

Figure 2.4: Any path C can be discretised by dividing it into # linear segments. In the
limit n — oo, the original path is recovered.

Parallel Transporter

y
. xig fdz# Af(z) t°

u(y;x) EPe x (2.17)

This newly constructed definition for the parallel transporter allows us to
interpret the transformation rules in Equation 2.3 as a transformation of A,
because the latter is the only dynamic component of ¢{. To see this, we take
the parameters from the exponentials in Equation 2.3 and insert them in the
integral using the gradient theorem (see Equation B.14):

y
tiga(y) Figa(x) = £ig /dx"aﬂoc. (2.18)

This implies that we have to define the transformation of the vector function Aj
as follows:

[ A (x) = AL(x) + 0ya”. (2.19) ]

Note that the sign in the transformation of Aj is always a plus, independent of
the sign chosen in Equation 2.1, because d, & has the same sign as A, (compare
Equation 2.18 with Equation 2.17 to see this). This result is only approximately
true, because we assumed that we can simply combine the exponentials. This is
however not true in the non-Abelian case, as the presence of Lie generators
makes the field behave like operators (see the end of Appendix A.1 for a short
discussion on the usage of operators in this thesis). It is generally known that
for any two operators X, Y with Y invertible, the following relation holds:

-1 _
XYy Xyl
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which, applied on the transformation of a Wilson line, gives:

Loa af 7 . a a
L4 B L B +igetiga (1 (de”AT;(Z) ta)eﬂga (x)t
DI Y ) e T P * . (2.20)

We can simplify this result by partial integration and the gradient theorem:

P4 P a ; —1 a
:l:igfdz”eﬂga (2)t Au(z) tuiLaM eFiga (2)t
Pe = ( ‘ . ) , (2.21)

from which we deduce the correct transformation rule for a non-Abelian field:

Non-Abelian Vector Transformation

AL (x) 17 — g () (AZ (x) % + ;aﬂ) S L AL CPYY

which indeed reduces to Equation 2.19 for Abelian fields.

The Covariant Derivative

Let us return to the original goal for which the comparator was constructed, viz.
formulating a sensible definition for the derivative in Equation 2.2. This is now
straightforward; we simply transport the field at x to x + en. The result is called
a covariant derivative:

Covariant Derivative

efy, 1
n#Dw,d:fg% ;(V’(X +en) — L{(Hen;x)y/(x)) : (2.23)

Because the comparator connects two points that are separated by an infinites-
imal distance en, we can expand its definition in Equation 2.17 up to first order
in €. Applying the discrete definition of the line integral (Equation B.14), this
leads to

u(x+€n;x) n P eticgnt Au(x+ien) | q iegn®A,(x). (2.24)

The covariant derivative is then given by:
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2.1 PARALLEL TRANSPORT AND WILSON LINES

Dyy =0,y FigA, t'y, (2.25)

and it indeed transports the transformation of the field:
Dy — 9, (e"8%y) Fig (A, + 0,a) e™'8%y

= z+ig (auoc) e
=e* 8D,y .

+iga +iga +iga

Y +e"8%9,y Figh, ety Fig (d,a) ey

To derive the transformation rule of the covariant derivative itself, we simply
insert 1 = e*18%(%) ¢¥18%(%) between D u and y. We see that it transforms similarly
to a parallel transporter U, xyona closed path:®

D, - eiiga“(x)t“DM eFigat (x)t" (2.26)

From this, we can also express the transformation rule for A, in a different way:

i H agsa H asa
ALt — +—e*' 801D, T8 (2.27)
4

With help from the covariant derivative, we can now define a Dirac Lagrangian
that is invariant under local transformations like those in Equation 2.1:

Lbpirac = w (1w - m) V. (2.28)

The vector field part in the covariant derivative gives rise to an interaction term
between the Dirac fields and the vector field:

‘C{)irac = igWAV/ . (2~29)

This is the main result of our approach: by making the derivative a well-defined
mathematical object, we let a vector field emerge naturally in the form of inter-
actions terms with the Dirac field. Of course, this vector field will be identified
as the su(n) gauge field, but let’s not be too rash in our conclusion. There are
still some missing parts in our approach.

We are not insinuating that the covariant derivative is a special type of U/, . This cannot be
true, because the latter lacks a derivative in its definition. But we do observe that they have the
same transformation behaviour, which is to be expected as D, is constructed from /.
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2.2 THE GAUGE FIELD TENSOR AND WILSON LOOPS

In a QFT, the next step to proceed after defining a classical Lagrangian is to
quantise the theory, so that every function of spacetime coordinates inside the
Lagrangian will be interpreted as a particle field. This is exactly what we will do
in Chapter 3. However, our Lagrangian isn’t ‘complete’ yet. To understand this,
note that the quantisation procedure is split into two parts per field:

A. Quadratic terms are treated as the dynamics for the field and quantised,
B. Remaining terms are treated as interactions using perturbation theory.

We argued in Section 1.1 on page 6 that any field without dynamics is automat-
ically an external field, for which the dynamics are defined outside the system
under consideration. As we are now constructing the Lagrangian at a global
scale, we conclude that we are missing kinetic terms for the field A u

Of course, the standard approach is to continue in a heuristic manner, as we
did more or less in Section 1.1 on page 9. We prefer however to let the kinetic
terms emerge in the Lagrangian in a natural and elegant fashion, in the same
way the interaction term emerged in the previous section. We want to base our
approach on geometrical arguments only, starting from the parallel transporter.
Because the kinetic terms can only contain A, fields, we have start with a gauge
invariant version of the Wilson line (as we have no other fields to balance the
transformation rules). If we evaluate a line on a closed path and trace it, i.e.

UCE Tr P etigfedzau(e) (2:30) ]

it is automatically invariant:
Tr u(x;x) R Tr(eiigoc(x) u(x;x)exigtx(x)) = Tr Z/{(x;x) . (2.31)

Such an object is called a Wilson loop, and it contains—as we will show—all
dynamics of the vector field.

We use Stokes” theorem to transform the line integral over a vector into a
surface integral over the gradient:

ygdz cA(z) = /d(f’“’ oAy (2.32)
C >

where X is the surface that is spanned by the closed path C. Note that because
the path is oriented, the surface is oriented as well. The orientating of the normal
of the surface follows the corkscrew-rule: making a fist, if your fingers follow the
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do

é]gdx-A - 'Z/da-(a/\A)

Figure 2.5: Stokes’ theorem relates a line integral over a closed path C with a surface
integral over the enclosed surface X.

path, your thumb points in the normal direction of the surface. This is illustrated
in Figure 2.5.
Just as we can parameterise a curve in function of a parameter A as
ozt

: (A dz¥ =dA —, .
C:z*()) = dz =1 (2.33)

we can parameterise a surface in function of two parameters A and «:

[ 5z
: (k) = do" =dz¥Adz" =2d)Adxk 921 9z (2.34)
oA odk
So we write the surface integral as
dz" 97"
EfcudxWﬁ (944, - 0,A,) . (2.35)

Our next move is a bit peculiar. We have to find a loop that makes sense from a
physical point of view, i.e. it should be as general as possible. The most natural
case is to choose a ‘zero’-loop, infinitesimally small, starting from and ending in
a point x. To achieve this, we discretise spacetime and define our theory on a
lattice with grid spacing e. Discretising spacetime is only allowed in an Euclidian

space, so we make our space Euclidian by doing a Wick rotation (see Section 7.3):

def . def
2=z, z=zg, (2.36a)

2°<'i9Y, 0% o;, (2.36b)

def

AYEAY AT AL, (2.36¢)
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which changes a vector product by v,w# = —vg ,w%, but leaves a matrix product
invariant, i.e. w,,p"" = wg ngv. Then we can rewrite the Wilson loop as

ozt 0z},
oA Jdk

U°® = TrPExp iig/d/\dx (8MA%V—8VA%M)1‘“ . (2.37)
z

A short remark: for the Wick rotation to be valid, we assume that A u is well-
behaving on the contour C, especially that it doesn’t introduce poles that would
hit the Wick rotation (invalidating the result). Similarly, we assumed spacetime
and the loop Z to be continuously enough for Stokes’ theorem to hold. In fact,
Stokes’ theorem is only well-defined for smooth paths and manifolds (which is
now not the case), but we use an extension to Stokes” theorem that is well-defined
for piecewise smooth paths. There is a strong mathematical background for this
extension, but this would go much too far beyond the scope of an introductory
approach to QFTs, so we don’t pay much attention to it and assume all necessary
conditions to be satisfied.

A ‘zero’-loop is of course the smallest possible loop possible; on a lattice
this is a rectangular planar loop spanning the lattice spacing, as is illustrated
in Figure 2.6. We will naturally choose our coordinate system along the grid,
such that the sides of the square loop lie along the basis directions. We can
parameterise such a loop as:

Z:zl’;(l,x):x”+n")&+'ﬁyx ALx=0...€, (2.38)

where n* and n* are perpendicular basis vectors (i.e. n-71 = 0). It is necessary
to expand Equation 2.37 up to second order, because the first order vanishes
due to the tracelessness of the Lie generators trt* = 0. Even in the Abelian
case—where the only generator is the identity with non-vanishing trace—the
first order terms vanish, by cancellation, which is easy to prove. Ignoring the
constant first term, the expansion gives

€ A1,K1
1
uoz_gzinu’ﬁvnp’ﬁ"/d/hd;q/dlz dx, (aHA“Ev_ 3vA“E,,)(8pA%,,— aaA%p) ’
0 0

where the factor 1/2 comes from the trace of the generators tr t*t? = 1289, We
satisfied the path ordering requirement by chaining the integrals (see Section

for more information on how this works). Note that we can simplify the factor
n#n*nPn? by collecting similar vectors. The tensor product n*n" can be repres-
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X+en X+en+en

A

A
>

X X+en

Figure 2.6: On a lattice, the smallest loop possible is a planar square with sides equal to
the lattice spacing.

ented by a matrix that is zero everywhere except on the diagonal entry of the
directional vector, where it is one, i.e.

1 000 00 00 00 00 00 00
n{lnri 00 00 , ngl’l;: 01 00 , I’lgl’l;: 00 00 , ”Z”X: 00 00
0000 00 00O 0010 0000
0000 0000 0000 00 01

If we take e.g. the infinitesimal square loop spanned by the #; and n, vectors,
the integrand automatically becomes

(Q1AE,— 02A%1) (14T~ 024%) ,

in other words, both factors get the same indices. As this starts to look as a sum
over indices, we try to exploit this further. In a four dimensional Euclidian space,

there are twelve independent planes, viz. the planes spanned by n{'n}, nf'n},

ni'n}, nhn}, nin} and nn}, and the planes oppositely oriented to them. There
is no reason why one plane would be preferred over the other, so we define our
Wilson loop as the sum of all twelve square loops, one for each independent
infinitesimal plane. Note that summing these planes gives a straightforward
result:

> nfnfﬁ}’ﬁf = QHP VT — ghPoY, (2.39)

planes

where g,y = 1 only when y=v=p=0. Because both factors of the integrand
are already antisymmetric in yv resp po, only the first term of the right-hand-
side (rh.s.) will contribute, and we can just make the contractions. Then the
second order term in the expansion becomes:

€ A,k
UC~—g /d,\ldkl/‘d/lzdxz (aﬂA%v—avA%H)(a#AEa_avA;g“) . (2.40)
0 0
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Because € is an infinitesimal parameter, going to zero in the continuum limit,
we can approximate the integrals with help from Equation B.5c. The innermost
integral then equals

A
Jdadis (3 ays- o) = i (3¢ a3 - 07"
0

>

1 1, ~
x+2)tln+21c1n

so that the outermost integral becomes

fd/\l dry Ay (ayA%v_ aVA%M)

Ea/‘A;f‘— 0" AL")

x+Ain+x;

™

€

v (0.A%, - 0,A%,) (o#AL" - 0"AL")
xX+sn+in x+gn+g

Because the arguments of the fields in both factors are the same in the limit
€ — 0, we already drop the linear parts in € from the arguments. We then have:

u° —g—(aA - 0,4%,)’

i + (’)(64) . (2.41)

Unfortunately, these are not the only terms of order e*. If we expand the ex-
ponential further to third and up to fourth order, additional terms of order ¢*
emerge. We won't show the calculation here, as it is trivial to do but really long,
but just give the result instead. The extra terms are

1
T foU AL Al AL - gAY AL LAY
So we can conclude that, up to an irrelevant constant term in front,
U° ~ —ge —FEWF”W + (9(65) . (2.42)

Now comes the tricky part. We cannot simply take the continuum limit € - 0,
as the action, the fields, and the coupling constant are subject to rescalings and
renormalisation to be able to reproduce the correct continuum theory. When
summing over all lattice points (i.e. when integrating over x), we have to divide
by the lattice spacing to the fourth, i.e. e*, before taking the limit € — 0 See e.g.
[27] for a profound treatment on the continuum limit.

So finally, after rescaling the coupling constant, moving back to the continuum
theory and un-Wick rotating, we find

1 1, ~
x+2A1n+2x1n
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1
O_ "~ rna puva
Uu- = 4FWF , (2.43)

up to an irrelevant constant term (which will be subtracted from the action
anyway). The gauge field tensor is given by

Fy, = 0,A5 — 0yA}, + gf“hCAZAf, . (2.44)

This is exactly what we hoped for. We have shown how the kinetic terms for the
gauge field naturally emerge from the Wilson loop. Because the latter is gauge
invariant by definition, the gauge field tensor is automatically gauge invariant as
well.

2.3 SUMMARY

We cannot stress enough how deep the implications of our results in this chapter
are. They show us that every gauge theory has a deep geometric structure, in
fact, that every gauge theory is a geometric effect in se.

Starting only from the free Dirac Lagrangian and the demand of local phase
invariance, we constructed a full gauge theory. More specifically, the requirement
for the derivative to be well-behaving, viz. having a sensible local definition
instead of bi-local, leads to:

A. The construction of a parallel transporter, or Wilson line, and with it the
introduction of the gauge field.

B. The transformation rules for the gauge field.

c. The definition of the covariant derivative, and hence with it the description
of interactions between matter fields and the gauge fields.

D. The construction of a gauge-invariant Wilson loop, and the demonstration
that it is intimately related to the gauge field dynamics and kinetic terms.

Note that the last statement is a direct indication that the gauge sector of any
gauge theory can be fully recast in function of Wilson loops. This methodo-
logy, firmly based on the mathematics of loop space, replaces coordinate and
momentum dependence with path dependence. We will elaborate on this in
Chapter 11.
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The full Yang-Mills Lagrangian for a su(n) symmetry is thus given by

Yang-Mills su(#n) Lagrangian

_ 1
Lo = (i —m)y == Tr Fuy F* (2.45)

For the rest of this thesis we will stick to the convention of a positive sign in the
gauge transformation exponential. The opposite convention is easily recovered
by making the substitution g — —g. This sign convention propagates through
the definition of the covariant derivative and the gauge field tensor:

Yang-Mills Gauge Content

Dy =0, -1 gA‘;t“ , (2.46a)
Fy, = 0,A5 - 0A}, + gfabCA?,A‘; 5 (2.46b)

and the local gauge transformations

Local Gauge Transformations

L LA Ol (2.47a)
T I,_Ue_i gat(x)e (2.47b)
A5 i}eigoc“(x)t”D# el gat ()" (2.47¢)
D, — ol ga“(x)t“Dﬂ eTigat () (2.47d)
Fyy ol ga“(x)t“FW erigat (01t (2.47¢€)

which leave the Lagrangian invariant.
Four final remarks:

A. Note that these gauge transformation rules immediately invalidate mass
terms for the gauge field; indeed, terms of the form m? AZA” % are not
gauge invariant.

B. This is not the most general Lagrangian possible that conserves a su(n)
symmetry. We could add terms of the form €, Tr F#"FFP?. However,
these terms are parity violating, and hence beyond the scope of this thesis.

c. Note that the covariant derivative and the gauge field tensor can be related
by [Dy> Dy] = ~igFuv.
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D. The minus sign between the derivative terms inside the gauge field tensor
(Equation 2.44) is a direct result of the wedge product in the infinitesimal
surface element in Stokes’ theorem (Equation 2.34), hence it is a pure
geometrical effect.
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QUANTISATION OF QUANTUM FIELD
THEORIES

In the two previous chapters, we constructed the gauge-invariant Lagrangian
for a classical field theory, based on symmetric and geometric arguments. The
logical next step towards a decent QFT is of course the quantisation of the fields.
Abelian theories are commonly quantised using the canonical formulation of
quantum field theory, in which the fields are represented by non-commuting
operators. This approach comes straight from classical (non-relativistic) QM, and
puts the emphasis on the physical interpretation of the formalism. It is however
difficult to apply to non-Abelian theories, because then the conserved charges
do not commute with each other (see Equation 1.46). The solution is to do the
quantisation in the path integral formalism, as it perfectly allows to quantise
non-Abelian theories, and naturally shows the emergence of ghosts. We will try
to give a decent outline of the methods, without delving too much into details,
as it might lead us too far away from the main topic. See e.g. [18-21] for more
details.

3.1 FORMAL DEFINITION OF PATH INTEGRALS

Before we can start quantising the different fields, we need to introduce the
definition of a path integral and develop some calculational methods. We will
start with a short motivation for the use of path integrals, coming from the
propagator in classical non-relativistic QM. This is done by using the transitivity
property to discretise the path along which the propagator is evaluated. The path
integral then naturally emerges when taking the continuum limit.

46
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QM Propagator as a Path Integral

In non-relativistic quantum mechanics, the Green’s function G is defined as a
solution of the Schrédinger equation:

(ihaa—t - H) G(x,t;xq, to) = 1183 (x — x,)8(t - 1) . (3.1)

It is often called a “propagator”, as it propagates a wavefunction from a time ¢
to a time t:

v(x,t) = /d3y G(x,t;y,t0)v(y, to) forty < t. (3.2)

In the Schrédinger picture, the propagator is also often written as
-1 f dt’ H(t)
G(x,t;xo,to) = <x‘Te o ‘x()) > (33)

for a general—possibly time-dependent—Hamiltonian. If the Hamiltonian
doesn’t commute at different times, the exponential needs to be ordered along
the time direction; this is indicated by the symbol 7. Next we divide the time in-
terval [ o, f; | into two parts by inserting a ¢; (with fo < #; < t), using Equation 3.2
to split the propagator at t;:

y(x,t) = /d3x0 G(x, tis %9, to) Y (%05 to) »
y(x.t) = [dx Glx b, 0)y(xn),
= fd3x1 G(x,t;x, 1) /d3x0 G(xy, ti;x0, t0) ¥ (xg, to) - (3.4)
But the latter should also equal
v(x,t) = fd3x0 G(x,t;x4, to)w(x, to) - (35)
Comparing Equation 3.5 with Equation 3.4 we get
G(x,tx, 1) = fd3x1 G(x,t;2,t1) G(x), ti; %0, tg)  fortg <ty <t. (3.6)

In other words, we can view the propagator from ¢, to t as the sum of all possible
propagators going from ¢ to t;, and then from ¢, to ¢ for any given ;. We can
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3.1 FORMAL DEFINITION OF PATH INTEGRALS

iterate this procedure, and slice the time interval into # + 1 - oo infinitesimal
segments of length e = ¢; — t;_;:

G(x, %0, tg) = lim fd3x1---d3xn G(x, %, tn) = G(xy, 3 %0, 8) - (3.7)

The i-th segment is given by (see Equation 3.3)

- jtidt’ H(t)
G(xp, tis Xy, tiog) = (xi‘ Te ' ‘xi—l> ]

. b
=6 (x,—x, ) - % /dt’ (xi‘H(t,) |xi—1> » (3:8)
i—1

up to C’)(%) We now make the ansatz

. »” o
H(t) = — + V(&,t). (3.9)
2m
The first term then gives

ﬁz 3 3
(ALl = [Encns (elo) (] 2 1o, ) (b, lx,)

2m

while the second term gives
(x| V(&) ) = V(1) 69 (x5 - x10),

1 3. ipe(xi-x)
= — . ) Vi t) .
ah fd p; et (x5, 1)

Plugging these results back in Equation 3.8, we get

ti
1 Lo —a i
Gy tis Xy tio) ¥ _/d31’1 enfr(ximmia) 11— Z fdt' H(x,ppt) |
tio1

ti
- L[ dt" H(x,ppt')

zﬂh /d3pl ehpl (x X 1) Te ti1
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To retrieve the full propagator, we combine all segments using the transitivity:

3 n+1 31)], ;lzn:[pl (xi=%_)—% fdt’ H(x,,p;,t")
G(x,txo,to)-hm /Hd L 5 Te ° fi-1
T

We can write the product between the momentum and position vectors in the
exponential as a time integral

(e

(o) = Yep B fdt p(E(), (o)

0

such that we can combine the two terms in the exponential. So we finally get

%ftdt’ [p-x-H] .
G(x,t;x0,t0) = /Dx Dp e /DxDp en’ (3.11)

In other words, the Green’s function that propagates a space point x,, at time t
to a space point x at time ¢ can be written as an integral over all possible paths;
a path integral of the action. This is a result on which we will build when going
to quantum field theory.

Definition of the Path Integral

Let us now try to develop the formalism a bit more formal, starting with path
integrals of scalar fields. The result in Equation 3.11 is a path integral over co-
ordinates and momenta, but in QFT we of course would like to express it as an
integral over the fields. First we expand the scalar field in an arbitrary basis {u; }:

6 S ayui(x). (312)

where the coeflicients are just real numbers, and the basis is chosen to be or-
thonormal:

/d4x ui(x)uj(x) dz“(?,y. (3.13)

Because of the orthonormality of the basis, we can retrieve the «; coefficient by
projecting ¢ on u;:

= fd4x $(x) ui(x). (3.14)
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3.1 FORMAL DEFINITION OF PATH INTEGRALS

If we cut off the series in Equation 3.12 at a value #n, we can write any functional
of the field in function of the n coefficients «;:

cutatn

Fl¢] —— F"(ay,...,ay,).

Now it is straightforward to give a sensible definition of the path integral. First
note that integrating over all possible fields is the same as integrating over all
possible field coefficients «;. So for the series expansion cut at #, the path integral
over a functional F is simply

fDC“t¢ F[¢ /dal “da, F'(ag,...,00).

It is thus logical to define the path integral for an uncut series expression as

Path Integral

+00

/ng F[¢ dﬁf hm docl day, F'(ag,...,an), (3.15)

under the condition that this limit exists. The path integral is linear and
translation invariant:

D¢ (aF(9]+bGl9)) = a [Dg Flg]+b [D Glg], (360

¢ Flo+ 1= [Dg Flgl. (316b)

where the latter is of course only valid it y doesn’t depend on ¢. Instead of
translating the field, we could also rotate it:

$N Y [dx Lnx)$(x). G17)
In this case the coefficients of ¢ are related to those of ¢ by the coefficients of L:
Rl = z Li j(x j-
j

This variable change will modify the integration measure with a determinant:

HOC,' —>H&, :detL”Ha,-,
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3.1 FORMAL DEFINITION OF PATH INTEGRALS

and hence
D¢ - D¢ =detL D¢ . (3.18)

We can combine translation and rotation in one formula:
fms F[L$ + x] = detL fD¢> F[¢], (3.19)
where we adopted the shorthand notation

2 [d'x L(nx)$(x), (5.20)

which is a notation that we will often use, as a matter of saving space.

Gaussian Path Integral

By far the most important path integral is a Gaussian integral, because—as we
will see—field correlators are related to the path integral of an exponential of
the action. Because the kinetic field terms in the action are quadratic by nature,
they lead to a Gaussian path integral. A general Gaussian path integral can be

written as:

— [d*xd'y ¢(x)K(x, )
/D¢ . J y $()K(x.y)¢(y , (3.2)

where K(x, y) is a real symmetric operator by definition,' and is commonly
called a Kéhler metric. Expanding the fields in their coefficients, we can write

[atxdty $(OK () = ¥ [dxd'y aus(x)K(xy)ajus(y). G22)
irj
If we expand K in the same basis as ¢:
K(x,y) <Y Kijui(x)uj(y), (3.23)
i.j

we can retrieve its coeflicients by projecting—now twice—on the basis functions:

Kjj= /d4xd4y ui(x)K(x, y)uj(y). (3.24)

1 If it is not symmetric, only its symmetric part contributes to the result.
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3.1 FORMAL DEFINITION OF PATH INTEGRALS

This is exactly the integral in Equation 3.22, i.e. we can write

./d4xd4y $(x)K(x,9)p(y) = Y wiKijaj, (3.25)
]
So the Gaussian path integral is now given by:
n - a;Kla;
lim fHd(x,- e

The components of K" represent a n x n matrix which can be orthogonalised as

Kj5 =) OiBuOyj,
ol

where B is diagonal, i.e.
By = A6y (no sum over k),

and where the orthogonal matrices O have unit determinant. We absorb them
by redefining «;:

Bi¥Y 0ija,

J

so that we can rewrite
n 2
Z a;iKijj = Z)Liﬁi . (3.26)
i,j i
The integration measures remain invariant:

Hd[)’i =detO Hdoc,- = Hdoci . (3.27)

The exponential can now be rewritten as a product of n exponentials:

Ry P
i

so the Gaussian path integral becomes a product of n Gaussian integrals:

Gaussian Path Integral

- [d*xd'y ¢(x)K(x.y)6(») 1
D¢ e =N;———, 3.28)
/ ¢ ’ Vdet K (
where
Ng = lim V7" (3-29)

n—oo
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3.1 FORMAL DEFINITION OF PATH INTEGRALS

is an infinite constant that we will divide out in a later stage, and

detK = lim detK",

n—>oo

provided that this limit exists. Let us investigate a trivial example, where
K(x,y) = 6W(x-y).

The components of K are then:
Kij= fd4x i (x)uj(x) =
which is simply the identity matrix with determinant det K" = 1. Because the

determinant is independent of n, taking the limit doesn’t change it, i.e. det K = 1
as well. We hence have

- [d'x ¢*(x)
/D(/) e =Ng. (3.30)

n-Point Gaussian Integrals
Now that we know how to path-integrate Gaussian functions, we investigate

what to do when the exponential contains, next to quadratic terms, linear terms
as well:

Alp.J] == [dixd'y 9OK(x () + [d'x J(x)gx.

If this would be a regular (non-path) integration, the way to proceed would be
to ‘complete the square) i.e.

2 b \2 b2
/dx e-axt+bx _ o0 /dx e (-3) et fdx e 0% (3.31)

We will now try a similar approach on the functionals. First we define

d(x) = p(x) - % /d4x' K (%, x")J(x"), (3.32)

where K™! is the inverse Kahler metric, satisfying

/d4z K(x,2)K Y (z,y) = 8®(x-y) . (3-33)
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Next we can write A[¢, J] in function of the new fields ¢:
Alg.1) = - [dixaty ($<x> v fat K1<x,x'>f<x’>)
x K(x, ) (5(}/) + % fd4y' Kl(y,y’)f(y'))
¢ [t 1) ($<x> v fate K_l(x,x’)l(x')) ,
which gives after using Equation 3.33:
AL.T) = - [dtxdly [BOK(1F0) - TTK 5 0)I0)]

Because in the path integral formalism fields are functions, not operators, they
commute and we can always factor out the exponential, writing the sum as a
product of two exponentials.” Furthermore, from Equation 3.32 we see that the
shift in ¢ is independent on ¢, it hence leaves the integration invariant (because
of translation invariance). So the path integral is given by:

Completing the Square in a Path Integral

fDqs e PKE+I _ o3JKTT fD</> e PKe (3-34)

with the abbreviations

9K X [dixd'y $(x)K(x1)8(y), (3.359)
J¢ = /d4x J(x)¢x (3.35b)
JKE [atxdty @K I, (3359

Look how closely it resembles the regular integration technique in Equation 3.31.

Even when the fields are Lie algebra-valued they commute, because we assume that in general the
Kibhler is diagonal in Lie indices, i.e. K ~ § “b, which implies both fields have the same generator
so that they commute.
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A last thing we want to investigate is how to make path integrations of Gaus-
sians with fields in front of the exponential, evaluated at different points, i.e.

D¢ ¢(x)- () K. (3:36)

We will call this an n-point Gaussian path integral. For odd n, the path integral
cancels because the integrand is an odd function, so let us start with a 2-point
integral. If this would be a regular integration, the way to proceed would be to
make a derivation w.r.t. the coefficient in front of x? in the exponent:

d 2 d T
d 2 —axzz__ /d -ax® _ _ =
/xxe da xe da V a

If we want to do something similar in the path integral formalism, we first need
to find a sensible derivative. Without going too much into the formal details, we
define the functional derivative of a functional by its action on a test function:

Functional Derivative

OJ(y) ast 4y, _
57(x) & (x-y).

It commutes with integration, so that
8 4 _
500 fd vy J(¥)o(y) = ¢(x). (3.38)

For all other calculations it can be treated as a normal derivative on the functions.
It obeys e.g. the same Leibniz’ rule as the standard derivative:

5 SF[J] SG[J]
FlJ|G = G F . .
S0y (FUIGU) = 5 6+ FV (339)
just as it obeys the chain rule as well:
& JAy ety [ 6 4 Jdty J()e()
T = (5](x) _/d y f()’)</5()’))e ’
i fd'y J(y)¢(»)
—p(e (3.40)

The latter allows us to write the 2-point integral as a double derivative:
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1)
0] (x1) 8](x2)

/D‘P ¢(x1)p(x2) e 950 = / pe _¢K¢+J¢ . (3.41)

And we know how to calculate the integral in the rhs., as we calculated it in
Equation 3.34. The J-dependence then sits in the exponential in front of the
path integral:

0 0
8](x1) 8](X2)

,/D‘/’ $(x1)p(x2) e K9 =( eUK_ll) fDqS e % (3.42)
J=0

The chain rule brings the term JK '] in front of the exponential, which we can
easily calculate:

Sy [E ey K e )I0)
= [atxdty [89(x-x2) K7 (5, 7)I () + JOK (3, 69 (y-2)]
= [aty K+ [dix 1)K (x,22),
) fd4x T(0)K ™ (x, %2) .

The last step is valid because K™! is symmetric. Using the shorthand J; 27 (xi)
we then have:

6 8 ]K 1] -1 l]K—lj
-~ €4 - __]xKx €4 >
8J1 ) 20/ 2
l 1) LK1y 4 0 1]K 1]
(6]1].96 xz)e + = ]x x2 6]1

| 11 1
= K /K 4 LKA T Kt e K
1
]0 K (XI,XZ)

This gives us the final result for a 2-point Gaussian path integral:
_ 1 _
/D¢ $(x1)$(x2) e ¥ = 5K ', x2) /D¢ e kY. (3.43)

Generalising this to an n-point integral is trivial, as we just can write
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n-point Gaussian Path Integral

1) @ L=t
D Oy _¢K¢:7...4 7]K ]
/ (/) ¢1 ¢ ‘ 8]1 6]ne4 J=

. /D¢ e, (3.44)

where we introduced the shorthand notation ¢,, = ¢(x, ). However, we have to
be careful as Leibniz’ rule chains non-trivially at higher orders. E.g. for the case
with four fields, we get

8500 ey 18088 ey
8J16]2 07364 2816J26]s
8(;1 (32(11(34 e x4]}’ y3) e 1]
(;; ( K34 Jo Koy + K23]x it ]y 3Ky
1 ]y Ky3 JxKyi )z zz)e“]K K
=+ (Kal K+ K K+ K Kd + 0(7)) VK7

ol 1 1 1
1 (KIZ K34 +Kj3 K24 + Ky K23)

So any n-point Gaussian path integral is just a set of all possible combinations of
n/2 inverse Kdhler metrics in front of a standard Gaussian, when 7 is even.Indeed,
for any n even, we have found that

_ —1)n B B
/D¢> i, e ¥8 = L2 2% : KK L) /Dsb e . (3.45)
2

The factor in front deserves a short explanation. First of all, the factor 27"
comes from the fact that every K™! gets a 12 in front (see Equation 3.43).> On
the other hand, the double factorial

(n-D" = (n-1)-(n=-3)- - -3-1 (3.46)

represents the number of possible combinations to pick unordered pairs from
an even set of n elements. It is needed to cancel the normalisation factor from
the symmetrisation procedure, but we can ignore this factor if we instead of
normalising the symmetry just make all possible unique permutations of the

This is the reason why one commonly chooses to put a factor !/ in front of the kinetic terms in
the scalar Lagrangian, as it will manifest in the Kahler as a factor 2, cancelling the overall factor
27",
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indices. Note that relating the n-point integral to a combination of 2-point
integrals is exactly the same as making a Wick contraction, so we have found a
nice mathematical explanation for a relation that is otherwise—arguably—a bit
less elegant to prove.

Until now we have only considered a real scalar field. Generalising this to a
complex scalar field is trivial. First of all, the Gaussian can be calculated in the
same way as before, by expanding the field in function of a set of basis vectors
u;(x), and cutting the series at a value n. Then using the result for a standard
integral in Equation B.4j, we find:

Complex Gaussian Path Integral

o _A* N*
fm Dy ¥ = T, (3.47)

where Ng+ = lim (271)". Note that now the dependence on the determinant
n—>oo

is without the square root; a consequence of the fact that we have two path
integrations. Completing the square goes the same as before, but because we
now have two source terms (J and J*), the result is without the factor !/4:

/qu* D e ¢ KT 9+J¢" _ K fp¢* D¢ e 9K, (3.48)

Finally, n-point Gaussians can be calculated in the same way as well, where this
time we use two functional derivatives, one to J and one to J* (note that to bring
down a ¢ we need to derive w.r.t. J* and vice versa):

9 J 6 6 eI*K’ll
8J;  OJ; 0Jjn. O], 1.J*=0

f’D(/)* Do ¢i-di, ¢;‘1¢;n e ¢ Ko _
g /D¢*D¢ K (3.49)

Note that this is an 7+ m-point integral. There are however two important
differences, as compared to the real field, when identifying the derivatives with
the inverted Kahler metric. First of all, if in the above equation m # #, i.e. when
the number of §; doesn’'t equal the number of §j+, the result will automatically
be zero after setting J, J* = 0. So we have the natural requirement m = n. But
more importantly, as compared to the real n-point Gaussian, the number of
possible combinations will be smaller. Where in the real case the number of
possible combinations equals (n —1)!!, in the complex case this is only (7/2)!,

58



3.2 QUANTISATION OF THE SCALAR FIELD

for a total number of n derivatives.* Consider e.g. the calculation of the 4-point
integral:

8 (S 8 8 ]* 1] 6 6 6 ( _1] e]x—K—lj)
81100, 815 8J; 81 8], 8J5 \ T ’

5 8 -1 -1 ]*K—ll
= — (K2, K, e ,
8J1 8] (K Koy )
5 B B -
8] (K24 y31])’+Kxi]x K231)e]K 7
M KK + K K (3.50)

When comparing this to the real result, we see that the missing term is K K3;,
which would connect two coordinates that are both belonging to non-conjugated
fields, and two coordinates that are both belonging to conjugated fields. It is easy
to show that

[P9" D4 pure ¥4 = [D47 Dy 4190 <0, (351)

Hence when making all possible combinations, we only make those that cross
conjugated and non-conjugated fields. Using index notation, we can write this
as:

fp(p* D¢ </’i1¢;“'¢in¢;n K¢ _ i (Kfl)élil (Kfl){:)

X /ngng* e K9 (3.52)

J

where again the factor n! in front is only needed to cancel the normalisation of
the symmetrisation.

3.2 QUANTISATION OF THE SCALAR FIELD

Let us see how we can use the path integral formalism in order to quantise any
field theory, starting with a scalar field theory—as this is the most trivial to work

To appreciate the difference: the real 8-point correlator has 105 terms, while for the complex
there are only 24.
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with, and as the results can be easily ported to higher-spin fields. Motivated by
Equation 3.11, we expect the propagator to be related to

/D¢ iS |

Note that from now on we will work in natural units, hence i=land c = 1.

The Free Scalar Field

The action for a free scalar field is given by Equation 1.9 (we still consider the
field to be real-valued):

gcalar _ fd4x (%aﬂqs 9 — %m%pz) .
Using partial integration, we can rewrite this as

Sie = —% f d*xd'y ¢(x) 8 (x - y) (0+m?) $(»), (3.53)
hence the Kéhler metric is given by

K(xy) = 500 (x=p) (0 m?). G54

Note that the Kihler includes the Klein-Gordon operator 0O + m? (see Equa-
tion 1.10). Its inverse is defined so to satisfy

/d4z K(x,2)K\(z,y) = 6W(x-y) .

Here we hence have
%(‘3*’”2)1(_1(%)’) = 6W(x-y). (3.55)

Now comes the important part. In the canonical quantisation framework, quant-
isation is implemented by imposing canonical commutation relations on the
fields. Next these are used in order to construct the free scalar propagator Dr as a
2-point correlation. Applying the Klein-Gordon Equation 1.10 on this propagator
then yields the equation:
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—-Ej +ie Ej +ie —-E +ie
° ° °

[ [ [ ]
—Ek—is Ek—is Ek—iS
advanced retarded Feynman

Figure 3.1: Pole structures for the three most common propagators, from left to right:
the advanced, retarded and Feynman propagator. Their definitions are
given in Equation 3.58 and Equations 3.59, while the energy is simply

Ex =\/K* + m2.

Klein-Gordon Propagator Equation

(o+m?) D(x,y) =i 8W(x-y). (3.56)

But we didn’'t impose commutation relations, and so we don't yet have derived
a sensible definition for the propagator. We can avoid the need for canonical
commutation relations by comparing Equation 3.56 with Equation 3.55. Instead
of trying to derive the propagator, we simply define it as

Dg(x, y) déf%Kfl(x’y)- (3.57)
So this is the main difference between the two formalisms: while in the canonical
quantisation framework, quantisation itself lies in the canonical commutation
relations (which will eventually lead to the above identification between the
inverse Kahler and the propagator), in the path integral quantisation framework
we skip the commutation relations, and directly impose this identification. Hence
Equation 3.57 summarises the fundamental basis of quantisation in the path
integral formalism.
Equation 3.56 can be easily solved in momentum space, giving the definition
of the Feynman scalar propagator:

Feynman Scalar Propagator

4 .
L f ikGmn)

Dg(x,y) =
F(x.) (2m)" k2 —m? +1ie

(3.58)

where ¢ is a pole-prescription that follows from the technicalities in the calcula-
tion. The solution is not unique, and different prescriptions lead to propagators
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that have different causal behaviours. Two examples are the advanced and
retarded propagators:

d*k i "
Dagy = e k) (3.592)
M) @) (R0 e K- m?
d*k i :
Dret = : e k() (3.59b)

(2m)" (kO +ie)* — k* — m?

The pole structures for these three propagators are shown in Figure 3.1. In what
remains of this thesis, we will exclusively deal with the Feynman propagator in
Equation 3.58. See e.g. [18—20] for more detail.

Now that we have identified the propagator with the inverse Kahler, we in-
vestigate how it emerges from (possibly a combination of) path integrals of
the exponentiated action. The path integral over the action is just a standard
zero-point Gaussian, which we already solved in Equation 3.28:

fDqS e' Ng (3.60)
\/det 8 (x-y)(O+ mz)

To calculate its determinant, we again expand K in function of the basis functions
u;(x), and cut the series again at n. It is clear that this determinant is merely a
constant—as there is no field dependence inside—but as an illustration of the
techniques involved it is interesting to calculate it. First we express the basis
functions as discrete Fourier series, so that we can let the derivatives work on
them:

1 &
:vze 1kmxui(km)’ (3.61)
m
where

and where m" is an integer. So the elements of K are given by:

K;j = % fd4xd4y ui(x) 8 (x - y) (0 +m?) u(y),

i 2 4 —iky- 2 _—ik
:Em ij 2V22/d X € x l(k )8 ’xuj(kl)

i i
= —m?8;j - ——2(271)4 S k6@ (ko + ky) i (ki) i (kp)
2 2V -

i 8t
= —m28ij — IW Zn: ki Lll'(km) uj(_km) .

2
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This determinant can be calculated, because for any n x n matrix that has this
form, the determinant is simply given by

a+xi) X1)2 X1)n
X1 a+xyy, - X2¥n | _ a"! (a+2”:xiyi) ) (3.62)
Xn Y1 Xn)2 At XpYn

Applied to the Kahler this is
detK" = (%)n m*"? [ 2 (271)4 Zr:: Zn: Ky i (ko )i (= km)]
In other words, the path integral is again a constant:
f D 5" = Ny, (3.63)

where the infinite constant now equals

No=lim | 6.64)
- Zk?f(ki)
4
flkm) = m*" 2 271) E/d4xd4y ethm (=) ()ui(y). (3.65)

Le. the constant resums all possible mass and momentum modes up to infinity.

Now we are a bit stuck, as we wanted to relate the propagator to the path integ-
ral of the action, but the latter equals a constant without any dynamics, which is
even infinite to make things worse. However, as we motivated in Equation 3.57,
the propagator is directly related to the inverse Kihler metric, which in turn
emerges from the 2-point Gaussian path integral in Equation 3.43:

- J -
P4 412 =K [Dg - Dyaax) N (366)

If we divide this result by the zero-point integral (which equals Ny), the bother-
some infinite constant cancels out. In other words, we define the propagator to
be equal to
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3.2 QUANTISATION OF THE SCALAR FIELD

Feynman Propagator as Path Integrals

P9 piga e

fm i

DF(xl,xz) dZEf (3~67)

J

The physical interpretation of the propagator follows from the fact that it is
a solution to the Klein-Gordon Equation 3.56. Hence it remains the same as
in QM but now expressed in spacetime, i.e. it is the amplitude for a particle
travelling from a spacetime point x; to a spacetime point x,, and vice versa
(because the propagator is symmetric).

The Feynman propagator equals the time-ordered 2-point correlation function
of a field as defined in the canonical quantisation framework, i.e.

Dg(x,y) = (0| T¢(x)$(») |0} .

Because in the path integral framework time-ordering is irrelevant (remember
that the fields are mere functions, no operators), we can drop the 7 from this
notation. If one wants to relate results between the two formalisms, adding a 7
in the correlator will do (at least from a notational point of view).

It is then trivial to generalise this definition to higher order correlation func-
tions:

s )

/D‘/’ Pr1a- - €50
(0] gr¢a+-pn [0) = , (3.68)

/D¢ eiSo

These integrals are solved in Equation 3.45. E.g. for the 4-point correlator we
find

J

(0] 1629344 [0) = DFD}* + DE D' + D! DP . (3.69)

So it represents 2 particles that are travelling from any of the four points to
any of the other points. This is illustrated in Figure 3.2. Such pictures are called
Feynman diagrams, after the famous physicist that invented them. The relation
we found is true at any order: the n-point correlator represents /2 identical
particles that connect any two out of the n spacetime points.
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3.2 QUANTISATION OF THE SCALAR FIELD

X2 X3 X2 X3 X2 X3
<0
<

X1 X4 X1 X4 X1 X4

12 134 13 124 14 123
D F D F D F D F D F D F

Figure 3.2: The scalar 4-point correlator can be interpreted in a physical way by using
Feynman diagrams. Here two particles are created at different spacetime
points. Each propagates to one of the remaining points and is annihilated.
This can be done in three ways only, because the particles are indistinguish-

able.
X2 X3 X2 X3
Ol
Ol
X1 X4 X1 X4

14 123 13 )24
DF DF DF DF

Figure 3.3: The complex scalar 4-point correlator represents all different possibilit-
ies for two complex scalar fields. A complex scalar propagator connects
a conjugated field (represented as open dots) with a non-conjugated field
(represented as filled dots).

Note in the case of complex scalar fields, the propagator can only connect a
non-conjugated with a conjugated field, as was explained in Equation 3.50. This

means e.g. :

(0] ¢1 ¢5 ¢3¢4|0) = DY D} + DE' D, (3.70a)
(0| ¢1¢5 ¢3¢5 [0) = DF D} + DE'D . (3.70b)

The first relation is illustrated in Figure 3.3.
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3.2 QUANTISATION OF THE SCALAR FIELD

The Interacting Scalar Field

Let us now advance to an interacting scalar field theory. The most common is
¢*-theory, so we will choose it as an example to quantise interacting scalar field
theory. Its Lagrangian given by (see also Equation 1.13):

1 1 A
gscalar _ /d4x (an(paﬂ(p — 5mz(/)z - Z¢4) . (3.71)

While it is in principle possible to calculate the Gaussian path integral that
contains this action, it becomes quickly unmanageable to calculate n-point
correlators, as we cannot use the derivation trick anymore. Instead, for any
coupling constant A smaller than one, we can expand interacting part of the
action exponential:

e PKPd (1”% _/d4x ¢(x)¢(x)¢(x)¢(X)+'")e_¢K¢- (3.72)

The first O(A) term is just a 4-point correlator, but with every field in the same
point:

/d4x/D¢ PxxPx Py e 9K$ = 3Ny fd4x Dg(x,x)Dp(x,x) . (3.73)

This can be interpreted (up to an irrelevant constant Ny) as the creation of
two particles at some point x, that propagate over an undefined distance only
to be annihilated again in exactly the same point. Furthermore, this result is
integrated over all possible spacetime points. Higher orders give the same result,
be it with more particles as intermediate steps (but every diagram is ‘closed; i.e.
there are no external points, instead every point is integrated over). It hence
symbolises the natural excitation of an interacting scalar field over all spacetime,
better known as the vacuum energy. However, this vacuum diagrams are a bit
troublesome, as they are infinite by definition—and not only due to the factor
Ny (we don't mind the latter, as we will divide it out anyway). We can see this by
using the Fourier transform of the propagator:

d4k1 d4k2 ie—ik1~(x—x) i e—ikz-(x—x)
(2m)* 2m)* K2 -m2 +ick? - m2 +ie’

/d4x Dp(x,x)Dp(x,x) = /d4x

B /d4x d4k1 d4k2 i i
- (2m)* 2n)* K2 -m? +ick?-m2+ie’
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3.2 QUANTISATION OF THE SCALAR FIELD

a) b)

Figure 3.4: a) The NLO vacuum Feynman diagram for ¢*-theory, where two particles
are created and annihilated in the same point. b) An NNLO example.

where the factor in front explodes to infinity. The only solution we have to get a
finite result, is to divide these modes out, just as we did in the free case. we will
soon see how to accomplish this.

Now for a more interesting example, we investigate the situation where we
have two extra fields at different spacetime point in front of the expansion (we
already divided by Ny—the path integral over the free action—in order to cancel
it):

A
Ni(p /D(/) ¢x¢y (1 - ia /d4z ¢Z¢Z¢z¢z +oe ) e_¢K¢ >
=Dp(x,y)—i%Ni¢ [d'z [Dé 6:6,6:9:0:6: 0+, )

The first term is again the propagator, and the next terms are O(1) corrections.
We will interpret this result as the full propagator, i.e. the propagator for the
interacting field. The propagator for the free field is the ‘leading order’ (LO)
approximation to the full propagator, and the one that includes the first-order
correction in A the ‘next-to-leading order’ (NLO) approximation, and so on. The
NLO correction term is a 6-point correlator, which we can express in terms of
free-field propagators:

1 .
- / D$ $udyded:0:0. %5 =12 DDEDY + 3DV DEDE . (3.75)
f

We only have two terms; one where both x and y are connected to one of the z’s
(there are 12 equal terms of these form), and one where x and y are connected and
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3.2 QUANTISATION OF THE SCALAR FIELD

all z are interconnected (of which there are 3 equal terms). Their corresponding

Feynman diagrams are given by:
OO

Xe® o) Xe )
Z

The first diagram is what we will call a one-loop correction to the propagator.
The second diagram is the free propagator multiplied with an NLO vacuum
diagram. Remember that there is an integral over all possible z; this is exactly
the superposition principle of QM: when a process can happen in different ways,
we sum over all possible paths.

Let us out of curiosity investigate the NNLO contribution, the second order in
A. It is given by

RS
2 (42N,

[tz [dtw [Do 6.6,6:6:0:9:0uududn e . (:76)

The solution is a bit more involving than before, as it is now a sum of terms
consisting of 5 free propagators:

144 Di* D D7 Dy" Dy’ +144 D D7’ D7’ D7’ D" + 96 D¥*Di* Dy Dp* Dy
+36 D’ DF Dy Dy D" + 9 DY D¥ D¥ DY DyY + 36 D D¥ D} D7 Dy
+24 D' D' DY D" DY +z o w.

The coeflicients just follow from summing equal terms, as before. The diagrams
corresponding to these terms are:

00. 8 <.

—=-
5. 0 O

———m  —

So we have three 2-loop corrections, one 1-loop correction plus an NLO vacuum
diagram, and three free propagators plus an NNLO vacuum diagram. Now what
to do with the troublesome vacuum diagrams, that are infinite? It is not difficult
to understand that when calculating the propagator to all orders, in the end we
will have all possible combinations between ‘pure’ propagator corrections and
vacuum diagrams. In other words, symbolically we can write:
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3.2 QUANTISATION OF THE SCALAR FIELD

So we can factor out all vacuum contributions. This in turn means that we can
define the full interacting propagator in function of the full action:

D;uu(xl; Xz) s > (3.77)

where we have the full interacting action in the numerator to include all loop
corrections, and in the denominator to divide out the infinite constant Ny plus
all vacuum diagrams. Totally similar, we can define the full interaction higher
order correlation functions:

P9 di92-gn S

/DqS e 1S

where (Q|Q) denotes the normalised interacting vacuum state.

It is much easier to draw all possible diagrams than to calculate all possible
combinations resulting from the path integral. The only thing we need to know,
is how to calculate the combinatorics coefficient in front, only based on the
diagram. Let us build it step by step. First there is a factor n! from the interchange
of the coordinates that are integrated over (the vertices)—this factor cancels with
the factor !/n! from the expansion of the exponential. Furthermore, every vertex
has four legs that can be interchanged at will, giving a factor 4! that cancels with
the 1/41 from the interaction term in the Lagrangian. However, in doing this we
might have a factor that is too large, as the combinations in the path integral
are only those that are distinguishable. More specific, if a vertex has its four legs
connected to four different points, then it is distinguishable and we add a factor
4!, cancelling the vertex factor. However, if two legs are connected to each other,
interchanging them doesn’t make a difference and it will show up in the path
integral as only one term. Hence this gives a factor 4-3 instead. So a symmetry in
the diagram lowers the coefficient in front. To incorporate this in our calculations,

def

(Q p12+-¢1 |Q) = (3.78)
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3.2 QUANTISATION OF THE SCALAR FIELD

we just keep the cancellation of the vertex coefficient 4!, but divide out the by
symmetry factor of the diagram. Any self-connection gives a factor of 2, and any
interchange of » lines or vertices that leaves the diagram invariant also gives a
factor of (n!). Diagrams are considered equivalent if they can be related by a
continuous deformation, or, literally, if one can be transformed into the other
by moving—not tearing—the legs whilst keeping the external points fixed. A
few examples:

OIS

@@ 2.2-2
—E5—

Feynman was the first to acknowledge the possibility to relate amplitudes with
diagrams so he created the tool of Feynman diagrams, which are accompanied
by a set of Feynman rules that dictate how to retrieve the correct mathematical
amplitude for a given diagram. For ¢*-theory, we have derived everything we
need to present these rules:

A. Scalar propagator: Xo— o) = Dgp(x,y), (3.792)
B. Scalar vertex: > = —iA fd4Z ,» (3.79b)
C. Scalar external point: X o— = 1, (3.79¢)
D. Divide by the symmetry factor. (3.79d)

Since the formula for the propagator is expressed in momentum space:

4 .
Dp(x,y) = / Ok - e ) (3.80)
(2m)" k* —m? +ie

it is often easier to calculate the diagrams in momentum space. We then label
each scalar line with an extra arrow indicating the direction of momentum flow.
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3.3 QUANTISATION OF THE DIRAC FIELD

What happens is that the integration in each vertex eats the exponentials to give
a delta function:

k» ks

N . o .
~ /d4Z etkrzemikzgikyzg-ikiz _ §(4)(kz+k4—k1—k3) »

(2N
ky k4

where we defined the short-hand notation
8 (x) & (2m)" 6 (x) , (3.81)

because a §-function will often be accompagnied with powers of 27.

Note that the vertex rule in momentum space is essentially the same as con-
servation of momentum at each vertex. The only exponentials that remain, are
those from the propagators that end in an external point. The generalisation to
Feynman rules in momentum space is now trivial:

Momentum Feynman Rules for Scalar Fields

k i
A. Scalar propagator: _— = —, .82a
propag k2 —m? +ie (3.822)
\'W~7,
B. Scalar vertex: =  —iA, (3.82b)
7N
. k —ik-x
C. Scalar external point: —=2 .x = ¢ 5 (3.82¢)
D. Impose momentum conservation at each vertex, (3.82d)
. d*k
E. Integrate over all undetermined momenta: / W (3.82¢)
s
F. Divide by the symmetry factor. (3.82f)

3.3 QUANTISATION OF THE DIRAC FIELD

We have chosen to start with the quantisation of scalar fields, as they form the
easiest subject to develop the framework because both Dirac and gauge fields
have some intricate details that need to be dealt with. We now move to the
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3.3 QUANTISATION OF THE DIRAC FIELD

investigation of the quantisation of the former, however, the difficulty arises in
the fact that Dirac fields are Grassmannian functions, i.e. they anticommute.

Grassmann Numbers

Before we can define path integrals over Dirac fields, we have to define Dirac
fields themselves in a rigorous manner. In the path integral formalism, we try to
avoid the use of operators. When expanding a Dirac field in the same basis as in
Equation 3.12:

y(x) défi Oiui(x), (3.83)

where now the coefficients anticommute
0i0;=-0;0;.

These are called Grassmann numbers, and form an extension to standard number
theory. Anti-commutation has some strong consequences, e.g. the square of a
Grassmann number is always zero:

6> =0,
and more specifically, any product of n Grassmann numbers

0,0

im
will be zero from the moment two indices are equal, as we can anticommute
until the two numbers with the same indices are next to each other and hence

vanish. Also because of this property, a Taylor series is cut after the first order,
ie.

f(0) = £(0) + 6£'(0) (3.84)
is an exact relation for any function that satisfies the requirements to be eligible
for a Taylor expansion. Differentiation of Grassmann numbers can be introduced
by the logical requirement

aei def
— = 0ii, .8
20, i (3.85)

but care has to be taken, as the differentiation operator is Grassmann-valued
itself:

9
26,

36, 9
(6:62) = 36, 62 =0, 36

B 2001
(9291)— 02891 = 92. (3.86)
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3.3 QUANTISATION OF THE DIRAC FIELD

Considering integration, the only type we have to investigate is a linear integral,
due to the cut in the Taylor series:

f d6 (A+B6),
which is defined to equal

fde (A+B6)=B. (3.87)

there is a strong mathematical background for this statement, which would lead
us to far away, so we just accept it as is. Note that it essentially makes derivation
and integration the same thing. When having a multiple integration, we postulate
the sign convention that if inner integrals can be calculated first, the result is
positive:

f d6,d0, 6,0, +1. (3.88)

Complex Grassmann number are a logical extension, with the fact that complex
conjugation reverses the order of the numbers:

(6162)" = 65067 . (3.89)

It is now straightforward to calculate e.g. a Gaussian integral over a complex
variable:

/de*de e—‘”’@:/de*de (1—0*b9)=/d0*d6 (1+00°b) = b. (3.90)

If this would have been a normal, non-Grassmann number, the result would
have been 27/p. So with Grassmann integration, the Kihler factor comes out in
the numerator rather than in the denominator. With an additional factor 66*
we get:

/de*de 09*e 070 - fda*de (00" - 0670"b6) = fde*de 06" =1,
which we can interpret as 1/» b, i.e. the factor 06* brings down an additional

factor 1/b. We can easily generalise this to higher dimensions:

*

/ 6 d6,--d6* 6, ¢ K70 - detK. (3.91)

73



3.3 QUANTISATION OF THE DIRAC FIELD

Inserting extra fields brings down the inverse of K:

[a6; 461--0; a0, 6,67 H% = (K1), detK. (3.92)

So the Grassmannian Gaussian behaves exactly like the regular one, except for
the position of the determinant.

To derive the calculation of path integrals now goes complete analogous to
the complex scalar case. E.g. the Gaussian path integral is given by:

Gaussian Path Integral over Grassmanian Fields

fD@Dt// e VKV — detK, (3.93)

where the bar operation is defined in Equation A.22. It is easy to verify that it
doesn’t change the integral. Completing the square goes totally analogous as
well, now with # and 7 as Grassmanian source terms:

Comleting the square with Grasmmanian Fields

/D@Dl// e VEVHIVAI _ det K K1 (3.94)

Again we define n-point integrals by derivation to the sources (and as was the
case for the complex scalar, we need to derive to % to bring down a y and vice
versa):

_ _ _ ) § & g
Dy D ey = det K — —- —™ (5.
f YDy iy, Yy, = de B T (3.95)

but remember that Dirac fields anticommute, and derivatives w.r.t. a Dirac
source as well. Two common examples

/DWDV/ yiy,e KV = K detK, (3.96a)
f DYDY yiT,ysT,e XY = [Ky Kap + Kig Ki) | det K . (3.96b)

Note that the inverse Kdhler is now naturally antisymmetric in its arguments,
which means that the order of its arguments becomes significant, e.g. in the last
term K55 = —K53.
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3.3 QUANTISATION OF THE DIRAC FIELD 75

The Free Dirac Field

The action for a free Dirac field is given by Equation 1.24:
spre = [dtx (idy - mpy)

where the slashed notation is explained in Appendix A.3. The Kahler metric is
hence given by

K(x,p) =-18W(x - y) (id, - m) . (3.97)
The inverse Kahler satisfies
—i (idy - m) K (x,p) = W (x- ) . (3.98)

From QM it is known that the Dirac propagator Ar has to satisfy

Dirac Propagator Equation

(iax—m) Ar(x,y) 518(4)(x—y) , (3.99)

so we make the logical definition

Ap(x, y) €K (x, y). (3.100)

Note that the Dirac propagator can be related to the scalar propagator in a
straightforward way, by relating Equation 3.56 to Equation 3.99:

Ap(x,y) = (1&9 + m) Dp(x,y). (3.101)

WEe can solve the Dirac Equation 3.99 exactly, with result:®

Dirac Feynman Propagator

d*k i

—ik-(x=y)
Qn)* k-m+ e i (3.102)

Ap(x,y) =

Because this function is odd, the propagator is automatically antisymmetric:

Ap(x,y) = -Ap(y,x). (3.103)

In this case the +ie isn’t merely a pole prescription, but it ensures the proper ordering of the
fields. See [20, 21] for a more detailed explanation.
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This antisymmetry tells us that we have to choose a direction for the propagator.
It is common to define Ap(x, y) as the propagator from y to x,° which we will
denote with an arrow:

Ap(x,y) = : (3.104)

Note that this implies that in a Feynman diagram, a Dirac propagator is read
from right to left. This will generalise to any Dirac structure, hence from now on
we adopt the convention that any Feynman diagram has to be read from right to
left (which we can do without changing the results for scalar and gauge fields, as
these are symmetric anyway). If we now make the convention that in a Feynman
diagram time runs in the horizontal direction, from left to right, we can make
the distinction between a particle and an antiparticle based on the direction of
the arrow (as the latter ‘moves back in time’):

A. Particle: yO <x°, (3.105a)

B. Antiparticle: yo > %0, (3.105b)

Exactly as in the scalar case, we define the propagator and n-point function as a
fraction of path integrals:

[PVDy iy, &
def

Ap(x1,x2) = 5 (3.106a)
oDy &
yLy e

f DYDY Yiy-vi, ¥ ¥, €

def

<O|Wl‘l.“l//l'n¢jln.¢jn |O> (3'106b)

fpapwé%

\ J

The ordering of the fields inside the path integral matters because of the
antisymmetry, so we adopted the common convention to order the barred
integration measure first, i.e. Dy Dy, but for the fields we put the unbarred
fields first, i.e. yy---yy---. Note that the convention in Equation 3.104 now
implies that a Dirac propagator goes from a y field to a y field.

The 2n-point Gaussian equals as before all possible combinations for n
particles to propagate to one of the remaining spacetime points. However be-
cause the Dirac field is complex, less combinations are possible, as was the case

6 This is a result from the positive ie.

76



3.3 QUANTISATION OF THE DIRAC FIELD

Figure 3.5: The Dirac 6-point correlator represents six possible (equivalent) diagrams.
Note that every propagator starts in one of the first three points and ends in
one of the last three. This comes from the fact that the Dirac field is complex,
as we have already seen in the case of a complex scalar field.

for the complex scalar field in Equations 3.70. The ordering of the fields as in
yy---yy--- makes sure that no minus signs enter in the sum of possibilities, as
long as we express all propagators from a y field to a y field. As an example we
calculate the 6-point correlator:

(Ol y1y2ys¥, 596 [0) = AR AT AR + AR AP AL + APAF AR + APAR AR

+ APARAY + ARAR A,

which is illustrated in Figure 3.5.

The only thing left to do before we can define Feynman rules for the free Dirac
field (the interacting Dirac field includes gauge bosons, which we will treat in
the next section), is derive appropriate rules for external Dirac field lines. From
standard QM and spinor theory, we know that a Dirac field acts on a particle
momentum state as:

y(x)|p.s) =€ P*u(p) o) , (3.1072)
(p>s|y(x) =0, (3.107b)
y¥(x)|p,s) =0, (3.107¢)

(p.sly(x) = (07 (p) "7, (3.107d)
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and on an antiparticle momentum state as:

v(x)[p,s) =0, (3.108a)
(p.s|y(x) = (0] v (p) e™ P, (3.108b)
¥(x)|p,s) = e P*7(p) J0) (3.108¢)
(psly(x) =0, (3.108d)

where u and v are spinors (see e.g. Equations A.24), that satisfy the completeness
relations:

Y (p)u'(p)=p+m, (3.1092)
ST (p) = p-m, (3.109b)

which will prove to be very useful to simplify calculations with external spinors.

In Feynman diagram notation, we make the difference between a particle
and an antiparticle state with the direction of the arrow. The exponentials will
be absorbed into &-functions to account for the conservation of momentum,
but the sign in front of p-x will define the direction of the momentum flow: a
negative sign implies towards the §-function, i.e. towards the vertex. As the state
|p, s) is an initial state (remember that we read Dirac fields from right to left),
the momentum flow for a regular particle will be parallel to the arrow indicating
the Dirac field:

v(x)[p,s) =

It is easy to verify that in general the momentum of a particle is parallel to its field
arrow, and that of an antiparticle antiparallel. So finally we have the following
momentum space Feynman rules for the free Dirac field:
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3.4 QUANTISATION OF THE GAUGE FIELD

Momentum Feynman Rules for the Dirac Field

p

A. Initial fermion: i,s —>—a = ui(p), (3.110a)
P,

B. Final fermion: » i,s = u(p), (3110Db)
P,

c. Initial antifermion: i,s - = v(p), (3.1100)
P,

. Final antifermion: . i,s = vi(p), (3.110d)
P, i

E. Fermion propagator: . . — — .

p-—m+ie
(3.110€)

3.4 QUANTISATION OF THE GAUGE FIELD

Last we need to quantise gauge fields. As vector fields commute, a path integral
over a vector field is just one scalar path integral per component, i.e.

fDA N fDAODAlDAzDA3 . (3.111)

However the fact that there is gauge freedom on the field makes this much less
straightforward. To see this, we take the regular action for a free vector field
from Equation 1.16:

1
Syector = 2 /d4x FouwFy" (3.112)

where the free gauge tensor is given by
Féw = (0#A"" — VA ) 17, (3.113)

with t* a generator of the underlying Lie algebra (see Appendix A.6). After
partial integration, we can rewrite the action as

spcor = 2 [dtedty a4(x) 00 (x - y) 8% (g 0 - 3") AL(y),
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3.4 QUANTISATION OF THE GAUGE FIELD

so the Kahler metric is given by
i
K(x.y) = -3 0 (x - y) 8 (¢ 1 - 2*") . (3.114)

But this is exactly the core of the problem: this metric is a singular 4x4 matrix,
and hence has no inverse. This is due to gauge freedom, i.e.

Au(x) + 0ua(x)

leaves the action invariant (see Equation 2.19). The modes A, = d, & are gauge-
equivalent to A = 0, hence these are the troublesome modes. The path integral
is badly divergent, as we are redundantly integrating over an infinite set of
equivalent fields.

We can fix the problem with a trick due to Faddeev and Popov [28]. First we
define the functional G[ A] as a gauge-fixing condition, i.e. it is zero for a given
gauge. The two most common types of gauges are the Lorentz gauge and the
axial gauge:

A. Lorentz gauge: G[A] = 9,A", (3.115a)
B. Axial gauge: G[A] = n,A". (3.115b)

We would like to constrain the path integral to only contain the gauge-fixed
modes, so that all redundancy disappears. This is achieved with a functional
d-function. The formula

f DA 8(G[A]) (3.116)

will only select these fields that satisfy G[A] = 0, i.e. that are gauge-fixed. How-
ever, we cannot blindly input something inside the path integral, as that would
change its value. But note that in the one-dimensional case, a § of another
function can be simplified by using the Jacobian of this function:

-1

Jax o(gx) F () = 3 f<"f>’§—f o

roots

and more specifically, when f(g(x)) =1, we have

dg(x)
ox

-1

JEERTENEDS

roots

i

This is easily generalised to higher dimensions:

-1
n _ agl
/dxl---dx,, 0"(g(x)) —det(axj) ,
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and we can hence define a similar relation for path integrations, putting the
determinant on the Lh.s. to get an expression equal to 1:

de‘(((SG 4] )/’D 3(G[A%]) =1, (3.117)

where A% is the gauge transformed field. So now we can input this into the path
integral over DA, as it is just 1:

fDA dt(aG )/D 8(G[A%]) &SIl (3.118)

The action is gauge-invariant, so we can replace S[A] - S[A%]:
o : a
/DA det (%) /Doc 8(G[A%]) iS4,
o

Also, making a gauge transformation is equivalent to a constant shift, and hence
it leaves the integration measure invariant, i.e. DA* = DA. So we can write:

fDA"‘ det(sG [4°] )/D 3(G[A%]) 147,

Now we note that A% is just a dummy variable, so we can rename it back to A:

[pa dt(éG )/D 5(G[A]) 1Al

There is no a-dependence left, and we can factor out the integral

(/’Da )/DA de t( ]) 8(G[A]) eS1AT, (3.119)

This is just another infinite constant that will be divided out later, so we already
drop it. Note that it represents the infinite number of redundant field configura-
tions, which we wanted to remove. In other words, the integral

fDA det(aG(s[::a]) 3(G[A]) €514

is finite, as the functional § ensures that only non-equivalent field configurations
are integrated over. Note that we re-added the a-dependence inside the Jacobian,
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3.4 QUANTISATION OF THE GAUGE FIELD

which is valid as the Jacobian is gauge-invariant itself.” It will allow us to do a
specific calculation of the determinant, and we can turn the a-dependence in
the Jacobian on and off, depending on what suits us most. What follows will be
different for Abelian and non-Abelian fields, so we will treat each case separately.

Abelian Gauge Fields

If the fields are Abelian, the gauge transformation is given by (see Equation 2.19):
N
AL(x) = Au(x) + dua(x).
This implies that the functional determinant is invariant of the field itself, i.e. it
is det (O) (in Lorentz gauge), and we can factor it out the integral:

det(@) fDA 5(G[A]) 'S4,

o

which again implies that we can drop the determinant, as it will cancel out
anyway. Now we will loosen our gauge-fixing condition a bit, and consider the
class of Lorentz gauges given by

G[A] = 9,A" - w(x), (3.120)

where w is any scalar function. This doesn’t change the Jacobian, so the former
derivation remains valid. So far we have found the equality

fDA ¢iSl4l =det(D)(fD(x )fDA §(3,A" - 0) 5141 (3121)

but because w is unspecified, this equation remains valid if we replace the rh.s.
with any linear combination of different w. We can even multiply the integrand
with a Gaussian weighting function that is normalised to one:

—i fd*x @

Nge . (3.122a)

-1
—i fdix &
Ng = (/Dw e J 25) = ’111320 \/ (2iém)" . (3.122b)

Finally we integrate over all possible w (which is the same as the continuous
limit of making all possible linear combinations):

This is not so straightforward to demonstrate, however quite logical. See [20] for a nice explana-
tion.
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w

fDA e Nfdet(D)(/Da )/D(UDA a(a Al _ ) —i fd*x 2% IS[ ]

(%A )

—i fdtx E L
—N,gdet(D)(fDoc )fDA e : el Sl

where we used the §-function and the integration over w to make the replacement
w = d, A¥. Effectively, we have added a new term to the Lagrangian:

1 1
Egauge—ﬁxed — EAZ (g;w O-— ayaV) Al:, _ ﬁa!‘AHa”Av' (3.123)

So now the Kéhler metric is given by

K(x,y) =—i§ 8 (x-y) (g”VD - (1—:15)3”3”), (3.124)

which is no longer singular! In analogy with the scalar field in Equation 3.57, we
define the vector propagator as:

e 1 — v
Dﬁv(x’y)dgz(K ")), (3.125)

which now satisfies the equation

Vector Propagator Equation

We can solve this equation exactly, giving

Vector Feynman Propagator

4 —i A% )
DY (x,y) = f(d ¢ ' ( “”—(I—E)kkf)e‘k'(”)- (3.127)

2m)* k2 +ie

So now we have another gauge choice, namely the choice of £. A few common
examples are:

A E=0 Landau gauge, (3.128a)
B. {=1 Feynman gauge, (3.128b)
c. £=3 Yennie gauge. (3.128¢)

>
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By far the most commonly used choice is the Feynman gauge. It is often possible
to cancel divergences for a given (piece of a) diagram by choosing an appropriate
gauge (see e.g. Equation 7.31). However, it is rare that different diagrams combine
in a finite way with the same gauge choice. Finally, not that in the Feynman gauge

& = 1Equation 3.126 transforms into the simpler form we found in Equation 1.17.

Now that we have successfully quantised the Abelian gauge field, all other
properties are analogous to the scalar case. I.e. we define the free propagator as

/ DA AP (1) A (x,) €S0

def

Dﬁv(xl,xz) = 5 (3.129a)

fDA elSo

fDA Ape-AnetS

(0| Ay---A, |0) f ) (3.129b)
/DA elSo

Non-Abelian Gauge Field: Lorentz Gauge

What changes when we try to quantise non-Abelian gauge fields? The important
fact is that the gauge transformation is now more intricate (see Equation 2.27):

A%47 s eigoc“t“ (Au - ia )eiga“t“ ,
u u u
4
~ (AZ + D‘u(xa) t,
where D, is the derivative acting in the adjoint representation:

Dzb _ 8aba” _ gf“bCAi, )

In particular the functional determinant in Equation 3.119 is no longer independ-
ent of A, so we cannot factor it out from the DA path integral:

det(ai—m) = det(9,D") , (3.130)

o
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where we again adopted the Lorentz gauge condition G[A] = 9, A¥. We have no
hope in calculating the remaining integral

(/Doc )/DA det (0,D*) 6(G[A]) elStAl) (3.131)

as the dependence of the determinant on A spoils any path integration techniques
we know. However, again we can use a trick, and again due to Faddeev and Popov.
This time we make the observation that a determinant in a numerator can be
the result of a path integration over Grassmanian fields. So instead of trying to
calculate it, we exponentiate it:

_ —i fd4x cd,Dtc
det(@MD”) = chDc e . (3.132)

These fields are a bit peculiar, as they obey the path integral formalism for
spinor fields—having the determinant in the numerator—but have the kinetic
terms of scalar fields, with a double derivative. Hence they cannot have any
correspondence to real particles, but that shouldn’t be a big problem, as long
as we use them as a mathematical tool. These new fields and their particle
excitations are called Faddeev-Popov ghosts, and have to be included in every
Feynman diagram calculation in a non-Abelian theory that is quantised in the
Lorentz gauge.

The main point is that their dependence on the A-field is only linear, and
not quadratic. This means we can treat this term as an interaction term to the
gauge field, and ignore it while quantising the free gauge field. In other words,
the quantisation of the gauge field now goes exactly the same as in the Abelian
case, resulting in the propagator in Equation 3.127 (with an added factor §*°
for the colour, which is merely a § because the Kahler is diagonal in its colour
indices). However, for a non-Abelian field this steps are only possible if we have
exponentiated the determinant, i.e. if we include ghosts in our theory.

The ghost Lagrangian is given by:

Eghost e gfabczaaﬂAZCC . (3.133)

Using the same methods as before, we can calculate the ghost propagator:

85



3.4 QUANTISATION OF THE GAUGE FIELD

Feynman Ghost Propagator

d*k i

- = 5uh —ik-(x-y) ) ‘
(2m)* k%2 +ie c (3:134)

28 (x,y)

The interaction term gives a factor g f**°k¥, with k the outgoing ghost mo-
mentum after the after the vertex. As ghost fields anticommute, they naturally
have a field arrow similarly to Dirac fields. But as ghosts will never be external,
they will only appear in loops, and we don't really have to worry about the arrow
as long as we use it consistent. Every loop will then give an extra minus sign, just
as in the Dirac case. The Feynman rules for ghosts are given in Equations A.99.

Non-Abelian Gauge Field: Axial Gauge

Now we will make an important investigation. When using a different class
of gauges, namely axial gauges, ghosts fully decouple from our theory. Let us
investigate this a bit more. Any axial gauge is defined as

def

G[A]= n,AY - w, (3.135)

for some arbitrary directional vector n,. The functional determinant is then
given by

det(ai—gﬂ) = det(9,D") = det (n-0 — gn-A) = det (n:0 - gw) , (3.136)

which is independent of A! So we don’t have to introduce ghosts at all in an axial
gauge, we can just factor out the determinant from the integral. The trick we
used, is to apply the constraint given by the functional §-function—as it is fully
integrated over, this constraint will be in effect anyway. Couldn't we have done
the same in the Lorentz gauge? Yes, but then we shouldn't forget to apply Leibniz’
rule on the derivative:

0G[A]

det(a—) = det (9,D") = det (0 - g0-A— gA-0) = det (O - gw — gA-9) ,
o

so we still have a term in the determinant that depends on A. In general, any
gauge that is defined using derivatives, will give rise to ghosts. So it seems the axial
gauge is much easier to work with. However, because we have a different gauge
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3.4 QUANTISATION OF THE GAUGE FIELD 87

condition, we need to redo the calculation leading to the propagator, starting
from Equation 3.120 but now with the class of axial gauges as in Equation 3.135:

fDA etStAl - det(n-9) (/Da )fDA d(n-A-w) elSlAl (3.137)

Again, we make an integration over w, weighted with the Gaussian in Equa-
tions 3.122:

d*x @2 .
/DA 'Y = Ngdet (n- 8)(/Doc )/DwDA S(b-A-w)e -1 2 isA]

(n-A)" A)

—i fd*x .
= Ngdet (n- 8)(/1?04 )/DA e : ©eislal

The new term in the Lagrangian is now:

1 1
ﬁgauge—ﬁxed _ EAZ (g/lv o- aMav) Ai — Z_En‘uAH n,A”, (3.138)

and the Kéhler metric is given by
_ s uv pov 1w v
KGey) = =307 (x=y) (87D — 0% —gnn”) . (3.139)
Of course we use the same definition for the propagator:

v e 1 —
D; (x,y) d:fi (K l(x,)’))w ) (3.140)

which now satisfies the slightly different equation

1 D'
(gWD —aﬂav—zn#n ) P —18P 6(4)(x y) . (3.141)

We can again solve this equation exactly, giving finally the propagator in a
general axial gauge:

Vector Feynman Propagator in Axial Gauge

-8 (. kuny+kyny o Kuky \ Like(ae
Dy (%7 = /(2n)4k2+1e(#_ Gt L] LR

Like was the case with Lorentz gauges, £ induces an additional gauge choice.
We are however only interested in the so-called light-cone (LC) gauge, where
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n? = 0. Furthermore, we take £ = 0 (the homogeneous LC gauge), such that the
term proportional to k* vanishes.

Most of the time, calculations are easier in Lorentz gauges, because ghost loop
diagrams resemble a lot to gauge boson loop diagrams, hence the calculation
can be ‘copied’. On the other hand, calculations in axial gauges are far more chal-
lenging, due to the extra terms !/k-» in the propagator, which makes integrations
more tricky. A few common pole prescriptions to regulate this factor are:

1 1
A. Advanced: (k] =i 0 (3.142a)
1 1
. Retarded: = , .142b
B. Retarde (k] - ke (3.142b)
C. Principal Value: RN ! + ! (3.142¢)
' P " [nk] 2\nk+in nk-ing)’ 344

The principal value prescription is less suited for the LC gauge and should be
avoided in this case [29]. A particular prescription that is more adequate is the
Mandelstam-Leibbrandt prescription (see [30]):

D. Mandelstam-Leibbrandt: [n%k] = n~k'1:~.lf+ o (3.142d)
1 k™

(3.142€)

=0,n7+0, e.g. : = .
=l eg k] " Fk+ig

There are also special considerations depending on the axial structure of the
gauge. See e.g. [29] for a good treatment.



QUANTUM CORRECTIONS

Although at first sight maybe not so clear, quantised fields have a behaviour
that is totally different from classical fields. Loop integrations require appropri-
ate regularisation schemes, which in term spawn the theory with unphysical
divergences. The theory needs to be properly renormalised to treat these diver-
gences, and this renormalisation procedure will in turn influence the physical
parameters of the theory, and more, it will deeply change our understanding of
physical quantities. Besides the divergences, the regularisation procedure leaves
behind unphysical energy scales as well. From the requirement of invariance
under rescalings, we will derive a set of renormalisation group equations, and
show how these equations lead to an asymptotically free behaviour of QCD,
violating perturbative methods at low energies.

4.1 WORKING WITH QUANTISED FIELDS

In the previous chapter we succeeded in quantising the free field theory for the
YM Lagrangian (see Equation 2.45). Fully expanded, the interacting Lagrangian
reads in Lorentz gauge:

‘CE(I)VrIentz = ‘Cgauge + ‘CghOSt + LODirac + ['I P (4.1a)
auge 1 2 1
L5 = -2 (0445 - 0,A7)" - 2—£aHA“avAV , (4.1b)
E%hOSt - _%0ct, (4.1¢)
Lome=y(id-m)y, (4.1d)
Lr=gyhy- gf”bCE“B”Ai’,cC - g fabe (aﬂAﬁ) AFb pvE
L 2 cabx gxed qa 4b vd
— 8 ST A A AT AT (4.1€)
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4.1 WORKING WITH QUANTISED FIELDS

The only difference with the axial gauge is the omission of ghosts and a different
gauge-fixing term:

£ - L B g (420

Lgirac -y (la _ m) v, (4.2¢)
Lr=gyhy - g [ (9,A7) A0 A

B %gz fabx ped A AV b gvd (4.2d)

We didn't calculate the Feynman rules for the interaction terms yet, and we won’t
do so either, as they are really straightforward to derive, totally analogous to the
scalar case in Section . All Feynman rules for YM are listed in Appendix A.8 asa
quick reference.

As we have seen in Subsection The Interacting Scalar Field on page 66 and
onwards, all interaction terms in the Lagrangian are expanded in orders of the
coupling constant, to form a perturbative series. In a YM theory this coupling
constant will often be denoted by g. It entered for the first time in the gauge
transformation of the Dirac field, Equation 2.1, where we extracted it arbitrarily
from the gauge parameter «. Starting from there, it propagated through the
theory to become the interaction strength between the gauge field and the Dirac
fields, between the gauge fields themselves and between the gauge and ghost
fields (if in Lorentz gauge). The fact that all this couplings are the same, follows
from the simple requirement of gauge invariance. Hence, there is only one
constant that governs the dynamics of a typical YM theory, viz. g, that has to be
matched against experiment. Considering the kinematics, there are much more
constants that govern it, these are the masses of the fields.

Aslong as g < 1, we can validate a perturbative regime, and can tune our
theory to higher accuracy by including higher order diagrams, for instance when
higher resolution data becomes available from experiment. However, it is not
always possible to keep g small, as we will see later in this chapter. A suitable
way to solve this, is to separate the process in two regimes depending on the
value of g, and combine the regimes accordingly. Such an approach is known as
factorisation, and is the main topic of the next chapter.

When calculating diagrams of NLO and higher orders, we encounter many
apparent divergences. Of course, observable quantities always have to be finite,
and therefore we expect divergences to cancel out when calculating a full res-
ult. However, the emergence of such divergences in intermediate steps might
prove challenging to deal with. We hence need some methods to regulate the
divergences.
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Regularisation

Any integration over loop momenta will automatically introduce divergences,
which correspondingly have to be regulated. There are two types of divergences,
ultra-violet (UV) divergences, that appear for momenta — oo, and infra-red (IR)
divergences, that appear in the soft region, i.e. for momenta — 0. The former are
the most common and most well-known how to treat. A typical loop integral
has the form

d*k 1 (43)
/(2ﬂ)4 (k2 —m2)" +3

This is badly divergent in the UV-region. The standard procedure to calculate
this integral, would be to first make a Wick rotation, such that the momentum
is now an Euclidian vector:

ko= —ik®, (4.42)
(kp)® = -k. (4.4b)

This transforms the integral into

i) [Lke

(2m)* k2 + mz)

Because it is Euclidian, we can move to 4-dimensional spherical coordinates:
d*kp - Qdkg k3, ki — k%

The angular part of the integration is given by

2 /4
fd3Q :/d¢ fdxdﬂ sinzﬂsinX:Zﬂz, (4.5)
0 0

hence the integral is now

yn % k3
i )2 fdkE L
8 (kf +m?)

0

which is divergent for n = 1 and n = 2. One way to proceed, is to avoid the
singular part by introducing a cut-off:
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Cut-Off Regularisation

A
i k; i A? A?
-— [dk E_ __ 2= e 6
87120/ E k% + m? 62" (m2 nmz) (4-6a)
A
i k; i A?
— kg —E— - — (1n2 —1) , (4.6b)
8m : (k%erz) 167 m

where we already dropped the terms where we could take the limit L — oo
safely. So the cut-off acts as a regulator, as it regulates the divergence. The
original integral can be retrieved by letting A — oco. The first integral is called
quadratically divergent, as it is quadratic in A. Similarly, the second divergence
is called logarithmically divergent as it behaves like In A. What we now expect
is that other diagrams will give similar contributions, but with opposite signs,
such that the dependence on the regulator vanishes.

However, the cut-off regularisation—being the easiest regulator available—
has some shortcomings, the most important of which being the violation of
translational invariance. There exist several other regularisation procedures, like
Pauli-Villars regularisation, analytic regularisation, {-regularisation, etc... We
won't treat these. Instead, we investigate the—arguably—most useful regularisa-
tion procedure, that of dimensional regularisation.

Consider again the same integral as above. For n = 1, it behaves at large
momenta as |p|~%, and for n = 2 it behaves at large momenta as |p|™. The
momentum integrals are therefore divergent for dimensions d > 2 resp. d >
4. The idea is to subtract a small infinitesimal number 2¢ from the number
of spacetime dimensions," in order to make the integral convergent. E.g. the
following integrals are convergent:

d272€k 1 ( a)
(27-[)2726 k2 _ m2 > 47
d472€k 1
(4.7b)

(27-[)4726 (k2 _ m2)2 :

There is no physical meaning to a theory with 4-2¢ dimensions, so we are allowed
to use it as a mathematical tool, as long as we make the limit € — 0 in the final

The factor 2 in front of ¢ follows from normalisation considerations, because every pole in 4-¢
will be of the form 2/e, so choosing 4-2¢ gives ‘clean’ poles of the form 1/e. In older literature it was
common to use the convention w = 4 — ¢, so care should be taken when comparing references.
Most of the time one can deduce the convention used by inspecting the factor in front of the
pole.
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result. But how do we integrate in non-integer dimensions? There are several
ways to do this (see e.g. [31, 32]), but the most straightforward is when used in
combination with spherical coordinates, especially for integrands that do not
depend on the angular part. The extrapolation to non-integer dimensions will
be based on the extrapolation from the integer factorial to the real numbers by
use of the Gamma function. Consider a function f that only depends on the
momentum squared, and is divergent when integrated in d dimensions, e.g.

f oyt 1) (48)

We will regulate this integral by making the shift w = d—2e. The first steps
are straightforward: again we make a Wick rotation, and move to spherical
coordinates:

d°1a
(2m)e

We moved the non-integer part of the spacetime dimensions into the angular
part, because then we can calculate it separately, and the result will be applicable
to all integrals for which the integrand only depends on k2. To calculate the
angular part, we use a trick. An w-dimensional Gaussian function can be written
as a product of w Gaussians, or, more generally:

/d“’x e = (/dx exz)w =/ne .

We can make this step because all x; are independent from each other. We can
calculate a w-dimensional Gaussian as well by moving to spherical coordinates:

/d“’x e ¥x = fd“HQ /dx x@le™ = (/d“’lﬂ) lF(g) .
d 2 2

So we have

Jake kg F(-kE).
0

w

(o) Ty “

which we use to give the result for a general dimensionally regularised integrand
that depends on k? only:

/ y? 10 = lim —Q /dkE ke f (kD). (410)
2 0

e—>0 (47-[ 2
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As an example, we calculate the 4-dimensional integral in Equation 4.3 (with
n = 2, so that it is at most logarithmically divergent):

d*k 1 . 2i T’ k!
/ 4 2 2\2 = h_l;% W w fdkE E 2
(2m)" (k*-m?)" 0 (47)> F(E) (ké+m2)

0

The last integral can be related to a Beta function by making the substitution
o = m’[(k? + m?):

) w-1 ) k2 51
fdkE kE —lfd(k%) ( E)
o (km?) 23 (K +m?)

and because we can write the Beta function as a combination of Gamma func-
tions, i.e.

_ T()T(B)
Blef) = T(a+p)’ (4.11)
the final result is given by (using w =4—2¢):
dk 1 . i 47 \°
f(271)4 (k% — m?)? B £1—133 (4ﬂ)2 (W) I'(e). (4.12)

We can investigate the behaviour in the limit w — 4 using the expansion of the
Gamma function near zero:

T(e) ~ é -yp+0(e), (3.13)

where yg ~ 0.5772 is the Euler-Mascheroni constant. The e-power can be ap-
proximated as well:

x€w1+elnx+(9(62) ) (4.14)

This then gives:

94



4.1 WORKING WITH QUANTISED FIELDS

Dimensional Regularisation

d*k 1 i (1 5
-/(271)4 e m2)2 - (471)2 (; - yg+In4m—Inm ) . (4.15)

When comparing this to the result in Equation 4.6b, i.e.

d*k 1 i
f(zﬂ)4 e m2)2 - (4;)2 (lnA2 —lnm?- 1) , (4.16)

we see that the A-regulator naturally emerged with a logarithm, while in the
case of dimensional regularisation this is an inverse pole. Note that the ‘core’
result of the integration is in both cases the same, namely — In m?, while each
procedure adds a different regulator, but also different finite terms:

A. Cut-off regularisation: InA%-1, (4.17a)

1
B. Dimensional regularisation: - —yg+Indn. (4.17b)
€

We will mainly work in the dimensional regularisation scheme in this thesis.
We can now repeat the same calculation, but for general dimension and general

n:
k1 mt 2 an e T(n -G+ e)
. '/(27r)d (k2= m?)" "o (4m)% (W) I'(n)
(4.18)

The Gamma function has poles in 0 and all negative numbers, hence the result
is divergent when d is even and d > 2n. If this is not the case, the integral
is convergent and we can just take the limit ¢ — 0. We can find a general
expression for the divergent integral, by using the more general expansion of
the Gamma function (see Equation B.6]):

o1
F(e—n):%(—+1//(0)(n+1)+(’)(e)) n>0, (4.19)
n! \e
where (%) is the digamma function, defined as the logarithmic derivative of
the Gamma function:
I'(z)

0, - ')
V/O(Z)—F(Z)~
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For integer values n > 0 it equals
0 n-1 1
l/’( )(”)=_VE+Z}- (4.20)
j=1

We can now give the general result for the integral in Equation 4.18:

General Result for Dimensional Regularisation

1—'(_)"@M (d < 21 or d 0dd)
=3 (47-[)% (n_l)l n or (0] 5

d
1 Py

d-2n
= =Yg ¥ Zl+ln4n—lnm2 (d>2n).
—n)! € j

I<i (-)
(am)% (n-1)!(

[STRSW EYSTEN

.

We give a list of common integrals in dimensional regularisation in Appendix B.3.
Note that the change of dimensions to a non-integer value also reflects itself in
tensor contractions. In particular

g =w. (4.21)

Dirac y-matrices are however dimensionally normalised such that Tr(1) = d,
i.e. while Lorentz indices live in an w-dimensional spacetime, Dirac indices
always live in an (integer) d-dimensional spacetime. This implies that the con-
traction identities for y-matrices are in function of w (see Equations A.30), while
the trace identities are in function of d (see Equations A.31, in 4 dimensions).
This works fine for every y-matrix but y°, hence dimensional regularisation
is not suited to regularise parity-violating theories. As this thesis solely deals
with (parity-conserving) QCD, we can adopt the dimensional regularisation
framework without problem.

Mass Dimension Analysis

Dimensional analysis is a useful tool in physics, as it helps us to keep track of
the right physical quantities. The Dimension of an expression is a collection of
powers of the basic physical quantities, and is intimately related to the unit of
a quantity. There are 7 basic physical quantities in physics, the base quantities
(with their corresponding SI units in brackets):

[M] Mass (kg, kilogram),

[L] Length (m, metre),
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[T] Time (s, second),

[®] Temperature (K, Kelvin),

[N] Amount of substance (mole),

(I] Electric current (A, Ampere),

[J] Luminous intensity (cd, candela).

Any physical quantity can be expressed in powers of these base units.” E.g. accel-
eration is [L][T~2], force is [M][L][T 2], electric resistance is [M][L?][T3][I"?],
and energy is [M][L?][T2]. The important fact is that any physically meaningful
equation must have the same Dimensions on the Lh.s. and rhs., hence checking
this is a useful tool to check the validity of an equation.

But we are working in natural units (more specifically, Lorentz-Heaviside
natural units), where ¢ €' 7 < kp < ¢ €' 1. This implies that [M], [L], [T] and [@]
are now related to each other, because:

c=WwE1 = [L] =[T], (4.222)
E=ho®w = [M][L2][T 3] =[T] = [M]=[L], (4.22b)
S=kgln W& W = [M][L2][T?]=[0]. (4.22¢)

We will choose Mass as the basic Dimension, with [M]=[L™!]=[T~!]=[®]. Using
natural units leads to a simplified relation between the elementary charge and
the fine-structure constant:

=[Q]=0. (4.23)

We can exploit this to relate the dimension of the electric current to the dimen-
sion of mass:

dQ
1= —=
dt

The two remaining base quantities (amount of substance and luminous intensity)
are of lesser importance in pure QFT, so we state that every expression we will
encounter will—when in natural units—have its Dimension exactly defined by
its Mass Dimension. Some common Mass Dimensions are (from now on, we
use the notation [...] to denote the Mass Dimension of an expression):

= [I] = [M]. (4.24)

[m]=+1, [x*]=-1, [d'x]=-4, [8,]=+1, [E]=+1, [p"]=+1.

An exception to this are dimensionless quantities, for which it is not guaranteed that they can be
expressed in function of the base quantities. The best examples are the radian and steradian, that
are considered the standard units of (solid) angular measure.

97
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The derivative has positive Mass Dimension because it equals one over length.
The action is required to be a dimensionless quantity:

[S]=0 = [L]=4, (4.25)

because the integral over x has Mass Dimension [ fd*x] = [[d*x] = —4. We

can use this requirement to derive the Mass Dimension of the different fields,
because every term in the Lagrangian has to have Mass Dimension equal to 4.
For scalar fields we have:

[0upd¥d]=4 = [$]=1, (4.26)

for spinor fields:

_ 3

ydyl=4 = [vl=3, (4.27)
and for gauge fields:

[0,A,0"A" —0,A,0"A¥] =4 = [A,]=1. (4.28)

The n-point correlators have Mass Dimension equal to # times the mass of the
field, as

[stb ¢1---¢ne“] [stb ]m--m (6]
()] = _ [l (]
[stb ] [fw ][eiS]

and similar for the Dirac and gauge fields. Note that [D¢ | = oo, but is divided
out as usual. Using the fact that the §-function has Mass Dimension opposite to
that of its argument:

[6"<x>]:[ &5 P] [6"<p>]=[ (‘217)1’] (4:29)

we can as well calculate the Mass Dimension of the propagator based on its
equation of motion. E.g. , the gauge field propagator has to satisfy Equation 3.126:

[(g,,v o - (1 - %) 8,,81,) D;‘o] = [ié‘z 6(4)(x —y)] = [D;p] =2. (4.30)

We can verify from the mass terms [myy] and [ m?¢?*] that these parameters m
indeed have the Dimension of a mass. The coupling constant is dimensionless,
as we can see from [gyAy].
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Now comes the important part. In dimensional regularisation, we modified
the number of spacetime dimensions by subtracting a small parameter 2¢. But
this changes the Mass Dimension of the Lagrangian if we want to satisfy the
requirement that the action remains dimensionless, because now

fd“’xﬁ =0 => [Llzw. (4.31)

Hence the Mass Dimensions of the fields change as well:

[0,¢90"¢] = w = [¢]=1-¢, (4.32a)
Fivlse = l=i-e (b
[0,A,0"A” -~ 0,A,0"A¥] = w = [A]=1-¢. (4.32¢)

But now the coupling constant is no longer dimensionless:

[gvdy]l=w = [g]=e. (4.33)

A dimensionful coupling constant hinders perturbative theories quite a lot, if
not makes them totally unmanageable. So we define a dimensionless coupling
constant g as:

— ¢ def

gU =8 (4-34)

with u an arbitrary energy scale, which we will refer to as the renormalisation
scale (see the next section). For convenience, we will only use g in calculations,
so that we can drop the bar in the notation and always write g. In practice this
means we need to add a factor u€ in front of every g.

Until now we have derived the Mass Dimension based on first principles:
either we could just read it from the powers of the underlying quantities, or
we could derive from a relation to other quantities (like we derived the Mass
Dimension of the fields from the requirement that the action is dimensionless).
But how do we compute the Mass Dimension for a general quantity F, if nothing
is known about its underlying structure? We will try to give a simple intuitive
statement here. Suppose that F has Mass Dimension #, then we can write:

F=cm".

By differentiating w.r.t. m, the exponent comes in front:
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q+k
_4, 4,
H e  ALLLLLLLLLL LAl

k

Figure 4.1: Fermion loop correction to the gluon propagator. Because the y-matrices
are traced, they give rise to a negative sign in front. Quark momenta are in
the direction of the field arrow.

and by multiplying with m, we retrieve the original function:

oF
m— =ncm" =nF.
om

So we define the Mass Dimension as

Mass Dimension

def JolnF

[F]

~ dlnm

This is of course a bit simplistic, so we will give a more formal approach when
deriving the Callan-Symanzik Equation 4.81.

One-Loop Example: Gluon Propagator with Fermion Loop

We have now all necessary tools to make an example calculation. We will calculate
one of the NLO corrections diagrams to the gluon propagator, namely the one
with an internal fermion loop as depicted in figure Figure 4.1.

Using the Feynman rules in Appendix A.8, we can write down the amplitude
for this diagram:

i

5" (q) = - (ig)” tr(e") /éi’;w Tr()’ylé— myvk+9;— m) .

(4.36)

Note that we added a factor y* coming from the Mass Dimension of the
coupling constant. Because we are calculating the correction to the gluon
propagator, the two gluon lines are not included in the calculation. The trace
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4.1 WORKING WITH QUANTISED FIELDS

over the colour generators can be calculated using Equation A.70. We bring the
y-matrices up from the denominator:

1 k+m f+m

F-mk+m k2-m?’

and next we use Feynman parameters (see Appendix B.2) to combine the two
denominators into one:

1

1 1 _ fdx ;
2 m? (k+q)2— m? / NG
where
et =kt + xq", A=m?-x(1-x)q>.
The amplitude then becomes

by —x(1-x)qpq0
(e2-A)°

H[I _ T v,.0o 8ah26
5 (q) = 8" Tr(*y*y"y") 5 #f(zﬂ)

d¢ k m?
(2n ) (eZ—A)Z’

1
- g Tr(y"y") 50" u

where we used the fact that the integration over odd powers of € vanishes, just
as the trace of an odd number of y-matrices. Now we use the trace identities for
the Dirac matrices (see Equations A.31), which gives:

R ab 2 [ 49k 2-w £
i (q) = —2¢°6 hﬂszdx (g” o (D)2

These two integrals are given in Equations B.25. Note that we can rewrite

g"'m? - x(1-x) (29*q" - §""q*) = g"'A - 2x(1-x) (q"9" - ¢"'q*) .

This A will cancel the extra A coming from the integration with £* (after taking
the limit e — 0 where possible):

/(d“’k ¢ A w

1
2ﬂ)wdx GCRYNE = (471)22( yE+1n47T—lnA+1)

d“k 1 1 1
d _ In4z—InA) .
/(2n)w SN ZUNE (471)2( TypransEoA )
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The result is then
i1 (q) = (4°8"" - q"") 16 a(q%) » (4.372)

o 1 A
Hz(qz)z—; /dx x(1-x) (E_YE+ln4ﬂ_lnF) , (4.37b)

where we used the definition of the fine-structure constant as in Equation A.2.

This last integral can be calculated as well. The first part is trivial:
(— —yg+Indn+1Inpy ) fdx x(1-x) = A (— —yg+Indn+Iny ) . (4.38)
€ €

For the last term we have to make a distinction whether the polynomial can be
factored or not. In case q* > 4m?, we can:

1 m2
2 '

Nlb—*

m* —x(1-x)q" = ¢*(x —x1)(x = x2), X2 =
The integral then breaks up into 5 pieces:

- fdx x(l—x)ln(mz—x(l—x)qz) =
_élnqz_/dxxln(x—xl)—/dxxln(x—xl)

+ /dxlen(x -x1) + ./‘dxx2 In(x —x1) .

These integrals are listed in Equations B.2:

/dx xIn(x - x;) = (1 xH)In(1-x;) - x? - =+ =x7In(-x;),
/dxx In(x —x;) == (1— %) In(1- x; —x—’z—ﬁ—l+lx31n(—x-)
’ Y3 6 9 37 .

We can simplify this sum further by noting that x; = 1 — x; and vice versa. This
gives:

- fax x(1=x)n (m? - x(1- 2)¢?) -

1 , m* 5 m? +y/1 q
——|lnm"—-4— - - +in+\|1-4— 1+2—
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On the other hand, in case g* < 4m?, we can only break the integral in 3 pieces
because we cannot factor the polynomial. The result is then:

- /dx x(1-x)In(m* - x(1-x)q*) =

1 m? 5 m2 m> 1+i ’”—22—1
~5 Inm? —4— - = +i 4—2—1(1+2—2)ln—q

2 . [am?
q q q 1-1 4?_1

The only difference with the case g* > 4m? is the term i . This is not so surprising,
as the logarithm has a branch cut at g = 4m?. So the final result is then

Gluon Propagator with a Fermion Loop

i1 (q) = (" - 9"q") 1612 (4%) , (4.392)
as (1 m?
Ma(q?) =~ 2 (1= v insn-1n 75 ) (435b)

m? 5 | I m?\ 1H/1-4%
C(qZ) = —4? — 3 + 1_4? (1+2q2)1n I\/ﬁ aF 17'[9(6]2—47112) o
Vot

Most of the time we are only interested in the coefficient of the pole; the finite
coefficients only matter when going to NNLO and higher. But note that C(g?) is
finite at g* = 0, although maybe not obvious at first sight. We can make this
clear by expanding the square root and the logarithm around ¢* = 0:

m2 -1y
1—4? =2i (%) —Z%+O(q3) , (440a)
1+,/1-42% ,
1n1 1 4:‘2 :_i%_ﬁ(%) +0(q) (4.40b)
Ve

such that their combination becomes

2 w2\ 1+ /1-47
1-4— (1+2—2)ln—‘12
q q 1—,/1—4%

= C(0)=0. (4.41b)

m? 5
= 4? + 3 +0(q), (4.41a)

In other words, the NLO correction doesn’t add any poles in g* = 0.
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4.2 FROM THEORY TO EXPERIMENT

What we have derived so far, is how to calculate n-point field correlators. These
are, depending on normalisation and convention, exactly the same as the bare
Green’s functions of the theory. As the difference is at most a constant factor, we
will use the two naming conventions interchangeable.

By themselves, Green's functions are not physical observables, as their external
legs are not necessarily on mass-shell, and as e.g. correlators of gauge fields aren’t
even gauge invariant. So we need to relate them to physical quantities that are
directly linked to observables. We will apply the most common approach, the
S-matrix expansion, that is due to Dyson. The Dyson expansion of the S-matrix
contains the complete information about all collision processes. We define it as
the probability amplitude for a process to go from an initial state |in) to a final
state (out:

Spa = (Blar) - (4.42)

Note that this S is not the same as the action S.> We can also introduce an
operator S that transforms an in-state into an out-state:

(B, out| £(B,inl§,
which gives

Spa = (i $ |, in) . (4.43)
It is a unitary operator, because

(B,in| 88" |a, in) = (B, in|a, in) = 8Ba -

It is possible to construct this operator from the Green’s functions with the
so-called Lehmann-Symanzik-Zimmermann (LSZ) reduction formula. We won’t
treat its technicalities here as that would lead us to far, but we will just state the
formula itself. The S-matrix for a process with m initial particles (labelled with
momenta p;) and # final particles (labelled with momenta p’) can be derived
from the n + m-point correlation function as follows:

3 There simply aren’t enough letters available in the alphabet.
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LSZ Reduction Formula

(p1 Pul S o1+ prm) ~ (4.44)
/ (ﬁ [Td'xdty; eixeiors (ol +m?) (Dy_,-+m2)) (@l 9, S by 12) -

J

On the other hand, we can also retrieve observable quantities from the transition
matrix T, which is defined as the shift that S makes from the identity:

SET +iT. (4.45)
It can be shown that the transition matrix for processes with two initial particles
directly relates to the amplitude:

i (pl ph| T|pr1p2) = 8@ (p1 +pa- Zpé) M(pr+pz = pi+ -+ +p}),

where we used the short-hand notation defined in Equation 3.81. M is the
sum of all possible Feynman diagrams consisting of two incoming particles
with momenta p; and p,, and n outgoing particles with momenta py, ..., p/,.
Furthermore, we only consider diagrams that are fully connected and amputated.
A diagram is fully connected when it is not separable into subdiagrams, and is
amputated if every external leg can be cutted as close to the nearest vertex as
possible without making a difference. The following diagrams will hence not be
included in amplitude calculations:

Q.

The first because it consists of two subdiagrams and is hence not fully connected,
the second because the lower right leg isn't fully amputated; we still have to
amputate the loop, as indicated by the dashed red line (of course, loop correc-
tions are allowed inside the diagram, i.e. for virtual particles—amputation only
concerns external particles).

From this definition for the amplitude, we can construct—using the Lehmann-
Symanzik-Zimmermann (LSZ) reduction formula—an observable known as the
cross section:

Cross Section

1
4/ (pr-p2)* - mim3

do (12> 120" )& O (M. (4.46)

The first factor is the flux factor and depends on the 4-momentum of the
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incoming particles. The measure d® is the Lorentz-invariant phase space (LIPS),
and represents the on-shell conditions for the final particles:

( mz)) O (p1 +py— Zpﬁ) , (4.47)

where ¢ is defined in Equation 3.81, and 6" is a combination of Equation 3.81
and Equation A.54:

8 (p* - m?) 2218 (p* - m?) =218 (p* - m?) 6(p°) . (4.48)

For each subset of k indistinguishable particles in the final state, we have to
divide by a symmetry factor

o - (1152

(2m)*

R (4.49)
that compensates for double counting the same state k! times. This is additional
to the symmetry factor of the diagram, which only manages the double counting
of the internal lines. The cross section is directly observable, as it represents the
‘effective interaction surface’ of a certain process, and can be hence retrieved
from experiment by counting events, normalised against a background.

A common approach is to calculate diagrams directly for the amplitude
squared | M. The amplitude is then associated with the left side of the dia-
gram, the conjugate amplitude with the right side, and they are separated by a
so-called final-state cut. The Feynman rules on the left side remain the same,
while the rules on the right are hermitian conjugated (in particular, also the
propagator pole prescription changes sign to —i¢). Particles that cross the cut
are external particles, so they have to be on-shell, which means we add a factor
8" ( P - mz). Because we would like to treat it as one diagram, momenta in the
right side are flipped. This changes the sign of the 3-gluon vertex and the ghost
vertex. We can easily motivate this schematically:

e AN

abc abce abc
F‘me<k’p’q) (F‘ufp(ka]%(J)) 7F‘Ll£p<k’p’q>

where F is the 3-gluon coefficient:

Fare (k. p,q) = g f ™[ " (k—p)* + g (p-q)* + g™ (q-k)"].
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If we now calculate the same probability with the cut diagram method, we get:

Fivg(kopq) ) Fig(=k.=p,—q) = ~Fji (k. p. q)
So indeed, by flipping the momenta we get a minus sign difference. The same is
true for the ghost vertex. This then gives rise to the following extra Feynman
rules for cut diagrams:

A. Cut Fermion: = 88 (p*-m?)

B. Cut Gluon: a, i wvérw)(m\ b,y e _gab §+(k2) g

kiyn
Iéi _8ab §+ k2 uv 2 (u"v)
() (8" —27—-

n
D. All Feynman diagrams at the right side of the cut are complex conjugated.
c. The 3-gluon vertex and the ghost vertex get an extra minus sign when on
the right side of the cut.

The advantage of this approach is that it is easier to directly calculate inter-
ference diagrams. It is especially common when calculating PDFs and structure
functions, as we will see e.g. in Equation 5.35.

Renormalisation

There is an important matter that we yet have to match with experiment. When
doing loop calculations, as we saw before, we regularise the integral using dimen-
sional regularisation. However, in doing so we introduced two new parameters
to the theory, namely the UV regulator € and the renormalisation scale . These
are unphysical leftovers from a mathematical tool, so we somehow have to adapt
our theory to manage these.

We start with the UV regulators. The poles are an indication that some of
our physical quantities tend towards infinity at higher orders. This behaviour
is of course pathological, because we expect the corrections to become smaller
and smaller at higher order, converging to a finite value. Let us illustrate this in
an intuitive way. Consider e.g. a free electron propagating through spacetime.
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It has a charge equal to the elementary charge e. As we go to higher orders
in perturbation theory, the electron gets more and more ‘dressed” with virtual
photons and virtual electron-positron pairs, and these corrections add to the
apparent charge as we observe it macroscopically. However, these corrections
pull the value of the charge to infinity instead of some reasonable value. Now,
we have to understand that when we make a real-life experiment, there are no
order calculations involved—it is an all-order result—the only limiting factor is
the resolution of the detector. But even when the resolution is extremely bad, it
will always be good enough to make the difference between a stable value, and a
value that explodes towards infinity. In other words, experiment contradicts the
theoretical prediction. There is something fundamentally wrong.

In fact, as it happens, there is something conceptually wrong with our intuitive
explanation. We assumed that the elementary charge equals the bare electron
charge eo (which is the charge as it appears in L, i.e. before corrections), but of
course this is totally wrong. The elementary charge as we know it, is a result drawn
from experiment, hence it is the charge after making all order corrections. If the
reason that the charge explodes is that we took the wrong starting assumption,
then maybe we have to reverse the idea. Instead of a finite (unmeasurable) bare
charge, that explodes when calculating all order corrections towards an infinite
(measurable) macroscopic charge, we take the bare charge to be infinite, such
that it becomes finite after including all order corrections. This is the key concept
behind renormalisation.

Is it counter-intuitive—or even unphysical—to make the bare charge diver-
gent? Actually, no, it isn't, as the bare charge itself is unphysical. It is not an
observable, because no real-world electron will ever be free of virtual corrections
dressing it. Hence the renormalised charge is the correct physical observable.

Let us try to forge this into in a mathematical statement. We start with an
investigation of the gluon propagator. We define the one-particle irreducible (:P1)
diagram as the sum of all diagrams that cannot be separated by cutting maximally
one gluon line:

in*(q) = (4.50)

In the calculation we have done before, we have used the notation Hg ¥ to denote
the contribution that is second order in g. Note that we were able to factorise
out the tensor structure in Equation 4.39a. In fact, it is possible to prove that this
is a general statement to all orders:

' (q) = (¢°¢"" - 9"9") T1(¢°) » (4.51)

where IT doesn’t introduce extra poles in g*> = 0. The full gluon two-point
function is then given by:
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o @ < .+ (B + RGP +

_-igh g g
7’

+ ceey

qz (q 8po — ‘JP‘ZG)H(‘Z )

which we can abbreviate as

: S P(-T(g?)
Note that this relation is only valid inside an S-matrix calculation, and that its
derivation relies heavily on the validity of so-called Ward identities k, M* =0

for which the treatment goes beyond the scope of this thesis. Because IT(g?)
doesn’t add extra poles in g%, the manifest singularity in the exact propagator for

g% = 0 remains, and the gluon remains massless after higher order corrections.

The residue of this pole is

1

=OR Za, (4.52)

so that we can write

_ig.l’w
mmOmm = Zp— + finite terms. (4.53)
4

The constant Z,4, which we will call a renormalisation constant, is infinite after
taking the limit e — 0. E.g. using the result in Equations 4.39, we can can
calculate the O(a;)-shift in the propagator due to the fermion loop correction:

2
o 3 1 m
6ZW ,ZW_10;0_§;(;—4@+Jn4n—ln;§). (4.54)

We can repeat the same calculation for the quark propagator. The 1PI diagram is
defined as:

-i%(p) = . (4.55)

The full quark propagator is then given by:

= + + + ...

:¢—mo+p—mo[_iz(¢)]

1
+
p—mo
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Note that these are the bare masses, as the observable mass will be the mass after
corrections. The sum of all 1PI diagrams resums into

Q = m . (4.56)

The pole p = mg + X(p) represents the condition for the propagator to go on-
shell, it hence defines the new mass, after corrections, which is thus defined as
the solution of

m=mg+2Z(m). (4.57)
The mass shift is given by:
dm=m-my=2(m). (4.58)

For first-order corrections, it can be approximated by:

Sm~ Z(my). (4.59)

Close to the pole p = m, we can expand the denominator as

dz
(]b—m)(l—d— )+(’)((p—m)2).
p ﬁ:m
The residue of the propagator pole is given by
1 N
— 1z, (4.60)
1- 4z
9P |pm

so that we can write

Q = ZWP _1 p” + finite terms . (4.61)

Again, the factor Z, is infinite in the limit ¢ — 0. Similarly, the ghost field
propagators will gain a factor Z.. What makes things somewhat cumbersome,
is that because the Green’s functions gain a renormalisation factor, i.e.

(Qlpr-0u Q) = (VZ¢ )" (O] 164 Q) ,

the LSZ formula in Equation 4.44 also gains this factor:
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(VZ)" " (P P4l S| o1 pom) ~ (4.62)

tJ

We will see in a moment how we can deal with this.

In Equations 4.53 and 4.61 we separated the pole part from the finite parts.
However, it is often convenient to absorb some of the finite terms into the
constants Z,4 and Z, (or equivalently, in the renormalisation scale). This choice
is totally free, as long as it is kept consistently. This is called a renormalisation
scheme. Two common choices are

A. MS (minimal subtraction renormalisation scheme): No finite terms, only
the pole !/c is absorbed.

B. MS (modified minimal subtraction renormalisation scheme): The pole /e
and the regularisation ‘remnants’ In 477 and —yg are absorbed.

It is convenient to define the MS scheme in a more rigorous way. We will subtract
the remnants by absorbing them in the renormalisation scale. For this we define
a factor S, such that y, defined as

ux d:efyzese = ‘ue[l +e(lndm —yg) + O(ez) ] , (4.63)
contains the remnants. The most common choice for S is
Se = (4me™F)", (4.64)

but we prefer to follow the convention by Collins [33]:

MS Subtraction

_ (4n)*

"t (4.65)

Up to first order in ¢, the two conventions are equal. We prefer the last one,
because it maximally simplifies loop calculations with a double pole at first
order, which are common when using Wilson lines (see e.g. Equation 7.72
for a calculation where we demonstrate the difference). In practice, every
coupling constant is automatically accompanied by the renormalisation scale
(see Equation 4.34), so to express the results in function of the subtracted scale,
we have to divide it by S,:

¢ ¥ Egm VST, (469

n m
(LTt v () o, o)) (018 0,010
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where g is the dimensionful and g the dimensionless coupling constant, i.e.

[¢] = eand [g] = 0. We will only use the dimensionless coupling constant g and
the subtracted scale g, so for convenience, we drop the bar notation. Also, in

order not to overload our calculations, we won't explicity write the factors \/S;!.

We will just remind ourselves to divide by a factor S, per loop (and mention
when we do this). To see how S, subtracts the remnants, we first note that the
(4m)€ factor is directly cancelled, and that the Euler-Mascheroni constant is
cancelled because

P(e)L(1-¢) = 2 +0(e) . (4.67)
This can be illustrated with e.g. Equation 4.15:
5! F(l -€) i
.[(271) (k2 - mz) (4m)e (4m)? ( ) re,

(4;) (1_1 n )

To renormalise our theory we can now proceed in two different ways.

RENORMALISED PERTURBATION THEORY: In this approach we remove
the infinite renormalisation constants from the n-point correlators. To achieve
this, we rescale the bare fields:

Z4 AL, (4.68a)
Vo =\ Zy Vr, (4.68Db)

co >\ 2Z:cr. (4.68¢)

This is indeed the renormalisation procedure as we described it in an intuitive
way in the beginning of this section. We define the bare fields as infinite, such that
they become finite after corrections. Here the AL, Y, and ¢, are the renormalised
fields, i.e. the fields as we measure them in experiment. In a way, they are the
bare fields after extraction of an infinite factor. Thanks to these rescalings, the
Lsz formula is cast in its original form, as in Equation 4.44 without the infinite
factors in front of the S-matrix, and in function of the renormalised fields. The
rescalings also propagate into the Lagrangian, which is now given by:

1 1
L= Za(3"A) - O Ak)” - 2£ZAOuATO A, - 2T 0 G

+ 2,9, (id = mo) vr + g0/ 24 2y ¥, Ayr — g0\ 24 Zc f0C, a“Ab
- &0 ijabc (0445,) AP AT EggzifabxfxCdAﬁ (Ab AR AT
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If we now define

Counterterms

8,¥2, -1, 0a¥Z4-1, 822 -1, oo
5md:°f2wmo—iﬂ, 51C1éf&3c Zp -1, SZdéf&ZW Za -1, (4.69b)
g 4
e 3 € 5
3d:f%0(\/2) =ll; 54(1:f%3i_1’ (4.69¢)

we can write the Lagrangian as

L = Lrenorm + Leounter » (4.70)

where the first is the renormalised Lagrangian, i.e. the standard Lagrangian
expressed in function of renormalised fields, physical masses, and physical
coupling constants:

1 2 1 _
Lrenorm = =~ (8”AZ - a”A’,‘) - EaﬂAfavAt -c¢,O¢

+9, (19 - m) Y+ gV, Ay - gfabCEraMAZrcr
avc a b ,ve 1 abx rxc a C AV
_gf b (a,uAvr)Al: Ar - Eng ’ f dA Ah A{: Ard,

puritvr

S

and the second contains the so-called counterterms:

1 2 1 _
Leounter = =704 (0"A} - 9"AF)" - ZﬁAa,,A’,‘avAZ -8, 0c
+ 0y, (18 = 8m) yr + g 02V, A,y — g 81 f7C,04 AL,
1

- g8 £ (9,4%,) AL AT - S8y [ A AL ALAY,
The eight parameters in Equations 4.69 depend on five quantities (3 fields, a
mass and a coupling constant), so there are three relations between them. These
are known as the Slavnov-Taylor identities, and can be derived from Noether’s
current conservation theorem and gauge invariance (see e.g. [31]):

1
61—6CE62—6WE63—8AE5(54—6,4). (4.71)

The definitions in Equations 4.69 only make sense if we give a precise definition
for the physical mass and coupling constant. For this we need to define a set
of renormalisation conditions, from which we can derive constraints on the
counterterms. One such condition is e.g. that the physical mass is defined as
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the pole of the quark propagator at all orders. Then we proceed as follows: the
terms in Leounter Will give rise to extra Feynman rules, viz. the counterterm
diagrams. We then can compute any amplitude by considering all possible
diagrams, including the counterterm diagrams (which are power-counted as
one order in & higher than the corresponding regular diagrams). The amplitude
will be expressed in the unknown parameters &4, &y, é., 01,02, 03, 04, and 8y,
These parameters are then retrieved by matching the amplitude against the
renormalisation conditions. The result will be naturally free of divergences, and
independent of the regulator. See e.g. [18, 31] for an expanded treatment.

BARE PERTURBATION THEORY: Another approach is to keep all quantities
in their bare form during the computation of amplitudes. It will gives us an
expression in function of the regulator € and the bare parameters m, and go.
Next we calculate the physical mass and coupling constant up to the order that
is relevant for the first calculation. We then express the bare mass and coupling
constant in function of the physical parameters. We retrieve the cross section
by using the Lsz-formula, but with the renormalisation factors. In the end the
result is free of divergences, and independent of the regulator. This approach
is more straightforward to implement, as we can keep the same calculations as
before but expressed in bare quantities. It requires however double the number
of calculations, as we have to calculate the physical quantities separately, and
becomes quite complicated at higher orders. But the advantage is that if the
physical masses and coupling constants have already been calculated, they can be
reused in other calculations. We prefer to use this approach, as it allows us to do
regular calculations as before, forgetting about renormalisation or counterterms,
and still renormalise the result later on. Of course the two approaches are totally
equivalent, but not interchangeable; one has to use one approach consistently.

The Callan-Symanzik equation

In the previous subsection we investigated how we use renormalisation to handle
one of the unphysical leftovers of the regularisation process, namely the UV
regulator. However, there is another unphysical remnant that we need to deal
with, viz. the renormalisation scale y, which follows from a shift in spacetime
dimensions to non-integer values (see Equation 4.34). After renormalising the
fields, all the parameters will depend on this renormalisation scale, i.e.

Z(u), g(p), m(p). (4.72)
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But logically, the bare parameters are renormalisation-scale independent:

9o _ 9% _ oo
ou ou ou

=0. (4.73)

Now consider a Green’s function of # fields, for simplicity all of the same type.

The bare Green’s function depends on the bare parameters, the fields, and the
momenta in the external legs, but not on the renormalisation scale:

70 = Go (80 mo, {$:},{pi}), (4.742)
d?é‘
d[/t =0.

(4.74b)

The renormalised Green function follows from the rescaling of the fields:

G ( =( §0 , (4.75)

and gains now scale dependence through its parameters, but possibly also directly
(note that the momenta don’t scale with y):

G" =G (g () m(u), ($:(0)} {pi}) (4.76)

Using Equation 4.74b we can investigate its behaviour under a scale shift:

d —\7 B d 3
where
10lnZ
V¢ = = . (4.78)

2 dln u

is the anomalous dimension of the field. We have chosen to differentiate w.r.t.

In u instead of y, such that y4 is dimensionless. We can use the chain rule for
the differentiation of the Green’s function:

d 0 -
dlny? (alnpt ﬁ(g) alnm)g/(’
where
IO B(g) = o8y (4.79)

dln p dlny
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Combining this with Equation 4.77, we get

0 0 0
— - "=0. 8
(alny +ﬁ(g)ag Jrymalnm +ny¢)? (4.80)
If we consider a general renormalised n-point Green’s function in Yang-Mills
theory:
G Qs Ya g W, AL A e T [Q)

:Zl;”( ZA) Z ?nkl)

we now know that it has to satisfy the equation

Callan-Symanzik Equation

d d 0
( +ﬁ(g)£+ymalnm +nyw+kyA+lyc)‘9)””"lzo, (4.81)

dln p
with
Renormalisation Group Equations
v 9g(u) x 10lnZ, v 1olnZ,
= ) = - ) = = ) 8
Alg) dln p W= dln u L dln p (4.822)
v 10InZ, N dlnm
= > = —. .82b
E== olnp Us dlnp (4.820)

This is called the Callan-Symanzik equation, and the set of equations defining
the B-function and the anomalous dimensions are commonly called the
renormalisation-group equation (RGE). We can calculate the 8 and y functions
by calculating a few diagrams at a given order (e.g. the gluon propagator and
the 3-gluon vertex) and compare the respective Callan-Symanzik equations.
The renormalised perturbation theory is the best suited framework for this type
of calculations.

Running Coupling in QCD: Asymptotic Freedom

At NLO, the -function can be written as:

(4.83)

B(g) = bo(4 ok
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which we can solve exactly:

Running Coupling

gw=—7"— (4.84)

There is a huge difference between Abelian and non-Abelian theories. In an
Abelian theory, like QED, we have

4
b = S (4.85)

which gives a plot as shown in Figure 4.2a, where the coupling goes towards zero
in the limit 4 — 0, and rises towards infinity for g — oco. This is quite intuitive,
as high energies imply short-distance physics. If we imagine e.g. two magnets
approaching, they will attract each other (assuming opposite poles) stronger
and stronger the closer they get.

On the other hand, in a non-Abelian theory like su(n), the by coeflicient is
given by:

1 2
by " = SN+ SNy (4.86)

where N;is the number of gauge elements (colour charges, 3 for QCD) and Nythe
number of quark flavours (6 for QCD). If %NC > %Nf, the coefficient will be
negative (as is the case for QCD). This gives a plot as shown in Figure 4.2b, where
the coupling goes towards zero at infinity, and rises sharply in the limit 4 — 0.
This is quite counter-intuitive, as it implies that particles at an infinitesimally
small separation don't attract each other (colourwise). Such a theory is called
asymptotically free. There is a useful metaphor, namely that of two particles
connected by a rubber band. If you leave the band relaxed, nothing happens. But
from the moment you try to pull the particles apart, tension will accumulate, and
the more you pull, the more you try to increase the separation between the two
particles, the stronger the tension. It is hence also a metaphor for confinement,
describing how quarks can never exist as free particles, because the harder you
try to separate them from a bound state, the harder they resist. But the metaphor
goes even further, because if you pull too hard on the rubber band, it will snap
in half. Similarly, if you keep on trying to separate quarks, after a while the gluon
binding energy will ‘snap; i.e. it will create two new quarks to bind with the
existing ones, such that there are now two independent bound states that can be
separated at will.

But the most important consequence is that at a given energy scale, namely
roughly Aqcp ~ 250 MeV, the coupling constant a; will become bigger than one,
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Figure 4.2: a) Running coupling for QED. As for any Abelian theory, it is slowly increas-
ing. b) Running coupling for QCD (with log scale on the horizontal axis).
Because Y N, > 2Ny, the f-function is negative, and the coupling rises to-
wards small energies. The dashed line shows a; » 0.1, the common value
for high-energy calculations.

and the perturbative framework is invalidated. This is pathological. Of course,
also in QED there could be energies high enough to render the coupling agy > 1,
but at least these energies are high enough not to influence with the physics at
hand, i.e. we can still treat the perturbative theory as an effective theory up to
some upper cut-off scale. This is not the case in QCD, as the energies at which a
perturbative treatment fails are energies that are present in every experiment,
namely inside the hadrons.

Luckily there is a way to deal with it. The asymptotic freedom essentially
divides QCD into two parts: a part where y > Aqcp and a perturbative approach

118



4.2 FROM THEORY TO EXPERIMENT

is valid—we can hence use perturbative QCD (pQCD) as an effective theory in this

region—and a part that is not calculable, but has to be extracted from experiment.

This is the basis for the factorisation framework, which we will study in the next
chapter.
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BASICS OF QCD

QCD, as a non-Abelian theory, has a peculiar behaviour due to the anti-screening
of gluons which makes it asymptotically free, as was discussed in the previous
chapter. Essentially it means that it is cut into two regimes: a perturbative regime
called perturbative Qcp (pQCD) where «; < 1, such that hard processes can be
calculated by standard field theory methods (using pQCD as an effective theory
to QCD), and a non-perturbative regime that is not calculable. Real-life scattering
experiments are never limited to hard processes, so it is necessary to somehow
combine both regimes into meaningful observables. The use of factorisation is
a key method to achieve this, as it allows us to separate the two regimes as a
separation of energy scales. As the separation is arbitrary, we add the natural
requirement that the resulting process cannot depend on the separation point.
This then leads to the emergence of evolution equations, describing how the
non-perturbative part evolves in function of energy. A few common processes
in QCD are:

EPA Electron positron annihilation was one of the first processes used to in-
vestigate QCD. The lepton pair annihilates into a virtual photon, which
consequently decays into a quark-antiquark pair (events where the photon
decays into a lepton pair are ignored). It was intensively studied in the
LEP experiments between 1981 and 2000, and lead to deep insights in the
theory of the strong force. Angular distributions of two jet events demon-
strated the spin-1/2 nature of quarks, angular distributions of three jet
events demonstrated the spin-1 nature of gluons and the rate of three-jet
events to two-jet events provided a good estimate of the strength of the
strong coupling constant (10% rate, hence a; ~ 0.1 at standard energies).
Finally, four-jet events (see Figure 5.1) are sensitive to the three-gluon
vertex, and hence allow for an investigation of the non-Abelian nature of
QCD, and literary for a check of SU(3) to be the underlying group theory.
It remains to date an interesting experimental setup to investigate the
workings behind jet fragmentation and hadronisation, as there are no
initial-state interactions that could blur data and calculations.
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5.1 DEEP INELASTIC SCATTERING

Deep inelastic scattering, in which an highly relativistic electron is collided
onto a heavy proton (or any other hadron), is a process mainly useful
to probe the hadronic contents. Its investigation at the HERA experiment
has lead to the development of the so-far most successful factorisation
approach, namely collinear factorisation. It is the process that we will use
in this chapter as a starting ground to develop the framework of parton
density functions (PDFs) and collinear factorisation.

Semi-inclusive deep inelastic scattering allows for a much richer phe-
nomenology, because it includes the identification of one final hadron.
However, The underlying theory becomes much more involving, as in
this case collinear factorisation is broken, and dependence of the PDFs
on transverse momentum has to be included. As this is the ideal process
to develop the transverse momentum density (TMD) framework, we will
study it extensively in Chapter 8.

The Drell-Yan process, where two hadrons are collided and form a lepton
pair, is a very interesting process as it is free of final-state interactions, and
can as such be considered the reverse of the EPA process. It is however quite
rare and hard to measure, leading to low statics and making it difficult to
interpret. One of the key results in DY experiments is the discovery of the
light quark flavour asymmetry in the proton. We will briefly investigate
the topological differences between DY and SIDIS in the TMD framework
in the end of Section 8.2.

Deeply virtual Compton scattering, in which a photon is scattered elast-
ically on a hadronic target, is a process that allows a direct view on the
hadron contents as expressed in coordinate space, hence it is the most
appropriate experimental setup to investigate generalised parton density
functions (GPDs). We will not address it in this thesis.

More reading on the basics of pQCD can be found in [18, 22, 33-38]

5.1

DEEP INELASTIC SCATTERING

To investigate the framework of factorisation, we will introduce it in the QCD
process where it is easiest (because collinear) and best understood, namely DIs.
Here an electron is collided with a proton, but in the final state only the electron
is measured while all other final states are integrated out. What simplifies this
process as compared to other factorised processes, is that there is only one
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wornaon TG,

Figure 5.1: Four-jet events demonstrate the non-Abelian behaviour of QCD, because
they consist of two distinct sub-processes. In the Abelian sub-process, a
gluon is radiated twice from a quark, proportional to Cp, but in the non-
Abelian sub-process, a gluon is radiated and then split into two gluons,
as shown here. The latter is proportional to C4, and angular correlations
between the two sub-processes allow for the extraction of the rate of the
constants.

hadronic state, i.e. only one non-perturbative region. A process where two
protons are collided would be much more difficult to investigate, due to the
mixture of two non-perturbative regions (unless severely restricted, like the way
that DY is limited to events that produce a lepton pair).

This also implies that in DIS we can integrate out the transversal component
of the momentum of the struck quark, leaving only longitudinal dependence in
the PDF. In Section 8.2 we go one step further by identifying a final state hadron,
implying the need of two PDFs concurrently, and the preservation of transversal
momentum dependence.

Kinematics

Deep inelastic scattering is the most straightforward process to probe the insides
of a hadron. An electron is collided head-on with a proton (or whatever hadron),
destroying it maximally. The kinematic diagram is shown in Figure 5.2. We will
always neglect electron masses. The centre-of-mass energy squared s is then
given by:

s=(P+1)*=m)+2P-1, (5.1)
and g is the momentum transferred by the photon:
g R (5.2)

Because q* = 2E,E.(cos 0, — 1) < 0, we define Q? = -g* > 0. The invariant
mass of the final state X is then given by

myx = (P+q)*=mj+2P-q- Q. (5.3)
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My

Figure 5.2: Kinematics of deep inelastic electron-proton scattering.

In order for the photon to probe the contents of the proton, it should have a

wavelength 1 < r, with A ~ % and r, the radius of the proton. The latter is

tully destroyed if we have deep (Q? > mf,) and inelastic (mg( > mf,) scattering.

The two Lorentz invariants of interest in the process are Q% and P - g, but it is
convenient to use the variables Q and xp instead, where

Q2
2P-q

Iz

XB (5.4)

is called the Bjorken-x. Unless necessary to avoid confusion, we will always

drop the index ‘B] just remember that x always denotes the Bjorken-x (and thus
QZ
s+Q?

(neglecting terms of O(g—j)) and 1 (the elastic limit). Another useful variable is

not a general fraction, see further). Its kinematics restrain x to lie between

x Pq
Y=o (5.52)
QZ
= .b
x(s—mf,) (5.5b)

In the rest frame this equals y = E_TE’, the fractional energy loss of the lepton. It
is not an independent variable because

Q*=xy(s— mlz,) . (5.6)
Let us finish this subsection on kinematics with two trivial relations:
2
2x P-l = Q—, (5.7a)
Y
, 2
Lg=-1q=-%. (57b)

The latter can be demonstrated by calculating (I — ¢)2 = "2 = 0.
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Invitation: The Free Parton Model

A parton is a terminology used to denote any pointlike constituent of the proton,
being quarks, antiquarks or gluons. The parton model (PM) describes the proton
as a black box containing an undetermined amount of such partons. The mutual
interactions of these partons have large timescales compared to the interaction
with the photon, allowing us to separate the latter from the former. For instance,
inside the proton a gluon could fluctuate into a quark-antiquark pair. The photon
would enter the proton and kick out one of the quarks, much faster than the pair
can recombine. The pair looks ‘frozen’ to the photon: because of the much larger
timescale of the parton interactions, all dynamics are hidden for the photon.
From the latter’s viewpoint, all partons are hence ‘free’

As we will see in Equation 5.10, in DIS the momentum of a parton is defined
as a fraction & of the original parent hadron. The size of this fraction will define
the dominant type of parton that arises in this regime. We have three types:

A. Valence quarks: 1072 < &<1. These are the quarks that normally
form the parent hadron. E.g. for a proton there are 3
valence quarks, viz. 2 up quarks and a down quark.

B. Sea quarks: 107* < £ <1072, These quarks always come in a quark-
antiquark pair, and are created from a virtual gluon.

c. Gluons: 10 < £<107% At large-x, gluons can be neglected as
the valence quarks are by far the dominant partons.
However, at small-x gluons quickly dominate all

partons and one can neglect all quarks (see Chapter 9).

J

Note that the regions in & are just vague approximations, as there is no way
to sharply separate the different parton types. Furthermore, at higher energy
scales, the gluons become dominant much faster. Also note that the existence
of both valence and sea quarks makes that the quark number operator is not
well-defined, as it is not conserved. We anticipated this in the construction of
conserved Noether charges (see Equation 1.52), where it naturally follows that
it is the difference between particle and antiparticle states that is conserved.
Hence if we write the number of valence u quarks as N,,,, the number of u
quarks as N,,, the number of & antiquarks as Ny, and similarly for the d quarks,
the following equations are valid (conserved and Lorentz invariant) in the case
of the proton:

N,, =N, - N;=2, (5.8a)

124



-

5.1 DEEP INELASTIC SCATTERING

%har d parton model %

Figure 5.3: DIS in the FPM. The virtual photon strikes one of the quarks, while the other
two quarks are left unharmed and don't influence the process anyhow.

Ny, =Nd—NEEl. (5.8b)

When applied on parton density functions (see later), these sum rules are known
as the Gottfried sum rules.

It is convenient to let the short-distance process—the interaction between the
photon and one of the partons—be named the hard part, which we will often
denote with a hat, e.g. § is the hard CoM energy squared. In contrast to this stands
the soft part, which—as we will see in later sections—contains all interactions at
large distances. For now, we can make an intuitive distinction: everything inside
the proton is soft, everything outside the proton plus the interaction point—the
photon and the struck parton—is hard. This is illustrated in the left picture of
Figure 5.3. Later on we will give a more rigorous formulation for this distinction.
The PM thus describes DIS without the strong interaction participating, as all
effects of the strong force are absorbed in the proton, without giving any clue for
the structure of the latter except one, viz. that we can extract a parton from it.

Before we really delve into the PM, we try to get a general idea by investigating
an extreme case: the free parton model (FPM). In this toy model the proton
has no dynamic structure, but merely consists of exactly three quarks, totally
unaware of each other’s existence. From the point of view of the photon it doesn’t
matter how the proton structure looks, be it in the FPM or the standard pM,
it just hits a parton like it would hit any electromagnetically charged particle,
ignoring all other structure in the proton. The leading order hard part of DIS is
therefore genuine electron-quark scattering, which we can describe similarly
to electron-muon scattering.' This is illustrated schematically in Figure 5.3. Of
course, at timescales much larger than the process, the remains of the proton
and the struck parton will hadronise into jets, as free quarks can only exist for a
short amount of time due to the asymptotic freedom of QCD.

Note that we deliberately choose e”u* scattering over e”e* scattering, because the latter also
contains a diagram where the two electrons annihilate into a virtual photon, which has no
correspondence with e g scattering.
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The differential cross section for (unpolarised) e” u* scattering can be calcu-
lated by basic QED techniques and equals

do + 4ma’s e

—(eu" e )= l-y+—], .

i (e u u) 2 r+5 (5.9)
where o » 137 is the electromagnetic fine-structure constant (see Equation A.2).

The only difference between the cross section for e ™ scattering and that for
e~ g* scattering is the charge of the quark:

déo , _ _ ,4ma’s »?
5(6 q" e q°)=e RL (1—y+7 ,
but now § = (I + k)z, the centre-of-mass energy squared of the electron and the

quark. In order to relate the hard cross section to the full cross section, we define
the quark momentum as a fraction of the proton momentum:

[ k=¢&pP 0<é<1, (5.10) ]

such that
$§=4&s y=y.
For the outgoing quark to be on-shell, we have the requirement

(k+q)2~2£P-q—Q250,

=&=x.

In this case, the on-shellness constraint fixes the momentum fraction to equal
the Bjorken variable, but this is certainly not a general result. The Bjorken-x is
a kinematical constraint defining the process, while £ is nothing more than a
momentum fraction (totally independent of the process). Keeping both x and &
as independent variables (which will simplify comparisons with later results),
the electron-quark cross section is given by

&6,  4ma’s .
dxdydé Q4
Going to the electron-proton cross section is obvious in the FPM. We simply

integrate over all possible quark fractions £ and make a weighted sum over the
three quarks:

+y—2)62€8(x—£) (5.11)
2 )1 ’ '

d2 GFPM

dxdy Z./gdxdydgt
_471045 B y\.1 2
(i)l o9
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Figure 5.4: DIS to all orders: a photon hitting a proton and breaking it.

A More Formal Approach

Let us redo our intuitive derivation from the previous section in a more formal
way. We will treat the proton as a ‘black box’ (contrary to the FPM representation
where it is an exact packet of three partons), which we deeply probe with a
highly virtual photon. This is depicted in Figure 5.4. Whe know that in the PM,
it is assumed that the photon interacts with one constituent of the proton only
(a quark, an antiquark, or at higher orders possibly a gluon), on a timescale
sufficiently small to allow the struck parton to be considered temporarily ‘free. To
motivate this quantitatively, we write the components of the proton momentum
P and the parton momentum k in light-cone coordinates (see Appendix A.4):

2

pr = (P, 2 ) ke = (kY ko k)
’2P+’J" b ’l'

In the rest frame of the proton, the distribution of its constituents is isotropic,
i.e. all components of p¥ are of the order < m p-In the limit Pt — oo, the so-
called infinite-momentum frame, the only remaining component of the proton
momentum is its plus-component. The parton naturally follows the proton in
the boost. Then the 4-momenta become:

Py = (P7,07,0,), kiye ~ (k7,07,0,).

The parton’s transverse component p, ~ m, can be trivially neglected when

compared to p* — oo. The ratio of the plus momenta is boost invariant, so that

we can write:

k+

e

As long as we can boost to a frame where P is the only remaining large compon-

ent of the proton momentum, the parton is fully collinear to the parent proton

and can thus considered to be ‘free’ From now on we will always parameterise the

proton momentum and the struck quark momentum based on the dominantly
large P*:

1’}’12 2 2
P”::(P+ L ol), k”::(£P+,§—j;E£,kl), (5.13)

# _ rph
> = kpyp = $Piyp -

> 2p+’ 2£p+
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where we can safely assume k2, k? <« 2£P* and m2 < 2P, reproducing the
IMF limit. Furthermore, we choose a frame such that

QZ
q" = (0+ o P+’qL) , (5.14)

where ¢ = Q% .

Returning our attention to the mechanics behind the process, we write the
matrix element for a given final state X in function of the leptonic and hadronic
states:

MX = (l,‘ ]l!::ptonic ‘l> DHV(q) <X| ]l:adronic |P> ’ (5-15)

such that the differential cross section is given by (see Equation 4.46):

1 & py (4) / 2
d S (P+l-px-1
T 1(271)32E (27)32Ex (Pel-px-1')IM

do 2 v
; W T Q4L‘MVW (516)

Before we continue, we will define a set of Cartesian basis vectors, which will
show to be especially convenient when investigating SIDIS in the TMD framework
in Section 8.2. We start by choosing a spacelike normal vector in the direction
of g#. We thus define the normal vector g* as

et 47

Q’ (5.17)

which is indeed spacelike normal because §* = 1. Next we construct the timelike
basis vector from the proton momentum P¥ by subtracting from it its projection
on ¢, and dividing by its total length:

Ay def A A
e (PF4 P-4 9),

= % é(ZxP” +q"), (5.18)

-1 (5.19)
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in the limit Q* > mlz,. Also note that the projection on g* equals %q”‘ =-P-q ¢".
The next basis vector is then constructed by subtracting from it its projection on
G# and ##. This is the same as contracting it with the tensor

Uv def

g =gt +gtg -, (5.20)

which has the following useful properties:

qul ngQv =0, (5.21a)
tgl’ =gl"t =0, (5.21b)
gfvgup = 6/) +4"4, - i fp’ (5.21¢)
g g =2. (5.21d)

Note that this definition of g} is compatible with the definition in Equa-
tions A.45. We can hence construct a third orthonormal (spacelike) vector
from, say, [#:

1 uvy

T8 b
\/ —lug\ guvpl?

1 2—9y.
- (K%l”—;{%(j——t),
1-y- £y

i{l def

where we used the relations in Equations 5.7. It is again a spacelike orthonormal
vector:

if ZAH = lAnglAI = Afglm,ll' =-1. (5.22)

Now normally we would proceed with the construction of the last orthonormal
basis vector, but we don’t have any independent physical vectors left in our
process. But we still can define an antisymmetric projection tensor as follows:

def A A
e’ = e, q, . (5.23)

As with g!", this definition of &/ is compatible with the definition in Equa-
tions A.47. It is easy to show that

i =0, (5.24a)
sf” 4v=0, (5.24b)
e’ givp=¢l,, (5.24¢)

e gLw=€l,=0, (5.24d)
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by use of the antisymmetry of é#"P°. Note that " , has the same components as
¢ but with opposite signs. Furthermore, because in general

s’wpasyvrv =-2 (8,01501} - 8,0”50‘[) > (5.25)
we have
e =2, (5.26)

Let’s summarise our new basis:

Orthonormal Basis Vectors

=L (5.272)
=, 5.27a

7%

A 11

" = —— (2xP* + ¢*) , (5.27b)

kQ
A 1 2—9y.
I# = (Kll” - K%q - Tt) ) (5.27¢)
1_}’ _ K4—1y2 Q

Transversal Tensors

g =g+ gtg -t (5.28a)

a4 = s”vP”qug. (5.28b)

Now we can express all the relevant momenta in the process in our new basis
using Equation 5.13 (remember that the projections on 4* and [* give an extra
minus sign, because §* = [* = -1):

Physical Vectors in Orthonormal Basis

9" =Qg", (5.292)
Q.,, Q.

P = Kﬂl‘“ - qu’ (5.29b)
Q. ¢&¢Q,

kt ;Etﬂ - zzqy ) (5.29¢)

|
e
~

=
L

1 2-y, b 1Q K2-1 5
# = - 2yy %q”-ﬁ-;% 1-y-— 1 y2 ¥, (5.29d)
Q

l’P‘:le_yf" Q

1 / k2—1 . »
Y A T — 1—vy— 2 ¢ .
K 2y 2q +K y 4 4 4 (5:29¢)

It is easy to verify that these formulae indeed reproduce the correct definitions.
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5.1 DEEP INELASTIC SCATTERING

E.g. one can quickly check the on-shell conditions ¢> = -Q?, k* = &m?
?=1?=

Let us return to Equation 5.16, and specify the lepton and hadron tensor in
our new basis. We consider the electron beam to be polarised, say longitudinally,
but we don’t measure the polarisation of the outgoing electron, implying we
have to sum over outgoing polarisation states using Equations A.26. Then the
lepton tensor L*” is given by

L2 3 (@ 0y () (@ (1)
AI
_ _QZgyv + 41(#1"’) + ZiASHVPalpl;. (5.30)

Writing it in our new basis gives:

2
LHY = Q [ yzg;lﬂ’ +4(1—y) (fl‘fv " llllv) +4 /1—)/ (Z—y) i(ylv)
»?
—idy (2= p) el + 120 /1-y PGl ] (5.31)

This might look more difficult than the original expression, but the advantage
lies in the fact that it is now expressed in an orthonormal basis, simplifying
contractions with other tensors.

On the other hand, from Equation 5.16 we see that the hadronic tensor is
defined as

w24 32/ g, o Bra=px) (PO X)X O)1P) . (532
- [z é= o)), (533

where we used the translation operator
(PT™(0) |X) ! "=P2)% = (P ] (2) [X) , (5.34)

and integrated out a complete set of states by use of the completeness relation:

Frow-1. F 25 [ -5 [E2C s (-nd) . 6o

where

& (pk - m%) =21 8(p% - m) 0(p") - (5:36)
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[

Figure 5.5: The hadronic tensor is a squared amplitude defined with a sum over all
possible external states. This sum, and the separation between the amplitude
and its conjugate, is represented by the vertical final-state cut line.

Figure 5.5 shows the common convention to draw the hadronic tensor. It is
a squared amplitude for a proton absorbing a photon going to any final state
X, while summing over all possible final states. The vertical curve, a so-called
‘final-state cut; acts both as a separator (everything to the left is the amplitude
M, everything to the right is the complex conjugate M *) and as a symbol rep-
resenting the completeness relation (reminding us that we have to sum over
all final states and integrate out their momenta). It is straightforward to use
the final-state cut in perturbative calculations: every particle crossing it, is a
real particle and thus has to be on-shell. This can be incorporated by adding a
8" ( P> - mz), matching the particle’s momentum squared to its mass squared
(see also the discussion on page 106). We have no information about the con-
tents of the hadronic tensor, as it sits in the highly non-perturbative region of
QCD; the proton constituents are strongly confined. But we can parameterise
the hadronic tensor based on its mathematical structure. In this thesis, we will
restrict ourselves only to work with unpolarised hadron tensors, as polarisation
brings some technicalities with it, which would distract us too much from our
main topic of interest at the moment.

For an unpolarised proton, W#¥ will only exist in the vector space spanned
by the orthonormal vectors we derived before. But as the electron momentum
I# doesn’t have any physical significance inside the hadron tensor, we will use
g*, t#, and their crossings. Thus we can expand the former as:

WH = Ag" +Bg"q" + C4"1" + Di#§" + Eit*1" + iFe""P’i,4,,

where the scalar functions A, ..., F only depend on mf,, Q? and x (because
there are no other invariants in the proton system). In the case of polarised
hadrons, the spin vector ¥ and its combinations should be added to the basis.
Next we impose current conservation, which requires d,,J# = 0. Applying this
to Equation 5.33 we find g, W#" = W#"g, = 0. This condition gives:

A=B, C=D=0.
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5.1 DEEP INELASTIC SCATTERING

WH# should also be Hermitian and time-reversal invariant, and for the electro-
magnetic and the strong force it should be parity invariant as well. By using the
transformation matrix

1 0 0 0
0 -1 0 0
A, = (537)
0 0 -1 0
00 0 -1

we can write out these conditions (adding spin-dependence for future reference):

Hermiticity: Wi (q,P,S) = Wyu(q,P,S),  (5.382)
parity-reversal: AHPAVU Wiuv(9, P, S) = Wi (4, P, —§) , (5.38b)
time-reversal: AHPAV‘7 W;v(q,P, S) = Wi (4, P, g) . (5.38¢)

where G# = 6#°¢° — 6#'q'. The effect of these conditions is that 4, .. ., F should
be real functions, and the parity-reversal requirement sets F = 0. But parity is
not conserved in weak interactions; in that case F is allowed to have a non-zero
value. We can rewrite W#" as (taking S = 0 again):

1 yn .
WHY = Er [¢)" Fr(x, Q%) - ##" Fi(x, Q%) —ie\" Fa(x,Q%)] . (539)
where
FTZ—ZXA, FLZZX(A+E), FAZZXF.

These are called the transversal resp. longitudinal resp. axial structure functions of
the proton. They are non-perturbative (and thus non-calculable) objects, which
have to be extracted from experiment. In parallel to these, a different notation is
also used in literature:

1

F = —Fr, Fr=2xF, (5.402)
2x
1

F, = = (FL + Fr,) , Fp =«*F, - 2x Fy, (5.40Db)

1 2

F;= — Fa, Fy=xx"Fs. (5.40¢)

XK

We can express the hadron tensor in function of the last three structure functions
as well:

W”v—— ‘qu ALY K2 B .K2
=—-g F+t't ﬂFz F +178MvFA. (5.41)
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5.2 PARTON DISTRIBUTION FUNCTIONS

The difference between Fr, Fy, F4 and F, F,, F3 is just a matter of historic con-
vention. However, there exist different conventions for the normalisation of
the structure functions, if so often differing by a factor of 2 or 2x. We follow
the same convention as e.g. in [39], as we believe it to be the most commonly
accepted one. The structure functions can be extracted from the hadronic tensor
by projecting with appropriate tensors:

1
F = _ng" Wiy » Fr=-xg\" Wuy, (5.42a)
X foays 2up
F, = = (2848 - g ) Wy, Fp =2x 1" W, (5.42b)
2i
B=-5 e Wiy, Fp=-2xié" Wy, . (5.42¢)

For the rest of this thesis we will ignore weak interactions, dropping F4 from
the hadronic tensor.
Combining the result from the leptonic and the hadronic tensor, we get

2Q? ’
Ly WH = x_?ﬂ [(1—y+ y?) Fr(x,Q*)+(1-y)F (x’QZ)] .

Plugging this result in Equation 5.16 gives us the final expression for the unpo-
larised cross section for electron-proton deep inelastic scattering (neglecting

m2
terms of order Q—‘z’):

d’o dma’s 2
rrrmi [(l—y+ y?) Fr(x Q¥ +(1-y)F (x QZ)] (5.43)

If we compare this with the result in Equation 5.12, we find the following
structure functions for the free parton model:

F?PM (x) QZ)

F™ (x,Q%) =0. (5.44b)

1 2
3 zq: eq (5.44a)

5.2 PARTON DISTRIBUTION FUNCTIONS

In Subsection Invitation: The Free Parton Model on page 124 and onwards, we
succeeded in deriving a lowest order result for the cross section, starting from
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5.2 PARTON DISTRIBUTION FUNCTIONS

a static proton. On the other hand, in Subsection A More Formal Approach
on page 127 and onwards, we followed a more formal approach, without any
assumptions about the proton structure but one: that we can separate the hard
interaction from the proton contents. This is the concept of factorisation: in
any process containing hadrons we try to separate the perturbative hard part
(the scattering Feynman diagram) from the non-perturbative part (the hadron
contents). The latter is not-calculable, and consequently it has to be described
by a parton density function (or parton distribution function, PDF for short) that
gives the probability to find a parton with momentum fraction ¢ in the parent
hadron. However, one has to proceed with caution because factorisation has not
been proven but for a small number of processes, including EPA, DIS, SIDIS and
DY.

The PDF is literally the object that describes the proton as a black box. You
give it a fraction & and it returns the probability to hit a parton carrying this
longitudinal momentum fraction when you bombard the proton with a photon.
It is commonly written as

f4(8),

where g is the type of parton for which the PDF is defined. There are thus 7 PDFs,
one for each quark and antiquark, and one for the gluon. A parton distribution
function is not calculable; they have to be extracted from experiment. However,
as we will see in Section 5.3, we can calculate its evolution equations, such that we
can evolve an extracted PDF from a given kinematic region to a new kinematic
region. It is a probability density, but it is also a distribution in momentum space;
by plotting the PDF in function of x one gets a clear view of the distribution of
the partons in the proton. Furthermore we assume that the PDF only depends on
¢, and not e.g. on the parton’s transverse momentum. This doesn’t mean that we
automatically neglect the struck parton’s transverse momentum component! But
because we don’t identify any hadron in the final state, and because we have to
sum over all final states and integrate out their momenta (the final-state cut), any
transverse momentum dependence in the PDF or the hard part is integrated out.
Factorisation in DIS—also called collinear factorisation because of the collinearity
of the struck quark to the proton—is a factorisation over x (plus an energy scale).
We can write this formally as

do .
— ~ fo(x, u3) ® H(x, uz),

dx
which is just a schematic. We will treat the technical details soon, in Section 5.3.
Whenever information on the transverse momentum is needed, e.g. when
identifying a final hadron like in SIDIS, collinear factorisation won't do, and
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5.2 PARTON DISTRIBUTION FUNCTIONS

k , -factorisation is needed instead, where a transverse momentum dependent
PDF, or TMD for short, is convoluted with the hard part:

do

T k) © Aok ).

Formally, a PDF and a TMD should be related by integrating out the transverse
momentum dependence:

fo(®) = @, fy(Ek).

however, QCD corrections make this equality invalid.
In the parton model, the concept of (collinear) factorisation can be painlessly
implemented:

Factorisation in the pm

do Pé“;fds f1(5) d[fq(;) , (s.452)

= fy®dd, . (5.45b)

Note that this is not the common convolution definition, i.e. fd7 f(7)g(t - 7).
This is because the latter is a convolution as defined in Fourier space. In QCD,
a lot of theoretical progress has been made by the use of Mellin moments.
These form an advanced mathematical tool, which would take use too long
to delve into. The thing to keep in mind is that the type of convolution as in
Equations 5.45 is a convolution in Mellin space (see Equations A.66 for the
definition of the Mellin transform).

We can express the structure functions of the proton in terms of the structure
functions of the quark, where the latter are defined at leading order as

ﬁ%(x) Ly eé 0(1-x) . (5.46)

To do this, we use Equations 5.45 to relate the electron-quark cross-section in
Equation 5.11 with the electron-proton cross-section in Equation 5.43. Then it is
easy to show that:

1
PP (@)= Y fag 1O (3) (5.472)
9 x
=D egxfy(x), (5.47b)
q

FM(x,Q%) =0. (5.47¢)
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5.3 COLLINEAR FACTORISATION AND EVOLUTION OF PDFS

Note that FX™ does not depend on Q?! This is called the “Bjorken scaling”
prediction: the structure functions scale with x, independently of Q. Because
this prediction is a direct result from the parton model, it should be clearly
visible in leading order (up to first-order QCD corrections, where the Bjorken
scaling is broken). This is indeed confirmed by experiment.

Also note that by comparing Equations 5.47 to Equations 5.44, we can easily
find the quark PDFs in the free parton model:

M) = 50
which is exactly what the initial assumption for the FPM is: the proton equals
exactly three quarks, thus the probability of finding one of those is always one
third per quark, regardless the value of x.

A small remark on the difference between structure functions and PDFs. A
structure function emerges in the parametrisation of the hadronic tensor, the
latter being process dependent. If we have a look at its definition for DIS in
Equation 5.33, we see that the hadronic tensor contains information both on
the proton content and the photon hitting it. This is illustrated in Figure 5.5,
where the blob represents the hadronic tensor, describing the process of a photon
hitting a (black box) proton. As a structure function is just a parametrisation of
the hadronic tensor, the same applies to it. If we change the process to, say, deep
inelastic neutrino scattering, our structure functions change as well, because
now they describe the process of a W* or Z° boson hitting a proton.

But the main idea behind factorisation is that, inside the structure functions,
we can somehow factorise out the proton content (which is process independent)
from the process dependent part. This is shown in Figure 5.6, where the smaller
blob now represents a quark PDF. The factorisation of structure functions in
the parton model is demonstrated in Equations 5.47. The initial factorisation
ansatz, Equations 5.45, is required to be valid for any cross section, given an
unique set of PDFs, i.e. the PDFs are universal. We can extract these PDFs in one
type of experiment, like electron DIS, and reuse them in another experiment
like neutrino DIS. In contrast with the structure functions, PDFs emerge in the
parametrisation of the quark correlator—as we will see in Section —which is
universal by definition.

(5.48)

5.3 COLLINEAR FACTORISATION AND EVOLUTION OF PDFS

We started the idea of a separation between soft and hard parts in the crude Pm
(see Equations 5.45); Figure 5.7 shows our current view on factorisation in DIS.
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Ty

WHY
fq

Figure 5.6: Difference between structure functions and PDFs.

“ &

Figure 5.7: Factorisation in DIS at LO.

However, until now we haven’t given a rigorous definition for the separation
between the hard and the soft part. At leading order (LO) this is trivial (we just
cut the struck quark before the interaction with the photon, as in Figure 5.7), but
we need a fail-proof approach at higher orders. E.g. at NLO an additional gluon
can be radiated from the struck quark before the interaction with the photon
(as in the four leftmost diagrams in Figure 5.8). How do we define whether the
radiated gluon belongs to the PDF or in the hard part? As we will see, the correct
way to approach this—at least in the collinear case—is to define a separation in
energy scales. The requirement of independence of the process on this separation
will then lead to evolution equations for the PDFs.

Let us now continue with an investigation of DIS at first order in as, and see
how that changes our factorisation rules:

Fr (x, QZ) = Zeéqu(x) +0(ay) ,
q
Fr (x, Q2) =0+ O(ay) .

In what follows we will continue by using F, = Fr + Fp, to be in accordance with
common literature. The correct approach to continue is as such: we calculate
WH for a single quark from the amplitude

W = qu> IMJ? (5.49)
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K %Mf et

A A A
[ Py st

Figure 5.8: All types of first order corrections to the DIS process. Real corrections are
on the upper line; virtual on the lower line.

K K
e k= p -k %p’—k

a) b)

Figure 5.9: a) Initial state gluon radiation. b) Final state gluon radiation.

up to first order in ay, then we extract F; for a single quark using Equations 5.42.
We compare the result with Equation 5.46, plug it in Equation 5.47a and see how
it changes the PDF.

There are 3 types of real gluon exchanges at first order, where the exchanged
gluon is on-shell, and 3 types of virtual gluon exchanges, shown in Figure 5.8. We
will calculate the real contributions in LC-gauge—as the latter gives the natural
interpretation of the PDF as a number density—and label the momenta as shown
in Figure 5.9. The corresponding amplitude for the initial state gluon radiation
(Figure 5.9a) is (see also Equations A.99 for the QCD Feynman rules):

MM () (tegy") o (8706 ) ' (p).

We average over colour and incoming spin states, and sum over final spin (see
Equations A.26) and gluon polarisation states, i.e.

E_Z ZZZMW\AM*MLA (5_50)

N ab A’ pol
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We hence get for the complex squared amplitude
1 1 )
M = SCreis’ g 2o ulEpthy py'h) (5.51)
po

where we used Equation A.72b to simplify the colour generators. We can sum
over the gluon polarisation states by using Equation A.98b, this simplifies the
trace into

te(...) = —te(y py Ky p'y"k)

w(y p(p-F) B"py'E)

w((p=K) py By p'y'E) -

The first term can be simplified using Equation A.30b:
—te(yopy’ By Py ) = (0 =2) e(ply"p'y"k)

which can further simplified using
kpk=2p-kk-Kp.

The other two traces can be simplified by using the fact that pp = p* ~ 0, the
mass of the quark and ff = k2, the virtuality of the quark (also using the cyclicity
of the trace):

w(y"p (=B By p'y'k) = K «(ky pr*p'y') -
w((p— k) pr By p'y'k) = K> e(py By p'y") -

Their sum can be further simplified with the same trick as before:
(k+p)y"(k+p)=2(k+p)" (k+p) - (K +2k-p)y”. (5.52)

Now we assume that the longitudinal component of the virtual quark is a fraction
of the longitudinal momentum of the parent quark, i.e.

k" =¢p". (5.53)
The full trace is then given by:

+

1
p+_k+
1
p+_k+

+

tr(...) = [(w ~2)2p-k - zkz%ﬂ tr(ky"p'y")
K2 [(w —2)+ 2%{] tr(py*p'y")
1 K

+ QF (k2 + 2k-p) tr(yW"p'yV) ) (5.54)
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We parameterise the quark and photon momenta as in Equations 5.13 and 5.14,
neglecting the transverse momentum components of the original quark. How-
ever, after radiating the gluon it will acquire transverse momentum which cannot
be neglected, but will be integrated out as we are integrating over final states.
The momenta are thus given by:

B K2+ K2 2
ey, (05 (2.

where g2 = Q% and x is the Bjorken-x for the quark-photon system. The phase
space integral is given by

Jeo - f ((124:), ((12471), (k2) 8 (p7) 89 (pra-p' k).

d4k + + 2
G 0= (k> ")

and using

2
(p-0 = £ [BE-D K], (k=) =R+ S (E-0)-2kq,,

dé
28

it can be rewritten as

d*k = —dk*d’k, .

2
Jao - [dfdkz Gy (G- DF - R) 6(k2+ = (-9 —zkl-ql) .
Note that the §-part of the §*-functions dropped out, as it is automatically
satisfied due to the fact that 0 < £ < 1:

pr-kT=pt(1-& >0, k"+q =& >0,

because the quark moves with the proton in the positive n*-direction. To rewrite
the trace, we first define a notational shorthand:

I" =4 Kp*,
¢ ?

1-:1%15*,

I = %kzkl
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We already used the fact that k? = (£ — 1)k? due to the &’s in the phase space
integral. This shorthand allows us to simply write

tr(...) = te([y*p'y") = SZ(MP'V) —4g" [.p.

To retrieve the structure functions of the quark from the hadronic tensor, we
project on the orthonormal basis using Equations 5.42 (and using Equation 5.51
to get the correct terms in front):

. . A 1 1
F, = /dCD x (281 - i) ECFe;gzﬁ (81(#‘1)'” —4gwl-p') ,
—4xCFe fd(D thp t+1 -p' ) (5.55)

Note that (28¢#" — ¢1") gy = 0and I,g4"p’, = -1, -p’ . The basis vector 7 is in
this frame given by

w_(22p7 Q 4,
Q ’2xp+’Q ’

and p’ is simply the sum of the virtual quark and photon momentum p’ = k + p:

1 Q?
(o (0 D)ok

The next steps are straightforward but tedious; we will just give the result:

A de
By, =€, quq(x) / , (5.56)

where the integral is regulated in the IR region wit a lower cut-off 3. The UV
cut-off Q? follows from kinematics. The integration just gives a logarithm:
2
A s Q
Fagy = €3 5% Pag(x) In =5 . (5.57)
T2n Ho
These are the only divergent terms. We didn’t list the finite terms, as they are easily

calculable and are of secondary importance. We could have used dimensional
regularisation as well (with w = 4 + 2¢, as appropriate for IR divergences), giving

N o 1
Fryy = eé Z;quq(x) . (5.58)
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However, the physical interpretation that now follows is much more natural with
a cut-off, so we prefer to use that. The function Py, (x) is the so called splitting
function:

1+ &

Pp(§) = ﬁ . (5.59)

This function is specific for the diagram in Figure 5.9a. We use the notation
P;;(&) to denote “the probability to get a parton of type i with a momentum
fraction & from a parent parton of type ;. In this case, Pyq(&) represents the
probability for a quark to split into a quark carrying a fraction & of its momentum
and a gluon carrying a fraction 1 — £ of its momentum. In light-cone gauge, the
other real diagrams don’t add any divergences, only finite, calculable parts. So do
the virtual diagrams, which can be easily calculated using standard loop-integral
methods, as all ultraviolet divergences which appear in individual loop diagrams,
cancel out. So we can write the full result for F, at leading order in «aj:

2
ﬁzzeéx[8(l—x)+2—( 7q(X) an C(x))] , (5.60)
ug
where C(x) contains all finite parts. Bjorken scaling is, as expected, violated;
£, now depends on Q2. The singularity which is regulated by u2 appears when
the gluon is emitted collinear to the quark (k, = 0), hence it is called a collinear
divergence. Physically the limit k, corresponds to a long-range (soft) interaction,
where QCD can no longer be calculated in a perturbative way.
To extend our result to the proton structure, we convolute 152 with a PDF, as in
Equation 5.47a:

=g [ o [oi-3) -2 (5 G -<(2))]

However, care has to be taken as f4 is the bare, unrenormalised PDF, exactly the
same situation as for the renormalisation of the coupling constant. From now
on we will write it as f;(£) to make the distinction clear. We want to absorb the
collinear divergence into the PDF and renormalise it up to an arbitrary scale. We
choose such a scale yp, with 3 < p% < Q% and we use it to split the logarithm:

2 2
In Q—2 =In Q—2 +1In VI; , (5.61)
Ho UF 0

and define a renormalised PDF as:

fA(x, uE) = f fo(£|: ( £)+;—;(P(%)1n%+c’(§))]. (5.62)
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Then we can rewrite the factorisation formula in terms of the renormalised PDF
and the factorisation scale:

1
d .
Fr=3eqx %fq(f’#i)H(?Qz,M%), (5.63a)
q X

e [ R Y 2O R

In other words, we can retrieve the structure by convoluting the PDF f4 with the
partonic hard part H. Note that we have divided the finite part into two parts:

C(x) = C(x) + C (x). (5.64)

C' is subtracted from the hard part and gets absorbed by the PDF, while C is what
remains in the factorisation formula. The exact choice of how to do this is up to
convention, and is called a factorisation scheme. This is exactly the same as the
renormalisation scheme as we introduced it in the section on renormalisation
on page 111. In this framework, two common schemes are the DIS scheme, where
C=0,ie. everything is subtracted into the PDF, and the more common MS
scheme, where C' = In47 - yg only.

It is very important to have a clear understanding of what is happening here.
In the calculation of the correction to the hard part, we integrated out all k2 -
dependence between y3 and Q2. The kinematics of the system make sure that
k, < Q always, i.e. the upper border of the integration is justified. In the infrared
region however, there is no such kinematic restriction. By cutting the lower
border of the integration at 3 we discarded gluon radiation with k; < yo from
the hard part. In order to avoid dropping these gluons entirely, we have to absorb
them in the PDF, which we subsequently renormalise up to an arbitrary scale
pr. By doing this, we hide the divergence from the process, inside an object that
wasn’t perturbative to begin with.

The physical interpretation goes as follows: we choose an arbitrary energy
scale yr that separates the process in two parts, namely a hard part with k, larger
than this scale, and a non-perturbative part (the PDF) with k, smaller than this
scale. This interpretation is illustrated in Figure 5.10. Note that this supports our
previous intuitive definition of factorisation at LO, namely to separate the two
regions by just cutting the quark in two, before it gets struck by the photon. For
this reason we will call u the factorisation scale.

Since F, is a physical observable, it cannot depend on the factorisation scale
(which is merely an unphysical leftover of a mathematical tool). Translated to a
formal statement, his implies:

oF,
=0. .6
312 (5.65)
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o o,

- k.
UF —
ree- k|
a) ky < ur b) k; > ur

Figure 5.10: a) The transverse momentum of the gluon is smaller than the factorisation
scale, so we absorb it in the PDF. b) The transverse momentum of the gluon
is larger than the factorisation scale, so we add it to the hard part.

P
Figure 5.11: Boson-gluon fusion in DIS.

This is really a strong requirement—so strong that we can use it to derive an
evolution equation for f, the so-called Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equation:

0 (u2) fd
s ) = S [y (20)) £1(648) G

where we also incorporated the effect of the running coupling (4% ). Note that
P,4 depends on the coupling because this is an all-order equation; corrections
from higher order calculations will manifest themselves inside the splitting
function. The fact that the independence on the factorisation scale yields the
evolution of the PDF is not so strange, after all, if we want to be able to arbitrarily
choose an unphysical cut between soft and hard for a given process, we will also
need to know how this energy cut affects the PDF.

Everything we have derived so far was for quarks only. Adding gluons, we can
now calculate the leading-order contribution (in «;) to F, from the boson-gluon
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fusion diagram in Figure 5.11, and convolute this with the gluon PDF. We find
for the partonic structure function:

2

£ = Zeéxgs ( Pgg(x) In = Q
q U

0

N Cq(x)) (5.67)

This is quite similar to Equation 5.60, especially, there is again a singularity from
the integration over k*. As we already knew, there is no gluon contribution to
F, when «; = 0. The splitting function is given by

(E+(1-8)?%), (5.68)

N | =

qu(f) =

where Py, is the probability to find a quark in a gluon. Note that in F$ we sum
over quark flavour. We have to renormalise the gluon PDF as we did with the
quark PDF, but we absorb the singularities in the quark PDF (exactly because we
are looking at a quark in a gluon):

fq(x,#?:)=foq(x)+;—; fo<f>( i(3)m Zc(z))

0

4 ofnfsoth ()

On the other hand, higher-order calculations show that the renormalisation of
the gluon PDF is given by:

fg(x’[,,%):fég(x +;x—;[ fo(f)( ( ) ‘ZF +Cq(£))

0

fo(f)( (2 )1nZ§+cg(£)).

With these renormalisation definitions, we can write the factorisation formulae
as:
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Collinear Factorisation

FZ:Zeéx(fq@JI:Iqufg@Hg), (5.69a)

q
Hi(z) = 8(1 N PN (5.69b)

(2) = o( —Z)+§ 24 (2) n#—%+ (2)] > 5.69
2 —~

Hg(§) = 2“—; (qu(z) ln% +Cg(z)) , (5.69¢)

1

v (48 2

(o ?* [ rwH(E). (5694)

Of course, in order to fully validate collinear factorisation, one needs to derive
factorisation formulae for F; as well and verify if they agree with those for
F,. This has been done quite thoroughly, such that we can accept collinear
factorisation as a valid framework. Then finally, the full DGLAP evolution
equations can be expressed in a matrix equation:

DGLAP Evolution

1 X
o [qi(x u?) =ﬁf A€ [Py, Pug) (2(54) (5.70)
olnp? \ g(x,u>)) 27 &\p, P (54 '
g(x, u e gq;  ‘gg/lx \&\pH

For completeness’ sake, we list all splitting functions at leading order:

Splitting Functions

14+ 82
7;,7»\ i—f qu(f) = CF% 5 (5.71a)
el g Pig(8) =5 (£+(1-?), (571b)
1—
_ 2
"“(WE qu(f):CFw, (5.71¢)
1-§
mnnn\-%gif Pge () ZZCA(iJrﬂJrf(l—f)) . (s.71d)
1-& 1-¢ ¢

This leads us to the end of this chapter on deep inelastic scattering and collinear
factorisation. In Chapter 8, we will investigate what changes when we can no
longer integrate over transverse momentum, e.g. when we identify a hadron in
the final state.
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WILSON LINES

We saw in Chapter 2 that a Wilson line is a path-ordered exponential construc-
ted from the gauge fields (see Equation 2.17), that transforms bi-locally (see
Equation 2.3). It is an object that emerges naturally in gauge theories from geo-
metrical arguments to cure the definition of the derivative, but this is not its only
application. Because of its bi-local transformation properties, it is often used as
a parallel transporter to render non-local terms gauge invariant, especially in
QCD calculations concerning validation of factorisation schemes, and in calcu-
lations for constructing or modelling PDFs (see Chapter 8). For these reasons,
Wilson lines deserve some special attention—which is why we investigate them
in great detail in this chapter and the next. We focus on piecewise linear Wilson
lines—which are vastly the most commonly used and the only ones used in
this thesis—and will derive their properties and Feynman rules, and construct
a framework meant to simplify perturbative calculations. Finally, in the last
section we briefly motivate the importance of Wilson lines by explaining the
eikonal approximation—one of the main applications of Wilson lines.

6.1 A WILSON LINE ALONG A PATH

A Wilson line is a path-ordered exponential of a line integral of the gauge field
along a given path C:

Z/{C ~ PeiggdZ#A”(Z)

(6.1)
The sign convention which was discussed in Chapter 2 also manifests itself in
the definition of the Wilson line. Choosing a positive sign in the gauge trans-
formation of the particle field—as we do in this thesis—results in a positive sign
in the path-ordered exponential. This follows from its behaviour under gauge
transformations, as it has to have the correct sign to cancel the transformation
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6.1 A WILSON LINE ALONG A PATH

of the particle field, in order to parallel transport it to a different spacetime point
(see Equations 2.3, 2.4 and 2.18).

The Wilson line we constructed in Chapter 2 is valid for any group theory.
We focus on QCD, and as such every Wilson line we will use from now on
will be an SU(3) group element, expressed in the fundamental or the adjoint
representation. If no statement about the representation is made, we assume it
to be in the fundamental. The physical interpretation of a Wilson line becomes
clear by expanding the exponential:

[ee)

1
L{C _ Z = (ig)n Pfdzn""'dzfl Ayn(zn) "'Ayl(zl) , (6.2)
C

n=0 -

i.e. the n-th order in the expansion represents a radiation of # gluon fields as in
Figure 6.1. To save writing space, we often use the shorthand notation

A; = A%i(zi). (6.3)

The point z; at which the field A; is radiated is integrated over the full path
to get all possible configurations. However, path-ordering adds the additional
constraint that all fields should remain in the same order, i.e. the field A; has to
be radiated between A;_; and Aj;4;. The full exponential is thus a resummation
of all possible radiations from the path. We can interpret this as a full gauge
effect along the path; this can be e.g. the nett effect of a particle moving in
an external medium. Resumming all gluons, a Wilson line can also represent
e.g. a fast-moving quark (when in the fundamental representation) or a fast-
moving gluon (when in the adjoint representation). In this case, we assume the
quark resp. gluon not to deviate after radiating a gluon. This is called the eikonal
approximation and is treated in more detail in Section 6.6.

Properties of Wilson Lines

In Chapter 2 we constructed a Wilson line by the requirement to satisfy a set of
properties. As we discovered during the derivation, these properties led to the
natural interpretation of a Wilson line being a functional of a path. We just list
them here again for easy reference:
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6.1 A WILSON LINE ALONG A PATH

Figure 6.1: Illustration of the n-th order term in the expansion of the Wilson line
M(Cy;x). The n radiated fields A; (using the short-hand notation defined in
Equation 6.3) can be radiated at any point (due to the fact that they are
integrated over along the path), but are ordered such that A, > A,; >--- >

Ay > Ay
Properties of Wilson Lines
A. A Wilson line is unitary: uc [Z/{C]T =1. (6.4a)

B. Path reversion equals Hermitian conjugation: &/ € [Z/{ _C]T .

(6.4b)
c. Itis path-transitive, i.e. if C = C; + C,, then U =UUS . (6.40)
D. It transforms in function of its endpoints only:

Ugysay = 01 Uy e 8O (6.4d)

E. A Wilson loop is gauge-invariant: 4° — U°. (6.4¢)

Path Ordering

The symbol P in Equation 6.1 denotes path ordering, ensuring that the gauge
fields are ordered in such a way that the first fields on the path are written
leftmost. When associating a diagram with this formula, we will use the same
convention as with Dirac lines: we read them from right to left. Getting a bit
ahead, we have already written the gauge fields in a reversed order, from n to 1,
such that when drawing a Wilson line on a path from left to right, we can notate
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6.1 A WILSON LINE ALONG A PATH

the gauge fields as 1 to n (from left to right, see Figure 6.1). This ensures that A,
is the first field on the path (having the highest value for its parameter A, see
below).

The Wilson line still has two open indices, in the fundamental or the adjoint
depending on the representation chosen for the Lie generators (remember that
we defined the gauge fields with the generators absorbed, A, = A} 1“). In case of
a Wilson loop, these indices are traced.

It is convenient to parameterise the path C in function of a one-dimensional
parameter A:

C:z¥(A) A=a...b, (6.5)

where z(a) and z(b) are the start- resp. endpoints of the path. Then we can
formally write out the path ordering requirement, e.g. for two fields we have

P Au(z1)Ap(22) = 0(hi—A2) Ay (M) Ay, (A2) + 0(A2—A1) Ay, (A2) Ay (1)

for z#1(A;) and z#*(A;). This can easily be generalised to more than two fields,
by chaining an appropriate number of 8-functions:

P Au(a)Aup(z) = (1‘[ 0(/\,-+1—)L,-))AH1(A1)---AHH(/\n), (6.:6)

(A prshy) \i=1

where ’ 2 represents a sum over all possible permutations of A;. Note that

in case of Abelian fields all fields commute, and we can sum all 8-functions.
Then the path-ordering symbol can just be ignored:

P Am(zl) Ayn(zn) = Am(zl) "'A,un(zn) .

In this case, every term in the expansion of the exponential is just a power of
the same integral:

igfd" Au(z) 2 1
Uzbelian = Pe ¢ ' Z _' (lg) deMA (Z)

But of course, we are mainly interested in non-Abelian fields, as in this thesis
we will be using Wilson lines in QCD. Calculating a line integral is easiest by
parameterising the path as in Equation 6.5. Then we make a change of variables:

dz#
dz# - dr &
¢ al
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6.1 A WILSON LINE ALONG A PATH

in order to rewrite the path ordered exponential as

b
L{(%;a) =P Exp {igfdA (Z”)’Ay(z)} . (6.7)

We can effectuate the path ordering in the expansion using Equation 6.6. This
will manifest itself as a chaining of the parameters A; in the upper integration
borders:

dztr(1,)  dz(A)
d),---dA ..
b f Yda, d\

_nlfd)t /danlfcunz. fcu dz# (M dz:ﬁ”. (6.8)

This literally tells us what we anticipated: that the i-th gauge field (with para-

meter A;) has to be radiated between the i —1-th and the i +1-th gauge field

(because with these integration borders the parameters satisfy A;; > A; > A;_y).
Note that Equation 6.8 is only valid for integrands of the form

Ay (2(An)) -+ A (2(M)) (6.9)

i.e. products of the same vector field function, depending on different variables.
We cannot use it for e.g.

Ay, (2(An)) = 0vAu (2(Mi)) - A (2(M))

because the interchange symmetry is broken by the derivative.

It is possible to move the chaining to the lower integration borders, but in this
case we need to flip the order of the parameters (to ensure that we can keep the
order of the radiated gluons as is, i.e. from # to 1):

dz#(A,)  dz*'(A)
dr, ---dA
Pf ! dA, d\
Un 1231
- fd)L /d)t /d,\3.. fd)L dz (“ dzdl(ll). (6.10)
1
a M

It is straightforward to check these formulae in an intuitive way, by verifying that
in both cases A, > A,_1 > --- > A3 > Ay. Using the integrand in Equation 6.9, the
full expression is then automatically path ordered. Depending on the specific
path calculation, Equation 6.8 or Equation 6.10 might be easier to use.
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6.2 PIECEWISE WILSON LINES

In order to investigate how different path structures influence a Wilson line,
it is preferable to separate out the path content from the gauge field content.
Luckily, this can be easily done by making a Fourier transform. The path content
is then fully described by the following integrals:

o= )" P dhy (&) o (Yl e

Note that although we use the common convention for Fourier transforms (with
a negative sign in the exponent for the inverse transform, see Equations A.58),!
we preferred to make the integration substitution k - —k, to make the link with
common literature concerning Wilson lines (cf. e.g. in [33], where momenta are
pointing outwards). The n-th order term of the Wilson line expansion is then
given by

Ak,  d%k
n:f n L Ay (—kn) -+ A (=k1) I, (6.12)

The negative signs in the arguments are a result from the integration substitution
explained above. They remind us that the results we will derive are defined for
momenta pointing outwards in a Feynman diagram.

Also, remember that the fields are ordered from 7 to 1 to allow them to be
read from left to right.

6.2 PIECEWISE WILSON LINES

In general, most interesting and dynamically rich paths will not be smooth, but
contain cusps. These are points in the path where the path is continuous but
its derivative is not, i.e. the path looks cracked. This is illustrated in Figure 6.2.
The reason that cusps are more compelling is that they don’t occur naturally,
but are the result of external driving forces. E.g. if the Wilson line represents a
resummed quark, a cusp can be the effect of an interaction with a hard photon.
Cusps hence contain all information on the dynamics of a system.

At first sight, paths with cusps might seem a bit problematic from a mathem-
atical point of view, as a general path is supposed to be smooth, i.e. continuously
differentiable. What saves the day, is the transitivity property of a Wilson line,
because it allows us to split the path at the cusp, and continue with a product of
two Wilson lines. E.g. in Figure 6.2 we have three cusps that divide the path into
four segments.

1 This implies that positive momenta are pointing inwards in a Feynman diagram.
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6.2 PIECEWISE WILSON LINES

Figure 6.2: A path with cusps. Although the full path is not smooth, the three cusps di-
vide the path into four smooth segments. The full path C can be approached
as a piecewise path with regions C;_,4.

In other words, the path on which a Wilson line is evaluated can be piece-
wise, as long as each segment is smooth (in particular, each segment should
be defined over an interval that is not a single point). Note that we don't even
need the restriction that the segments should be joined, because we can always
define a piecewise function (with possibly disconnected segments) in function
of adjoining intervals in the parameterisation parameter:

fA) A=ay...az,

2 —
:f (/\) /1 =d...as, (6,13)

f) =

fM(A) /\ =amp ... aApM+1 -

We will use capitalised Latin letters for the index referring to segments. Let us
consider a piecewise smooth path, consisting of M continuously differentiable
segments. We would like to be able to express the integrals I,, that contain all path
information (see Equation 6.11) in function of the same integrals but expressed
over each segment separately.

The first order integral over the J-th segment only involves the J-th part of f:

aj+1 aj+1

s = [d/\ ) = /cu 7). (6.14)

Then of course the first order integral I; can be trivially expressed in function of
the first order segment integrals, as it is just their sum:

aM+1 aM+1

fd)t = _72+]‘3+---+f da,
a a4

am
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M
L=Ys]. (6.15)
J=1

The calculation of the second order integral is a bit more tricky, as there are two
points of particular interest. First, because in Equation 6.11 every incarnation of
e ikiz gets another index i, we need to introduce this dependence in f, which
we will do with a lower index:

aM+1

/ b fi(h) fcuz Frn(ha),

a
where of course in this case i = 1, but we left it open for the sake of generality.

The second point is that in the definition of I, the inner integral has a variable
upper border, and thus is a piecewise function itself:

A

fd/\z fi+1(/12) /\1 =d;...ay,

ay

A

T 1(i+1)+fd/12f,-1(/\2) AM=ay...as,
f Ay fin(A) = A (6.16)
ay

Z S](l+1)+ fd/\z fz+1(/\2) /ll—aM AM+1 -

ay
The outermost integral will be split as well, combining the appropriate regions:

aM+1

fdal fi(h) /d/\z [N

ay

as M
- /d/ll fi(h) fd/\z f,.ﬂ(az)+/cu1 fi()tl)(sl(i+1)+fd)tz ﬂ+1(/12))

aM+1

fd)tl fith) (Z S'(i+1)+ '/‘d)tz fl+1(12))

This can be simplified by using the notation for the first-order segment integral
and by introducing the notation for the second-order segment integral:

a1

si(i) = f i f ddy FON (M), (6.17)

aj

I = Z sJ(1) + Z Z s/(1)sK(2). (6.18)
J=1

J=2K=1
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Note that S, only depends on the J-th segment; no mixing occurs. This will
be true to all orders, and is exactly what we hoped for: we can express the full
path ordered integral as path ordered integrals over the separate segments. Also
note that the argument of successive segment integrals (which is the incarnation
index of f) is simply incrementing; this will also be true to all orders (i.e. only
terms of the form S}, (i)S)2, (i +1)... S{,’,‘k (i + k) will appear). In what follows,
we will drop this argument of S, as it is trivial to deduce as long as we keep the
ordering of the S’s fixed.

Although we used the expression for the path-ordering given by Equation 6.8,
the whole derivation is equally valid when using the chaining of the integration
borders as given in Equation 6.10.

The extension to higher orders is trivial but paper-consuming, so we just give
the results:

Piecewise Path Ordered Integrals

M M J-1 M J-1 K-1
13:Zs§+zz[sfsz +s’sl] +33 S sIskst, (6.192)
J=1 J=2K=1 J=3 K=2 L=1
M M ] M J-1 K-1L-1
14=Zsi+zz[sfs3 + 8J8X +S’Sl] D s/sfstsP
J=1 J=2K=1 J=4K=3 L=2 O=1
M J-1 K-1
+5 [s’ SKsf + sIsXsl + sflesl] (6.19b)
J=3K=2 L=1
i )
" A All terms of the form Il Sl]{
=), (H D ) . (6.19¢)
=L \j=l Tj=izjl) 4y such that 3" [; = n
j=1

It is straightforward to write out the n-th order integral for any n. All we have
to do is make all possible combinations of S;’s that give n internal f’s and
adding the correct number of sum symbols while keeping the ordering. It is

also possible to give a recursive definition:

M n-1

L) =5+ 3 Y 8] 1 -1).

J=1 J=2 i=1

(6.20)
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The last two equations literally translate to a Wilson line; just replace every S
with a U, for instance:?

~

M J-1 K-1
Us = Zu’ + 22 Zu N+ ulufut, (6.21)
J=2 K=1 J=3K=2 L=1

w

where

U, = (16714)/‘14 coodbky Ay (k). Ay, (ka) S). (6.22)

Note that the ordering of the 24/ remains important, as the momentum integra-
tion runs over the S;’s and the fields, which are non-commutative due to the
colour generators.

The physical interpretation of the n-th order formula is a collection of all
possible diagrams for n-gluon radiation from a M-segment Wilson line, as is
illustrated in figure (Figure 6.3) for 3 gluons radiated from a line with 4 linear
segments. Note the manifest path ordering: the 4/ are path ordered by definition,
and the sums are such that the the gluon from segment J is radiated before K
which is radiated before L (here we literally see that a Wilson line is read from
right to left, as the order of J, K, and L is flipped).

Consider now the product of e.g. three Wilson lines, labelled I/ A UB and UC.
Expanding the exponentials and collecting terms of the same order in g we get:

UUPUC =1+ (U +UP +UP)
+ (UPU +UMUS +UPUE U+ Uy +Uy)
+ (UPUPUE + Ul Uy + Uty + UPUy + U U
+ USUS + UPUS +US +US +Us ) +
which equals, up to third order, the sum of Equations 6.14, 6.18 and 6.19a. In other
words, we can equate a product of Wilson lines to one line with several segments.
The proof easily generalises to all orders. Note that the order of the segments is
reversed w.r.t. the order of the product (because we read the lines from right to
left), e.g. the product UAUBUC is a line with first segment C, second segment B
and last segment A4, i.e.
UALIBLC = YABC

where we read the order of the segments in the r.h.s. from right to left.

We use the brace notation for tensor symmetrisation, i.e. U(IILIZK) =1 (UIIUZK +UIUL) See
Equations A.13
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Figure 6.3: Correspondence between Equation 6.21 and all possible diagrams for 3-
gluon radiation on a 4-segment Wilson line. Path ordering is manifestly
conserved.

6.3 WILSON LINES ON A LINEAR PATH

The results from the former section are general results, i.e. valid for any path. Let
us now turn our focus towards paths built from linear segments—as these are the
most commonly used in literature—and derive Feynman rules for the different
linear topologies. For every segment there exist four possible path structures: it
can be a finite segment connecting two points, it can be a segment connecting
+o0 and a point r#, or it can be a fully infinite line connecting —oo with +oco. We
will investigate them case by case.

Bounded from Below

We start with a path going from a point a, to +co along a direction 7. Such a
path can be parameterised as

¢ =at+n*A A=0...00. (6.23)
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6.3 WILSON LINES ON A LINEAR PATH

Using the path-ordering as defined in Equation 6.10, we can write Equation 6.11

as:®

ia- Zk iZ(n~kv+i;1))Lv
Ilb (ig)" nt'--nfre /f fd)[l -dA, e i ! ], (6.24)

0/\1 nl

where the terms +i# in the exponential (with # > 0 infinitesimal) are needed
to make the integral convergent. Solving this integral is straightforward. First
we calculate the innermost integral, which is just the Fourier transform of a
Heaviside 0-function:

fd/ln ei(n-kn+ir])ln _ i : ei(n-k,,+i11)/1n_1 , (6.25)
) n-k,+in
n-1

Note that if we would have used Equation 6.8 instead of Equation 6.10, this
result would have contained two terms—of course valid as well but much more
difficult.

We can summarise the effect of the innermost integral as a factor _k and
an extra term n-k, in front of 1,,_;. The next integral will then give a factor

W and so on. In other words, we simply get:
ia- Zk n i
L = (ig)" nt--ntv e [[——— (6.26)
Fln-y kp+in

1

J

There is a small subtlety in this result, as we absorbed some factors in front of
the i# into # (which is something we are allowed to do as the limit # — 0 is
implicitly assumed).

We can reconstruct the result in Equation 6.26 with the following Feynman
rules:

3 The symbol n is used both as an index (in the n-th order expansion) and as a directional vector.
The difference should be clear from context.

160



6.3 WILSON LINES ON A LINEAR PATH

Z kj Z k] knfl + kn kn

]=1i> j=2 — — —

gikl glkz giknz glkn_l 31;11

Figure 6.4: n-gluon radiation for a Wilson line going from a* to +oo.

Feynman Rules for Linear Wilson Lines

ae +00

Propagat & ! (6.272)
A. Propagator: s = — 272
Pag - n-k+in /
k .
B. External point: a" e——— = ', (6.27b)
C. Line to infinity: Coiooan ool =1 (6.27¢)
. —— .
D. Wilson vertex: J %U\‘ = ign” (t“),.j . (6.27d)
H,a

These Feynman rules are for momenta that start in the external point and point
outwards from the Wilson line (see the discussion above Equation 6.12). If
one or more momenta are inwards, the correct Feynman rule can be trivially
retrieved by making the substitution k; — —k;. As an illustration, the resulting
n-th order diagram is drawn in Figure 6.4.

Bounded from Above

The logical next step is to investigate a path that starts at —co and now goes up
to a point b, , which we parameterise as

¢ =b"* +n* A A=-00...0. (6.28)

In this case, it is easier to reverse the integration variables as in Equation 6.8,
which then gives the integral for a Wilson line with upper bound:

X bk O M A inykh;
IE = (ig)n n:ul...nnun e j j "'/dA,n"'dAl e j . (6'29)

The calculation goes as before, giving:
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ky ki + ks 2 k; 2 kj

— — J=l <— Sl —_ pt

£ Tn Bn o B, In

Figure 6.5: n-gluon radiation for a Wilson line going from —oo to b*. Path flow is
opposite to momentum flow

—00 = -]

u.b. N RRR -1
b - (1g) nfopybne i H _ (6.30)

which differs from Equation 6.26 only in the accumulation of momenta in
the denominators (bottom-top instead of top-bottom) and the sign of the
convergence terms. The Feynman rules derived before remain valid if we make
the substitution k — —k in the Wilson line propagators, but not in the external
point. Then it is straightforward to draw the #n-th order diagram for a Wilson
line going from —oo to b¥, as demonstrated in Figure 6.5. The path still flows
from left to right, but now the momenta are opposite to the path flow. However
the main idea remains the same: momenta start from the external point and are
spread over the outgoing gluons.

Path Reversal

Let us now investigate what changes when we reverse the path of a Wilson
line. First of all, the integration borders are of course interchanged, because the
path flows from the final point to the initial point. This is the same as keeping
the integration borders as they are, and flipping the sign in the exponent. But
the most important is that the order of the fields is reversed, because the field
that normally lies first on the path will be encountered last when following the
reversed path flow. This is the idea of anti path-ordering P, defined such that
the field with the highest value for A is written rightmost instead of leftmost. The
reversed Wilson line is thus given by:

b
__ —igfdz" A
u(a;h) =Pe gu ' ’ (6.31)

It comes as no surprise that this is exactly the same as the Hermitian conjugate,
as this was one of the properties imposed during the derivation of the Wilson
line in Chapter 2. Note that the reversal of the field ordering is not only a
logical step when reversing the path, but also a direct result of the Hermitian

162
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conjugate, because (A,--A;)" = Al---AT. By using the fact that A(k)" = A(~k)
is a Hermitian function*, and making the substitution k — —k, the relation to
the reversed path becomes apparent. We thus have indeed:

u(a;b) = U(Th;a) : (6.32)

But of course it would be desirable to express the Hermitian conjugate line in
function of normal path-ordered fields, such that we can use the same Feynman
rules as before.

Let’s see how e.g. a Wilson line from —oco to b¥ behaves when Hermitian
conjugated (remember that in Equation 6.12 we defined the regular Wilson line
with opposite momenta, i.e. with factors A;(—k;)):

+
¥ _ Ckn o VR TE
Uy, o) = o nA(=kn)...n-A(=k))e i[]—
oy Z k;—in
N . LYk T
= Z (—lg) W n A(kl) . n- A(k ) € i H
n=0 =y Z ki +in
[ee] dwk hYlk n
n-A(=ky)... n-A(-k,) &%
Z:: 2m)° (—k1) n-A(-kn) e H

. Zkl—lﬂ

where in the last step we made the integration substitution k; — —k;. In order to
make the identification with Equation 6.12, we have to relabel the fields by doing

l-n,2->n-1,..., n—>1,
which gives

n d kl
Uy -oo) = Zf(zn) Ten)® Ap (kn) A (k) LT,

. n .
121 = (ig)" (=)o (=) P2 [T —
Fl—n-Y ky +in

I=j

:

4 Because A(x) is real.
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> kj > kj kyi+k, kn

bl e j=1 — j=2 — —

T - Sk o glk

Figure 6.6: Reversing the path of a Wilson line is the same as taking the Hermitian
conjugate L{(T bi—co)” If we want to express this in standard path ordering,
we have to make the substitution # — —n (shown by the blue arrow) and

change the path into a line going from b* to +co.

+00

We see now that this is the expansion of a Wilson line from b to +o0, but with
opposite n*.* The same will be true for a Wilson line from a point to +o0, so we
can write:

U(T+0<>;a) - u(“;*oo) nesn (6.332)
Mgb;—oo) = u(+oo;b) : (633b)

n—-n

We will indicate the direction of # in a Feynman diagram with a blue arrow on
the Wilson line, where going from left to right implies a positive #. This also
indicates the direction of the path flow: an arrow from right to left implies a
negative n, implying a Hermitian conjugate, implying a reversed path (from
right to left).® With this convention, we can draw the reversed version of
Z/{(b;_oo) as in Figure 6.6.

Let us have a look at how the Feynman rules change when making the substi-
tution n — —n. First for the Wilson line propagator, we see that it gets complex
conjugated when the momentum flow is opposed to the path direction:

k . k .
. i . -i
—_— = - — = —, (6.342)
n-k+in n-k—in
K . k i
# = _, # = —_—. (634b)
n-k—in n-k+in

The important fact to realise here is that what defines whether a Wilson line is going from —oo
to a* or from a* to +oo is how the momenta are summed in the denominator. For the former it
J n

is )", and for the latter ).

I=1 1=j
Note that the substitution n — —# is not the same as a path reversal. To appreciate the difference,
remember that for a linear path z* = r + n” A, so the substitution n — —n changes a path
from —oo to 0 into one from +oo to 0 (ignoring the difference between path-ordering and anti
path-ordering). But the reversed path goes in the direction —n; this is why we can use the blue
arrow to denote both. The difference is maybe subtle, but cannot be neglected.
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The vertex coeflicient only depends on the path direction, (not on the momentum
direction):

j i = iont (7). j i = _iont (%),
* ign® (1), " ign*(t%);;.  (6.35)
H,a H,a
On the other hand, the sign in the exponent for an external point doesn’t depend

on the direction of the path flow, but only on the momentum direction as
compared to the point itself:

k k k k

#’1’” = 1t & = = < ot = 1"“.# _ eir-k’ (6.36a)
k X LA 4

=Scart = o= = =<—ur" = == = ¢k,

(6.36b)

Most of the time, we will drop the arrow indicating the path flow on the Wilson
line, as it obscures readability, and assume—unless specified otherwise—the
path flowing from left to right.

We now introduce a shorthand notation to denote the path structure for a
Wilson line segment. We represent the two structures we calculated first by:

Schematic Representation of Wilson Line Segments

Z

u(+oo;a) = —, (6373)
U,

Z

—eo) = =—e. (6.37b)

Note that there is a subtlety in our drawing conventions. Until now we’ve only
drawn small pieces of a segment in order to illustrate the Feynman rules. But
here we give a schematic representation of a full segment (including gluons).
Confusion might especially appear between the depiction of the Feynman rule
for an external point and this representation, however, the correct interpretation
should be clear from the context. Furthermore, from now on we will mostly use
the latter notation.

For the reversed path, there is some ambiguity in the interpretation. Combin-
ing Equation 6.32 and Equations 6.33, we can write

Uasro0) = Utas o], _,- (6:38)

In both sides of the equation, the blue arrow is pointing from right to left.
However, in the Lh.s. the line touches +co and in the rhs. it touches —co. The Lh.s.
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gives the correct physical picture, while the r.h.s. gives the correct calculational
picture (assuming we keep all fields in standard path-ordering). We choose the
latter, so keep in mind that this is not a correct physical representation:

Iz

<—», (6.392)

u(u;+oo) = u(a;—oo) S

Iz

—. (6.39b)

u(—oo;b) = u(+oo;b)

n—-—-n

This helps avoiding calculational mistakes, as the former representation would
seem to suggest that Ulsoosa) and Uy, so0) are related by a simple sign change
in n. This is not enough, one also has to change the accumulation of momenta
in the denominator of the propagator, from Y7 k; (Equation 6.26) to > ki
(Equation 6.30). A trick to remind this correctly is to remember that path
reversing equals Hermitian conjugation, and the latter is easily demonstrated in
our schematic notation using a “mirror relation™:

Mirror Relation for Hermitian Conjugate Line

(_ >)T = < °, (\:.)T = —=, (6.40)

which is literally the same as Equations 6.33.

Finite Wilson Line

Next we investigate a Wilson line on a finite path, going from a point a* to a

point b# (where now the direction is defined by n* = ﬁ). We parameterise

this as:
¥ =a" +n¥) A=0...|b-a]. (6.41)
Of course we can simply use Equation 6.4c to split the line at + o0, i.e.

u(b;a) = u(b;+oo)u(+oo;a) = Z/{(b;foo) Z/{(700;{1) ’

but in what follows we will do a brute-force calculation giving the same result,
and this for three reasons:

A. Itis an extra, practical check of the transitivity formula.

B. Following our calculations, we will see that this is the natural and only way
to calculate a finite line in momentum space, i.e. so far no easier solutions
exist.
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c. Halfway the calculation we will need to solve a recursive relation, which
we can re-use when calculating the fully infinite line.

Because there are no infinities at the borders, it doesn’t matter whether we choose
Equation 6.10 or Equation 6.8, as both are equally difficult but will give the same
results. Choosing Equation 6.10, we write the segment integral as

1aZk [b-al 1, 12 .
fin. _ n. u, bn o inY kid;
L= (g)" n"n f / / ~-dA e it (6.42)

Dropping the factors in front of the integral, we find a recursion relation:

|b-al

0 (k) = f KL T — (ki -1}, (6.432)
0 I’I'kl
Iﬁ“(kl,...,kn)z_—1(1221(k1+k2 ..... kn) = I (K. k n)). (6.43b)
n-k1

To ameliorate notational clarity, we will drop the factors n* (from the fractions)
and 1(b — a)* (from the exponent) in the next calculation. The first few orders
are easily calculated:

[fin _ (=) ktks _q i(-1) k)
2 kl(kl + kz) (e ) " klkz (e )
3 ALY
ffin _ (i) htkatks _ 1) i(-i) ekatks _ g
3 kl(k1+k2)(k1+k2+k3)( ) klkz(k2+k3)( )
S G VI (5 -1)
(kl + kz)k2k3 ’

Iﬁn — (_1)4 ( k1+k2+k3+k4 _ 1)
7 k(k ko) (ki + kg +ks) (ki + kg + ks +ky)
i(_i)3 ( ky+ks+ky _ 1)

+
klkz(k2+k3)(k2+k3+k4)

iz(_i)z k3+k4 _ 1) + 13(_1) ek4 _ 1)

+
(k1+k2)k2k3(k3+k4) (k1+k2+k3)(k2+k3)k3k4

and so on. We see that every term has a fraction where a part of the momenta is
accumulated from below, and the other part is accumulated from above. We can

167



6.3 WILSON LINES ON A LINEAR PATH

thus express the n-th order term exactly as (reintroducing the factors n* and

(b—a)):

i3 K LA " -i
121'1. = Z ( m+1 H - H J— . (6'44)
m=0 =1 Z j=m+l1 n.z kl

I=j I=m+1
This can be simplified further. First of all, we have exactly 2n terms, of which »
have no exponential and can thus be summed to simplify into one term (these
are all terms corresponding to the —1 term in parentheses). Note that if we sum
these n terms and add the m = n term, we get zero:

Eikonal Identity

m : n

> |11 :1 }H 7;1 =0, (6.45)
m=0 | j=1 Z j=m+1 n-Z kl

I=j I=m+1

J

which is easy to prove by induction. This is known as the eikonal identity, and is
especially useful in the case of Abelian fields, because then it tells us that—for
a given diagram where two Wilson lines are connected to each other with /2
photons (or gluons when ignoring colour)—if we sum the possible emission
partitions between the two lines, the result is automatically zero.”

Using the eikonal identity, we can replace the sum of the n terms by the
opposite of the m = n term:

n-1 m i n i n i
H m H H m ’
m=0 | j=1 Z j=m+1 n- Z k j=1 n.z kl

= I=m+1 I=j

The important observation is now that the last term is also the m = n term
for the full sum including the exponential (Equation 6.44), as in this case the
exponential vanishes:®

1(b a)nZJr:lk eo _q

We don’t even have to sum over all possible crossings. Any given diagram connecting the photons
is represented as a product of §-functions and propagators, and is factorised out of this calculation.

b
Remember that by definition Y f(j) = 0if a > b, this is an ‘empty sum’ The same is true for
j=a

b
multiplication: [T f(j) =1ifa > b.
j=a
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This then gives:

n=l i(b-a) 3 k;

Iﬁn‘ - e m+1 ﬁ i H _—1 + ﬁ
n m=0 . X . j .

i(b—a)f“kj

n
=2 Ll . j
m=0 Flony k’ j=m+l ns kl

I=j I=m+1

Reintroducing the factors in front, we see that the exponential simplifies into

ia- En:kj i(b—a)-fj k; "o ia ij ib- Z k;
1 m+1

n
> OO S

m=0 =0

We can thus finally write the path content integral for a finite line as

n m 3 n s
fin. . . 1 iak; . . -1 ibk:
L= ngn"f ——e'® H 1gn”1j—e1 il. (6.46)
m=0| j=1 n.z kl j=m+l n‘z kl
I=j I=m+1

Using the fact that this kind of chained sum can in general be written as a product
of two infinite sums:

we can transform Equation 6.46 into a product of two half-infinite Wilson lines:’

- Iﬁl’l _ — T : y] _1 lhk] — T ‘u] 1 1akj
Zn = angi’l i € angn n €
n=0 ]=1 n‘Z kl n=0 =1 n.zkl
I=1 I=]

To make the identification with two half-infinite Wilson lines, we will manually
add the convergence terms in the fraction (we can do this without problem

There is a small subtlety here: in Equation 6.46, the propagators are ordered from 1 to n. But
of course the fields are ordered from 7 to 1 as explained in Equation 6.12. So basically, when
including the momentum integrals over the fields, the two products switch places.
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because in the infinitesimal limit they are zero anyway), but to be consistent,
they have to have the same sign in both products:'’

. —i bk - i i ak
:1

n- Zkl+111 ]:1 ”'EjkIJFi’Y

it

||M8
||M8

which is literally the same as two lower bound Wilson lines:

_ _ gyt _
Upsa) = Uips—o0) |y oy Uroo10) = Ulioosy Uisoosay = Ut ooy Usoosa) -
(6.47)

Of course, we can just as well insert convergence terms with a negative sign, i.e.
&S q o n 1 bk o N 1 iak
n. _ ib-k; . ; iak;
Yt = Zngn”J—e i > [Tignt———€'*" ],
n=0 j=1 i :

which gives us two upper bound Wilson lines:

— — T —
Upsay = Us-o0) Useosa) s = Utps—oo) Uai-ce) = Ulbs—oo) Uoosa)
(6.48)
proving the arbitrariness of the transitivity property. When putting this relations

in a schematic form, it is easiest to represent the one where the finite line is cut
at +00, because then the line is literally torn in two:

Finite Wilson Line

a”.#.b” = 6[‘”.:} ® {:.b‘u

The reversed path is simply the Hermitian conjugate (note that the Hermitian
conjugation also flips the order of the two lines in the rh.s.):

a“.:@.b” = b o > Q@ < ea"

10 The reasoning behind it is that the correct place to introduce these convergence terms is not here—
at the end of the calculation—but at the start of the calculation in the exponent of Equation 6.42,

. ilnX ki r,)/\ . . . . .
iee ( ’. Then after doing the full calculation, both products in Equation 6.46 will have
convergence terms with the same sign.
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So the only things that change after reversing the path are the external points.
This is of course logical, as we could interpret it as a normal finite line from b¥
to a*, for which the former schematic relation holds.

Infinite Wilson line

Finally, the last possible path structure for a linear segment is a fully infinite
line, going from —co to +oo along a direction n* and passing through a point
r#. Such a path can be parameterised as:

="+l A=—oo...+o00. (6.49)

Using Equation 6.8, we can write the segment integral as

. +00 /\2
inf. g, Un ”‘Zk in- Zk iAj
Y =(ig)" nt.-ntre dA,---dAre

Naively, one could think that I consists of 7 —1 integrals that evaluate to the
Fourier transform of a Heaviside 8-function (see Equations A.63), #_‘”1 , and
one integral, the outermost, that evaluates to a Dirac §-function. This would
give the following result (again dropping the factors in front of the integral for

convenience):

linnf. _ (ig)” nf...n H 27 6(712 k]) . (6-50)
o Zkl—lﬂ

However, there is one caveat. When we explicitly write the convergence terms

used in the n—1innermost integrals, we see that the outermost integral doesn’t
equal a §-function at all, but is badly divergent:

f da, (nEkminhn (6.51)

This is the Fourier transform of e, which is divergent.'! In other words, either
we drop the convergence terms (7 = 0), making the § integral representation
convergent but making all n—1 innermost integrals divergent, or we add the

11 The only square-integrable linear exponential functions are e ~"*l and e §(1).
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convergence terms in order to make the innermost integrals convergent, but then
we loose the § function representation and are stuck with a divergent Fourier
transform. Simply using the convergence terms for the n—1 innermost integrals,
and then setting them to zero for the last integral won't do, as there is no reason
to believe that we are allowed to take the limit # — 0 halfway. Furthermore we
will need the convergence terms in the Wilson line propagators when doing
momentum integrations.

A consistent approach is to regularise the path, as is calculated up to second
order in [40]. However, their proof is based on a not so rigorous use of the
Riemann-Lebesgue lemma. We will show that it is not difficult to make a math-
ematically correct all-order proof, based on solving the same recursion relation
as we encountered in the calculation of the finite line. The regularised path runs
from r# — %n“ tor# + %n” (with £ > 0), and is parameterised as:

z :’m”_;,_ztanh(gl)n‘u A:—OO..."FOO (652)

“
¢ §

If we take the limit £ — 0, we recover the same parametrisation as in Equa-
tion 6.49. The innermost integral equals:

. ) . &
Iinﬁ: fdA sech? ( 5 )elf(n-kl—ln)tanh(z/ll)

—i ( g(" k- 111)tanh( Az) _e—i%(n-kl—in))
n- kl —i n
ekl 5 sm( (n-ky —111)) —1
n-ky—in
The factor sech? is the integration measure that comes from the reparameterisa-
tion of the path dz# — (z#)"d. Note that we added the convergence terms iz,
despite the fact that at first sight they don’t seem necessary. However, intuitively
one can expect that they are in fact indispensable, as the regularisation of the
path acts on the outermost ‘4’-integral and not on the innermost ‘0’-integrals,
leaving the latter unregularised. We will indeed confirm their necessity in the
next step. To proceed, we observe that for higher orders the integrals obey a
recursion relation (again dropping the factors in front):

“(ktyeons k"):Tlin( 5 (kitkasksekn) — € i§(nki=in) I (ky ks, ) (6.53)
-
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This relation looks a lot like Equations 6.43. In fact the result is very similar and
can be simplified into

. n-1 _;2 .%k._i ) 2 n m i —i
I;nf'=212e f(n T sin[— (”Z kj—in)]n - : [1— : .
m=0 f m+1 1 n.z kl—il’] m+1 n‘é kl—il’]

] m+1

Note how the convergence terms —i# ensure that the exponent converges nicely

in the limit & > 0; they are indeed indispensable. All terms thus vanish in this
limit, except the m = 0 term where the exponent equals 1. We now move from
the regularised path back to the original path by taking this limit:

n—1

[Lnﬁ = (ig)" n*n | T]

n

27 6(11-2 kj— 117) . (6.54)

1

=il

j
n-y k;—in
1

As this is the same result as in Equation 6.50, we have shown that there is no
need to regularise the path and that the naive calculation leads to correct results,
although seemingly divergent at first sight.

A few words on the emergence of the §-function however. We use here the
concept of a nascent §-function, which is any function §; with infinitesimal
parameter & > 0, that has the weak limit

lim Op(x) = d(x). (6.55)
£50

This weak limit relates §; and & not by equality, but by the sifting property:

lim / dx 8:(x)f(x) = £(0). (6.56)
§50_"

In other words, for all practical purposes we can treat the weak limit of a nascent
delta function as a normal delta function. One can construct such a nascent
0-function from any function g that is absolutely integrable and has total integral
equal to 1 by defining

1 (x
8:(x) = = (_) (6.57)
£(x) £ 8|z
As the sinc function has total integral equal to fdx % = 7, we can easily

construct a nascent §-function from it:
in X
1sin%

Oe(x) = =

T X

(6.58)
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We still have one encumbrance to overcome, namely that in our result the
argument of the sine has an infinitesimal (but non-zero) complex shift iz,
while the §-function and nascent §-functions are only defined for real arguments.
Luckily the former steps can be proven to be valid for complex shifts as well.
First note that

f dx sin (x ~in) =7 (6.59)

x—1in
from which it is straightforward to show that

+00 . x—in
1 Sin
g0l o x-in

f(x—in)=£(0) (6.60)

In other words, the sifting property still holds after making a small complex
shift (at least for this type of nascent delta functions). We thus can make the
identification:

sin(%(”ékj_m)) ;ﬂg(n ; i’1)

lim

N n
§=0 n-y kj—in
1

-ij—

1

(6.61)

leading to the final result in Equation 6.54. Still one word of caution: as mentioned
before, this weak limit doesn't ensure that it equals a §-function, but merely
shows that the sifting property holds. This implies that when using Equation 6.54,
we are not allowed to use the integral representation of the §-function (the latter
wouldn’t make any sense, as it is a divergent integral). The correct way to make
use of a §-function with a complex argument, is to only use it in conjunction
with the sifting property.

Returning to the infinite Wilson line, we can get an equivalent definition by
starting from Equation 6.10:

n-1

IoF = (ig)" nhi... phn I % 2ﬂ8(n~z k; +i;7). (6.62)
1 Tl'z kl+i1’] 1
i

We conclude that the correct way to draw an infinite Wilson line, is to put all
radiated gluons on one side from the point r#, where the line piece connecting
the point to a gluon is a cut propagator having the following Feynman rule:
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n-1 n
k k
oo -- (kil klikz gl A ngj—( e too
=§-] } czZaoo
§¢k1 §¢k2 §¢k3 . §¢ kn—l §¢kn r

Z k Z k] kn—l + k}’l kn

j=1 — j=2 —> — —
O oD@ +00

L j : .
el glkl gikz gikn—z giknl iik”

Figure 6.7: Two possible diagrams for n-gluon radiation from a Wilson line going from
—o0 to +o0. The upper diagram corresponds to Equation 6.54 and the lower
one to Equation 6.62.

Extra Feynman Rule for Infinite Line

k
E. Cut propagator: %Lz 8(n-k+in), (6.63)

where &(i)s defined in Equation A.56. There are hence two ways two draw a
Feynman diagram for an infinite Wilson line, i.e. having all gluons radiated
before or after the point 7. This is illustrated in Figure 6.7.

External Momenta

Sometimes it is useful to write the Feynman rule for external points in mo-
mentum representation. To achieve this, we Fourier transform the full Wilson
line in all of its external points. Consider e.g. the simple line
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which consists of 4 segments (remember that the finite segment is split in two).

It has two external points, or vertices, that each contribute a factor e'*” on each

side of the vertex:

7’] ql
Y
k]/ /612
RS
2
ei ki ei q1°11 ei kyra ei qar=2

The Wilson line in momentum space is defined as the Fourier transform in every
vertex:

def —iPyry ,—i Py i
umomentum def /dwﬁ dwi’z e iP "e iPyr; ucoordmate , (6.64)

These integrations will give rise to J-functions:

P
k q2
% RS \/
P,
@w(Pl—kl—ql) §w(P2—k2—Q2)

So we can simply replace the Feynman rule for the external point with the
demand of momentum conservation at every vertex, with an additional external
momentum per vertex.

6.4 RELATING DIFFERENT PATH TOPOLOGIES

In the former section we have seen that there are eight possible linear path
structures; two connecting a point to oo, next a finite line and finally a fully
infinite line, all with normal or reversed path flow. We won’t treat the fully
infinite line anymore in the remainder of this thesis, because it has a particular
way of dealing with it, and because infinite lines won't often appear as segments
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of a piecewise Wilson line and are thus less relevant for what follows in the next
section."

The remaining six path structures are not independent. We have seen in
the previous subsections that if we choose the two path topologies from Equa-
tions 6.37:?

1er] n
—— = (ig)" n*lntre I [[——, (6.65a)

n
n-Y kp +in
1=

e

H’ij n _i
—e = (ig)" nfntre T[] —— (6.65b)

j=1 J :
n-y kj+in
I=1

we can express the remaining four in function of them:

— = <—e ]ne_n, (6.66a)
— = | (6.66b)
e - e ® <, (6.66¢)
—e - (== 0 —»| . (6.66d)

Note that in Equations 6.65 we deliberately chose two structures that have
positive convergence terms +i#, so that all calculations have the same type
of poles. But these two structures aren’t fully independent either, as they are
related by a sign difference and an interchange of momentum indices:

..... k) > (ks (6.67)

We can exploit this relation when making a full calculation, i.e. connecting the
Wilson line to a blob. This blob can be constructed from any combination of
Feynman diagrams, but cannot contain other Wilson lines. If one is interested in
interactions between different Wilson lines, it is sufficient to treat the different
lines as different segments of one line (as is explained in the end of Section 6.2).
We will name the blob depending on the number of gluon lines that connect
it to the Wilson segment. Valid blobs are e.g. a gluon propagator connected to
the Wilson segment (a 2-gluon blob), a gluon connecting a quark to the Wilson
segment (a 1-gluon blob). Note that the naming of the blob isn't always faithful

technically, they are relevant when considering several infinite Wilson lines and treating these as
one line with multiple segments, but we avoid these scenarios as they complicate the formalism.
Remember that # is defined along the path flow (from starting point to ending point). A reversed
path arrow thus always denotes —n.
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to the number of gluons participating in the process. E.g. in the case of a gluon
being connected to a segment (a self-energy diagram), this is clearly one gluon,
but we will refer to it as a 2-gluon blob, as two gluon lines enter the blob:

g S—

It is a matter of convention, and we chose this one as it helps categorising the
blobs.

In the next section we will research how to calculate diagrams with piecewise
Wilson lines, but first we investigate how to connect a blob to one segment. For
the structure given in Equation 6.65a this is (again abusing the path integration
measure notation):

dwkn dwkl 1.b. el
e T R e )

where we absorbed the gluon propagators into the blob Fy;\". i, Furthermore, we
always define the blob as the sum of all possible crossings; it is thus symmetric
under the simultaneous interchange of Lorentz, colour, and momentum indices.
Because every Lorentz index of F is contracted with the same vector n#, it is
automatically symmetric in these. The combination of these symmetries implies
that an interchange of momentum variables is equivalent to an interchange of
the corresponding colour indices. In particular, it is now straightforward to
relate Equation 6.65b to Equation 6.65a when connected to a symmetrised blob:

dk, d°k

(2m)*  (2m)®

= ()"t L For (ki k)

Un

Note that the only difference is an interchange of the colour indices. Often the
blob has a factorable colour structure, i.e.

Flgn (ke oo kn) = ¢ Fyp, (ki o k). (6.68)

If we then define the following notations:

c =t pPchan (6.69a)
=ttt (6.69b)
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we can simply write

(6.70a)

(-)"¢ . (6.70b)

The yellow, ‘photon-like’ wavy lines are just a reminder that there is no colour
structure left in the blob. In other words, when changing the structure of a
Wilson line, we don’t have to redo the calculation of the integral! The difference
is merely some colour algebra, changing ¢ into ¢ and a sign difference.

Remember that due to the fact that we read a Wilson line as a Dirac line, i.e.
from right to left, we have to order the generators in Equation 6.69a from # to
1. On the other hand, the blob is written from left to right—which is a matter
of choice, as it is fully symmetrised'*—leading to the difference in ordering
between .-t and ¢,

For a factorable blob example, take e.g. the 3-gluon vertex:

F=gfhn® [(k1 = k2)?Dyyv (k1) Dy, (k2) Dpys (k3) + cross.] ,
with colour structure
MO - MmOy g0 0201 A3020 g3 (021 (010205 _

This clearly implies that

So the 3-gluon vertex is path topology-invariant. Of course, a lot of blob struc-
tures won't be colour factorable, but we can always write these as a sum of
factorable terms:

FZ:Z: (kl’ et k”) = Z CflmanFi Hi-pn (kl’ R kn)’
i

14 The important fact to realise is that indeed the order doesn’t matter for a fully symmetrised blob,
but it should of course have the same ordering in its momenta, i.e. we identify a; with k;. Because
most references in literature write simple blobs from left to right, we keep this convention for
the blob for the sake of simplicity.
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such that we can repeat the same procedure as before

[ ——=

(6.72a)

]

— >

In conclusion: whatever the structure of the Wilson line, to calculate a given
diagram we can retrieve it from the calculation of the same diagram with a
Wilson line bounded from below, using straightforward colour algebra. For a
trivial structure containing only one segment, the gain is not that big, but for a
line consisting of several segments—as we will see in the next section and the
next chapter—this trick can save us quite some calculation time.

0
)
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Now we turn our attention to piecewise Wilson lines, using the results from
section Section 6.2. When connecting a n-gluon blob to a piecewise Wilson line,
the n gluons aren’t necessarily all connected to the same segment; other diagrams
are possible as well, where the n-gluons are divided among several segments.
This is the physical interpretation of formula Equation 6.19c. As mentioned
before, the Z/{i] aren’t commutative in se due to the non-Abelian nature of the
fields. However, when connected to the same symmetrised blob that is summed
over all crossings, they can be treated as if they where. This implies that multiple-
segment terms can be related by straightforward substitution, e.g.

uku =usu! (6.73)

bl
(7'K<—>T1,nl<<—>”])

etc. To get all diagrams connecting a given n-gluon blob to a piecewise line,
we have to calculate exactly p(n) diagrams, the partition function from
combinatorics,” independent of the number of segments M. When connecting

The partition function p(n) is the number of integer partitions of n;e.g. 4 = 4,3+1,2+2,2+1+1,
orl+1+1+1 Thus p(4) = 5. Other examples are p(3) = 3, p(5) =7 and p(6) = 11.
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e.g. a 4-gluon blob, we need to calculate exactly 5 diagrams. These are
constructed from the following segments (cf. Equation 6.19b):

ul, Wuk, Wk, lufut, and /v utuP
They are the easiest represented schematically:

J K J K J

(6.74)

In addition, there are 3 more diagrams that can be related using Equation 6.73,
built from the segments

wus, ukud , and Ul ufuy

Now what about external momenta? We saw in Subsection External Momenta on
page 175 and onwards that if we want to express the Wilson line in momentum
space, we have to add an additional external momentum to every vertex and
apply momentum conservation. However, most of the time a vertex connects
two or more segments, and to be able to use our framework, we need Feynman
rules that are defined per segment (not per vertex). Luckily, this can be easily
achieved by using the fact that a Fourier transformation transforms a product
in a convolution:

T lf(Ng(N] = [f(nN]e T lg(r)] . (6.75)

This means that we can associate per segment the Fourier transform of an
external point, i.e. we replace the Feynman rule for an external point with:

Feynman Rule in External Momentum Space

g L
B. External point: — - (S(‘”)(P—k) . (6.76)

An ‘empty’ segment—with no gluon radiated from it—then naturally gains a
&(P). After connecting the blob we make a convolution over the segments that
are connected to the same external point.
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In the TMD framework (see Chapter 8), it is common to express Wilson lines
only partially in momentum space. More specific, the plus and minus compon-
ents are expressed in coordinate space, while the transversal components are
expressed in momentum space. The Feynman rule is in this case replaced with:

Feynman Rule in Partial External Momentum Space

P
B. External point: \;Ci = (S(w_z)(Pl—kl) T KTHITKT (6 5

where the convolution is now only over P-.

Let us briefly sketch the steps needed to do a full calculation in this framework.
We illustrate each step with an easy example, viz. the calculation of all self-
interactions of the Wilson line with the following path structure:

3
where the path flow is assumed from left to right. The steps to undertake are:

A. List the segments that form the Wilson line and their corresponding path
constants: the segment direction n’, the external point r§ and the external
momentum Py. For the given example, these are (from left to right):

<— -nm,P,n,
—> ny, P,m,
<o 1/12,P2,7’2,
— > ns, Py, 1y,
<o 1’l3,P3,1’3,
— ng, P3,r3.

The first segment has a minus sign in it direction because we used relation
Equation 6.66a.

B. Define the process under consideration, and identify all possible blob
structures for the process, ordered by the number of gluons interchanged
between the blob and the Wilson line. For the NNLO'® self-interaction

16 Note that there is a difference between referring to the order of the process and the order of the
blob. As every gluon radiated from the blob already contributes a factor g, the total order of a
diagram connecting an n-gluon blob to a Wilson line will be al plus the order of the blob. E.g.
connecting a NLO 4-gluon blob gives a diagram at next-to-next-to-next-to-leading order (N°LO).
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example, there are three blobs: the 2-gluon blob, which is the gluon propag-
ator at NLO, the 3-gluon blob, which is the three gluon vertex, and the
4-gluon blob, which consists of two gluon propagators at LO.

. For every blob, list all possible diagrams. For the 4-gluon blob, these are
listed in Equation 6.74. The 2-gluon blob has two diagrams, and the 3-
gluon blob three. Note that this step is independent on the content of the
blob (only dependent on the number of interchanged gluons), and thus
independent on the process.

. For every diagram, separate out the dependence on the path, like we did
in the previous section by factorising out the colour structure. We will
develop a more formal approach in the next subsection (see e.g. Equa-
tion 6.79). Next apply the Feynman rules and calculate the momentum
integrals in the diagram.

. Apply the specific path structure to the relevant diagrams, and sum all
diagrams according to Equation 6.19c. If external momenta are used,
assign a 8(0-2) (Pg) to all external points that do not participate in the
diagram, and make a convolution over duplicate external momenta. Let’s
illustrate the latter with an example. The diagram connecting the 2-gluon
blob to two different segments will be a function of Pll, P1l<, r]*, e n? and

nIP'( (it will also depend on the type of path structure, but let us ignore this
for now):

TS, & B P rion ),

Consider now the following contribution:

£/

The third external point isn’t participating, so it gets a §-function. The
gluon isn't connecting the same external point, so no convolution is
needed. The result for this term is hence simply

8D (Py) Wy (P, Py).

But if we consider the contribution

s
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we need to do a convolution because now Pj = Py. This can be easily
done, by making the substitutions Py — Py — q* and Py — q*, and
integrating over q, . The result for this term is then

dwiqu

8D (pg) 8 (p) [

Wh(P{ -q*.q").

Note that because this diagram essentially forms a tadpole, i.e.

151

x’F d
momentum conservation demands the incoming momentum to vanish as
well, i.e. it will give 8(“~2) (P}"). So we could have ignored the convolution

from the beginning. But this is only true for 2-gluon blobs. Consider e.g.
the 4-gluon blob diagram

oy

This is no tadpole, so we need to make a double convolution. The result is
then

o (rs) |

da)—quL dw—ZqZL
(Zﬂ)w—Z (Zﬂ)w_z

Wi(Pi —qi*, a1, Py — a2 q2™) .

The good thing about this framework is that the results from B, ¢, and D are
independent of the structure of the Wilson line. Furthermore, we can already
calculate the convolution integrals when calculating the momentum integrals,
such that we have the result ready. In other words, once we calculated e.g. the
three possible diagrams connecting a 3-gluon vertex to a piecewise Wilson
line, we can retrieve this result for any Wilson line structure and never need to
recalculate it again; we only need to change the colour factors and the way the
different diagrams combine.
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Path Functions

Now what about the different path structures, as defined in Equations 6.65? We
can use the same trick as in the end of the former section, viz. a sign change and
an interchange of the corresponding colour indices. For instance:

The easiest way to implement this on a general basis, is to define a function @ per
diagram for a given blob, that gives the colour structure in function of the path
type, hence it depends on the segment index J. For the leading order 2-gluon
blob, this is straightforward. When the gluon is connected to the same segment,
flipping the segment makes no difference because we have a factor (-)?, and
the colour interchange has no effect (8% = §%°). When the gluon connects two
different segments, flipping one of the segments gives a sign difference because
of the factor (-)!. So the leading order 2-gluon blob has the following path
function:

o ®(J) = Cr, (6.78a)
S, & 00K)= (-)*9%Cp, (6.78b)

where ¢; is a number representing the type of the path:

0 J=e—
o =107 . (679)
1 J=<—=

Keep in mind that in our original definition of the Wilson line in Equation 6.1,
colour indices are not yet traced, meaning that Equations 6.78 should still be

multiplied with a unit matrix 1y, «x,. Similarly, we find for the leading order
3-gluon blob:

W : O(J) = —i%cp, (6.80a)
5 T 00K =, (6.80b)
W : O(J,K,L) = —1(—)¢1+¢K+¢L%CF. (6.80¢)

185



6.5 PIECEWISE LINEAR WILSON LINES

For non-factorable blobs we use the same trick as in Equations 6.72, by giving
® an extra index to identify the sub diagram it belongs to.

Let us introduce a new notation, to indicate a full diagram but without the
colour content, in which a blob is connected to m Wilson line segments, with
n; gluons connected to the i-th segment:

Wilson Line With Blob but Without Colour

Wi 2 /dwk" s [ Jm oS

(6.81)

R

(27_[)(4.) (27_[)(0 Nm ny Lty ety

where we will write the indices from right to left to be consistent with the
Wilson line being read from right to left. It is important to be consistent in the
choice of the ‘base’ structure, from which all other linear topologies can be
derived. We have chosen the lower bound Wilson line as the base, which can be
seen in the integrals I'>. If we would have chosen e.g. the upper bound line,
also the definition in Equation 6.79 would change.

Returning to the 4-gluon blob, we can now write the full result for a factorable
blob using Equation 6.19b:

J-1 K-1 LK]
q)211]/\}211

M=

M M J-
Ll4 = Z®4W] Z Z [(D31W3Kl] + q)zzszZI] +
] J=2K=1 3K=2L=1

~
1]

OLK
1111W1111 T+ symm, (6.82)

uMg

REEY

?Ml

where the symmetrised diagrams @, 3WII§] , (1)121W1L 2K11 ,and CDHZWIL 112] are cal-
culated using Equation 6.73, interchanging also the ¢;. In other words:

D13(K, ) WY = ©31(J, K) WiT, (6.83a)
®121(L K, )W = @21 (K, L) Wy (6.83b)
®112(L, K, J) WILIIEI =0,11(,K, L) WZI{(IL (6.83¢)

For a non-factorable blob, every term is just replaced by a sum over sub diagrams,
e.g.

oW, - S oWl (6.84)
i
It is important to realise that both the ® and W can be calculated independent

of the path structure, giving a result depending on #n;, r; and ¢;. We will call
the latter the path constants, which fully determine a piecewise linear path. If
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we have made a full calculation for a given path, we can easily port the result to
another path, simply by inputting the new path constants.

Diagrams with Final-State Cuts

So far we have only calculated amplitudes. To get probabilities from these, we can
do this in the standard way, viz. squaring diagrams and combining them order
by order (squared terms and interference terms), or we could treat the squared
diagram as one Wilson line—with double the number of segments—where the
segments to the right of the cut are the hermitian conjugate of those to the left.
The choice is a matter of personal taste. We choose to continue with the latter
case, where we now have three distinct sectors of diagrams: a sector U s where
the blob is only connecting segments left of the cut, a sector Uyign where the blob
is only connecting segments right of the cut (this is just the hermitian conjugate
of the former, but possibly with different path parameters r;, ny, and ¢;), and a
sector Uy where the blob is connecting segments both left and right of the cut.
In other words:

[ U = Uegt + Ueut + Z/{right- (6.85) ]

For the first two nothing changes, the calculations go as before. For the example
of the 4-gluon blob, the first sector UL, is almost exactly equal to Equation 6.82,
but the sums run up only to M., the number of segments before the cut, instead
of M. The last sector Z/lfight is simply the hermitian conjugate of this, starting at
M +1:"

rlght Z @TWT] + Z Z [CD;IWSTIK] + CDEZWJZKI]

M +1 M +2 M +1
Wi LK IS = t OLK]J
+ Z Z ZCDZII 211 Z Z > Zq)llllwllll + symm.
M +3Mc+2 M. +1 M +4 M +3 Mc+2 Mc+1

For the remaining sector U+ we need to define a cut blob. Given a blob, several
possible cut blobs might exist, depending on the number of gluons to the left
and right of the cut. E.g. the leading order 4-gluon cut blobs are given by

@ = ?%,]Lé D + CTOSS, (6.86a)

17 At first sight one might expect that Hermitian conjugation also flips the order of the segments,
but as explained in the paragraph above Equation 6.73 they can be treated as commutative.
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%ﬁ = wa + W + cross, (6.86b)

where the crossings are to be made on the sides of the cut separately. Also note
that when the cut blob is more complex, it should be summed over all possible
cut locations. Consider e.g. the fermionic part of the NLO 2-gluon cut blob:

S e e

Note that even if a blob has no lines crossing the cut, it will be considered a cut
blob as long as it has gluons on both the left and the right side, as e.g. the first
term in the rh.s. of Equation 6.86b. As the blob itself connects the left and the
right sector (even if internally it doesn't literally), this blob is associated to the
sector Uyt .

Now concerning the latter sector, we investigate how many diagrams are added
in comparison to Equation 6.74 due to the cut. First note that a Wilson line
segment itself is never cut.'® A semi-infinite line (lower bound or upper bound)
cannot be cut due to the symmetric nature of a squared amplitude, and although
a finite line can be cut, we can always write it as a convolution of two semi-infinite
lines, placing the cut in between.'® Another remark is that we cannot simply
use relation Equation 6.73 as before, because it could change the cut topology.
Cut diagrams are sorted depending on how its gluons are distributed on the
left resp. right side of the cut, and connected to the appropriate cut blob. For
instance the second diagram of Equation 6.74, namely W;ll , can be cut in one
way only, connecting the Wilson line to the cut blob in Equation 6.86a. But the
fourth diagram, W4, ,, can be cut in two ways: cutting with one gluon on the
left (written as ng and connected to the blob in Equation 6.86a), or cutting

with two gluons on the left (written as W§|11 and connected to Equation 6.86b).
Other cut topologies can be related by Hermitian conjugation when switching

left and right sides, e.g.

A cut line does appear in the context of infinite Wilson lines as we saw in Equation 6.63, but this
is a different type of cut (not a final-state cut), and anyway we are not (yet) including infinite
Wilson lines in this framework.

In the TMD framework it is common to associate a cut finite line with a true cut propagator,
but this is merely a matter of naming conventions. E.g. in Subsection Gauge Invariant Operator
Definition on page 233 and onwards we make the definition of a collinear PDF (a cut diagram
itself) gauge-invariant by adding a finite Wilson line that is cut. In literature (see e.g. [33]) it is
then common to also integrate over the exponential coming from Equation 6.27b leading to a
delta function, which in turn can be interpreted as the Feynman rule for a cut propagator (see
Equation 6.63). We prefer to avoid this approach, as it is more general to leave a” unintegrated.
We will however adapt the same pictorial representation of a cut finite Wilson line, see e.g.
Figure 8.1, but we remind ourselves that it is just a cut between two lower-bound segments.
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LKJ _ yastJKL
Wu\z _Wz\n : (6.88)

In the case of the 4-gluon blob, the following diagrams have to be added to
Equation 6.74:

Now we have the necessary ingredients to write the cut sector for the 4-gluon
blob:

4 M & K K
Use= 2 2 [(Wil +hc) + wy] ]

Mo+l 1
M J-1 M, . . M M. K-1

+ Z Z[(Wzm +symm.) +)/V11|2 ] + Z Z Zh.c.
M+2M+1 1 M+1 2 1
M J-1 K-1 M. OLK] M M.K-1L-1

+ ZW111|1 + 2. 22 2 he

Mo+3 Mo+2 M+l 1 Mc+1 3 2 1
M J-1 M,L-1 OLK

+ Z Z Z W11\11] (6.90)
Mc+2M+1 2 1

Although this might look quite complex, note that it only is the way how to
combine the diagrams that is a bit involving. And even then, it is a matter of
good bookkeeping, making it look a lot worse than it is.

One final remark: in Equation 6.85 we assumed that the sectors Uieq, and Uignt
only use regular blobs, while the sector U, only uses cut blobs. While the latter
is always true—as we cannot connect a segment before the cut with a segment
after the cut without including the cut line—the former is only partially correct.
It is possible that the left (or right) sector connects to a blob that is cut before or
after all gluons. Let us illustrate this. Consider e.g. a trivial example, namely the
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interaction between a Wilson line and a quark line. Ignoring the self-interactions
of the quark, we have the following possible probability diagrams at NLO:

T TlE FE 2FE
- Tl 3£

This means we have four different blobs, namely two 1-gluon blobs:

:

- , (6.91a)

A‘““f“m‘ , (6.91b)

P

= ) (6.92a)

W . (6.92b)

The two 1-gluon blobs and the first 2-gluon blob will be used in the U and
Usight sectors, while the second 2-gluon blob is the only blob used in the Uy
sector.

Note that it is not for every blob possible to draw a cut fully to the right or left.
E.g. the LO 2-gluon self-interaction blob doesn’t have this possibility, because if
we would try to draw such a blob with the cut fully to the left, i.e.

&f = ﬁf: , (6.93)

we immediately see that this is not a valid Feynman diagram, as the amplitude
on the left side would represent two real gluons popping out from nothing. We
thus conclude that self-interaction blobs cannot have cuts fully to the left or
right.

=0

and two 2-gluon blobs:

&
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Figure 6.8: An incoming quark radiating two soft gluons.

6.6 EIKONAL APPROXIMATION

Before we delve into the calculational techniques to work with Wilson lines—as
we will do in the next chapter—we will motivate the usefulness of Wilson lines
by one of their most important applications, namely as a resummation of soft
and collinear gluons.

In the eikonal approximation we assume a quark with momentum large enough
to neglect the change in momentum due to the emission or absorption of a soft
gluon. Even after multiple soft interactions it won’t deviate much from its path,
which we then take to be unaltered. Such a quark is called eikonal.

Let us investigate this a bit further. We take an incoming (hence real) quark
with momentum p that radiates two soft gluons with momentum ¢; and g5.
This is illustrated in Figure 6.8 (where the blob represents all possible diagrams
connected to the quark propagator). This diagram is equal to

ip--q) . o, 1(p-q)
2 . lgt y 2 .
(P—q1-q2) +ie (p-aq)?+ie
Making the soft approximation is the same as neglecting g; with respect to p,
and g; with respect to p-q;, giving

igt“y u(p). (6.94)

ipyFy" (b 1PaYY"

- ’
“2p-q1—-2p-q2 +ie —2p-q1+ielg u(p)

where we used p? = 0 because this is the momentum of a real quark. Because of
the Dirac Equation A.20 in momentum representation, i.e. p u(p) =0, we can
add a term ip,p#y? to the numerator of the rightmost fraction:

ippyy" L piPe YT

=2p-q1—2p-qa +ie =2p-q1 +ie€

Next we use the anticommutation rule Equation A.18 and write the momentum
as p? = |p| n?, with n’ a normalised directional vector, in order to get

ippyy’ igt i

=2pq1—2p-q2 +ie€ n-qi

igt®u(p). (6.95)

nt
—ielgt u(p). (6.96)
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171 O - ©®§§§

Figure 6.9: A quark radiating n soft gluons can be represented as a bare quark multiplied
with a Wilson line going from —oo to 0.

Because the rightmost fraction doesn’t contain any Dirac structure anymore, we
can repeat the same steps on the leftmost fraction. This gives:

i s v b i s U a
———ign"t"——ign* t"u(p) . (6.97)
n-(qi+ q2) —ie n-q —ie

What we see is that the Dirac propagators have been replaced by Wilson line
propagators, and the Dirac-gluon couplings by Wilson vertices. By using the
eikonal approximation, we literally factorised out the gluon contribution from
the Dirac part.
Of course this remains valid when radiating more gluons. In the latter case,
the resulting formula is straightforward:
-1 n.u" nHZ n("l
(ig)" F t*-t" u(p) —;
n-y q;—ie

mn-(ql +qp) —i€e n-qy —ie’

This is exactly the result for an incoming bare quark connected to the blob,
multiplied with a Wilson line going from —oo to 0 (we know that the external
point has to be zero because there is no exponential):

However, when using the momentum representation for the external point,
the latter gives a factor 8(@)(g), so that we can write this relation as an exact
convolution:

Fp) [

where g can be interpreted as the sum of the gluon momenta. This is illustrated
in the diagram in Figure 6.9. Note that Equations 6.98 and 6.99 don't give a
bare multiplication either, because the % are placed between the u(p) of the
external quark and the blob. Writing out the Dirac and Lie indices makes this
clear:

U(q)u(p-q) =F(p) U u)(p), (6.99)

‘ o ; igny,, ign
(F);j SP (t et ‘)ji(u(P))a n - “n -flie'
n-y. qi+ie n
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§T §T §T O softlirn)it C ‘/\

Figure 6.10: In the soft limit, a bare quark can be represented as an eikonal quark.

From this result, we introduce the concept of an eikonal quark. This is a quark
that is only interacting softly with the gauge field, and thus doesn’t deviate from
its straight path. It can be understood as a bare quark convoluted with a Wilson
line to all orders:

Eikonal Quark

‘V/éik.> = u(ié;,oo) ® ‘W) . (6.100)

In other words, the net effect of multiple soft gluon interactions on an eikonal
quark is just a colour rotation (nothing but a phase). It is common to denote an
eikonal quark with a double line, but this gives rise to ambiguities: the double
line was already used to denote a Wilson line propagator. These are, although
related, not the same. The eikonal line represents a quark (carrying spinor
indices) resummed with soft gluon radiation to all orders, while the Wilson
line propagator represents gluon radiation at a specified order (not necessarily
soft), still to be multiplied with the quark (carrying no spinor indices itself). In
short, Wilson line propagators are used in the calculation of an eikonal line. To
appreciate the difference, have a look at Equation 6.100: the eikonal quark is the
combination Ll(if) o0y ®
of U(O ;—00)*

To avoid confusion, we will draw an eikonal line in red, and always explicitly
draw an arrowhead (representing the quark’s momentum flow):

v/ ), while the Wilson line propagators are components

p
—>-——  Aneikonal line, i.e. [yl ( p))“ , (6.101a)
q

A Wilson line propagator, i.e. (6.101b)

n-q+ie’

But keep in mind that these notations are commonly interchanged in literat-
ure. Using our notation for the eikonal line, we can write down the eikonal
approximation diagrammatically as in Figure 6.10.

A last remark: in the derivation of the eikonal approximation, more specifically
Equation 6.95, we used the fact that the quark in question is external, by adding
aterm p* pu(p) = 0. This is a crucial step, without which we wouldn’t have been
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6.6 EIKONAL APPROXIMATION

able to resum all gluons into a Wilson line, i.e. Wilson lines as a resummation of
gluon radiation can only appear next to quarks that are on-shell.

It is possible to resum gluon radiation into a Wilson line even if it is not
soft. E.g. in the collinear approximation, we allow for large radiated momenta g
which are collinear to p, i.e. if p# = |p| n* then g* = |g| n* in the same direction.
The Dirac equation tells us that pu(p) = 0 and thus i u(p) = 0, which implies
we can add a term p*g u(p) to Equation 6.94. If we keep the quasi on-shell
constraint, g> ~ 0 as compared to p - g, this again leads to a Wilson line, but this
time with possibly big ¢ momentum components (as long as they are collinear

to p).
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SIMPLIFYING WILSON LINE CALCULATIONS

In the former chapter we deeply investigated piecewise linear Wilson lines. We
derived Feynman rules for the eight different possible linear topologies (four
types plus their path reversals), and discovered how to relate them to each
other. Finally, by collecting a set of diagrams per blob we wish to connect to a
given Wilson line, we were able to develop a framework to significantly simplify
calculations if the Wilson line has a lot of segments. Moreover, and this was
the most important result, from the moment we have made a calculation with
a given blob, we can easily port the result to any piecewise linear Wilson line.
However, there is a fly in the ointment. Calculating these general integrals is
quite complicated, because we have to keep the path constants (n,],, r,]l and ¢/)
as general as possible, while normally in a calculation these are fixed in such a
way that the integral simplifies a lot (e.g. n*=0, n, =0). This chapter is devoted
to a few tricks that can help in simplifying the calculations encountered with
piecewise linear Wilson lines.

In Section 7.1, we develop an advanced technique to simplify any product or
trace of fundamental Lie generators. As we separated out the colour structure in
the previous chapter, this section can be a big help in calculating these factors. In
Section 7.2, we show how to properly define the contents of the blobs introduced
in the previous chapter. We do this by using the example of self-interaction blobs—
which contain no external lines and hence represent interactions between the
Wilson line and itself—for a 2-gluon blob and a 3-gluon blob. In Section 7.3 we
explore the validity of a Wick rotation in the context of Wilson lines, and adapt
the formulation where necessary. And finally in Section 7.4, we make the first
steps to calculate a common general Wilson line integral, and narrow it down to
an easy example, a 1-gluon cusp correction, which we fully calculate for general
segment directions, be it purely light-like, transversal, or mixed.
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71 ADVANCED COLOUR ALGEBRA

7.1 ADVANCED COLOUR ALGEBRA

The first step of any calculation in the piecewise framework is the calculation
of path functions (see e.g. Equations 6.78). These functions contain a colour
part and a part related to the line structure. The colour part is given by (see
Equation 6.69a):

c = i T Min
The n-generator product is simply the colour structure of the n-th order expan-

sion term of the Wilson line, while the factor ¢* % is the colour structure of
the blob. Let’s see if we can somehow simplify this term.

Calculating Products of Fundamental Generators

Similarly to what we did with the Fierz identity in Equation A.78, any product of
colour generators can be written as a linear combination of the identity operator
and the generators, because the latter span the full product space. In other words:

(A2, O = AB1827 A0 +Ba1az--~anbtb.

As A% and BMaranb are just coefficients, tracing the rh.s. simply gives
A®92@n t1(1), because the single generator after B4192 % is traceless. In a
similar way we can recover B492*4b by multiplying the product with a generator
before making the trace. Le. :

tr(¢®e®e ) = N AT

2

But the Lh.s. of the latter can also be calculated as one order higher, i.e.

tal taz-"ta" tb _ Aa1a2-~~a”h]l i Ba1a2~-~anbctc ,
giving

tr(tultazmta"tb) _ MAa1a2~~~a,,b
1

= Au1a2~~-an = Bu1a2~~-an .

2N,
Only one of these is linearly independent. We will adopt the notation

N

= N, A%é2=an | (7.1)

Ca1a2~--an
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71 ADVANCED COLOUR ALGEBRA

with C standing for ‘colour factor’ Note the difference with Equation 6.68, i.e.
a capital C is the colour factor that represents an n-generator product, while a
lower case c represents the colour structure of a given blob. We can now rewrite
the first equation as:

1
(00 in = CHOn £ 2 O (7.2a)

©

CHm = (¢t . (7.2b)

As the colour factor identically equals the trace, it naturally has the same
properties, namely cyclicity and Hermiticity:

CHfrin o cdsmin@ = [ (7.32)
Calaz...an — E“n"'ﬂzal (7.3b)
The first colour factors are straightforward to calculate:
Co=Ne» (7.42)
C' =0, (7.4b)
1
Cub §6ab , (7.4¢)
1
Cahc - Zhabc ) (7.4d)

To calculate higher orders, we use Equation A.75 to deduce a recursion formula
for traces in the fundamental representation—and hence for colour factors—by
applying it on the last two generators (the last two indices of a colour factor):

An-1an ap-1anb

Cal...a,, _ Wcal-narhz + Tcﬂl'“uanb . (75)
©

This gives for instance

Cubcd _ L(Suhacd 4 lhubxhx cd
c

Cubcde _ L(habcade +6ahhcde) i lhabxhxcyhyde’
8N; 16

Cubcdef _ Laab(scd(sef + ihabxhxcyhydzhzef
8N? 32

[

T 1 (habxhxcd6ef+habchdef+8abhcdxhxef) )
16N,
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71 ADVANCED COLOUR ALGEBRA 198

One extremely useful observation is that inner summations only appear between
consecutive h’s, and never with a §. This allows us to define the following short-
hand notations:

N oaja;
5 X guiain,
N ypa;aina;
h = h iAi+14i+2 ,
N 7 aiai4+1X1,X0ai420;
],Lh = h iAi+l h i+2@i+3 s

hhh B ptidixpXaiypy aidive
b
(T

so that we can rewrite the former result as (note that the order of the §’s and #’s
is significant because of the indices):

1

szz(s, (763)
1

C3:Zh) (7.6b)
1 1

Cy= 60+ —hh, (7.6¢)

k 8 u

Cs= (hd +8h) + Lhh (7.6d)

578N, 16 Lo’ A

Co= L 566+ (hh5+hh+5hh)+ihhhh (7.6¢)

67 N2 16N, \ U S v e 7

If we generalise this to an n-th order trace, we get from Equation 7.5:

Calculation of Colour Factors

2 1 all allowed &, h combinations
. g » (772)

neven: C™M7 % =

i=0 Z%J"'NC% built from 2i h’s
n-=3
& 1 11 allowed 8, h binati
nodd: Cman — E L all a ov've c?m 11‘1?. ions | - (77b)
i=0 25 *IN, 2 built from 2i +1 h’s

where the §, h combinations need to have n open indices, using

0 2openindices,
h 3 open indices,

hh 4 open indices,

]

Plz_lill_lh 5 open indices,
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etc.

and where it is forbidden to put any § or & in between two contracted h’s. So
for instance h6 h and hhh are not allowed. With this in mind, we can tackle any

trace w1thout the need for recursive calculations. For example:

Cal"'aIO —

lN (hh888+8hh88+ 68hh6+ 888hh

+hhdd+héhé+ hdSh +S5hhé+8hdh + 86hh) + lN (hhhh88

[Su]R]

+8hhhh6+86hhhh + hhhh6+ hhh(Sh + 6hhhh + hhhhé‘+

[

+h6}ll_,i|1_,h+6h}|z_,}|z_,h+}|l_lh}ll_,h6+ I|1Jh6i|1_'h+8i|1_,h}|z_lh+}|z_lhhh+h}|1_'hh

+hh }Lh) + éN (hhhhhh6 + 0hhhhhh + hhhhhh + hhhhhh

| [ § S I [ | N o

+ hhhh hh + hh hhhh + hhh hhh) + thhhhhhh .
[T Ry | [ T T [T W T 512 wnoonoou

This looks quite complex, but is in its essence not that difficult, as we only have
6 ‘types’ of terms, depending on the number of /’s in a certain term. The result
will simplify drastically if there exist symmetries between the indices of C*""%10,

As a result from Equation 7.5 we can use a trick to double check our result,
namely that the total number of terms should equal the (n—1)-th Fibonacci
number (counting 0 as the zeroth Fibonacci number). Indeed, for the 10-th
order trace we have 34 terms.

Making contractions over the indices of one colour factor is straightforward
using the formulae in the end of Appendix A.6. E.g.

Cahab — ﬁ@dbaub 4 lhabxhx ab )
c

The last term can be calculated by using Equation A.87e:

habxhxab _ habxﬁxba _ _i(sbb =-8Cp,
N;
giving
abab _ 1 2 1
C m (NC - 1) - CF = _ECF . (7.8)

Similarly, if we flip the last two indices of the colour factor we have

Cabha _ Laab(sha 4 lhabxhx ba
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This time the last term can be calculated by using Equation A.87d:
hahxhxha -4 (ch _ 2) CF ,
giving

Cubba — M C12:' .

(7.9)

Because of the cyclicity these two are the only independent fully contracted
fourth order colour factors. We will conclude this subsection with a list of
properties for the colour factors. First, a listing of some common contractions

of the first to fifth order colour factors:

1
C* =N, Cr, c®e=o, crb = SCr 8, (710a)
1 1
Caxbx _ __(Sab , Cabab - _—Cp, Cabba - N CZ , 10b
AN, > F cLp (7 )
Cabcxx = Cr Cabc Cabxcx _ _Lcabc CH %Yy — () (7.10¢)
b 2NC b b .
CLEES) = ), CLEE gy Cabcdxx _ CFCabcd , (7.10d)
cobexdx _ _ 1 oabed  cabredx _ Lgabged 1 abed (7.10€)
2N, ’ 8 2N, ’ '
and the sixth order colour factors:
Cabxxyy _ 1C12: 8ab , Cahxyxy _ _&(ylb , Cabxyyx _ ECIZ: aah , (7.112)
2 4N, 2
axbx CF sab b 1 cab b CF cab
coxbryy o __F gab  caxbyxy o ___gab - caxbyyx _ __F gab (o)
4N, 8N2 AN,
Caxxbyy _ lCIZ:(Sab , Caxybxy _ lz\]C2+l6ab , Caxybyx _ 1 6ab , (7.11(:)
2 8 N2 8N2
Cr 1
Caabbcc =N C3 , Cabacbc - = Caabcbc _ __CZ , 11d
e Uiy AN, > F (7 )
N2 +1
Cabccha =N C3 , Cahcabc _ Y% oy 116
c “F 4Nc F (7 )
We also list some contractions between two colour factors:
1 N, 1
Caxcxb _ _éﬂb , Cabcab _ _CCF , Caxycxyb _ __6ab i (7.12a)
4 2 4N,
NZ-2 C NZ-2
Caxycyxb _ Y% 6ab , Cabccabc _ _71: , Cabcccba _ Y Cr, (712b)

Cc

and between a colour factor and a standard colour constant:
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N 1 N,

Cab 14 tb _ 7CF ﬁ , Caxyfxyb _ iZ(Sab , (7.133)
c
N? . N,
CabCfahc _ iTCCF i Cabxyfxyc _ igchubc i (7.13b)
abced fabe _ abced fabx pxcd _ _E
Co4 9 =0, CoEf 555 = 4 Cr. (7.13¢)

For contractions with longer colour factors, we can simply use the Fierz
identities (see Equation A.77). Expressed in function of colour factors, these are:

Cal"'amxam+1"'prap+1"'an - lcal"'amap-#l"'an Cﬂm+|“'ﬂp _ LC“]"'“V! (7.14a)
2 2N,
Cﬂl"'ﬂmxxamn“'an — CF Cal"'an (7‘14b)
CHAmX CXAm+1An %Cal'“an _ %Cal“'am Cam+1an (7.14C)
G

Calculating Traces in the Adjoint Representation

In the adjoint representation Equation 7.2a is not true, because the set {1, T}
isn’t sufficient to reproduce all possible products of adjoint generators. Still,
it would be useful to find a method to calculate adjoint traces. Unfortunately,
this is not so trivial, as we have no useful expression for the anticommutation
relations—which we need to get a recursion relation as in Equation 7.5. Instead
of a brute-force calculation, we will relate traces in the adjoint representation
to traces in the fundamental using a nifty trick. First, note that in general the
product space of the fundamental and the anti-fundamental is isomorphic to
the sum space of the adjoint and the identity:

FeF~A®1, (7.15)

from which we can derive (U, denotes ‘the group element U expressed in the
adjoint representation’):

tr(Uy4) = tr(Up) tr( Uf) -1. (7.16)
For the trivial group element U = 1, we get indeed d4 = d3 — 1. To calculate
the n-th order trace, it is sufficient to take U = fl[ elR%i expand it and compare
terms of the same order in «;. Furthermore we Z:an use

_717t _ 171
U-=U} = Uz,
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71 ADVANCED COLOUR ALGEBRA 202

which implies

791, Z4n an _4ap 0n _ a1 4%
ta; “.et a, _et a, .“et o .

For example, the fourth-order trace in the adjoint can be calculated as follows:
tr(eT”leﬂeTbageTcageraZ) _ tr(et”zxf ethocg etcagetdzxjf) tr<e—tdaf e—tcage—tbag e—t“af) -1,
afadalal tr(T“TchTd) = alabaial [ tr(t“tbtctd) N; + N, tr(tdtctht“)

+2tr(1%) () + 2 tr(¢7t°) te(tPe?)

+2tr(tt?) ()] .

Using this trick we can calculate any trace in the adjoint representation in
function of traces in the fundamental representation. Also note that we can derive
equations similar to Equation 7.16 using different representation combinations.
For example in SU(3) we have

303~6®3,
implying
tr(Uzr) = tr(Up) tr(Ur) - tr(Us) .

Now back to the adjoint generators. We can generalise their trace as

Traces of Adjoint Generators

(T T ) = Ne( tr(£t%") + ()" Tr(t¢) )

L5 oy m'(n"'_m)' tr(t(al...tﬂm\) E(t“m“---t“”)“) . (717)

We introduced two new notations: first we have the ‘conjugated’ trace, which is
simply the trace in reversed order:

tr(t™t) = te(¢tr-t™) |

The only thing that changes when reversing a trace of fundamental generators,
is that every h gets replaced by its complex conjugate h (hence the notation

tr). The result can then be simplified further using relations as h—h = 2if,
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hh +P|z_,_h =2 (c|l_,d —g) , etc. The second notation we introduced, (e, is an
‘ordered’ symmetrisation which for a general tensor M is defined as:

M(“l"'am|am+l"'an)o — m! (n ~ m)!
n!
all permutations for which the first m
(Malma" + indices and the last #—m indices are ) (718)

ordered with respect to (a;---a,)

For instance:

M(uh\ch)o — l (Machd + MﬂCNbd + MathC +thNad +Mthac +MCdNﬂb)
6 .

One handy property is that when A and B are commutative, we have:

ai--a a q A1 dy— An_ —q
A(l m‘B m+1 n)o:B(l nm‘Aan n)o’

e.g. (8!he = (hl§)e. To conclude, let us list some traces:*

C4" = N8, (7.192)
CZWMS _ % (h _E) , (7.19b)
Clia2asas _ (55 n 3(55)) L < (;Lh +Z) (7.19¢)

Caaasasas - - [(h h)6+6(h h)+10 5(h h))o]

5 (g~ T) (a9
Gt = o (606 +15(500)) + [( i + k) 8
+(hh+ﬁ)+5(huh hu)+15(5'( i+ Tih)
~20 h'h)"] = (hhh + TR (719€)
where we introduced the notation
cyn = (7Y T, (7.20)

in analogy with the fundamental representation.

1 Note that (8!8’ = (§8”, for any number of &’s.
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7.2 SELF-INTERACTION BLOBS

Now that we have developed some useful tools for working with the colour
algebra, we make a list of path functions for some common blobs. We will list
the Wilson self-interaction blobs—i.e. all blobs that connect the Wilson line to
itself, not to e.g. a fermion—up to NNLO. These are the blobs that are used in
the calculation of soft factors and Wilson loops. Note that we always take the
convention that gluon momenta are pointing outwards from the Wilson line,
into the blob.

Two-Gluon Blob

The 2-gluon blob up to NNLO is simply the gluon propagator plus one-loop and
two-loop corrections:

S - WSO OO DT

So the formula for the blob is simply given by
Fb (ki ko) = 8Dy (ky) 89 (ki + k) BY,, (K1), (7.21)

where B resums all corrections:
By (k) = gu + [iT15° (k) = TI3C (k) D7 (k)T (k)

+ iHIVi,NLO(k) ... ]Dpy(k) , (7.22)

and where IT is the 1PI diagram. We anticipated the fact that we can factor
out the colour structure to be §*°. This is only logical, as there are no other
elements in the algebra that have exactly two adjoint indices open (and that
cannot be reduced to something proportional to §?). This also means that
the path function defined in Equations 6.78 is indeed valid, because the colour
structure is (see Equation 6.69a):

c=t*t"8% = Cp 1,

and what is more, it is valid to all orders for the 2-gluon self-interaction blob,
following our reasoning above. Connecting this blob to a Wilson line is trivial
using the methods developed in Section 6.5. This gives:

M M J-1
U =Y o,(NW + 3 o, K)WIEK, (7.23)
Ji J=2K=1

204



7.2 SELF-INTERACTION BLOBS

where ® and W are given by Equations 6.78 and Equation 6.81:

2-Gluon Self-Interaction Blob

% : (7.24a)
®,(J) = Cr,
W) = (dz‘;k)l (dzk)z 5> (ki k2) o (i k2)
:—1g2n’“ “21y2€ (621‘:1]; n]-k1+i’7 #IV( )va(k)
K _J_

F : (7.24b)

@11(J,K) = (-)¥*9Cp,
K [ d°k,

i = (2m)® (2m)* 0 X(k) §(kz) Fypiy (i K2)

5 , r—r’)k 1
- ! ¢ k)B’ (k),
& ngh ] H / (2m)® nKk+1;1n]k in Dy (k) By (k)

J

where ¢; is defined in Equation 6.79, and > s given in Equation 6.26. In
Sections 7.3 and 7.4 we will investigate some calculational tools to do these
momentum integrations. Equations 7.24 are of course still gauge-invariant
statements, as all gauge-dependent content is contained in D, and B,

Now let us investigate the contents of the 2-gluon blob a bit more precise. The
one-loop diagrams are the fermion loop, ghost loop (in non-axial gauges), and
the two possible gluon loops:

@

which are (see Equation 4.36 for the fermion loop):

11z

e =g—2#2€f Ly 8r ()" Be (g +K)) (7:252)
Y2 lferm. 2 (Zﬂ)w

- 7TNLO v

e = N [ L4 G @R @ S0, Gash)
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2 [
iHI‘:ILO = g =N d AP DPlPZ(q)DUHTz(q"'k)szpwz ,» (7.250)
12 3gluon (2 )
AT = g (q - k)7 - 8P (2q + k)" + g7 (q + 2k)",
w
HI;?‘“,ZO — _igZNC (glesztf vwz pa) #26 (Czlrgw Dpa(ﬂ) . (7.25d)

In Feynman gauge (and using dimensional regularisation, see Subsection Regu-
larisation on page 91 and onwards), it is not so difficult to calculate these NLO
contributions. The sum of all contributions equals (see e.g. Equations 4.37 for
the fermion loop):*

5N, - 2N N
- TTNLO f c
ill,, —1(gm,k —kk)ﬂ[T(E—yE+ln4ﬂ+lny)+E—I],

I:jdx NC(‘—IL+x(1—x))lnA(0)—x(l—x)%lenA(mé)

where
A(m*) Em? - x(1-x)k>.

We can solve I in the same way as we did in Equations 4.39. However, the
k?-integration that emerges when connecting the blob will be quite complicated
due to the logarithm of square roots. For this reason, we leave the x-integration
undefined until after the momentum integration.

The NNLO 1PI diagram is a lot more involving. We will not calculate it—as we
don’t need it—but just list its 15 sub diagrams:

W wmng’er«néﬁm e+ M+ W?W
+«t§m>m+m mﬁ?ﬂm\ w%n

mﬁwﬁﬁmw@%«%

2 There is a very important caveat: when calculating blob diagrams that will be inserted in other
diagrams, it is always preferable not to expand the UV poles, because a priori the parent diargam
and its poles are not known, i.e. we don’t now yet to which orde we have to keep the finite terms.
Leaving € unexpanded avoids this problem.




7.2 SELF-INTERACTION BLOBS

We already deduced from first principles that at any order the colour structure
has to be proportional to 8%°. Using Equations A.84 to A.89, we can easily
double-check this:

1

wn quns tr(t %) = —_Sah>
P () <k
N,
méf:m - tr(tbtxty)fayx:_izcsab’
N,
M tr(¢£7) foX fomx = X 5ab
() f*7f 2
ﬁ?"‘\->'.ﬁm\- favw fxbynyZfzvx _ icz(sab ,
b 2 qab
""m SRR = NS

N2
- xay rycz £zbw rwex _ _caab)
$ frorpre b pres -
W%\ fvanwhz fxzyfyvx _ NCZ(Sah ,

and similarly for the seven remaining diagrams.

Three-Gluon Blob

The 3-gluon blob up to NNLO is simply the 3-gluon vertex plus one-loop correc-
tions:

So the formula for the blob is given by

s (ks ko ks) = %Dy, (k1) Dyyy, (K2) Dy (K3)
§w(k1 + k2 + k3) F"‘”v-”(kl, kz, k3) ,
where I resums all corrections:

Tuwp (ks s q) = Toay (s @) + Tonr B (k, o q) + T (K, poq) + -+ (7.262)

Tﬁ%(k% q) = g[gw(k—p)p +gp(p—q)" + gpu(q_k)v] . (7.26b)
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Again we anticipated the fact that we can factor out the colour structure to be
f4%¢. The same arguments as for the 2-gluon blob are however no longer valid,
as now there exists a second structure—independent of f*°—with three adjoint
indices, namely d°%¢. It just happens that up to first loop the colour structure
only depends on £%¢, of which we took advantage to factor it out. Just remember
that this might no longer be possible at second loop (if this is indeed the case,
we will have to split the blob as a sum of two colour-factorable sub-blobs, as
explained in Section 6.4). Again the path function defined in Equations 6.80 is
indeed valid, because the colour structure is (see Equation 6.69a):

c=t tb tafahc _ chafabcl " 2chaxfabc £~ =i &CF 1,
N, 2
where we used Equation 7.2a to write the generator product as a sum of colour
factors, and used the relations in Equations 7.13 to simplify the result. Remember
that we need to read a Wilson line as a Dirac line, i.e. from right to left, to get
the correct result. Here this can be seen in the order of the generators; reversing
the order would give a minus sign difference.

Investigating the colour structure, we have three different possibilities: all
gluons connected to one segment, two gluons to one segment and one to another,
or all to a different segment. Reversing the direction of a segment line is the same
as flipping the order of the colour indices that are connected to it and multiplying
with -1 for each gluon. For the situation where all gluons are connected to one
segment, flipping this segment leaves the result invariant (see Equation 6.71).
For the situation 1+2, flipping the segment with one gluon only gives a sign
difference (because reversing one index doesn't change anything):

N,
(—)lc:iTCCF]l,

and flipping the segment with two gluons reverses these indices, also giving a
sign difference:

2 c/bia rach cba racb 1 chax gach x _ ; DNe
(=)t 7 = Cf E+2C [t —17Cp]l‘
And for the situation 1 + 1 + 1, flipping any segment trivially gives a sign dif-
ference. So these effects can be combined into the path function as given in
Equations 6.80.
The full Wilson line result can be calculated using the methods developed in
Section 6.5:

5 M M ]J-1 . M J-1 K-1 KL
U :ZCD3W3]+Z ((D21W2]1 +]<—>K)E ZCDUIWIIII s (7.27)
] J=2K=1 J=3K=2 L=1
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where ® and W are now given by Equations 6.80 and Equation 6.81:

3-Gluon Self-Interaction Blob

J
k 1\\% Vk 3 : (7 28 a)

N,
D5(J) = _i7CCF)
dk; d%k, d%%k;

2= @m“@m“@ﬂw%“wbbwﬁﬂwwxh%bh%
1 d®k; d“k 1 1
. 3. [42 W3+ 3e 1 2
=ig nynn 2n)? 2m)” n-ki—in n/-(ki+ky)—in
D.“m(kl)D(lzvz(kZ)D#ws(kl + k2) FVIVZV3(k1’ kz’_kl_kz) >
K J
ks Vs (7.28b)

(DZI(] K) — _1( )¢I+¢K Cr,

dk, d“k; d ks b

JK _
Wai (2n)” (2m)“ (2m)” h

(k1) 5> (ka, k3) Fyppopss (ki Koo K3)

w i(rK—r/
= —g3n”‘ #2nusy3e d“ky d“k; e( )k 1 1
* (2m)“ (2m)“ nKeky+in nl-ky—ig n)-(ki+ky)—in

Dmvl (kl)Duzn(kZ)Dﬂsvs(kl + kz) rvlvzv3(k1> kz,—kl—kz) >

L K J
I (7.28¢)
Y k3

l\'l\\

®111(/,K, L) = —i(—)‘/’l+¢K+¢L&CF i
4%k d“k; d“ks IlbL
(2m)® (2m)" (2m)"

3 3¢ d kl dwkz ei(i‘L—r}).kl ei(rK_rI)‘kz |
= —gnt'ntZnu / ) — : ' |
L1y (2m)* (2m)" nt-kitin n®-ky+in nl-(ki+ky)—in

Wi = (kt) I K(hey) (k) P s (ks Ko K3

DM1V1(kl)Dﬂzvz(kl)Dmva(kl + k2) rvwzvs(kb kz,—kl—kz) .
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where ¢ is defined in Equation 6.79, and IL>/ is given in Equation 6.26. Again
these results are still gauge-invariant.

Now let us investigate the contents of the 3-gluon blob a bit more precise.
There are two one-loop contributions, viz. a ‘pure’ contribution where the vertex
point is substituted by a loop, and a contribution where the propagator in one
of the legs is evaluated at NLO. The latter is really straightforward to calculate,
because the result was already calculated in Equation 7.22:

LO+B NLO LO NLO LO
1—‘/prr (k’ b» q) = B[w (k)rovp(k’ b» q) + Bva (p)ryop(k’ p» q)
NLO LO
+Bpo‘ (k)ryva(k’P’ q) . (7.29)

The pure contribution is however a bit more complicated. The loops are—just
as was the case for the propagator—a fermion loop, ghost loop, and the two
possible gluon loops:

WO WL WS NS el

This result is quite challenging to calculate and spans several pages (see e.g.
[41, 42]). It is instructive to take out the pole part, as this is the most interesting
part. In covariant gauges, it is given by:

FNLO UV(kap)Q) _

las[2
uvp

2 3 LO
15 — AN | 5 - I s P> > .
€4 3Nf N, (3 + 45)] yvp(k p q) (7.30)

where & = 0 in Feynman gauge. Note that when choosing the gauge defined by

_8 (N
£_§(Vc ) (7.31)

which is € = g for Nr =6, there are no ultraviolet divergences.

7.3 WICK ROTATIONS

In this section we will investigate the possibility to use a Wick rotation when
doing integrations with Wilson lines. We cannot blindly make the substitution
k® = ik% as in Appendix B.3, because the rotation might hit the poles. To see
what we mean with this statement, let us first investigate how a regular Wick
rotation works.
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Regular Wick Rotation

Naively, one could think that in a Minkowskian integral

JERNIG (732)
the substitution k° = ik, would suffice to change it into an Euclidian integral

i f d“%ky f(-K2), (733)

but this is of course not true, as a complex substitution changes the contour
of the integration (in the same way a real substitution can change the integra-
tion borders). The transformation is hence only valid if we can prove that the
integration over the real axis equals the one over the complex axis. For most
calculations in quantum field theory, this is trivial, as they will primarily contain
integrals where the integrand is a combination of Feynman propagators. These
can always be brought into the form

fd“’k 1 (734)
20 (R-A+ie)” 734

by completing the square and using Feynman parameterisation. This expression
has two manifest poles of order n:*

ko=:|:\/k2+A—i€‘%:|:\/k2+A‘=Fi€. (7.35)

These poles lie in the second and fourth quadrant (the numbering of the quad-
rants follows the angular magnitude, i.e. anticlockwise, starting in the upper
right quadrant). Note that even when A < —k?, the poles will lie in the second
and fourth quadrant, because then

ko=ﬂ:\/k2+A—i£‘Nﬂ:i\/—k2—A‘:Fs.

If we now choose the contour as in Figure 7.1, the contour integral vanishes
because it doesn’t enclose any poles. We then have:

yﬁ:/+/+/+fzo:»c{=—/. (7.36)

C CR Cl C[ Cz cI

Where the second step is made using the expansion /x —i& ~ /x - 5 \‘;7 and absorbing \/x’
ine.
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Ek —ie

III v

Figure 7.1: The contour chosen for a Wick rotation. Because it doesn’t enclose any
poles, the contour integral vanishes. If the integrand behaves as O(1/x?), the
real integral Cr equals the imaginary integral C;. Note that although this
is a contour with a self-intersection, we can split it at (0, 0) into two valid
contours, giving the same result (see Figure 7.3).

The integrations over the arc segments vanish because the integrand is of
O(Y/(x°)*). The minus sign in front of the integral over C; flips its borders,
so that we indeed have

/d‘”k 1 i [k o)
em)® (-a+ie) V@) (kRea) 737

We dropped the pole prescription in the rh.s. as it is no longer needed.

Note that with this contour, it is indeed required that the integrand is of
O(1/(k°)?), because e.g. exponential damping won't be sufficient. Suppose that
we have an integration of the form

f d“k k° ik

(2m)° (k2 - A +ie)?

which is of O(1/x°). To calculate the integrations over C; and C, we use analytic
continuation to parameterise k° in polar representation as

The k° integration over C; then becomes:

3 i
o . Re! . CoaN0 '
lim iR deelﬂ e1R(cos9+1sm9)x e ikx lim e
R—o0

~Rx%sin @
R2e210 _ k2 _ A +ie R—o0
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The sign of sin 0 is fixed, because
€=0...g = sinf6>0.

Hence this integral only vanishes for x° > 0. On the other hand, the integration
over C; has 8 = —7/2... —  and thus sin 0 < 0, so this integral only vanishes for
x% < 0. We cannot have both x° > 0 and x° < 0, at the same time, so exponential
damping cannot make the integrations over the arcs vanish.*

There are hence two requirements to be allowed to make a Wick rotation:

A. The integrand should scale as (9( W ),

B. The integrand should only have poles in the 2" and 4 quadrant.

It is however possible to relax the second requirement by adapting the Wick
rotation formula a bit, as we will see in what follows.

Wick Rotation with Wilson Lines

Propagators from Wilson lines will introduce a linear dependence on k° in the
denominator. Consider e.g. the NLO self-energy of a Wilson line segment (see
Equation 7.24a):

J 1 [ d“% 1 1
1, = I8 (ny)* = , (7.38)
nJ @n) nk+ink?+ie

where the gluon propagator is expressed in Feynman gauge. If (n/)° = 0, the
Wilson line segment doesn’t introduce additional poles, and we can safely make
a Wick rotation. So from now on we suppose that (n/)? # 0. Then the integrand
has three poles:

1
K® = /K> - A Fie, kO:F(n-k—iﬂ). (7.39)

The problematic pole is the last one, as it can lie in all quadrants, depending on
the sign of n® and n-k, as illustrated in Figure 7.2. The troublesome quadrants
are the first and the third; the integral has its poles in these quadrants when
n-k < 0. We can separate this values by splitting the integral in three parts using

. 0.0 .
4 Unless we forge some unphysical exponential of the form e' el ek
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n’ <0 n’ <0
° °
n-k>0 n-k<0
n%>0 n>0
° °
n-k<0 n-k>0

Figure 7.2: The pole of the Wilson propagator can lie in any quadrant, depending on
the signs of n° and n-k. The problematic poles are those in the first and
third quadrants. These are the poles with n-k < 0. The troublesome poles
are marked in red.

1=0(nk)+ 6(-n-k)+ 6(n-k)?
d°k  O(nk) 1 pdk (k) 1
(2m)” n-k+ink* +ie (2m)” n-k+in k2 +ie

ek S(nk) 1
@2m)* n-k+ink?+ie’

(7.40)

The first integral has no poles in the first and third quadrants and can hence be
Wick rotated without problem. The second integral can be calculated by using
the Residue theorem:

¢=f+[52mRes = /E27‘[iRes—/. (7.41)

c Ck  Cr Cr Cr

However, here we are skipping an important step: the contour in Figure 7.1 is

only valid because we can split it into two contours without self-intersections.

The lower left contour is defined clockwise, so its Residue gains a minus sign
(this doesn’t matter in case of a regular Wick rotation, as then the residues are
zero anyway). So we split the contour into a positive contour C* and a negative
contour C~, as in Figure 7.3:

yg / / 2miRes™ = f 2mi Res™ —/ (7.42a)

c+ C+ C+ I
f / /——2711 Res™ = /——2711 Res™ —/, (7.42b)
(N N C;

If n-k = 0, the pole lies on the contour, which is treated differently. For this reason we chose to
define 0(0) = 0.
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Gy

G

Figure 7.3: When there are extra poles in the first or third quadrant, we need to split the
contour in its subcontours. The lower left contour, C~, is evaluated clockwise,
hence its Residue gains a minus sign.

/: f+f=271i Res™ —2mi Resf—/. (7.42¢)
Cr C Cx

R G

We will never have Res™ and Res™ at the same time, as these are two versions
of the same Residue, depending on the sign of n° (see Figure 7.2), which we
assumed to be non-zero (because if it is zero, we don’t need to do this calculation
anyway as we can just Wick-rotate the integral without problem). So we can
write the Residue as:

2mi Res™ —27i Res™ = ( 9(—n0) - 9(;10)) 27i Res, (7.43)

where the full Residue is given by

de 'k n® O(-n-k)
27i Res = i , .
71 Res 1/(2ﬂ)w_1 (nk - if7)2 ~(n0 k)2 (7.44)

hence we can write

271 Res* —27i Res™ = —i (7.45)

f d“ 'k |n°] 6(-n-k)
2n)*™" (n-k—in)* - (nk)*

We dropped the ie pole-prescription, as it is no longer needed (the integration
over k® has been done). We cannot drop the iz, as it will act as a soft regulator.

We can repeat the same calculation for the third integral in Equation 7.40, but
because the pole then lies on the contour, the residue only contributes a factor 7
instead of 27

/ d“ 'k |n°| 8(n-k)

mi Res™ —mi Res™ = —i ) (7.46)
n)*™" (n-k-in)® - (n0k)?
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Combining the three terms in Equation 7.40, we can write a Wick rotation with
a Wilson line propagator as a regular Wick rotation plus a correction term Wp:

Wick Rotation with Wilson Propagator

fdwk 1 1 _ dwkE 1 1 _iow ( a)
2m)° n-k+ink?+ie J (2n)® nl-kg —in k2 i 47
d“ 'k |n°| 1
Wp = (9 -n-k)+-06(n-k ) (7.47b)
f 2n)“" (n-k-in)*-(n"k)* ( ) 2 (n-k)

It is interesting to see that the factor ( 0(-n-k) +1/28(n-k)) in the definition
of Wp can be replaced by a single 8-function, if we adopt the convention

0(0) = 1/-.
Equations 7.47 easy generalise to the integral of a Wilson line propagator and
any function f that doesn’t has poles in the first or third quadrants:

d“k 1 d“kg 1
) = —i
(2m)” n]-k+i11f( )= (2m)° u! pke —in

f(ikp k) =iWp,  (748)
where now W) is given by (assuming f is symmetric in k°):

. (7.49)

W = f(‘;w)lfl |,110|(9( nk)+ 8(11 k))f(k)

k°—>ni0(n-k—in)

However, in general W) is quite difficult to calculate—especially in dimensional
regularisation—because of the angular part in n-k. In the Section 7.4 we will in-
vestigate a more brute-force approach. We can rewrite Equation 7.49 as (adopting
the convention 6(0) = 1/2):

d“k

Wp = G f(k) 8" (n-k+in) , (7:50)

which we can interpret as the ‘real emission’ of a Wilson line segment. We have
argued before (on page 188) that there is no such thing as a cut Wilson segment,
so this interpretation cannot be rigorous. Indeed, the §* implies a 8-function
with a complex shift, i.e. G(nOk0 + in), which is not well-defined (and we have
no trick to deal with it as we did have in the case of a complex §-function). So
we leave Equation 7.50 as a vague physical interpretation without mathematical
rigour, at most a curious coincidence.
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Light-Cone Coordinates: Double Wick Rotation

When using LC coordinates, we have to make two consecutive Wick rotations,
as now the first two components of the momentum have a positive sign. Let us
investigate again a general Feynman propagator integral as in Equation 7.34:

/ d“k 1
(2m)” (k2-A+ie)"’
Let us first rotate the k™ component. It has a pole in

1

k+
2k~

(ki+A—is),

which lies in the second or fourth quadrant, as long as A > —k>. In the latter
case we can safely Wick rotate it by identifying k* = ik}:

2m)° (R-a+iey ) (@m0 (ikk K -A+ie)n

/ d“k 1 Ak dk; 1
(

But now the pole of k™ is given by

1

2ik;

(ki+A—ie)=%(—i(ki+A)—e), (7.51)
E

k™ =
which now lies in the first or third quadrant for A > —k?. Luckily, this doesn’t
pose a problem, as this is a second, independent integration, and we can just
choose a different contour, like in Figure 7.4. Then we have

¢:/+/+/+'/50=>/:—/, (7.52)
c Ck G C G Cr Cr

as before. But now we don’t have to switch the borders of the integral over
Cr1, so we retain the minus sign. So after making the second Wick rotation by
identifying k™ = ik, we have:

d“k 1 o [d9kE 1
/(27‘[)“’ (k2= A+ie)n =) /(Zﬂ)w (k& + M)

The only difference with a Wick rotation in Cartesian coordinates is the lack of
the i in front. This result was only valid for A > —k}. But in case A < —k7, we
just start with the second contour and end with the original contour, to get the
same result. So for any function f that scales as O(1/k*), we have:
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III vV

Figure 7.4: The contour chosen for the second Wick rotation when working in LC
coordinates. Because of the shift k* = ik}, the poles have switched quadrants,
so the contour needs to be flipped.

Wick Rotation in Lc-Coordinates

f(k*) = fd kE -k3). (7.53)

(2 )‘” (27 )“’

Adding a Wilson line propagator will however complicate the calculation, as we
will get two independent correction terms, one per rotation.

7.4 WILSON INTEGRALS

One common integral when dealing with Wilson lines is the following one:

d“k 1 1

n m
e
(2m)® g”l (k+Ki) + A +ioin E(k+P> +Bj +ie

K, (7.54)

constructed from n ‘linear propagators’ (Wilson line propagators) and m
‘squared propagators’ (regular Feynman propagators). The +ie are merely pole
prescriptions, but the +i7 act as soft regulators and can have positive or negative
signs. We encapsulated their sign into the o; = +1 in front, such that we can
assert that > 0. We also naturally assume n >1, m >1,and K;, P;, A;, B; € R,
and will use light-cone coordinates. Furthermore A; and B;j cannot depend on
k.

As this framework to work with Wilson lines has been developed only recent,
general results have not yet been reached. In this section, we briefly sketch the
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first steps to solve this general integral, and continue with a simpler case, namely
that of the LO 2-gluon blob at = 0 (i.e. the two segments are connected). We
will use this result in Section 10.2 to calculate the cusp anomalous dimension.

The first step in calculating the integral in Equation 7.54 is to use Schwinger
parameterisations (see Equations B.10), and write it as:

I:(ﬁm)(_i)mm (‘;;I;w fdcxl---dtxndﬁr"dﬁm
0

i fgiai[ni~(k+Ki)+Ai]+i er_':ﬁj[(k+Pj)2+Bj]+ir~k—fj ain
e 1 ] 1

Note that we already took the limit ¢ - 0. We can do this without problem,
as it is merely a prescription, telling us which contour to use when doing the
integration. Although we didn’t use contour integration, the prescription served
its purpose: the sign of the Schwinger parameterisation follows the sign of the
pole prescription. By completing the square, we rewrite the exponential as

. LPP; | Zowim 1 )2 (ZBP) (Toan)?
) k _ _

() o8 2xp 2nh) U xk L axh
. r? _izai“iﬂj”i‘Pj_iZGi“ini'T_iZﬂij‘r

1Y Bj X Bj 2% Bj 2 Bj

+iZU,‘(X,‘(I’l,‘-K,'+Ai)+iZ/.;j(P]z-i-Bj)—zOCiY].

After making the shift
Zﬂjpj + Y. oiain; + r

> Bj 2R B 2B’

the k-integration is just a Gaussian, which we can solve by making a Wick
rotation:

/ dk S (ZB)K _ 4 dwﬁ e 1(ZB))ky ,
(2m)® (2m)”

k—k+

- _W(m)e (3B,

To be mathematically rigorous, we have to mention that a purely imaginary
Gaussian integral is divergent. Luckily, this is easily solved by regulating the
integral with an infinitesimal negative shift:

lim d“kg o [(zp))-i8]k2

P W (7.55)
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The validity of regulating an integral (and taking the limit § — 0) in the middle
of a calculation can be questioned. But in dimensional regularisation it can be
proven that all complex Gaussian integrals are well-defined, even when purely
imaginary [31]. The result so far is

_ (ﬁ O-i) (_i)n+m+l ((i?))zefdal ...d“n dﬁl dﬂm (Zﬂj)e_z eiE , (756)
0

where the exponent is given by:

2
E=3Y ai[o; (ni-Ki + A;) +in] + ) B; [P} + Bj] - %
i j J
(Zoiaim)? A YoapiniP;  Yownir TPy
4% Bj 43 B; 2 Bj 2% Bj xBi

The appearance of a lot of factors of the form (Z B j) is a hint for the next step:

(7.57)

we will make the substitution f8; = y;L, such that 3° 8; = L (see Equations B.11).

The integral then becomes:
I= J\f/docl ~-daydy;---dy, dL 6(1 - Zyj) LmHe3elE (7.58)

where . V" and the exponent are:

= (ﬁ Ui) (-i)™m! (::)): , (7.59)

E = Z (0 %] [O'i (l’li'K,'+Ai)+i1’]] + LZ)/] (P]2+B]) -L (Zyjpj)z
) ]

1
——L(T’+ZO’1'0£,'I/I,')2—ZO’,’OCiyjl/li'Pj—Zyij'r. (7.60)

From this point on, things are getting a bit more difficult, as the exponent
contains terms linear in L, but terms linear in /z as well. We continue with a
much easier situation, viz. that of an LO 2-gluon blob connecting 2 adjoining
segments.

2-Gluon Blob Connecting Two Adjoining Segments

The integral we need to calculate is given by (see Equation 7.24b):
5 / r —r’ -k 1
- (2m)® nKk+111n]k—1r/ Dy

W{f:—gzn? ny (k). (7.61)
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This is a specific form of our ‘master’ integral, with

n=2, m=1, K;=0, A; =0, P;=0, (7.62a)

Bj=0, r=1K-+, ox = +1, oy =-1. (7.62b)

Our result so far in this specific example is then

W] = —ig? nic-ny u* ((4 )2 /daldaz dp gt (7.63)
where the exponent is given by:
1
E= 4[; (ung —azny + r) +iogn +iagy. (7.64)
We now make the substitution
F-g 4F = - 5;dp
B’ ﬁz

This gives (dropping the factors in front):
I= /docl day dﬁ ﬁ_ee‘{Iﬁ("‘l”K‘“znl“)z—“l'l—azn‘

This is a complex I' representation (see Equations B.6), which is convergent for
0 < € < 1. The result is now:

I=T(1-¢)(-4i)"* fdoqdcxz (afng +azn; +1°
0

1 —agin—
“2eqayng-ny + 20qng-r —2anr)S e IR

Next we again use x-L parameterisation :
ap=xL, ap=(1-x)L, L=0...00, x=0...1, dayda, =dxdLL,
which gives:

1

I=T(1-¢) (—4i)1_€/dx /dL L[L (xng —%n;) + PV e (765)
o 0

where X is just a short-hand notation:

1z

x=1-x. (7.66)
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Now we apply the additional demand that the Wilson segments are adjoining,
viz. rg = ry and hence r = 0. The L integration is then again a Gamma function
integral representation, and gives a factor 2 T'(2¢):

¢ 1
I= 1"(1—6)1“(26)(%) (—4i)* f dx (xng —xny)2ED (7.67)
0

In the case of on-LC segments, i.e. n% = n; = 0, the x-integral is just a Beta
function (see Equation B.7a):

1 1
fdx (xng —En])z(e_l) = (—2ng-ny)" ]dx Xl
0 0

= (—2nK-n])€_1B(e, €),

ENGIGY

I'(2¢) (768)

= (—2ng-ny)

We just have to collect all missing factors from the intermediate steps to get the
on-LC result. From Equation 7.63 we have a factor

2€ (47Ti)€
(4m)*

. 2
—1g ng-nju

Next we have from Equation 7.67 a factor

—4iT(1-€)T'(2¢) (—%)E ,

4in

and last we have the MS subtraction (which is a division by S, see Equation 4.65)
that gives an extra I'(1-¢€) /(4r)°. These three factors together give:

2 €
—%nK-n]F(l—e)l"(l—e)F(Ze) (—i%) . (7.69)

The full on-LC result is then

o5 ni-ny u*\
Wil = Sra-era-erne ("L (:70)

Expanding in function of the regulator gives our final result for the 2-gluon blob
at LO connecting two adjoining on-LC segments:
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2-Gluon Blob Connecting 2 On-Lc Segments

gk as |1 1 1 ng-njy 1 u? 1 1 ng-nj 1 p? 2o
Wi 1c= 5, o=l 4 o] = +n? +— 1. (771)

e € n

Note that the convention in Equation 4.65 subtracts the most finite terms
possible when having a double pole. This is due to the fact that
1 7 5
I(1-e)T(1-e)T(e)T(e) = 5 + 3 O(e ) . (7.72)
€
If we would use the regular convention as in Equation 4.64, the subtraction
would be less strong because

2
(7)) T(1- )T () = 5 -~ ~2yp + 23 + =+ O(e)
€ €

which leaves an extra pole term and an extra term with yg. Also note that
although the result seems to be divergent in the limit ng-n; — 0, this is perfectly
finite. The seemingly divergent behaviour is an artefact from the regulation. If
ng-ny = 0, the original contribution in Equation 7.24b is zero before we need to
start a regulation procedure.

Now we will repeat this calculation, starting from Equation 7.67, but with off-
LC segments. If ni, n% # 0, we can parameterise the scalar product in function
of a Minkowskian angle y between the two segments:

def MK - Nj

hyd £ .
cosh y ] 1] (7.73)

so that we can rewrite

2 2

(an—EnI)2 =x ni—Zx%nKn]coshx+§2nI, (7.74)

where now ng = |ng|. We will rewrite the x-integral in function of a new angle
¥, that we introduce by the relation:

xng sinhy = xnysinh(y +v). (7.75)
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Or in other words:

nysinh(y + v)
_ , 76
* ng sinhy + nysinh(y + y) (776a)
— nk sinh y
= Py . 6b
* ng sinhy + nysinh(y + y) (7760)
y = arcoth | csch X{ﬂ —cothy|, (7.76¢)
xny
1 —Xn,eX
- 1n M ) (7.76d)
2 xng-—xnjeX
where we used the hyperbolic sum rule
sinh(y + ) = sinh ycoshy + sinhy cosh . (7.77)

We can now simplify
_ 2 _ _
(xng —xn;)* = x*ny — 2xxngnycosh y + x°n7,
2,2 12
nynysinh” y

(nk sinhy + nysinh(y + 1,0))2 '
To make the integral substitution, we first note that

sinh

dy = -ngny dx ,

(xng —xn;)*
y(x=0)=-x y(x=1)=0,

giving eventually:

1 0
/dx (xng-%n;)* ™ = — (ngn; sinh X)ze_lfdt// (nk sinhy+n; sinh(x+1//))_2€.
0 X

To calculate this integral, we expand it in €:

0 X
/dl[/ (nk sinhy+n; sinh(X+1//))726 = y+2e /dw ln[nK sinh y+n; sinh(X+1//)].
Zy 0

Using the exponential representation of the hyperbolic sine, i.e.

sinhy = % (e¥-e"), (7.78)

we rewrite the argument of the logarithm as
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1
In[ng sinhy + nysinh(y+y)] = In Ee‘” [nk+nyeX - (ng+njeX)e ],
=-In2+y+In[ng+nyel - (ng+nje¥)e ™.

The integral over the first terms is trivial. Using the short-hand notations a =
ng+nyeX and b = ng+njye %, the integral over the logarithm can be done by
making the substitution t = —b e 2V, We have (see Equation B.2e):

2

-b
X
—% / dt M = % [lnbez" Ina -Li, (bi) —Inblna +Liz(é):| ,
—be2x

a a
1 ng+nye X ny+ngeX

= yIn(ng+nyeX) + = | Lip e S Al - Li, RioRiicSaau b Iy
2 ng+njex ny+nge X

We can require ng and n; to have the same length, i.e. |ng| = |nj|, because it is
just a path parameterisation where only their direction matters (and their length
is not zero). Then the result simplifies into

ylnng + yln (1+e*) - % (Lipe* —Lipe ™) .

So the final result for the x-integration is then

1 2.2 1.2.\€
nyny sinh
/dx (xng —En;)z(e_l) = —M)((l +€Y), (7.792)
d ngnysinh y
Y =2In2 +Inng +2In(1+e*) + y - 1 (Lipe* —Lipe ™ *) . (7.79b)
X

Now we add the missing factors from the intermediate steps (see Equation 7.69).
We will write ng - ny in function of the Minkowskian angle, i.e. ng-n; =
ngn;y cosh x, which will combine with the !/sinh y into a coth y. This gives:

o ”i”z u? e
—y cothy T(1-€)T(1-¢)T(2€) (—T] sinh®y —2) (1+€Y) . (7.80)
7T l

To allow for an easy comparison with the on-LC case, we rewrite the sinh inside
the € exponential as

—nin; sinh®y = ngny (1- cosh®y) = ngny - (nx-ny)* .

Expanding in function of ¢, the result becomes:



7.4 WILSON INTEGRALS

2-Gluon Blob Connecting 2 Off-Lc Segments

nin? — (ng-ny)’ 2
k= (nem)” | E Ly . (7.81)

JK _ K 1
Wi ‘LG = ﬂxcoth)( 5 +1n

When comparing to the on-LC result in Equation 7.71, we see that the most
important difference is that in the on-LC case there is a double pole in € that
is not present in the off-LC case. This is true in general: light-like Wilson
line segments will introduce additional divergences. Indeed, if one of the
segments—or both—goes on-LC, the angle becomes infinite:

on-LC

ng-n
kK7 ~=log(|nk||n;|) —— 0. (7.82)

|nkl |ny]

This is the key manifestation of LC-divergences. There is no way of retrieving
the on-LC-result from the off-LC result, as we are missing a double pole and
mixed terms.

X = arcosh

Another possibility is a situation where one of the segments is on-LC and
the other is not. This is a bit complicated, as the Minkowskian angle is still not
well-defined, but neither can we use the Beta function integral representation
as we were able to in the on-LC case (see Equation 7.68). Luckily, using a bit of
trickery we can do something similar using the incomplete Beta function (see
Equation B.7c). We start again from Equation 7.67, but assume now that n% =0.
It doesn’t matter which segment we take on-LC, the results are the same, but
when choosing n? = 0, the term with x drops from the calculation, which is
easier. The x-integration is now:

1 1
/dx (xng —En])z(e_l) = /dx (xznf( —ZxEnK-n])H ,
0 0

: 2ng-ny+ni !
= (ZnK-n])eflfdx x¢ (Mx - 1) :
0

21’11('11]

Next we make the substitution

2ng-n +n2 .
t:#xinx, = dx = =dt,

ZnK-n]
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which gives
1 1 n
= \2(e-1) _ el e-l/,  1\e-1
/dx (xng —xny) = (2ng-ny) Eefdt (-1,
0 0

11 -
= (2ng-ny)° 1%B(n;e,e). (7.83)

B(7;€,¢€) is the incomplete Beta function. It has a series expansion given by
Equation B.7f:

[ee)

~ 1, —e Ble+1lm+1)_,.,
B(n;e,e):g (1-7n) (1+ > %n 1), (7.84)

m=0

We can expand the fraction of the two Beta functions, which we have to do up
to second order in € (because we have a double pole, one in front of the Beta
function expansion and on from I'(2¢) in Equation 7.67):

B(e+1,m+1) T(e+1)T(2e+m+1)
B(2e,m+1)  T(2) T(e+m+2)’

~ 26 ! +2¢° ! il —; (7.85)
T m+1 m+1\T k) (m+1)2]" 795

The infinite sums running over m are just straightforward convergent series.
The first and the last are just the first and the second polylogarithms (see Equa-
tion B.8a and Equations B.8), while the second sum is a bit less trivial as it is a
chained sum:

oo 'hfm+1 oo ";l-*m
> =Y — =Liy(7) =-In(1-7), (7.86a)
mom+1l =5 om
(&) ’l;l'm+1 0o ’l;l’m
= — =Liy(7), .86b
m=o (m+1)2 mZ::I m? (%) (786b)
oo Tm+l m
1 1 ~
Z " —=-1n*(1-7). (7.86¢)
mom+19k 2

So the expansion of the incomplete Beta function is now:

B(7;€,€) ~

o | =

7°(1-7)°[1-2eln(1-7) + €’ In*(1-7) - 2€* Lip(7) ] -

Putting everything together, we have (adding the factor in front from Equa-
tion 7.69):

s 1 2 2\¢ 2 . -
—;—F(l—e)r(l—e)F(Ze)— (%K“—z) [1 n 261n(— s ”’) N ezB] , (7.87)
m € n ny
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~ 2ng-n 2ng-ny + n3
B=1n?(-=5 ) —oLip [ LK.
ny 2ng-njy

Giving the final result:

2-Gluon Blob Connecting an Off-Lc Segment to an On-Lc Segment

wik| o e [1 1 (en)® ) (7.88)
nie™ g 2 T e\ n% n172 S R

where the finite terms are given by:

) 2 2 2\2
In’ (—M)—lnzn—K+l(lnn—K—ln‘u—2)
2 4 2\ 4 n

np)? . u? 2ng-ny + n 2
oln ST B g (PR ) LT )
4 n? 2ng-ny 2

To conclude: general results are not that straightforward to calculate as they might
seem at first sight, because the integrals at hand are quickly getting involving. On
the other hand, once calculated in a given gauge, they never have to be calculated
again as the results can be easily applied to any Wilson line structure using the
framework developed in the previous chapter.
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INTRODUCTION TO TMDS

In this chapter, we will give a brief review of the basics of the TMD formalism. We
investigate situations where the common collinear factorisation as introduced
in Sections 5.2 and 5.3 is no longer adequate, and has to be replaced by a new
factorisation approach that introduces transverse momentum dependence in the
PDF. The main goal is to have a good description for processes that are not fully
inclusive, but where e.g. a final hadron is identified. In such a process we cannot
integrate over k, because the final hadron will have a manifest k, -dependence.

We start this chapter with a revision of DIS, where we now can construct a
gauge-invariant operator definition for the PDFs. Then we move to a less inclusive
experimental setup, viz. SIDIS, and introduce PDFs that are k  -dependent, the
so-called TMDs, and construct operator definitions for these as well. In the last
section of this chapter, we investigate the evolution of TMDs, and construct
equations that will be used similarly to the DGLAP equations in the collinear
case.

As always, we don’t go too much into detail but try to give a broad picture.
The formalism of TMDs has gone through a lot of evolution in twenty years. They
were originally introduced in e.g. [43-47], later adapted into a gauge-invariant
approach [48-56], and the most recent definitions are found in e.g. [33, 57-64].
For a good treatment of the renormalisation of TMDs, see e.g. [65-70].

8.1 REVISION OF DIS

Before we start with the investigation of the TMD framework, we will review DIS
in a more formal way. This will allow us to construct gauge-invariant operator
definitions for the PDFs, which will show to be indicative for the construction of
TMDs later on.
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Operator Definition for PDFs

As we have shown in Section 5.1, we can assume that the photon scatters off a
quark with mass m inside the proton, if Q? is sufficiently large. The final state can
therefore be split in a quark with momentum p and the full remaining state with
momentum pyx. Constructing the (unpolarised) hadronic tensor (Equation 5.32)
for this setup is straightforward. First we remark that pulling a quark out of the
proton at a spacetime point (0%,07, 0, ) is simply ¥, (0) |P). Then we construct
the diagram for the hadronic tensor, the so-called ‘handbag diagram step-by-
step:

(X|ya(0)[P)

V,

74(p) ()P (X|ya(0) [P) ,

/
v, %

o D (pm) T (PL(0) 1X) (X ya(0) P)

where we omitted the prefactor, sums and integrations over X and p and the
0-function. Including these, the full hadronic tensor is given by

LD [t e

< [y (p+m)y' ™ (PI75(0) IX) (X] ya(0) [P) . (8.1)

where Y[ is defined in Equation 5.35. Next we replace the integral over p with an
on-shell condition

&p d'p 2
/(2ﬂ)32p0 > S ? (p*=m*)
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where 6 is defined in Equation A.57. We introduce the momentum k = p — g,
giving

Z 2/(2 )3 5+ (k+Q) -m? /d4Ze‘(PkPX)Z
x[)’ (k+¢+m)y] (P|¢ﬁ(0)|x><x‘%(0)|l)>.

Now the next steps are the same as in Equation 5.33, using the translation operator
and the completeness relation:

Hadron Tensor and Quark Correlator

WS [k 5 () To (Erg)y). G
q

/(2 )4 ﬂkz PWﬁ(z)‘/’“(O) |P) . (8.2b)

® is the quark correlator, which will be used as a basic building brick to
construct PDFs. Note that its Dirac indices are defined in a reversed way, this is
deliberately to set the trace right. This result is quite a general result, valid for a
range of processes.

Using Equation 5.13 and neglecting terms of O(!/Q), we can approximate the
d-function in Equation 8.2a as

8((k+q)*)~» P 8(E-x),

which again sets & = x as in the FPM. This then gives

e Ze Tr(CDq(x)y (k+¢)) (83)

where the integrated quark correlator is defined as
O(x) = /dk’dzkl O(x, k™ k,),

1 -
= [T T (B(07, 27,0,y (0) P) (5.4
A last simplification that we can make is to assume that the outgoing quark is
moving largely in the minus direction; k¥ +q"* ~ k™ +q~. This is easily understood
in the infinite momentum frame, where the quark ricochets back after being
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struck head-on by the photon. However, it is a valid simplification in any frame,
which can be shown by making a é expansion of W',
With this assumption we get

p* LPT(KRPr K
bl r g (S ).

~1,

giving the final result for the unpolarised hadron tensor in DIS at leading twist
(this means up to O(é)):

, 1
WH w i > eé Tr(®(x) p¥yTyY) . (8.5)
q

Now let us investigate the unintegrated quark correlator Equation 8.2b a bit
deeper. Since it is a Dirac matrix, we can expand it in function of Lorentz
vectors, pseudovectors and Dirac matrices. The variables on which it depends

are p#, P¥ and S¥ (the latter is a pseudovector in the case of fermionic hadrons).

Our basis is then (see Equation A.28) spanned by
{p", P, 84} @ {1,y y* .ty y™}
where p#” = yl#)¥], The next steps go completely analogously to our derivation

of the structure functions from the hadron tensor in Subsection A More Formal
Approach on page 127 and onwards. The conditions to satisfy are

Hermiticity: ®(p,P,S) =y’®T(p, P,S)y°, (8.6a)
Parity: ®(p, P, S) =y’ 0(p,P,-8)y°. (8.6b)

For instance the integrated quark correlator can be expanded up to leading twist
as

®(x,P,S) = % (ﬁ(X)y‘ + g (x)SLy’y” + %hl(X) [$7.77] ys) , (8.7)

where the three integrated PDFs fj, g11 and h; are the unpolarised resp. helicity
resp. transversity distributions. They can be recovered from the quark correlator
by projecting on the correct gamma matrix:

1
fi= zTr(q) y) (8.82)
1
Qi = ETr(CD Y y’) (8.8b)
hy = lTr(dD y+iy5) ) (8.8¢)

\S}
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Gauge Invariant Operator Definition

A general Dirac field transforms under a non-Abelian gauge transformation as
(see Equation 2.47a):
y(x) - 8Oy (x) (8.92)
¥(x) = Plx) e 18, (8.9b)

As a result, the quark correlator is not gauge-invariant:

d4Z —ik-z — —-iga?(2)t? iga®(0)t?
CD—>/‘(27T)4e (Pl75(2) 18 @ 8a Oy (0) |p) .

But we know from Equation 6.4d that a Wilson line Z/{( i) transforms as
iga®(x)t? —iga®(y)t*
Uixsy) € Upxiyy € :

Hence the following definition for the quark correlator is gauge-invariant:

Gauge Invariant Quark Correlator

) e ikz (PWﬁ(z) Uz, 0)Va(0)|P) . (8.10)

Note that the gauge transformation of ¢/ only depends on its endpoints. Al-
though the latter are fully fixed by the quark correlator, there is still freedom in
the choice of the path, influencing the result. The gauge-invariant correlator is
thus path dependent, because of the path dependence of the underlying Wilson
line. This will play a big role when working with the k -dependent correlator,
which we will investigate further in Section 8.2.

Although the requirement of gauge invariance for the correlator leaves the path
unspecified, it is the precise development of factorisation proofs that uniquely
dictates which path should be used in the definition of PDFs. For the integrated
quark correlator the path is separated along the z™ direction, as in Equation 8.4,
which leads to a straightforward Wilson line structure:*

1 - -ixP*z” - - -
CD(x):E/dz P (P Y5(0%,27,0,) Ul 0y va(0) P)

Lig [ 4 (0*,1,0,)
U,y = Pe % (because n-A = A").

1 In the context of PDFs, Wilson lines are commonly called gauge links. We won't use this termino-
logy in this thesis.
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1 EMEE

a) b)

Figure 8.1: a) The gauge invariant quark correlator function, with a cut Wilson line.
b) The Wilson lines inside the definition of the correlator account for the
resummation of soft gluons.

In the Light-Cone gauge, we have A" = 0 and thus &/~ =1, reducing the quark
correlator to the definition in Equation 8.4. As long as one stays in the A* = 0
gauge, it is perfectly valid to neglect the Wilson line inside the PDFs. The line
is a finite line, so using the transitivity property we can split it at +oo (see e.g.
Equation 6.47) and write it as:

- - L
u(Z;O) = [u(+w;z)] Z/I(+°o;0) . (8.11)

It is common to draw the Wilson line as a finite line being cut. Following the
discussion on page 188, we know that the cut passes in between two semi-infinite
lines, but we keep the representation of a cut finite line for convenience. This is
illustrated in Figure 8.1. Remember from Equation 6.100 that a quark dressed
with a Wilson line can be considered an eikonal quark, essentially being a
quark with soft and collinear gluon resummation. The physical interpretation
for the quark correlator is nothing different: it represents all soft and collinear
interactions between the struck quark and the proton.

We inserted the Wilson line somewhat ad-hoc: we were looking for an object
having the correct transformation properties to make the quark correlator gauge
invariant, and the Wilson line happens to be such an object. It is however not so
difficult to prove this in a more formal way, using the the eikonal approxima-
tion. Consider the diagram in Figure 8.2, where one soft gluon before the cut
connects the struck quark with the blob. The hadronic tensor is then (see also
Equation 8.5):

1 p-1+m

WH ~ ez—Tr(GDA ko = 1) yty*yP )

quqz o )yyy(p_l)z_m2+i€
where the quark-quark-gluon correlator is given by

1 d4Z d4 —ikz —il-(u-z —
O (k k1) = 3 W(znl;‘* e k2 M) (Pl (2) gAp (1) ya(0) |P) .
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=

Figure 8.2: A first order correction to the PDF.

Remember that we have an on-shell quark so that we can use the eikonal ap-
proximation. The y* is what's left of the real quark, after making the sum over
polarisation states:

Su(p)u’(p)=p+m - py', (8.12)

so we can use y* as though it were an u(p) on which to perform the eikonal
approximation (as in Equation 6.95). Then we can make the approximation

y+p p_l+m .

N . 8.
! (P—l)z—m2+ie y n-l—ie (8.13)

This is indeed a Wilson line propagator. An important remark: the definition of

Z/{(T o032) also incorporates an exponential coming from the Feynman rule for

the external point. This exponential has been extracted from I/ (itis e
but this remains valid by momentum conservation. The choice to extract the
exponential from the Wilson line is by historic convention.

It is straightforward to generalise this to any number of gluons, where gluons
on the left of the cut will be associated with a line from 0 to +o0, and gluons on
the right of the cut with a line from +oo0 to z. In other words:

—ixP+z_)
b

1
W~ 3 eqs Tr(@p(x) y™y") »
q
where now the quark-quark-gluon correlator is resummed to all orders:
1 - _—ixP*z™ — _ _ _
CD:g./dZ e PTz <P|1///;(0+,Z ,OL) u(:oo;z)u(JrOO;O)wa(O) |P> (814)

This is indeed the anticipated result. Using Equation 8.8a, we can give a gauge-
invariant formulation of the unpolarised integrated quark parton density func-
tion:
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o,
S

Figure 8.3: Boson-gluon fusion in DIS.

Unpolarised Collinear Quark PDF

1 - —ixP*z~ - - - -
farp(x) = E.[dz e (Ply(z )u(:oo;z)erU(Jroo;O)W(O) |P), (8.15)

where the subscript in f,, is a common convention to denote “the integrated
quark PDF for a quark with flavour ¢ inside a proton”.

But what about the gluon PDF? Until now we totally ignored the possibility
of the photon hitting a gluon inside the proton, because it is a higher order
interaction. But while we are moving towards a more realistic approach of QCD,
we cannot ignore gluon densities any further. A photon can hit a gluon by
interchanging a quark. This is the boson-gluon fusion process mentioned before,
and is illustrated in Figure 8.3. To construct the integrated gluon PDF, we start
in the light-cone gauge A" = 0 such that we can ignore Wilson lines for now.
There is a constraint equation on A~ relating it to the transverse gauge field,
implying that the latter are the only independent fields. Then following the
same derivation as in Subsection Operator Definition for PDFs on page 230 and
onwards, we find (see [71] for the original derivation):

furl§) = 5 [z €pT &1 (a4 (0) |P)

The factor £P* is typical for fields with even-valued spin. To make this gauge
invariant, we cannot simply insert a Wilson line as before, because the gauge
fields transform with an extra derivative term. However, the gauge field density
F# transforms without such a derivative. We can easily relate the two:

Fi, = 0,A% - 0,A% + g f* Ab A
Fi; = 0. A} (A" =0)
1
ER
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which we can use to redefine the gluon PDF. Inserting a Wilson line (in the
adjoint representation, as it has to couple to gluons) then gives our final result
for the integrated gluon PDF:

Unpolarised Collinear Gluon pDF

1 dz~

fg/p(g) = o

2n J &P+

e—ifP*z’ <P| F+ih(z—) Mél’)“()) F+i“(0) ‘P} . (8.17)

There are a few subtleties when dealing with gluon PDFs (like the difference
between the Weizsdcker-Williams and dipole gluon distributions, see [72]), but
discussing these issues would lead us too far away from our main topics of
interest.

8.2 SEMI-INCLUSIVE DEEP INELASTIC SCATTERING

Collinear factorisation is a well-explored and experimentally verified framework,
but it only works when integrating out all final states. Keeping these final states,
i.e. fully exclusive DIS, would maximally break collinear factorisation. In this
section we investigate an intermediate solution, where we identify exactly one
hadron in the final state, and integrate out all other states. This is called semi-
inclusive deeply inelastic scattering (SIDIS). Because there is no restriction on
the momentum of the final hadron, it can acquire a transversal part.

To put it more formally: in DIS we were able to describe our process on a
plane, because it only has two independent directions, viz. the direction of the
incoming proton (which is parallel to the incoming electron) and the direction
of the outgoing electron. We have chosen a frame where the plus and minus com-
ponents of the momenta span this plane, such that the transversal components
are zero. In SIDIS a third direction emerges from the momentum of the identified
hadron, which doesn’t necessarily lie in the plane spanned by the incoming and
outgoing electron. In this frame, the final hadron will have a non-zero transverse
momentum component.

As we will discover in this section, the breaking of collinear factorisation is not
an insurmountable task to overcome; we can adapt our factorisation framework
to allow for k , -dependence, such that the convolution between the hard part and
the PDF—now also dependent on k |, and thus from now on called a transverse
momentum density (TMD)—is a convolution over k. In this thesis we will not
delve into the technicalities for k  -factorisation, as they are quite intricate and
would lead us too far.
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",

Figure 8.4: Kinematics of semi-inclusive deep inelastic electron-proton scattering.

Conventions and Kinematics

Different conventions exist in literature concerning the naming of the different
TMDs and azimuthal angles. We will follow the Trento conventions, as defined
in [56]. Furthermore, concerning the labelling of momenta, we will follow the
same convention as used in [59]. In a SIDIS process, we have an electron with
momentum [ that scatters of a proton with momentum P. The mediated photon
has momentum ¢, and hits a parton with momentum k, that has momentum
p after scattering (i.e. p = k + g). The struck parton then fragments into a
hadron with momentum Pj,. This is shown in Figure 8.4. Note that we now have
two density functions; one that represents the probability to find a parton in
the proton (the TMD), and one that represents the probability for a parton to
fragment in a specific hadron (the fragmentation function (FF)). For simplicity
we assume the final hadron to be a spin 0 hadron, like a pion. We use x and
y as defined in Equation 5.4 and Equations 5.5, and we define a new Lorentz
invariant z:

z=—_-" (8.18)

The value for z can be measured in experiment; it will approximate the fractional
momentum of the detected hadron relative to its parent parton, in the same way
x approximates the fractional momentum of the struck quark relative to the
parent proton. Intuitively, we can add an FF D1(z) to Equations 5.47, giving a
PM collinear estimate for F, in SIDIS:

M - Z eéqu(x) Di(z), (8.19)
q

which gives us using Equation 5.43 a first estimate for the SIDIS cross section:

d’c _4ma’s
dxdydz  Q*

(1—y+%2)263qu(x)Dq(z). (8.20)
q
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Figure 8.5: In the rest frame of the proton, Py, is the projection of P, onto the plane
perpendicular to the photon momentum. The azimuthal angle ¢, is the
angle between Py, and the lepton plane.

Another important variable is the azimuthal angle ¢}, which is defined as

[-P,

cos ¢y, = —|PT|,
L

where | Py, | is the length of the transversal component of the momentum of the
outgoing hadron:

|PhJ.| =V _giva;:P;: .

The geometrical construction of the azimuthal angle is shown in Figure 8.5. We
can now construct the cross section:
dbo o?
dxdydzdg,dP?, 2 2 b
xdydzd¢,dP; zxsQ

wHY (8.21)

where we approximated

Ej

&P, ~dzd’p,, 2.
z
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Structure Functions

The hadronic tensor is defined as (compare it to Equation 5.33):

WH = 4n’ 2 8 (P+q - px — Py) (PIT™(0) X, P,) (X, P4 " (0) |P) ,
X

= ﬁ /d4r eldr <P|]W(7’) P} (Py| ] (0) |P) (8.22)

J

As we will see in Subsection Transverse Momentum Dependent PDFs on page
242 and onwards, this is a bit simplistic as we cannot integrate out the X states
without affecting Py, but the general idea is correct. Note that because we do
not integrate over P, (we measure it in the final state), we cannot drop the state
|Py) (Pp|. This leads to an important difference as compared to the hadronic
tensor in DIS, viz. that we cannot naively impose the same constraints as in
Equation 5.38a, because time-reversal invariance isn’'t automatically satisfied. We
can restore this invariance by changing it slightly, namely we require invariance
under the simultaneous reversal of time and of initial and final states.

For the parametrisation of the hadronic tensor, we use the same orthonormal
basis as before, viz. Equations 5.27, but now we have an additional physical vector
at our disposal, which we can use to construct the fourth basis-vector:

(8.23)

htisa spacelike unit vector:
I:l#]:lﬂ =-1. (8.24)

Watch out, as although we normalised this vector, it is not fully orthogonal! We
have as expected

hit=o0, h-g=0,
but it is not orthogonal to [#:
bl =cos ¢y . (8.25)

This is a deliberate choice, because now we have the azimuthal dependence
hard-coded inside our new basis. Note that

—lAfslw,I%V =sin ¢y, (8.26)
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which implies that ¢y, is fully defined in the region 0. ..27. We can parametrise
WH#" in the same way as we did in Equation 5.39, now with /4 added. This gives
(for the unpolarised case):

z ® Ao Aly COS
W == [-&!" Fou,r + 148 Fyu, + 280" Fp®

+ (20 + ) Fr? - 2ite i ] 8.27)

The subscript UU denotes a structure function for an unpolarised beam on an
unpolarised target, while the labelling in function of ¢; will be motivated by
contracting with the lepton tensor Equation 5.31:

4 COS
LyyWH = JZ) [(1—y+y—)FUUT+\/ y(2-y)cos ¢y Fyy o
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+ (1= y)Fyu, + (1= y) cos 2y Fyg ™ + Ay /1=y sin ¢, Fiil?%]'

As anticipated, Fg’f,(ph has a factor cos ¢, in front, and so on. Note that in3¢h is
the structure function for a longitudinally polarised lepton beam (on an unpo-
larised proton target), which is confirmed by the factor A in front (originating
from the last term in the lepton tensor Equation 5.31). The cross section is then

given by Equation 8.21:

d6o‘ _ 20(2 - +ﬁ v +(1_ )F
dxdydzd¢h dP%lJ. B nyZ y 2 UuU,T )’ UU,L

+ A y\/1-y sin¢gy FSin¢” +(1-y)cos2¢y, FCOSM’1
+/1-y(2-y)cos¢y FCOS%] , (8.28a)

2
[(1_}’ + yz)FUU,T + (1—)/)FUU,L] , (8.28Db)

o _ 4na®
dxdydz  xyQ?

where we integrated over Py, | in the last step, which got rid of the ¢, -dependence.
The tilde structure functions are the integrated versions:

Fyur(x,2,Q%) = /dzphl Fuur(x,z,Q%Py)), (8.29)

and similarly for ﬁUU’ 1. From the logical demand

Pospis  d*opis
d = ,
;f “%ixdydz  dxdy
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Figure 8.6: Leading order diagram for the hadronic tensor in SIDIS.

we can relate the SIDIS structure functions to the DIS structure functions:

> fdz z Fyu.r(x,2, Q%) = Fr(x,Q%), (8.30a)
W

Z fdz z I::UU,L(x,z, Qz) = Fr(x, QZ) . (8.30b)
h

Transverse Momentum Dependent PDFs

We can construct the diagram for the hadronic tensor following the same step-
by-step procedure we used in DIS (see Subsection Operator Definition for PDFs
on page 230 and onwards), this time adding a fragmentation function, as is
illustrated in Figure 8.6. Remember that the amplitude for extracting a quark
from a proton with momentum P is

¥a(0) [P) .

Then the amplitude for a quark fragmenting in a hadron with momentum Py, is
of course

(Pul ¥, (0).
So we simply have:

v

= (") (X|ya(0)|P)
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D

[/1
=)y

)

The QED-vertex adds a §-function, and making the final-state cut adds two final-
state sums (using the notation defined in Equation 5.35) and two §-functions:

= (Y, P/ 5(0)[0) ()P (X[ ya(0) |P) .

1
— S [atkdtp 3f 3f 09 (P-k-px) 69 (By+ py-p) 64 (k+q-p)
g X v

x (Ply [ X) y* (0l y[Y, Py) (Y, Py y|0) y" (X[ w[P) .

Next we will separate the proton content from the fragmentating hadron content,
applying on each the same steps as before (expressing the §-function as an
exponential, using the translation operator and the completeness relation). Then
we get the general leading order result:

Quark Correlator and Quark Fragmentator

WHY :%2 2 [d'kd*p o™ (kvq-p) u(@(k PY*A(p, Pi)y") »  (8310)
q

4

Dyp(k, P) = e X7 (PYg(r)va(0)|P) , (8.31b)

d*r
1674

Mg (0.P) = [ o8 <87 0]y 0) [P (P Fy(r) 0) (5:319)

\.

Next we choose a frame where the parton in the TMD carries a fraction & of the
proton’s plus momentum, and where the final hadron carries a fraction ¢ of the
fragmentating parton’s minus momentum, i.e.

e KK p+pl P
k”_(fP h k) (c - ?p), (5.32)

such that we can write (neglecting terms that are é suppressed):

3 (k+q-p)~ 6(k+ +q")8(q —p ) 8P (k, +q,-p,)
0(6-2) 0(3 - 2) 00k, +a,-p,)

P+P’
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We transform the integral measures as

d*k = prdédk &%k, , d*p =dp*d¢ {’; d’p,

Then we can rewrite the hadronic tensor as:
S efj /dzkl ztr(® (x,k,,P)y*A(z, k +q,,Py)y"), (8.33)
q
where we defined the k -dependent correlators as:
Ok, P2 [I0 I b0 () ), (B4

Nl &Er

it ik — _
83 e = " TET0] w(0) [Pp) (Py| w(r, 07,7, ) |0)

(8.34b)

We can parametrise the quark correlator and fragmentator functions in terms
of TMDs and FFs, precisely as we did with the quark correlator in the case of
DIS. Keeping only the contributions at leading-twist, we obtain the following
unpolarised TMDs and FFs [58]:

A(Z’pyph)

O(Ek,) = Li(ER)Y + ;hf (6 k) 2oy (8350

h+

Ak )——Dl(C k)y"+ H1 (¢ k ) (8.35b)

The correlator is built from the unpolarised TMD f1 (& k) and the so-called
Boer-Mulders T™MD hy" (&, k| ). The fragmentator is built from the unpolarised
TMD FF Dy ({, k) and the so-called Collins function Hj ({, k| ). If we plug this
result in Equation 8.21 and Equation 8.28b, and use the approximation

q, ~-——-, (8.36)

we get the factorisation formula for the unpolarised transversal structure func-
tion in SIDIS:

Factorisation in SIDIS

Fyu,r= Z efjxflq ® Df. (8.37)
q

where we defined the convolution over transverse momentum as

1
flq ® D? = _/dzkl dsz 8 (kJ__pJ__;PhJ_)flq(x’ k) Df(z, p.), (838)
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(0*, +00 +ooL)

e | i

@
(07,07,0)) (07,07,0))

Figure 8.7: Structure of the Wilson lines in the TMD definition.

which is a regular convolution with ‘open’ variable éPh |- Other structure func-
tions arise when convoluting polarised TMDs (which arise when the target hadron
is polarised), which we don’t treat in this thesis.

This factorisation formula is however not yet fully rigorous, and we will im-
prove it in Section 8.3.

Gauge Invariant Definition for TMDs

Just as was the case in the previous section for DIS, our TMDs and FFs defined so
far (Equations 8.34) are not gauge invariant, and are only valid in the light-cone
gauge A" = 0. Gauge invariance can be restored by inserting a Wilson line:

Er eptr ik, =
O(&k, P) = [ TR PG Uy v (0) P, (839)

where now the space-time point separation no longer lies on the light-cone, i.e.
the Wilson line has to connect the point (07,07, 0, ) with the point (07, 7", r ).
But a Wilson line is path-dependent, implying that different path choices give
different results. How do we choose a path, or at least motivate our choice? Just
as was the case for the collinear PDF, the gauge invariance requirement doesn’t
put any constraints on the path. The correct path can however be retrieved by
explicit calculations of a full process. Different processes might require different
paths, that can be quite complex (see e.g. [73-75]). This is an active topic of
interesting research these days, as it is intimately bound to the validity of TMD
factorisation.

In the collinear case we were able to interpret the Wilson line as a colour
rotation on the quark, making it an eikonal quark. We then split the Wilson
line into two parts at infinity. This splitting had two advantages, first that we
could associate a line with the quarks on each side of the cut diagram separately,
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and second that we could use easy Feynman rules. In the TMD definition for
unpolarised SIDIS, we can do something analogous. We add a light-like line to
each quark:

u(_+oo’,0i;0’,0l) l!](()-'—’()_’()J_)’ (8.40&)

—rnt - Sl

v(0",r 1)) L{(MO_JL”_’TL) . (8.40b)
But now we have because of the transverse separation

_1' —

u(T;O) * u(+oo’,ﬁ_;1’7,rl) u(+°°7»01.;07’01.) ’

So we need a Wilson line to connect the transverse ‘gap; i.e.
_ gyt 1 -
Uiri0) = Ulioo sy Uir 50, Ulroos0-) -

We will split this line at +oo, for the same reasons as before. Adding this to
Equations 8.40 gives:

u(l+oo—,+ooL;+oo—,0L) u(_+°°_’0h0_)0l) l//(0+,0_,0l), (8.41a)
W - -t Lt
I//(0+,1’ ’rl) u(+oo—,rl;r—,rL) u(+oo‘,+ooL;+oo_,rl) > (8.41b)

leading to the final definition for the gauge invariant TMD quark correlator:

Gauge Invariant TMD Quark Correlator

d31‘ —ixPTr +ik, -r = s
o= /7 e P HELTL (Pl g(r) u?+w;r)u(+m;0)W(0) |P), (8.42a)

873
u(+0<>;0) = U(J_Jroo’,JrooL;Jroo*,OL) u(+oo’,0i;0’,0l)’ (842b)
i _ 7yt T
u(+0<>;r) - Z/{(-¢-<><>*,1'L;r*,rl) Z/{(J_-¢-o<>*,-¢-<><>l;-¢-c>o*,rL)' (8.42¢)

What about the physical interpretation? Consider again the one-gluon exchange
as depicted in Figure 8.2. We saw in Equation 8.13 that the net contribution for a
soft or collinear gluon is a factor

4 _ 4 .
g/dlA p-1 _gfdl n-A (5.43)

1674 (p—l)2+ieN 16mt n-l-ie’

where [# is the momentum of the exchanged photon and »n* = % the direction
of the outgoing quark. We were able to make this simplification {)ecause in the
correlator this correction stands to the right of a factor u(p), such that we can
make use of the fact u(p)p = 0:

u(p)Ap =u(p) (Ap + pA) = 2u(p)p-A.
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a) b)

Figure 8.8: a) In SIDIS, the longitudinal Wilson line inside the fragmentation function
represents a resummation of soft and collinear gluons connected to the
incoming quark. b) In Drell-Yan, the longitudinal Wilson line inside one
TMD represents a resummation of soft and collinear gluons connected to
the parton extracted from the other T™MD.

As we saw before, this contribution calculated to all orders leads to the light-like
Wilson line. In the collinear case this was the end of the story. But now that we
are in the TMD case, we cannot simply take the exchanged gluon to be collinear,
instead, we need to add to Equation 8.43 a term

Al dzlL Y lJ_
N A‘” 0 l
g/16ﬂ4 217 l+12 i g/47_[2 12 i L( L)

It is not so straightforward to prove (see e.g. [55]), but this parts will sum up
to a transversal Wilson line. So in the end, inside the TMD we have both a
resummation of collinear gluons—coming from the line parts &/~ and /" —and
a resummation of soft transversal gluons, coming from the I/ and U™ parts.
Note however that by choosing an appropriate gauge, it is possible to cancel the
contribution of one type of these lines, e.g. in the LC gauge only the transversal
parts remain (with advanced or retarded prescriptions the LC gauge can cancel
the transverse segment as well). Of course, the same reasoning can be repeated
for the fragmentation function, but then the light-like Wilson lines will lie in
the plus direction. This is illustrated in Figure 8.8a.

To end this section, we give an example for the use of Wilson lines in the
Drell-Yan process. In this setup, two protons (or a proton and an antiproton) are
collided and create a photon or weak boson by quark-antiquark annihilation. We
thus need two TMDs, which are both in the initial state. The longitudinal part of
the Wilson line used to make the TMD gauge invariant represents a resummation
of gluons connected to the parton struck from the other TMD. This is illustrated
in Figure 8.8b. Because of the fact that the Wilson line now represents initial
state radiation, the line structure will be different. More specifically, the path will
flow towards —oco before returning, as shown in Figure 8.9. This has an important
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(0*, —m7,+mL)

(0*,r,r,)

e

(07,0-,0,)

Figure 8.9: Structure of Wilson lines in the DY TMD definition. Because of the initial-
state interactions in DY, the direction of the Wilson line is reversed, going
now towards —oo.

consequence: two out of the eight (unpolarised and polarised) T™MDs are T-odd
and will have a sign change with this line structure as compared to SIDIS (the
Boer-Mulders TMD from Equations 8.35 is an example). This would imply that
TMDs are process-dependent, and not universal as they ought to be. So far it is
not experimentally verified whether these T-odd TMDs have a non-zero value,
although there is a growing amount of evidence that they exist (in particular
the so-called Sivers function). They are not universal, but they are manageable
because the non-universality can usually be calculated (like the sign change in
DY w.r.t. SIDIS). The latter is however not yet confirmed by experiment.

8.3 EVOLUTION OF TMDS

One thing that remains to be defined before we can really use TMDs in experiment,
is their evolution. In the collinear case, the evolution of PDFs is fully governed
by the DGLAP equations. To do something similar for TMDs, we first have to take
a new look at our crude factorisation formula in Equation 8.37, because we will
have to adapt it due to the singularity structure of the TMDs involved.

As the Wilson line structure is now such that the light-like lines do not overlap
(see Figure 8.7), we are left with overlapping LC divergences (originating from
the double pole in Equation 7.71) and additional IR divergences. The latter can
be managed by extracting all soft contributions into a so-called soft factor S. It
is typically calculated as a ve.v. of the complex square of two Wilson lines with
one cusp. This is illustrated in Figure 8.10.
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Figure 8.10: In the soft limit, all possible soft contributions between the quark legs
are resummed into on-LC Wilson line segments. This gives rise to the soft
function as depicted on the right.

On the other hand, the LC divergences can be managed in different ways. The
most common way is to regulate the ‘on-LC-ness’ of the LC Wilson line segment
by slightly putting it off-LC and introducing a regulator (:?

whn
|’

¢

(8.44)

that measures how much off-LC the segment is. As always, k is the momentum
of the struck parton before the interaction, and 7 is the direction of the Wilson
line segment (the same direction as the struck quark after the interaction). The
on-LC segment is retrieved in the limit { - oo (which is equivalent to n> = 0).
A similar regulator is introduced for the LC-divergences in the FF:

wpil
Al

Ch (8.45)

These two regulators will act as rapidity cut-offs, softening the overlapping
divergences. The TMD and FF then gain an extra dependence on ( resp. (:

[k, G u?), D(z,p,, Cpo 1) . (8.46)

Now we can give a rigorous definition for the factorisation of the SIDIS cross-
section:

Factorisation in SIDIS
2
a Uy*p

2
azaqz ~ ‘H(l/‘%)‘ /dzki dsz dzli 8(2)(ki_pl+li+qj_)
1

x Y en f1(x, ks G pp) DUz p o, G pp)S(Ls i) . (8.47)
q

This is illustrated in Figure 8.11. The hard part is perturbatively calculable and

2 Not to be confused with the { momentum fraction in P, = {p~, that is integrated over in the FF.

249



8.3 EVOLUTION OF TMDS 250

Figure 8.11: Factorisation in SIDIS: the bull diagram. All IR divergences are absorbed in
the soft factor S, that hence only interacts with the TMD and FF. Note that
there is no real radiation coming from the hard part.

normalised:
\H(#i)\z =1+ 0(as) , (8.48)

and does not contain real radiation. This factorisation formula is only valid at
small transverse momenta (of the order of the proton mass or smaller), and has
been proven at one loop and leading twist.?

The factorisation formula can be simplified by Fourier transforming into
impact parameter space, as the §-function makes that all densities depend on
the same impact parameter b,. Furthermore, it is convenient to redefine the
TMD and FF in order to absorb the soft function:

F1xb G uE) < /S(byL p3) f1(x, b, G ), (8.492)
DU(z,b,, (i i) £/S(b1, u3) DI(2b,, Gy piE) - (8.49b)

There are some subtleties in doing this—as one also has to divide out all self-
energy contributions—but we don't delve into these technicalities. The factorisa-
tion formula is then:

2
a O'y*p

2 —ib, -
Dan] ~|H(up)| '[dsze b qlze;fq(xrbp(’ﬂ%)Dq(zabp(h:[/‘%)- (8.50)
L q

We can now derive evolution equations in a similar way as in the DGLAP case,
viz. by demanding that the cross section is independent on the factorisation
scale yp and the rapidity cut-offs { and {j,. It can then be shown that:

3 In the regime with large transversal momenta, regular collinear factorisation can be applied.
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cs Evolution Equations for TMDs and Frs

0
TN Inf(x,b,¢,p) = K(b, ), (8.51a)

3 g Inf(x,b,8,p4) = yr($ou), (8.51b)

which are known as the Collins-Soper (CS) evolution equations. The same
equations apply for D as well (with ( replaced by (}), as for any TMD or FF.
K(b, u) is the CS kernel, and yr is the anomalous dimension of the TMD. The
kernel is perturbatively calculable but only for small q, (but this is something
we don’t mind, as at large g, TMD-factorisation is broken anyway). The kernel
and the anomalous dimension satisfy the following RGE:

cs Renormalisation Group Equation

oK(b,u) _dyr(Gu) _
olny  dln¢ = vx(as), (8:52)

where yk is the anomalous dimension of the kernel. It is easily calculated at
one-loop to equal:

K CF

YK = —2 + (’)(ocf) . (8.53)

s
We will show in Section 11.4 that there is an easy relation between the anomalous
dimension of the kernel and the cusp anomalous dimension (where the latter is
introduced in Section 10.2):

YK = _zrcusp > (854)

where the factor 2 arises from the fact that there are 2 cusps in the squared
amplitude (between the incoming quark and the outgoing Wilson line).
We can solve the CS evolution equations for f:

13
K(bo) In ot [dingt (ye(Ln')=yx(u') In 5 )
Ho

f(G b, u) = f(Co,bypo)e , (8.55)

where the exponential factor evolves the TMD from ({p, o) to ({, u).

About the Rapidity Cut-Offs

Before we end this chapter, we make a few remarks on the rapidity cut-offs. First
we note that they have a significant physical meaning, namely they disentangle
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different gluon contributions and sort them in the right density, the TMD or the
FF. Let us illustrate this a bit more elaborately. Suppose the incoming quark is
in the LC plus direction, then the outgoing quark is in the LC minus direction.
Naively, we would assume that all radiation from the incoming quark goes into
the TMD, and all radiation from the outgoing quark goes into the FF:

"

But this is of course not true, as the Wilson line in the TMD is in the LC minus
direction, and resums gluons that are collinear to the incoming quark:

-

But a gluon that is radiated from the incoming quark dnd collinear to the in-
coming quark, is absorbed by the TMD’s evolution (following the same idea as
in Figure 5.10) and hence also enters the TMD:

",

So we conclude that it doesn’t matter from which line the gluon is radiated, but
that it is its direction that matters, i.e. collinear to the incoming quark. In other
words, all gluons radiated in the LC plus direction go into the TMD. A similar
reasoning can be applied to the FF, such that all gluons radiated in the LC minus
direction go into the FF. To know what to do with gluons that are not collinearly
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radiated, we look at their rapidity Y. The LC plus direction is associated with
Y = +o0 and the LC minus direction with Y = —c0, so it is tempting to absorb
all gluons with positive Y into the TMD and all gluons with negative Y into the
FF. But then we are absorbing too much, because gluons with small rapidity
(positive or negative) are hard, and have to remain in the hard part. This is
exactly what ¢ and (}, do, as they separate these different regions:

Y <{, - FF, (8.562)
{(h<Y<{—- H, (8.56b)
(<Y - TMD, (8.56¢)

from which also naturally follows

(= Q% (8.57)

because hard gluons are parameterised by Y < Q. We can show this pictorially:

FF ‘ H ‘ TMD

| | - Y
(/1 (

Another remark about the rapidity cut-offs is that—as we mentioned when
introducing them—there are different ways to treat the LC divergences. The
main reason why one would like to use a different method is that calculations
with off-LC segments are much more involving than with on-LC segments (as
we experienced ourselves when calculating the results in Equation 7.71 and
Equation 7.81).

One method is to adapt the renormalisation procedure to subtract the double
pole as well, as is commonly done with Wilson loops (see Section 10.2). However,
as this has to be done consistently on all contributions of the TMD, it quickly
becomes quite cumbersome.

Another method—which is quite recent—is to extract besides the soft factor
a collinear factor from the squared amplitude as well. It will have a similar
singularity structure, and all rapidity divergences cancel out when combining
diagrams.

Last, we discovered that by applying geometrical evolution on the T™MD, the
area derivation (which lies at the basis of the geometric evolution) removes a
pole as well. This is investigated in deep detail in Chapter 11.
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QCD TOWARDS SMALL-x

In this chapter we will briefly review the small-x framework, which describes the
behaviour of QCD in the asymptotic limit xg — 0. We will see how in this limit
the gluon density dominates, and satisfies evolution equations in x, the so-called
BFKL equations. The gluon density grows exponentially without bound until it
would start violating causality. At this moment, gluon recombination effects
start to dominate and act as a damping effect on the exponential growth. They
manifest themselves as extra non-linear terms in the evolution equations, which
are then known as the BK equations, while the full framework that includes these
non-linear terms is known as saturation.

For further reading, see e.g. [76-78] for a general reading, [79-81] on the BFKL
equation, [82-85] on the BK equation, [86-93] on saturation and [94-104] for a
more present-day approach to saturation.

9.1 EVOLUTION IN LONGITUDINAL MOMENTUM FRACTION

Let us now go back to the case of DIS, and instead of adding transversal mo-
mentum dependence, we investigate what happens in the small-x limit. As
we know, the DGLAP evolution equations are fully governed by the splitting
functions (see Equations 5.71):

1+ x2
qu(X) = CF 1—x N
1
Pyg(x) = 3 (x*+(1-x)?),
1+(1-x)2

Pgg(x) = Cp—

X 1-x
ng(X) ZZZ\JC(E-FT‘FX(I—X)) .
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X

Figure 9.1: Two typical ladder diagrams: at small-x only gluons survive, both in the
case of an initial quark or gluon.

It is clear that in the limit x — 0, only the singular terms in Pg4 and Py, remain:

x—0 1

gq(x) — CF; (9.1a)
Pog () 2 2N (9.1b)

It doesn’t matter whether we start with a quark or a gluon, at small-x only the
splitting functions that result in a gluon remain. This is illustrated in Figure 9.1,
which are known as ladder diagrams. The small-x DGLAP evolution equations
are (see Equation 5.70):

0
3 2 qi(x,4*) =0, (9.2a)

91:3#2 gor) - ;x_nj % [chij(?#z) +2N°§g(§’!‘2)] - (92b)

J

We can then solve these for the gluon distribution:

xgln ) = Q) + 2 /'2/ g(507), G

fdf Zq;( ) (9.3b)

Q(x, %) =

Note that because of its vanishing energy evolution, the quark density has no
energy dependence at small-x. This also implies that Q is negligible, as it remains
constant while g grows exponentially. So we can safely assume that in the small-x
limit the evolution of the gluon density is given by:
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xg(x, u?) '2 (x,Mlz) . (9-4)

§

This integral equation is of the so-called Fredholm type:

b
$(x) = f(x) + 1 [dy K(x0)$(r),

where A < 1is an expansion parameter. It is even of double-Fredholm type, as
this form holds in x and y? at the same time. Fredholm type integrals can be
solved by iteration (giving a Liouville-Neumann series). If we define:

o () = ().
m(x) = [dy K(x»)f(),

up(x) = fd)’l dy2 K(x, y1)K(y1, y2) f(y2)

L]

the solution of a Fredholm type integral is given by

d(x) = Zﬂliui(x) . (9.5)
i=0
As the starting distribution for the gluon density we just take a constant:

f(x) = xgo(x,4?) =

The Neumann series is hence given by (using A = “S—Ti\lc):
o(x, 42 = C,
2
1
up(x, u?) = C/dlny /dlnf Cln—ln—
uy o x
W' 11 L1
uz(x,yz)zC//dlny’zdlny"jfdlnfldlnfz = (—1 2# )(—lnz—),
;40 2 x
1o 1y * &

1. ut\(1, ,1
u,,(x,‘uz)EC(;ln %) (;ln ;) .
! o !
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| 0@ | @
Figure 9.2: An illustration of the effect of the DGLAP evolution on the contents of a
proton. Shown here is the transversal plane, as the proton has little or no
longitudinal extent because it is highly boosted. On the left, a probe at low
energy Q° does not have much resolution, hence it can only interact with
the valence quarks. On the right, a probe at much higher energy Q > Q° has
much more resolving power and can observe the sea quarks and gluons as
well. Because of the increased energy scale, the spatial extent of the partons

decreases (as observed by the probe). Hence the higher Q, the more the
proton gets filled with smaller partons.

The full result for the gluon distribution is then given by Equation 9.5:

Gluon Distribution at Small-x

B 2 2
5 ,/“S—:‘EIn”—zlni
xg(x,u”)=Cle #o .

This is called the double leading-logarithm approximation (DLLA). The inter-
pretation of this result is of paramount importance. First of all, it is literally a
resummation of gluon radiations—where each gluon in the ladder contributes a
factor “STN‘ In ”—z In %—with an additional factor !/(n)1/(n!) for a ladder with n
gluons (this is due to the ordering of the gluons). Furthermore, this equation
tells us that the gluon density increases as Q* increases and/or x decreases. The
first is just a re-expression of the DGLAP evolution (more correct its small-x
approximation as in Equation 9.2a). It orders successive gluon radiation in
function of energy:'

up < up < < Q. (9.7)

The effect of the DGLAP evolution on the contents of a proton is illustrated in
Figure 9.2. A proton that is highly boosted in the longitudinal direction will
have little or no longitudinal extent. The transversal plane remains unaffected,

1 Note that for the upper energy scale * one normally chooses the hard scale Q.
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9.1 EVOLUTION IN LONGITUDINAL MOMENTUM FRACTION

so the proton resembles a pancake: flat and round. At a low scale Q, the hard
probe (a virtual photon) does not have enough resolving power to deeply probe
the proton, hence it only observes the valence quarks. At much higher energies
Q > QO the probe is able to resolve much shorter distances Ar,, and can
interact with sea quarks and gluons as well (the latter via boson-gluon fusion).
From the point of view of the probe, when increasing Q, the proton gets more
constituents that are of a smaller spatial extent.

The fact that xg(x) increases when x decreases also implies a strong ordering
in x:

I1>x>x> - >x. (9.8)

So pure DGLAP implies a strong ordering in y?, while the DLLA (which is DGLAP at
small-x) implies a strong ordering both in y? and x. The third option—relaxing
the ordering condition on y? and only keeping ordering in x—is possible as
well, and is very useful as it defines an evolution in x—only in x, independent
of u*. However, as in DGLAP k  -dependence was resummed due to its strong
ordering in y?, relaxing this condition means that we can only define evolution
equations in x if we add k  -dependence to the gluon density, and define it by the
requirement that after k  -integration we should retrieve the original integrated
gluon density:

QZ
of 1
xg(x, Q)% fdsz flxk,Q), (9.9)

where the factor !/x will cancel after integrating the angular part. Note that the
integration has an upper cut-off Q?, and that we defined f with a scale factor of
x inside. The unintegrated gluon density satisfies the so-called Balitsky-Fadin-
Kuraev-Lipatov (BFKL) evolution equation:

BFKL Equation

0
dln

aN, [ d’q 1Kk
) = 258 [ g - )| 600
L 1 L

1
x

where all instances of the gluon density are evaluated at the same scale . As
there is now no ordering in transverse momenta, the partons generated by the
BFKL equations will retain their transverse size after evolution. This is the most
important difference as compared to DGLAP, and is illustrated in Figure 9.3. It
directly implies that for a given Q defining the spatial extent of all partons there
exists an xg which is the unitary limit, i.e. for all x < xg at the given Q, the
probability to find a parton in the proton becomes bigger than one. A different
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9.1 EVOLUTION IN LONGITUDINAL MOMENTUM FRACTION

Figure 9.3: An illustration of the effect of the BFKL evolution on the contents of a proton.
On the left, a probe with large momentum fraction x° probes the gluon
density at large-x so it will only see a few partons. On the right, a probe
with a much smaller fraction x < x° hits the proton and hence directly
probes the gluon density at much smaller x. At small-x, the gluon density is
exponentially larger and hence the probe sees a lot more partons. However,
there spatial extent remains of the same order as before, as the energy scale
remains unchanged. It seems as if the partons overlap each other. This is
not a problem as long as unitary is not violated, i.e. as long as there are not
more partons than reasonably ‘fit’ inside the proton. As a rule of thumb, we
estimate the unitary condition to be violated when the total surface of the
partons is bigger than the surface of the proton. In this case, an approach
including saturation is needed.

approach is needed to avoid this scenario, namely the framework of saturation
which we will treat in the next section.

When using the unintegrated gluon density to describe the proton, collinear
factorisation is replaced by k  -factorisation. As we are mainly working with the
gluon distribution, the elementary process is that of boson-gluon fusion (see
Figure 5.11), for which the factorised cross section is given by:

dy d
o(ep — eqq) = fy L AQ 2k, (5K, Q%) f(x.k,,Q%). (o.1)

It has however only been proven at small-x. This is one of the main differences
with the TMD framework, where factorisation has been proven independently
of x, but only up to certain orders of 1/q.

We can express the differences between DGLAP, DLLA and BFKL by the resum-
mation of logarithms they induce. Their are two types of logarithms that can
possibly contribute to the resummation factor, namely the transverse logarithms

In !; and the longitudinal logarithms ln ~. How these are resummed depends

on which are dominant in combination w1th as. In the DGLAP case x is fixed
and a; < 1, hence

1
asln — <« 1. (9.12)
x
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In —

Reggeons
Pomerons

X-PQCD
Meson Exchange Model

Non-Perturbative Region

Figure 9.4: A QCD evolution roadmap. Evolving the parton density at constant x to-
wards increasing Q2 leads to an increase in the number of partons and a
decrease of their spatial extent, saturation is never reached. This evolution
is governed by the DGLAP equations. Evolving the parton density at con-
stant Q? towards decreasing x also leads to an increase in the number of
partons but keeps their spatial extent fixed, hence for small enough x the
parton density becomes saturated. This evolution is governed by the BFKL
equations. The DLLA is a combined evolution in x and Q. When Q? is too
low, a perturbative approach is no longer possible and different approaches
are needed.

Because «, runs in function of Q?, we have that

2
o In M—z ~1, (9.13)
0

which implies we have to resum these contributions. In the BFKL case it is the
other way round, and we have to resum the contributions
1

asln —. (9.14)
X

In the DLLA both contributions separately are subleading:

2

1
aln— «1, ocslnM—2<<1.
x

0
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but their combination has to be resummed:

1 2
osln —1n #—2 ~1. (9.15)
X Mo

We have collected these insights in Figure 9.4, where the different evolutions are
depicted graphically.

9.2 THE BK EQUATION AND SATURATION

We have seen that in the small-x limit the gluon density grows exponentially,
ultimately violating the unitarity bound. We need to somehow adapt the BFKL
equation to tame the exponential growth. But let us first have a look at the origin
of this problematic behaviour. Both DGLAP and BFKL (and DLLA) are constructed
from the splitting functions (see Equations 5.71) as a starting point. However,
these don’t give a full description of the possible processes inside the proton, as
they only describe splittings, hence augmentations of the number of partons.
However, these splitting functions could also be read in the inverse way, as
recombinations of partons. It are these effects that are missing in DGLAP and
BFKL, and one can show that they become dominant once the proton is getting
saturated.
If we write the BFKL Equation 9.10 schematically as a convolution over a kernel,
ie.:
d o

Ne
mf= 2 kL ® f, (9.16)

the recombination effects will manifest themselves as a quadratic term:

) as N,
mf = %J{JBFKL ®[f-1]. (9.17)
This equation is known as the Balitsky-Kovchegov (BK) equation. It is quite
complicated to fully express it in function of the unintegrated density. Instead,
calculations in the saturation framework are mostly done in the so-called dipole
picture. In this picture, we boost to a frame where the struck parton before
and after the interaction can be represented as a created pair (a dipole). This is
illustrated in Figure 9.5 for a quark dipole (the dipole can be a gluon dipole as
well). Working with dipoles has a lot of advantages, one of these is e.g. that gluon
radiation is colour coherent, which means that successive radiations are angular

261



9.2 THE BK EQUATION AND SATURATION

T (= (O

Figure 9.5: Illustration of the dipole picture. We boost to a frame where the incoming
parton becomes outgoing, such that we can interpret the diagram as a
photon fluctuating into a dipole. The third diagram shows the dipole as an
index diagram (where only the colour structure is drawn). Index diagrams
are introduced in Section 10.1.

ordered towards smaller angles when radiated from the dipole and towards
larger angles when radiated before the dipole:

g ¥ O<y, (9.18a)

\mﬁﬁ [y 0>vy. (9.18b)

It is possible to define evolution equations based on colour coherence, the so-
called Catani-Ciafaloni-Fiorani-Marchesini (CCFM) evolution equations. These
are much more difficult to solve, but they are the best way to implement evolution
in Monte Carlo generators (the relevant generator is called CASCADE).

The basic dynamical object in the dipole picture is the dipole scattering amp-
litude NV (x, r, ). This amplitude is supposed to have a unitary bound, i.e. N < 1.
The dipole cross section is then given by

>

o(x,r,)= oy N(x,r,), (9.19)

which can be related to the unintegrated gluon density by:

4, A%k ik r
a(x,rl)sz k‘jl k) (1-efm), (9.20a)
3
f(x,ki) = mki Tk, [Ao (x,r))], (9.20b)

where A is the Laplacian operator in cylinder coordinates. The scattering amp-
litude can also depend on an impact parameter b, , which represents the trans-
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versal distance between the centre of the dipole and the target. The regular
densities are then retrieved by integration over b, with an extra factor 2:

f(x,r))=2m fdbz f(x,r,b%) (9.21)
0

o(x,r)=2n _/.db2 o(x,rl,bz) (9.22)
0

We can express the BFKL equation in function of the dipole amplitude:

Dipole BrkL Equation

2
LN(rl,bl,x):“SA}/dzzl i M+M-NT, (9.23)

aln% 2m i 13,

where
N N N

FL=X1,"%0.> fli=%,.7%2.> 1=2,7%01> (9.242)
N 1 N 1 N 1

b, = E(xll"'xm) » by = E(xll+zl) > b,, = z(zl"‘xOl) > (9.24b)

NEN(r,b,x), M=EN(r,b,x), No=N(ry,,b, ,x) .(9.240)

We can interpret the dipole BFKL equation as a dipole splitting into two dipoles,
as illustrated in Figure 9.6. It is now not difficult to add the quadratic term that
ensures saturation, leading to the BK equation in the dipole picture:

Dipole Bk Equation

0 NI“SM-/‘dZZL 2“2 [M + Ny - N - M A3, (9.25)

The BK equation naturally introduces the saturation scale Q;(x) at which
saturation effects become important. It is a curve in the (Q, x) kinematical
plane (see Figure 9.4), and its definition is model-dependent. It acts as an IR
cut-off, screening the non-perturbative part, hence making saturation physics
consistently perturbative.
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dipole ¢ b,

target

Figure 9.6: In the dipole picture, the BFKL evolution is an evolution in dipoles, i.e. new
dipoles are created during the evolution. A gluon that is radiated from the
dipole can be represented as two fundamental lines (see Equation 10.13).
This essentially splits the dipole in two at the point 2z, as is illustrated in
the second diagram.

Comparison to Population Statistics

In order to understand a bit more how the quadratic term induces saturation, we
make a comparison to mathematical biology, where a similar procedure is used.?
The most basic model for population growth links the growth to the population
density (the more animals are present, the more animals reproduce and the
more offsprings will arise):

N(t)=«kN(t) = N(t)=Nye". (9.26)

This cannot be a realistic model, as it is possible for the population to overpop-
ulate: if there are too many animals, the lack of food and limited space will
decrease the growth. The simplest way to implement this is to let the growth
parameter decrease for increasing N:

k > xk(1-N).

This introduces the quadratic term to the growth equation, which is commonly
known as the logistic equation:

N = k[N -N(] = N0 - - (627

xt . 1=No ~
+ No

It is not the case that the addition of the quadratic term to the BFKL equation is motivated from
biology. The quadratic term follows directly from the recombination effects of the partons. We
just make the comparison here to simplify understanding the effect at hand.
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9.2 THE BK EQUATION AND SATURATION 265

Figure 9.7: Comparison between regular exponential growth (in blue) and the logistic
equation (in green) for two initial values (N = 0.1 and Ny = 0.25). Note
that the logistic growth saturates towards the same value (here equal to 1),
independently of the initial condition.

The comparison between the two formulae is made in Figure 9.7. The important
thing to remark is that the logistic equation always saturates towards the same
value, independently of Njy. The same is of course true with the BK equation.

The GBW model

The BK equation is an exact analytical equation, but difficult to deal with. It is
however possible to create models that are inspired on the mechanism in the
BK equations to describe similar saturated behaviour. The most easy (and most
well-known) saturation model is the Golec-Biernat Wiisthoff (GBW) model [105].
It parameterises the dipole amplitude as:
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GBW Model

where the saturation radius is modelled as

def 1 A
Rj(x) = @ (xio) : (9.29)

The factor in front is just a constant to set the scale:

def

Qo =1GeV. (9.30)
The saturation radius is intimately related to the saturation scale:

2_ 1

e (9:31)

When comparing to data, the dipole cross section is used:

a(x,r,)=0p (1—e_iriQ52) (9.32)

Note that the dipole amplitude has as requested a unitary bound NV < 1. The
model has been compared to HERA data, and the parameters 0y, xo and A have
been fit [85, 106]:

0p =23.03mb, A =0.288, x0 = 3.04-107%, (9.33)

with ¥* = 1.18, deeming it a good fit. The dipole cross section is plot in Fig-
ure 9.8 for a few values of x. The cross section value at the saturation radius is
independent of x:

0. = 0 (1 - e‘i) %5.09. (9.34)

Using Equations 9.20, we can calculate the unintegrated gluon density in the
GBW model:

fx k) =

It is however common in literature to define the gluon density with an extra
factor (1 - x)’, motivated by power counting:

flx kD) =

300
4120

RE(x) ke R (935)

30'()
4120

(1-x)" R2(x) k* e ROIKL (9.36)

which is the definition we will use in the next section.
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a(r) [mb]

r [fm]

Figure 9.8: Plot of the GBwW dipole cross section for x = 1072,...,1075. The red dots are
the saturation radii for the given x.

9.3 TRANSVERSAL ENERGY FLOW

It is not so obvious to look for BFKL and BK signatures in data. Measurements
of the F, structure function at HERA show a rise for decreasing x which is in
perfect agreement with BFKL predictions. However, F, is not suited—due to its
inclusive nature—to discriminate between conventional dynamics and BFKL, as
the observed rise can as well be explained using regular DGLAP evolution. An
adequate approach is to include final-state properties in the measurement. A
good example is the transversal energy flow coming from a small-x gluon ladder,
which has already successfully been used to look for BFKL signatures in HERA
data [106-109]. We will apply this formalism to include saturation effects.

Because in BFKL and BK there is no longer an ordering in 2, we expect to
find more transversal energy in the central region, between the main jet and the
proton remnants, as illustrated in Figure 9.9. The definition of the E flow is
given by [108]:

dK? k.|,
ffafj / gfafjakz e

(9.37)

where o is the total cross section in the range (x, Q?), and a sum over j is
implied. In order to clarify the notation a bit, we drop the L-notation on the
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Figure 9.9: Definition of the transversal energy flow. In a boson-gluon fusion process,
the energies of the gluons radiated in the ladder are summed to give the full
E 1 flow. We expect to find more transversal gluons in a BFKL framework.

momenta. Just remember that every momentum represents only its transversal
component. We can express the differential cross section as a function of the
differential structure functions:

820' aze 1 zaz(ZXFl)
— = - S U 38
9§02 xQ [( y) a0k 20 ag;0k2 (9.382)
2
y= < (9.38b)
XS

We need the total cross section to use it as a normalisation in the denominator
of (9.37). It is given by:

, (1LQY)
’F, 1 ,0°(2xF)
d¢;dk; [(1 ) -+ ———|,
(xfo) agjok: 27 0% 0k
2

|00 ) B ) ().

xQ* 2

We can express the differential structure functions as:

E~ azFl,Z _3%ifd2kp dey f kz Q
Togjok: "2 k2) kK2 &

y
< f (8. kp) 82 (K=, k)
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Fiand f are the soft gluon resummations above resp. below the j-th gluon. This
gives:
d2 k 1

J0E
ff—.T — T2 0n / j 2 2 2
0¢&; m F(x Q?) ky k2 \/E

% 2 2\ «(2)
F(fjk )f(gj,k)a (kj—k,~k,) ,

y2
Fz(l—y"r‘?)FT‘i‘(l—y)FL,

y2
.7::(1—)/+?)FT+(1—}/)TL.

To integrate the §-function over k;, we shift the k;-integration back to its com-
ponent form:

2 _ 1 2 _ 1 _ 1 2
dkj = —dkj d¢ = —k;dk;d¢ = —d’k;,

2 2
¢ a1y &k 1
08 T TwE) R R

J—"(EJ £.Q )f(s,,kZ)

2
(k, + k)
3a, 1 rdky d’k,
=5 [CE 24 P 2K Q k2
22FJ) KK g )7 Ek)
1

x .
\/klz, + k2 + 2kyky cos ¢

The integration over ¢ can still be done exactly, using:

/ 4 K( 23)
4 \/A+Bcosq>‘ VA+B A+B)’

2 2
a6 pdky kS f(

2 2
ffﬁ nzF k2 K ?k )f(g”k)

1 4k, k,
X K s
kp+ky \ (kp+ky)?
where K(m) is the complete elliptic integral of the first kind, which is divergent

for m > 1 (see Equations B.9). Next we use the transformation k, = aL and
ky = (1-a)L as defined in Equations B.11:
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JEr w24 dadL x 2
535 = pffa(l_am (f;“‘“)L’Q )f(ff’“L)K(““_“))'

This integral is divergent at a = 5, and at the bordersa =0,a =1and L = 0. We
expect however that the divergences at the borders will cancel out, because
generally we can factorise out at least k, from f and k, from F without
introducing (additional) divergences in f or F.

Calculation of the Structure Functions

We can calculate Fy and Fj in coordinate space or in momentum space. In
coordinate space we use the dipole cross section and the photon wave functions
(of qq ﬂuctuations) to get:

FTL(x Q Z fpdp “I’ z,p)‘za(fq,p) (9.39a)
em q

‘\I’g (z,p)|2 = 6Z::; eé /dz 47* (1- z)2 QZKS (ep) (9.39b)
0

1
2 Kem
“Pg (z,p)| = 647'[2 eé /dz [(22 +(1- z)z) EK? (ep) + méKé (ep)] (9-39¢)
0

€=z(1-2)Q*+ mé (9-39d)
where we added a mass correction to x:
2 2
g o S o0
Q

In momentum space we use the unintegrated PDF and the photon impact factors
to get (see [110]):

2 2
FTL(x Q ) Q Zfdk z)f(yq’kz) > (9.41a)

7-[2

@E (k2, Q ) =167 dem 0ts€ /dzd( zZ" [z(l —2) (- ()2 k2Q2] , (9.41b)
0
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+((2+(1—{)2)m$k2+4z(1— )((1—()m2], (9.41¢)
=(z(1—z)k2+((1—()Q2+m )(((1—()Q +m ) (9.41d)

Numerical Evaluation of the Er-Flow

To evaluate the Er-Flow integral, we cut out a small region around a = %

o0

E"aa%: e+ 2F(xQ2) / f f?iL)LZ

(f] (1-a)L,Q )f(fj,aL)K(éla(l—a)),

for some € which is small enough to make A.I reliable, but not too small to make
sure that the main integration part will still converge fast enough. We expand
the elliptic function around 1 to approximate AI:

_ F((1-a)L)f(al)
AEI_ nZF(x QZ) f/d dL a(l-—a)L? K(4a(l-a)),

_ (G-a)1)f((G+a)L)
- nzF(x QZ) fdadL : (1—4a2)L§

K(1-4a),

K(1-4a°) ~In2-1Inla|+ (In2-1-1nla|) a° +Z(ln2—£—ln|a|)a4

Furthermore we use the following approximation formula (for given N, where
a>0):

(9.42)

a N
a a a a a
bt i=—N,i0
5 13 . .
W‘N‘:E w|N_1‘:E w=1Vi#N,i#N-1 (9.43)

We use simplified quark masses and fixed coupling constants:

1
={0.15,0.15,1.5,0.15}, Qo = — » as=02.
{ } 137 :
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For the gluon density, we use the GBW model (see Equation 9.36), and for F we
use a model that is inspired on the GBW model [111]:

O _
Fesw (25, Q) = Ny (Q%) —— (1-2)° Q%k*R(2) e ¥R | (9.44)
2m2a

with the same parameters as the GBW gluon density and
Ny (Q%) ~1.46. (9.45)

Our results are shown in Figure 9.10. In the large-xp regime more transversal
gluons are radiated at higher Q* compared to low Q?, while the small-xp regime
is insensitive to Q2.
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Figure 9.10: Plot of the transversal energy flow in the GBW model for 4 values of Q.
We see that in the large-x regime more transversal gluons are radiated at
higher Q?, while the small-x regime is insensitive to Q.
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(continuation of Figure 9.10)
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WILSON LOOPS AND LOOP SPACE

In this chapter we will introduce Wilson loops as elementary bricks that allow us
to fully recast QCD in loop space using the multicolour limit, essentially trading
coordinate dependence for path dependence. We start by introducing the large-
N, framework, which—although unrealistic—can give more insight to the non-
perturbative behaviour of QCD. We will mostly follow the excellent lecture notes
by Makeenko [112] in this section. Next we will treat the renormalisation of
Wilson loops, and investigate how the energy evolution is governed by I'.ysp, the
cusp anomalous dimension.

It will provide us with a solid base to our investigation of the geometric
evolution of Wilson loops in Chapter 11. As always we try to avoid going too
deep into details. See e.g. [113-124] for a more profound treatment of the topics
covered in this and the next chapter.

10.1 LARGE N,-LIMIT

We saw in Subsection Running Coupling in QCD: Asymptotic Freedom on page
116 and onwards that QCD is asymptotically free due to the particular beha-
viour of the strong coupling «, which invalidates any perturbative approach at
energies smaller than Aqcp. There is however another possibility, that avoids
this invalidation by promoting the number of colours N; to a variable. If we
then expand the interaction exponential !5' in function of N;, we can keep the
expansion convergent—even when «; is larger than one—by making N large
enough to compensate for «;. To see this, we note that the former enters in the
denominator of the evolution of the latter (see Equation 4.84):

As0
as(u) = 20
_ %so i
1 4 b()ln ,u%
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where
su(n) 1l 2
by _—gNﬁng.

In other words, if a; tends towards values bigger than one, we have to increase
N just enough to compensate for the growth in «; , hence keeping the expansion
convergent. It is then logical that in the limit N, — oo the expansion is convergent
to all orders in a5 [125], i.e. the large- N, limit gives a non-perturbative description
of QCD.

Of course this is not a realistic treatment, as we know that the number of
colours is fixed to 3, and it becomes even less realistic at energies where a; 2 1.
However, it can tell us a lot about the dominant regions in certain processes.

Colour Representation

To use the large- N framework in practice, we first investigate the method of
colour representations, where the colour part of a diagram is depicted and cal-
culated separately from the rest of a Feynman diagram. For this purpose, we
define a so-called matrix-field by absorbing a Lie generator in the gauge field,
such that the latter has manifest fundamental indices but no adjoint indices:

A‘l.‘j LAl (%) - (10.1)

To calculate the matrix-field propagator, we use the Fierz identity (see Equa-
tion A.77):

<AMJ(x)A’f,l(y)) = (58 Loki - 2_Nc6 ]6“) Duy(x,y). (10.2)

If we now focus on the colour structure—that is we forget the momentum
part and express the propagator in index space, using only the fundamental
indices—we can write the matrix-gluon propagator as

Matrix-Field Propagator

W :1 i—— 7i i,) (l (103)

where the green lines are ‘quark-like’ lines, i.e. they have the same colour
structure as quarks (being in the fundamental representation), but of course
not the same momentum nor Dirac structure. Although the Kronecker §’s
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seem to indicate that there is some freedom in the direction of the arrow, we
have to impose that the matrix-gluon can be written as two quark-like lines in
opposite directions. This is motivated by the hermiticity of A%, that amounts an
interchange of i and j to a complex conjugation. Another way to see this is to
realise that the fundamental index literally represents colour flow, and a gluon
always carries a colour and an anticolour.

We can use this pictorial representation to investigate the colour structure of
e.g. quark-antiquark scattering (with an additional factor ig per vertex):

PN R R o (10.4)

The square then becomes:

2

g —— ) _ 2 [, 1

WY =5 |7 - — +ﬁ (10.5)
C

Note that there is no difference between the yellow and the green lines—both
are fundamental index lines—but we keep the difference as a reminder of the
original line. The major simplification of this technique now lies in the fact that
every loop (which is just defined as a closed index line) contributes the same
factor N, independent of its underlying physical origin. This is because both
internal loops and external particles are summed over colour, giving a factor
8" = N.. Furthermore, we can move index lines at will if we don’t tear them,’
such that the topological equivalence lies only in the counting of loops, and
not in the form of these loops. From the moment an index line is closed, it is
considered a loop, no matter how this loop looks.

In the case of Equation 10.5, the first and the last term have two loops and
hence each contribute a factor N2, while the second term has only one loop and
contributes a factor N,. The result is then

2

g g
W = Z (Z\/'C2 —2+1) = ?MCF> (10.6)

which is indeed the correct result. Often we will average over incoming colour,

implying that we divide by an additional N, giving the common result %C F.

1 Because there is no coordinate dependence, only fundamental index dependence.
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We don't need squared amplitudes to make use of colour representations,
e.g. the colour structure for the quark self-energy can be calculated in an easy
manner as well:

2
2 1
- _g_ (Z\]C I ) 5
2 N,
= —gZCF . (10.7)

This is a logical result, because the two vertices give a total colour factor tt* = Cp.
The colour representation method works, and is a very useful tool to investigate
the colour structure of a diagram (and it is especially beneficial for complex
diagrams). Let us verify a few more relations. A tadpole is indeed zero:

0O
2R

The gluon propagator with a quark loop is just a factor times the gluon propag-
ator:

%

2 2 1
g s = — ‘i(I x—ﬁx (+N—CZ)( )(),
211 1
:_g?(zx 2N)(
:—‘%Z'mmm\

This is just a demonstration of tr t*¢” = %6‘“’. The 3-gluon vertex gets a partic-
ularly easy matrix depiction. To calculate it, we note that in the matrix-field
representation it is given by

i Lk
- gfubc ?]tIEI mn (10.8)
m,n

Using Equation A.84a, we can simplify this into
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b b b b
gfa Ct?jtkltfnn - lgtljtkl (tmxtxn - tmxt;n) >

i 1 1
=-=— [5115jm5nk N (8ij0m10nk + Bin®jmOii) + Fcz(sij&klamn]

4

b 8500 101m — — (840 + OindmOur) + — 8110110
4g inOjkOlm N ijOmlOnk inOjmOkl I\TCZ ijOklOmn | »
i

= Zg(6116]m8nk - 5zn6]k81m) .

In other words, pictorially we have

3-Matrix Vertex

vy -

The gluon propagator with a gluon loop is then easily calculated:
2
g PR
=2 |2 —2— zi —,
m%m 16 ( @/ )
2 (1 i1
-En(1T ).
47\ 2 j—<k 2N

= — = Nwwon

4

The calculation of the 4-gluon vertex goes similar to the 3-gluon vertex, but is a
bit more involved. In matrix-field representation, the former is given by

i Lk
= —jg? fabx pxed tfjtzltf,mtgp + Cross. (10.10)
m,n o,p
Because we have
bx sxcd a d g
—ighfab e tz]tkl toantop = ig [8:16j00knOmp — 8ind kS100mp
_‘Silajm(skpaon + (Sip(sjk‘slmaon] >

we can write
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4-Matrix Vertex

:x:::if; >X<>/\<+XX+ cross. | (10.11)

Colour Representation in the Large-N, Limit

Let us now investigate how the colour representation simplifies in the large-N;
limit. The most important simplification is in the matrix propagator, which is
now

. 1 ; .
<Aly](x)AIf;l()’)> - 55 l5k]Dyv(x,)/), (10.12)

or symbolically:
erTe = %: . (10.13)

Furthermore, we focus on the gauge sector of QCD, i.e. Ny = 0. This will allow
us to make a straightforward power counting of index diagrams. First we note
that from Equation 4.84 automatically follows that in the large- N; limit

O~V — . 10.1
N (10.14)

In gauge-only QCD, there are three vertex functions: the 3-gluon vertex and the
ghost vertex, which both give a factor NC_I/ ?, and the 4-gluon vertex, which gives
a factor N; 1. Every closed loop gives an additional factor N, as it is a trace of
the fundamental identity matrix. With this information, we can power count
any index diagram. Take for instance the gluon loop correction to the gluon
propagator, where now the second diagram vanishes in the large- N, limit:

The two 3-gluon vertices add a factor N}, and the inner loop adds a factor N;.
In other words, while in standard pQCD this is an NLO diagram, in the large-N;

approach it contributes already at LO. This might sound a bit strange at first, but
is something typical for multicolour frameworks. More generally, we state that
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in the large- N, limit only planar diagrams contribute to the LO result. Indeed, if
we consider e.g. the planar diagram

A
\ &7

we immediately see that it is an LO diagram (we have N.'! from the 4-gluon
vertex, N> from the six 3-gluon vertices, and N from the four closed loops).
On the other hand, a possible non-planar counterpart of this diagram is

and this is an NNLO result because it scales as O(N;2), as there is only one inner
loop (by following the inner index line, we see that it is indeed the contour of
a single loop). This is easily generalised. For any planar diagram it is true that

adding a loop corresponds to adding two 3-gluon vertices or one 4-gluon vertex.
Hence the order of any n-loop planar diagram (with two external gluons) is

n-loop planar diagram ~ (gch)n ~0(1) . (10.15)

For non-planar diagrams we use a mathematical tool. In general, it is possible
to draw any non-planar diagram without self-crossings on a general Riemann
surface with a certain genus 4, where the latter corresponds to the number of
holes in the surface. E.g. a sphere has genus h = 0, and a torus (a doughnut) has
genus h = 1. The non-planar diagram sketched above can be drawn on a torus
without self-crossings, hence it has genus /4 = 1. It can be shown [112] that for
any diagram (with two external gluons) its large- N, scaling behaviour is given
by

genus-h diagram ~ (N_z)h . (10.16)

Cc
Already now we can draw two important conclusions:

A. The expansion in 1/, rearranges perturbation theory diagrams in function
of their topology.
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B. Only planar diagrams survive the large-N; limit, and more specific all
planar diagrams survive this limit. This can be translated directly to regular
pQCD: a planar diagram is always dominant with respect to a non-planar
diagram.

This in an important result, as there are far less planar diagrams than non-planar
ones. The number of all planar diagrams with n loops grows as e”, while the
number of all general diagrams with n loops grows as n!. Take e.g. the ladder
diagrams in quark-antiquark scattering consisting of n gluons. There is only
one planar ladder diagram for every #, but there are n!—1 non-planar ladder
diagrams.

Equation 10.16 can be easily extended to any number of external gluons. We
have [112]:

genus-h diagram for an n-point Greens’ function ~ (Nc)l_rh . (10.7)

Furthermore, re-introducing quarks is trivial: We allow every single line to be a
quark as well. Quark loops are always vanishing in the large-N; limit, as they
add vertices but no index loops. Consider e.g. the quark loop correction to the
gluon propagator:

g yi = — 8 —— — O(N_l) , (10.18)

So we don't have to take them into account at LO. In practice, a Greens function
will always be ‘closed’ by external quark or gluon lines. E.g. a possible closed
3-point function can be drawn as

P

In order to avoid introducing self-crossings (which would make the diagram
non-planar, and hence vanishing in the large-N; limit), we contract the indices
of the external lines in a cyclic order. Every closed Greens’ function gains a factor

(ig)" per external leg, coming from the n vertices needed to close the function.

The inner part of the diagram can be associated with a colour trace of the gauge
fields, i.e.

1
?;‘r-yn (xl’ te ’x”) = ﬁc(lg)n tr (Al"'An) > (10.19)
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where the factor !/n; follows from the normalisation condition

?0 . (10.20)

With this definition, all Green’s functions contribute at LO so that they are finite
(except ?1, which is a tadpole and hence vanishes). Now to get a general result,
we integrate over all possible external path insertion points x;. Note that these
points are bound to the path C formed by the external lines, hence the integration
is a contour integral along C. As the cyclic ordering of the fundamental indices is
automatically implied by an ordering along the path C, making the integrations
path-ordered is sufficient to avoid self-crossings. The n-th order Green’ function
is then given by:

P 9§ dx{“ ?3‘ dx," ?If’zl“‘ﬂn ' (10.21)
C C

Note that all coordinates are integrated out, and all indices are traced. The only
variable that remains is the path C, the topological outline of the external lines.
The full QCD result for a set of external lines on a path C is then an all-order
resummation of all closed Greens’ functions that are connected to this path:

ip yg dx!" .. % daxi)” ?;’l.,,yn ' (10.22)
"oc c

But this is exactly the definition of the gauge-invariant Wilson loop:

Gauge-Invariant Wilson loop

C=Z7)_¢.dx1“ : 'ggdxn /#1 (X1 X)), (10.232)
CN

1 i gidx”A
~ (0| Pe ¢ ' 0) , (10.23b)

- (10.23¢)

®
D
@
2

where the path C is depicted naively as a circle.
Another useful property is the factorisation of correlators. If we consider a
general correlator that is a product of colourless operators:

(O1-0p) » (10.24)

it can be shown [112] that all possible LO diagrams built from this operators
consist of exactly n separable sub-diagrams, i.e. that all (partially) connected
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diagrams are of (’)(Nc‘l) or smaller. This immediately implies that the correlator
factorises:

(op<%)=«xy~«%>+o(£?). (10.25)

This will be particularly interesting when considering Wilson loops that are
defined over separated loops, i.e.

1 igpdxtA, ] ig$ dxt Ay
(0| —tre ¢ o—tre ¢ |0) =
N N
1 igd dxt A 1 igd dxt A 1
—tr{0le ¢ [0)—tr(Ole © [0)+O|—] (10.26)
N, N NZ

We have shown that in the large- N; limit all information on the gauge sector of
QCD is fully encoded in Wilson loops, trading coordinate dependence for path
dependence. In other words we have shown that it is possible to fully recast QCD
in loop space in the multicolour limit. Unfortunately, it seems to be impossible
to make the same connection between QCD and loop space for finite N,. It is
however possible to get partial results for QCD objects from calculations in
loops space, by treating the loop space approach as an effective theory within
some (quite stringent) conditions. E.g. Tsou succeeded in calculating the CkMm
and MNS matrices to good agreement with experimental data using loop space
variables [126]. Motivated by this, we now take Wilson loops as basic building
bricks in QCD, and investigate their properties.

10.2 RENORMALISATION OF WILSON LOOPS AND ['cysp

A first difficulty that we encounter when working with Wilson loops is that—
due to their non-locality—they are not necessarily renormalisable using regular
methods due to the emergence of extra rapidity divergences (which are linked
to the Wilson line regulators # in e.g. Equation 6.27a). This isn’t a problem in
regular pQCD (where Wilson loops are used as soft factors for TMDs) because
they will cancel with extra divergences from the collinear TMD factor. However,
if we want to recast QCD with Wilson loop as its basic elements, the latter have
to be well-defined themselves, before cancellation. It has been shown [117-121,
124, 127, 128] that a Wilson loop is multiplicatively renormalisable to all orders
of perturbation theory if the path has a finite number of self-intersections and
cusps. Furthermore, the Wilson loop can be made finite if the path is smooth
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Figure 10.1: A Wilson loop with a cusp in its path. The two legs are semi-infinite lines,
that are connected at infinity (illustrated by the dashed line). The blobs are
just a representation of the two possible inner diagrams: we can have blobs
connected to one of the legs, and blobs connecting both legs.

(without cusps and self-interactions). In the latter case, the renormalisation of
the Wilson loop reduces to the regular renormalisation procedure.

So for a smooth path C, the renormalised Wilson loop will depend on the
renormalised coupling and the renormalisation scale:

US (gr> 1) » (10.27)

but not on the regulator € as it is finite in the limit e — 0. However, when
the path is not smooth but contains a finite number of cusps®, parameterised
by Minkowskian angles y;, it will contain extra singularities that cannot be
removed with the regular renormalisation procedure. Consider e.g. the diagram
in Figure 10.1, which is a smooth path except for the upper cusp point. After
regular renormalisation, the loop isn't finite yet but still depends on the regulator:

L{gx(gR, U, €) . (10.28)

This is due to an extra singularity that originates from the cusp. We have to modify
our renormalisation scheme to also absorb this singularity into a multiplicative
factor Zcysp:

C C
qu(gR’ ﬂ) = Zcusp(X’ R U 6) uﬁx (gR; U, 6) . (10~29)

2 A cusp is characterised by a non-continuous derivative.
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The multiplicatively renormalised Wilson loop with one cusp satisfies an adjusted
Callan-Symanzik equation (see Equation 4.81):

(aliy +ﬁ(gR)%+Fcusp(X,gR))lnL{R =0, (10.30)
where we could interpret the origin of Tysp as an order-by-order combination
of the anomalous dimensions of the different fields inside the exponential. From
a loop space point of view, it can only depend on the cusp angle y, as there are
no other path parameters that define the cusp. The precise form of the path
cannot have an influence on I'ysp, as the latter vanishes for all smooth paths,
independent of their specific structure. The only difference now is the addition
of a cusp, which is path-local. We can zoom in on the cusp, until its only defining
parameter is its angle, hence its influence on the Wilson loop renormalisation
as well can only depend on the angle.

Note that the Callan-Symanzik equation gets a I'.ysp contribution for every
cusp inside the path. For a contour with several cusps, it has to be adapted to

0
—+ Ceusp (X InUy =
(aln‘u B(gR) gR Cl%];s P(X gR)) R=

The cusp anomalous dimension is defined as the logarithmic energy derivative
of the regularly renormalised Wilson loop (see also Subsection Mass Dimension
Analysis on page 96 and onwards for an introduction to mass dimensions):

Cusp Anomalous Dimension

. d
T = _h—{% din InUz(grs 4-€) (10.31)

where U is defined on a path with exactly one cusp. When expanding the loop
in orders of a5, we find (extracting a, from the contributions for clarity):

1n[1+asu1+%a§u2+0(a§)]_asu1+ af (U -U)+0(al) , (10.32)

which is a helpful tool to simplify the Callan-Symanzik equation and the defini-
tion of the cusp anomalous dimension.

We can now easily calculate I'ysp at one loop using the path structure as in
Figure 10.1 for Uz. It has been shown in [124] that—at least at LO—the self-energy
blobs reduce to the opposite of the vertex correction blob evaluated at zero angle,
ie.:

u uR‘self ‘vertex uﬁ(X) - L{’RK(O) : (10-33)
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We already calculated Uz(x) in Chapter 7, it is exactly the LO 2-gluon blob
connecting two adjoining off-LC segments as given in Equation 7.81:

nin? — (ng-n 2
K ~ (nc ]) +ln“—2+Y . (10.34)

o 1
1 |LG = gXCOthX g+ln

The only thing missing is the path function, which we get from Equation 7.24b:

Uz (x) = O, K)WlllK, (10.352)
®11(J,K) = (_)¢]+¢KCF- (10.35b)

The path goes from —oo to the cusp along a direction n¥, and from the cusp back
to —oco along a different direction #*. The path segments are hence:

e n,r,
<—e Tu,r.
We know we can rewrite the first segment as (see Equation 6.66a):
e = <:.|

n—>-n *

Because we have two similar segments, the path function remains positive, i.e.
®@41(J, K) = Cr. The sign difference in 7 results in a sign difference in y because

n—--n = nn->-nn = x> —X

In other words (note that cosh(—y) = cosh y):

1 nin? — (ng-n 2
UE(X)Z—;X—;TCFXCOthX[;-Fln K iK ]) +ln% +Y]. (10.36)

Now we apply Equation 10.33 and use the limit
lir% xcoth y =1, (10.37)
X—)

to get

o 1 nknd = (ngenp)? 2
Uﬁz—ECp(Xcothx—l) E+ln 1 +ln? +Y|. (10.38)

To get the cusp anomalous dimension is now only a matter of changing the sign
and taking the derivative to In y (also using Equation 10.32). This gives:
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Cusp Anomalous Dimension at One Loop

As
Teusp = ;CF (xcothy-1) . (10.39)

Note that it is divergent in the limit y — oo (the on-LC limit), so we need to
recalculate it in this limit. This is not surprisingly, as also the contributions
themselves are totally different in the off-LC limit (single pole) and the on-LC
limit (double pole).

Renormalisation of Wilson Loops on the Light-Cone

Having segments that are light-like further complicates matters, because besides
extra cusp divergences we now also have additional light-cone divergences that
emerge from the divergent limit y — oo. This time we cannot simply adapt the
regular renormalisation procedure, as Equation 10.30 is no longer valid due

to the emergence of a double pole—already at one loop (see Equation 7.71).

Hence we need to redefine the renormalisation procedure in order to subtract
the double pole [129].
The cusp angle is defined as (see Equation 7.73):

def n l’l
It diverges in case of hght-like segments because then ||, [7i| — 0, hence the
non-divergent part of the on-LC cusp angle is given by n-%. To subtract the extra

LC divergences, the Callan-Symanzik equation is redefined with an additional
derivative to the non-divergent cusp angle part:

[%(alnﬂ ﬁ(gR)_R)+ Z rcusp(X’gR)

cosh y =

InUz“=0, (r0.
dlnn-n cusps 1R (10-40)

where [ n-71] stands for one of the pole prescriptions as defined in Equations 3.142
(most commonly, the principal value prescription is chosen in this case). In
practice, it implies that the cusp anomalous dimension is now defined with an
additional derivative:

On-Lc Cusp Anomalous Dimension

d d
LC def . 3
rcusp 1:1_138 dln U dln ”7';1, IHUR(gR) U, 6) > (10.41)

where again U/ is defined over a path with exactly one cusps, as for example
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Figure 10.1. In the next chapter n-n will take the role of the Mandelstam energy s.
The result for light-like segments is given by Equation 7.71 (we already dropped
the terms that won’t contribute):

- ) . 2]
Wi - 1ln#—+l nZ i .
IC 27le 2 2 2 n?

The path structure remains the same as in the off-LC case, so we have:

(10.42)

2 ~ 2\2]
U= 2cp|tn L2
2n € n* 2 2

(10.43)

(10.44)

This is of course scheme-dependent. The given result has been calculated in the
regular MS-scheme.
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GEOMETRIC EVOLUTION

As we saw before in the previous chapter, a Wilson Loop is a fully gauge-invariant
object, and can as such be used as a basic building block to fully recast QCD
in loop space. Objects in loop space can then exhibit dualities to objects in
coordinate space. In this chapter we address a connection between the energy
evolution of polygonal light-like Wilson exponentials and the geometry of loop
space. As the former have a singularity structure similar to TMDs, this connection
might induce a duality between energy evolution and geometric evolution.

We will start this chapter with a short motivation for our interest in the geo-
metric behaviour of Wilson loops. Next we investigate the dynamical behaviour
of Wilson loops in loop space, which will lead to the so-called MM equation that
describe loop evolution in function of the area of the path. However, the MM
equation has its limitations, and are expected to be invalid for the most common
interesting paths, namely paths containing cusps. We follow a slightly different
approach by investigating the geometrical evolution of a Wilson quadilatiral on
the null plane, which will lead to a conjectured evolution equation, that we can
apply on TMDs as well.

11.1 MOTIVATION: WILSON LOOPS IN SUPER YANG-MILLS

Recently, a lot of research is aimed at the investigation of a duality between
planar Wilson loops and gluon scattering amplitudes in /' = 4 Super Yang-Mills
theory [131-141]. The duality connects N-gluon planar scattering amplitudes
to Wilson loops consisting of N light-like segments, see Figure 11.1. We will
investigate this topic as a motivation for our interest in Wilson loops.
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11.1 MOTIVATION: WILSON LOOPS IN SUPER YANG-MILLS
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Figure 11.1: The N-gluon planar scattering amplitude in SYM is dual to a Wilson loop
with N light-like segments. This is illustrated here for N = 4. The gluon
momenta p; are dual to the segment separation vectors v; = r;; — r; of the
Wilson loop.

Super Yang-Mills Theory

Super Yang-Mills is the supersymmetric extension to Yang-Mills theory, with a
strong conformal symmetry. It cannot be a realistic theory—as it describes un-
broken supersymmetry—but can be used as a toy theory to investigate problems
that are difficult to approach in realistic theories. In any conformal theory, all
physics are scale-invariant. The latter naturally implies that it is independent on
distance coordinates, and that all information is encoded in the angles describing
the system. Furthermore, as an unbroken supersymmetric theory, all particles it
describes have the same mass (and are hence massless).

SYM is interesting in its own right, as it is associated with a lot of other theories.
It is the theory living on the boundary of a 5-dimensional anti-de Sitter space (a
common compactification of the 10-dimensional type IIB string theory), and,
using the holographic principle, it fully describes the latter. It is also deeply
connected to A = 8 supergravity, one of the easiest field theories that include
gravity. Finally, it can also (partially) be related to QCD, which is where our
interest lies. As it appears, the leading transcendentality component [142] is
exactly the same in QCD as in SYM. The important fact is that calculations in SYM
are much easier than in the other theories, such that we can gain new insights
in calculational techniques and possibly find dualities between objects in SYM
and realistic theories like QCD.

As an illustration: calculations in SYM have been done up to six loops. The techniques developed
to achieve this, can be partially adapted to use them in more realistic theories.
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Planar Scattering Amplitudes

We will investigate planar gluon scattering by looking at on-shell scattering. An
on-shell gluon is fully determined by its momentum p; (with p? = 0), its helicity
hi = £ and its colour index a;. Due to the underlying symmetries in SYM, the
amplitude is constrained by its helicity structure: amplitudes where all gluons,
or all but one, have the same helicity vanish, i.e. :

M o M 2 M 2 M 20, (11.1)

where the amplitudes are understood as the sum over all crossings. This im-
mediately implies that e.g. up to 5 gluons, the only non-vanishing amplitudes
are the 4-gluon amplitude M~"** and the 5 gluon amplitudes M~"*** and
M**777 These are so-called maximally helicity violating—as is any diagram
where 2 particles have helicity opposite to the remaining #n—2 particles—because
they maximally violate helcity conservation at tree level. Such amplitudes can
be calculated with the Parke-Taylor formula [143]:

2 n-2
|M,,+...+‘2 _ % (ch—l) (g_Nc) 1 + (’)(NC*Z’gZ) .

2 permutationspl'p2p2'p3”'pn'p1

As sYM is fully massless, it will suffer from IR divergences. It can be shown that
e.g. for the 4-gluon amplitude the divergences can be separated out, and the
amplitude takes the surprisingly simple form

1
In My = IR div. + EFCUSP In? ; + const, (11.2)
where s and ¢ are the Mandelstam energy variables:
s=(p+p2)?, (11.3a)
t=(p1+p3)*. (11.3b)

Watch the sign in the definition of ¢, this is opposite to the regular definition.
This separation of IR divergences has been proven up to 3 loops in [144], and
only two years later up to 4 loops in [145]. Similar relations have been proven
for higher n. It is exactly this expression that will be related to a rectangular
light-like Wilson loop [133]:

In My =Intg+ O(N;?) , (11.4)

where the rectangular Wilson loop is defined as a loop over the rectangular
contour as depicted in Figure 11.1, traced over colour indices and evaluated in
the ground state:

| igg dzt Ay
Ug = N tr (0| Pe ° |0) . (11.5)
Cc
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The contour is built from 4 segments with separation vectors

def
Vi=Tiy1—T7;. (11.6)
The segments are assumed to be light-like, and hence v? 0. Using dimensional
regularisation to regulate the IR-divergences one can show that at 1-loop the SYMm
scattering amplitude equals (see [133, 134], and compare with Equation 11.2):

1 —s \® 1 —t\™ 1 s

In My = Teugp [—7 (—2) _T(_z) +=In?Z +const|. (1.7)
€IR \ H1R €IR \ HIR 2 t

On the other hand, we will show in Section 11.3 that the first order contribution

of the rectangular Wilson loop is equal to (now using dimensional regularisation
in the regular way, viz. to treat the UV divergences):

o5 N, 1 1
InUg = s —2—[ - (v1+02)2 ‘u%\,]ew - 2—[ - (vz+v3)2 Iu%N]GUV
T2 €OV €Ly
2
L1y (itee)”

+const|. (11.8)
2 (U2+U3)

Furthermore, because in the large N;-limit

Cr =2+ O(N?),

we can write the factor in front as

os N )
;7 = Fcusp + O(Z\[c ) .
So we see that Equation 11.4 indeed holds—at most up to a constant term—if

we identify the separation vectors with the on-shell momenta:

Vi = pis (vl+v2)2 =5, (v2+v3)2 =t. (11.9)

More specifically, we can state that there exists a duality between a rectangular
light-like Wilson loop and the 4-gluon planar scattering amplitude in super
Yang-Mills theory, that relates the gluon momenta p; to the segment lengths v;,
and the IR singularities of the amplitude to the UV singularities of the loop in
the following way:

- -1
€IR = €UV » UIR = Hyv - (11.10)

This relation has been proven at higher orders as well, both at weak and strong
coupling. Unfortunately, this relation only holds in a supersymmetric theory.
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11.2 WILSON LOOPS IN LOOP SPACE

Korchemskaya and Korchemsky showed that when considering QCD the relation
only holds in the Regge limit [146]. However, the investigation of Wilson loops
in QCD is interesting anyway, as they share e.g. the same singularity structure as
TMDs, and can be used to calculate soft factors.

11.2 WILSON LOOPS IN LOOP SPACE

In the previous chapter we have made the first steps to show how Wilson loops
can be used as elementary building bricks to completely recast QCD in loop
space (see also [113-123]). In this section we will investigate this a bit deeper, and
look at their geometric behaviour. To achieve this, the definition of a Wilson

loop needs to be extended to make it (possibly) dependent on multiple contours.

We define a n-th order Wilson loop (consisting of n sub-loops) as:
WA = (0] @4 % |0) (11.11)

where each sub-loop is defined as
1
o = ﬁctr PExpiig yﬁ dz"Au(z) ¢ . (11.12)
C

Thus each sub-loop is Lorentz and Dirac invariant, but only together they are
evaluated in the ground state to form a n-th order Wilson loop. Note that a ;¢/
loop coincides with our original definition in Equation 10.23b (when evident
from context, we will just write it as {/). Treating these n-th order Wilson loops as
elementary objects in loop space, we note that all gauge kinematics are encoded in
a 1U loop (which we have shown in Chapter 2, where we even used Wilson loops
to introduce the gauge field to begin with). On the other hand, all gauge dynamics
are governed by a set of geometrical evolution equations, the Makeenko-Migdal
(MM) equations [147-151]:

Makeenko-Migdal Equation

1)
00,y(2)

v

1uc _ gch .¢;duﬂ 6(4) (Z _ l/l) zuczu Cuz . (11'13)

Here a path C gets deformed by taking two opposite points z and u, and bringing
them infinitesimally close, such that we separate a newly-formed closed contour

We write the loop order index on the left of U/ to avoid confusion with the expansion order index
as in Equation 6.12.
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11.2 WILSON LOOPS IN LOOP SPACE

from the original one. In other words, we deform the contour C into two closed
contours C,, and C,,, that are still connected in one point.

Of special importance are the two geometrical operations we introduced in
the MM equations, namely the path derivative d,, and the area derivative Wf(z)

[147-151]:

(DSZQIC Oz _ Y
a”qﬁ = lim —, (11.14)
|82,,|>0 |6z,
S (DC 6C _ @C
— o= lim —— . (11.15)
80,y(2) 180, (2)| =0 |80,y (2)]

The path derivative resembles most our standard notion of a derivative: it
measures the variation of the contour while keeping the area constant:

hmd o)

On the other hand, the area derivative is the most intuitive interpretation of a
geometric derivative: it quantifies the variation of a contour by comparing the
original contour C with a new contour containing small (non area-conserving)
deformations 6C:

; 6@

= lim

5‘7w(z) 6-0

When parameterising the path as z# (1), the area derivative can also be expressed
in the so-called Polyakov form, which can be helpful for certain calculations:

A-ie

/dx (k1) 0

(SXH(K) dx,(1) (11.16)

SUW(Z(/\))

Although the MM equations provide an elegant method to describe the evolution
of a generalised Wilson loop solely in function of its path, they have their limita-
tions. For starters, they are not closed since the evolution of I/ depends on .
Formally, this limitation is superfluous in the large N, limit since then we can
make use of the factorisation property 2UC? ~ U U (see Equation 10.26),
making the MM equations closed. The remaining limitations on the MM equa-
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tions are more severe. For one, the evolution equations are derived by applying
the Schwinger-Dyson equations

(0| V,,F* [0) =i (0| &iv |0) (11.17)
on the Mandelstam formula
g C . C
— O =igtr( F*®**) , .18
80,”(2) ig r( ) (11.18)

and using Stokes’ theorem (see e.g. [112] for a nice derivation). The Mandelstam
formula relates the geometric behaviour of a loop to its gauge content. However,
it is not known whether it remains well-defined for all types of paths, while
similar issues arise with the area derivative. In particular, all contours containing
one or more cusps induce some problematic behaviour, as it is (at least) not
straightforward to define continuous area differentiation inside a cusp, nor it
is to continuously deform a contour in a general topology [C][16, 17, 152—154].
This is somewhat bothersome, as most interesting dynamics lie in contours with
cusps. There are similar problems with Stokes” theorem. It is however possible
to generalise the latter to be valid for any continuous path containing a finite
number of cusps. A last concern is that there are no known general solutions to
the MM equations in 4D Minkowskian spacetime. Recently a few developments
in the field of twistor theory have shown the MM equations to be valid, but when
implemented in a completely different space, viz. twistor space.

11.3 EVOLUTION OF LIGHT-LIKE RECTANGULAR LOOPS

In order to maximally simplify the MM equations, we restrict ourselves to the
investigation of rectangular loops with light-like segments. This restriction
lowers the dimensionality to a 2-dimensional case, and it fixes the cusp angles
to constant values that are conserved under any valid path or area variation,
hence removing any angle-dependent contributions that would make the area
derivation operator ill-defined.

The loop structure for rectangular on-LC Wilson loops is shown in Figure 11.2a.
Because of the light-like segments, the Wilson loop is automatically planar, and
for simplicity we choose it to lie on the null-plane, i.e. 7 ; = 0. The loop is fully
defined by its four cusp points ry,. .., r4 but it will be convenient to express
the result in function of the variables vy, ..., v4 that are defined as segment
separation vectors:

def
Vi = T - T (11.19)
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N-
—_—
) v2 r3
Nt/ un U3
r U4 T4
a) b)

Figure 11.2: a) Rectangular Wilson loop with light-like segments, on the null plane
(r,; = 0). The segment separation vectors are defined in Equation 11.19.
From a geometrical point of view, the loop is fully characterised by the two
indipendent LC directions N*. b) Geometric evolution of the loop.

Comparing this definition with the path parameterisations as we are used to
from Chapter 6, we see that the separation vectors are just a rescaling of the path
direction vectors:

v; = |riv—ri| ni. (11.20)

Because the segments are light-like, this directly implies that the squares of the
separation vectors vanish:

~ nf =0. (11.21)

We prefer these variables over the direction vectors, so that we can express the
result in function of the Mandelstam energy variables (see Equations 11.3):

s=(vl+vz)2=201-v2, t=(vz+v3)2=2v2-v3. (11.22)

From a geometrical point of view, the loop is fully characterised by the two inde-
pendent LC directions N and N™. These directions are related to the separation
vectors, and more specifically we normalise them to equal the latter:

N+ =V = —Us3, N = Uy = —U4. (11.23)

The area differentiations are now well-defined at the cusp points. In every cusp
there are two area derivatives, different on the left side or the right side of the
cusp. Only two area derivatives are linearly independent:
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11.3 EVOLUTION OF LIGHT-LIKE RECTANGULAR LOOPS

Figure 11.3: At LO, the rectangular Wilson loop has three types of diagrams: a self-energy
diagram that vanishes in the on-LC case, a cusp correction, and a correction
containing two cusps.

S0 " =N"6N", (11.24a)
Soct = NT6N". (11.24b)

The area derivatives are illustrated in Figure 11.2b. To see how each side of a cusp
has a different area derivative, we investigate the area derivatives in the point r,:

SU(VZ)R =807, 50(7’2)L =-00"", (11.25)

The minus sign in 8o(r,)’ comes from our choice of N* and N~ in Figure 11.2a.

Rectangular Light-Like Loop Calculation at One-Loop

We now calculate the one-loop contribution of this loop in Feynman gauge.
We will do this calculation in coordinate space, as at one-loop calculations
with Wilson loops (and finite Wilson lines in general) tend to be easier in
coordinate representation (however at higher orders, momentum representation
is preferable). In coordinate representation, the gluon propagator in Feynman
gauge equals:

2\¢e 1
D¥(x - y)=- v(S“bMF 1-¢ ) 11.26
/w( y) gl‘ 47_[2 ( )[—(x—y)z-}-ig]l_e ( )

The NLO contribution is then given by (remember that colour indices are traced
over and divided by N):

1
E(ig)zCF 7793. dx*dy" Dyy(x-y), (11.27)

We have three types of diagrams, as illustrated in Figure 11.3. The first type—the
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self-energy diagrams—vanish because the segments are light-like v;-v; = v? = 0.
The contribution of the second diagram is

nu?)¢ viviaIT(1-¢€
ucusp :_gZCF% JdAdK [ ( i ( ) - (11.28)

. 11
=(ri + Vil = rip1 = Vi) * +ie]
We can rewrite the denominator as

—(ri + vid = riny = viax)? = =(0;(A = 1) = vx)?,
= ZU,"U,‘+1(A - l)K s
where the last step is valid because the separation vectors are light-like. The
contribution is now
1

1
Lo () : 1 1
Uewp = =38 Cr - T =) (F2vivi) / v W/ e

_ —lng (mu?)*

1
€
S8, 5 [(1-¢€)(-2v;-vi41) a2 (11.29)

To sum over the four cusps, we relate 2v;-v;,; to the Mandelstam variables (see
Equation 11.22):

s =2v1:v3 = 2U3° Uy, t =2vy-03 = 2040y,

so that we have
(xS € 1 . € . €
Zucusp = —;CF(T[MZ) 1“(1—6)6—2 ((=s+ie)*+ (-t+ie)°) . (1.30)

In principle the last diagram in Figure 11.3 vanishes as well because of the light-
like segments, but it is however interesting to calculate it, as at higher orders it
might give a non-zero contribution. It is given by:

v,--v,-ﬂr(l —6)
(ri + Vik = risg = V1K) 2076

Z/{zcusp g CF T[‘M ) fd/\ dx

s 2 e( 2 S 2)
Uu = —Cg(m In“-+7°). 11.31
Z 2cusp o F( U ) : ( 3 )
Note that this contribution indeed vanishes, as s = —t and hence

hlz;-‘rﬂz =In*(-1) +7* =0,
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because we are evaluating logarithms in the region [0, 277] (and hence In(-1) =
im). So the full contribution up to first order is simply:

¢ ¢
Ug=1- aS:F(Znyz)el“(l —e) [612 (-%) + 612 (—é) ] .
Expressing this result in function of the LC directions N* and N~, we get:
asCr
s

1 1

2 - . € — . €
Ug=1- (2au*)fT(1-¢) [6—2 (-N"N"+i¢) +e_2(N+N +ie) ] .
We saw in the previous chapter that an on-LC Wilson loop cannot be renorm-
alised in the regular way, but needs an additional derivative 9/on-7 (see Equa-
tion 10.40). But n-7 is in this case exactly N* N ™. Inspired by the area derivatives
in Equations 11.24, we define a logarithmic area derivative as

Logarithmic Area Derivative

0 wt 4 O . 0 0 .
E N2 4N .
dlno  ° 8o~ ' C B0+ SN~ 3N+

(11.32)

It lowers the divergence with one order:

o (XSCF
InUhy=-2
élno o V18

such that we can now apply regular renormalisation by making a logarithmic
energy derivation and taking the limit € — 0:

d ) a;C
Ty 5inv InUg = -4—-F = 4T . (1133)

Not only is this in perfect agreement with the on-LC Callan-Symanzik Equa-
tion 10.40, the important fact is that we derived this result from a geometrical
point of view, using the area infinitesimals Equations 11.24 which we calculated
from Equation 11.15. In other words, we established a connection between the
geometry of loop space and the dynamical properties of its fundamental objects,
viz. light-like Wilson loops, by constructing its geometric evolution.

It is logical to interpret Equation 11.33 as a resummation of all cusps in the
path. In other words, for any closed polygonal path that is planar and consists of
light-like segments, we have

2mid)e F(l—e)é [(-N*N-+ie) + (N*N+ie)] ,

Geometric Evolution of On-LC Planar Loop

d 6
U =- 3 Tewsp. .
ding dlno uzp P (1134)

This is a really strong result. Not only does it provide a description of the
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11.4 GEOMETRIC EVOLUTION OF TMDS

geometrical behaviour of light-like objects in loop space, it also holds at all
orders. To motivate this, we express the on-LC cusp anomalous dimension as
the asymptotic limit of the angle-dependent cusp anomalous dimension for
large angles [129]:

X0
TCeusp (1> &s) = X Teusp(ets) » (11.35)

where Ieyp (@) is the on-LC cusp anomalous dimension. We know that in the
LC limit, the angle is not well defined because it develops additional divergences
due to |n|,[71] - 0, which we can parameterise as (see Equation 7.73 for the
definition of the cusp angle):

4 nn Ja-0 (n-n)¢ o°
h! b (n-7) =—, (11.36)

= COS
* [ [7] e e

where 0 = n-7 is the area of the loop. Then we can rewrite Equation 11.35 as

X%OO O‘e
Fcusp()(, ag) ?rcusp(‘xs)’ (11.37)

The area derivation removes the pole:

0

—0
mrcusp()(’ “s) =0° 1—‘cusp(“s) = 1—‘cusp(o‘s) . (11.38)

Finally, we fill in the original definition of the angle-dependent cusp anomalous
dimension (see Equation 10.31):

d
Teus (X) “s) = —lim Ini, (11.392)
agps b -0 dh’l‘l,l
6 d )
Intf = - Teus » s ) =~ Teus s)» .39b
dlno dlnu n a%;)s@lnﬁ p (1> ) a%;:;s p(as), (11.39b)

which is indeed our result in Equation 11.34.

11.4 GEOMETRIC EVOLUTION OF TMDS

The most important point about this whole derivation is that this and the former
chapter are equally valid when applied to regular Wilson lines, as intuitively we
can ‘close’ any Wilson line structure by connecting its endpoints at infinity (which
doesn’t add any gauge content, see Equation 6.27c). This is especially interesting
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for TMDs and their associated soft factors, whose singularity structures are fully
determined by their Wilson line structures.

The singularity structure of a TMD is quite intricate. Typically, there are 3
classes of divergences at one loop:

A. Regular UV poles, which can be subtracted by a normal renormalisation
procedure.

B. Pure rapidity divergences which depend on an additional rapidity cut-off
but don't necessarily violate regular renormalisation. These are the diver-
gences associated with the { and (j, regulators, and they are manageable
as they are resummed using the CS evolution equation.

c. Overlapping divergences which are a combination of the former two, that
stem from (partially) light-like Wilson line segments. These are compar-
able to the typical LC double poles, and similarly break regular renormal-
isation. In the standard TMD formalism, these are avoided by putting the
segments slightly off-shell using the { and (j, regulators.

We will now motivate that instead of avoiding overlapping divergences, we can
allow the Wilson segments inside a TMD to be on-LC, if we treat its evolution
geometrically. The TMD rapidity cut-off is given by (see Equation 8.44)

 kn NN~
= lim — = lim (11.40)
>0 [n] |nl>0  |n]
so that differentiating w.r.t. In { can be written as
0 ‘(8N+ 0 +(8N‘ 0
SIn{ ~ 8¢ ON* 8 6N~
0 0
- N* N —.
SN+ ON-
Comparing this to Equation 11.32, we immediately see that
0 0
S—c = Sno (11.41)

Our conjecture in Equation 11.34 then tells us that the TMD has to satisfy

d @
% lf=- 3 L. .
ding oo ™/ Cuzsps P (11.42)

But how many cusps does the TMD have? Let us have a look at the possibilities in
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a) b) 9

Figure 11.4: a) The only two cusps in a TMD are spurious cusps. b) When including
the FF, two cusps appear. c) We conclude that the TMD (and the FF as well)
contains two ‘hidden’ cusps, which are parameterised by the angle between
the LC Wilson line and the incoming (resp. outgoing) quark.

Figure 11.4. The first thing we need to realise, is that there exist different types of
cusps. What we will call an externally driven cusp, is a cusp that is somehow the
emergence of a physical interaction. Consider e.g. Figure 11.1, where we could
interpret the rectangular loop as the soft part of the 4-gluon scattering diagram
with a quark box. The cusps in the soft part (the rectangular loop) are just the
remnants of the quark-gluon interactions of the box. If we would e.g. remove
the gluon on the top left, the Wilson line path on the left would have continued
in a straight line (but probably in a different direction) up to the next cusp. If we
re-add the fourth gluon in the hard part, the fourth cusp reappears in the soft
part as well. That is why we call it externally driven.

Another type of cusp that might appear is what we will call a spurious cusp.
For starters, it is not externally driven, but merely a result from a mathematical
trick. One such example is a cusp that is formed at infinity. The Feynman rule in
Equation 6.27c¢ tells us that the part of a Wilson line that is connected to infinity
does not transfer momentum, and equals just a factor 1. This directly implies
that we can connect different Wilson line segments at infinity at will, and this
is a perfect example of a spurious cusp. The important consideration is that
a spurious cusp cannot contribute to the geometric evolution of Wilson line
structures.’ This is why it is important to make the distinction between different
type of cusps.

The most common Wilson line structure of a TMD, as represented in Fig-
ure 11.4a, has two cusps, but both of these cusps are positioned at oo™, and are
hence spurious cusps. Where then are the cusps that drive the geometric evolu-
tion of the TMD? In fact, our focus is too narrow, and we should look at the full
picture. In SIDIS we have both a TMD and an FF at the same time, so we should

The motivation for this statement is that we can create as many spurious cusps at will without
changing the kinematics nor dynamics of the system.

304



11.4 GEOMETRIC EVOLUTION OF TMDS

look at them together. If we ignore the transversal parts of the Wilson line,* the
TMD contains a Wilson line in the n~ direction, and the FF contains a line in
the n* direction. These two lines meet in a cusp, exactly a cusp is externally
driven, as it is the remnant of the interaction with the virtual photon. This is
illustrated in Figure 11.4b (where again the transversal parts are omitted as they
don’t contribute to the cusp-discussion). So the geometric evolution is clearly
visible if we combine both the TMD and the FF.

We now conjecture a third type of cusp, what we will call a hidden cusp. It
is the imprint from the externally driven cusp in Figure 11.4b acting on the
TMD and the FF separately. It is externally driven, as it directly influenced by the
virtual photon, but it is not a cusp between Wilson lines only—instead it is a
cusp between a Wilson line and a quark line. This is illustrated in Figure 11.4¢
(where we reinserted the transversal parts for generality). When considering
the Wilson line structure of a TMD, this cusp is easily overlooked, as it is merely
an imprint of the cusp in Figure 11.4b. This is why we call it hidden. But it is not
unimportant—in fact it is indispensable—as the geometric evolution of a TMD
is fully governed by its two hidden cusps.

The geometric evolution for the TMD is hence given by

Geometric Evolution for TMD

d 0 n f=-2lcuep.

— 1
dlny élneo

At 1-loop we have I'yp = “‘ﬂCF and hence our conjecture is in perfect agreement

with the CS Equation 8.52, because trivially (see Equation 8.53):

YK = _Zrcusp . (11.44)

This result has been confirmed at 2-loop by Dr. Igor Cherednikov and Tom
Mertens [153]. So to summarise:

A. Our conjecture holds, and is as expected applicable on arbitrary Wilson
line structures with LC segments, like TMDs.

B. We can treat the nasty overlapping divergences coming from LC segments
by using a geometric description, hence avoiding the need to calculate
difficult off-LC segments.

c. There is a one-to-one correspondence between the rapidity derivative and
our logarithmic area derivative. This also implies we can apply geometric
evolution on the TMD to calculate the CS kernel (Equation 8.51a).

4 Which we can safely do in the discussion on the cusps, as they only contribute spurious cusps.
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In this thesis we deeply investigated some technicalities of QCD. In particu-
lar, the main mathematical object of interest in this thesis was a Wilson line—
prominently present in many QCD calculations—and to some extent its more
exotic nephew, the Wilson loop. After giving a very broad introduction to the
mechanics behind QFT in general and QCD in particular in Chapters 1 to 5, we
went on to construct a new framework to work with aforementioned Wilson
lines in Chapters 6 and 7. This framework is only applicable on piecewise linear
Wilson lines, but luckily this is the only type of line that appears in real-life
physics in the absence of an external field, as the path of a Wilson line is gener-
ally dictated by external driving forces. In the absence of a continuous external
field, the Wilson path will lie in a straight line, until it is spontaneously driven
in another direction (e.g. due to the interaction with a photon), leading to a
piecewise linear path.

We have spent quite some time in Chapter 6 to introduce Wilson lines in a
detailed and rigorous way, as general as possible within the piecewise linear
assumption. While standard references generally introduce Wilson lines for a
specific path direction, e.g. in the LC minus direction, the Feynman rules in
Equations 6.27 and all other formulae in Chapters 6 and 7 are valid for any
linear path, be it light-like, transversal, or a mixture of both. We have put some
emphasis on the finite and fully infinite linear lines, to introduce them with
strong mathematical rigour. What remains of Chapter 6 was devoted to the
introduction of our new framework, relating different path topologies and com-
bining segments into a piecewise line. In Chapter 7 we first introduced a new
technique to calculate products and traces of fundamental Lie generators, with
Equation 7.2a and Equations 7.7 as the main result. In the remaining part of
Chapter 7 we have put our framework into practice, and have almost a full result
at NLO in Equations 7.71, 7.81 and 7.88—where full implies applicable to any
piecewise linear Wilson line that exists.

In Chapters 8 and 9 we reviewed two common frameworks in QCD. Chapter 8
was an investigation of the TMD framework, where Wilson lines are heavily used
in the gauge invariant definitions of the density functions. In the end of this
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chapter, we elaborated a bit on the singularity structure and evolution of TMDs,
as it is fully governed by the underlying Wilson line structure. Chapter 9 was
an investigation of the small-x approach, where the behaviour of (integrated
and unintegrated) PDFs is described at small-x. In the end of this chapter, we
elaborated on a way to observe saturation in experiment by measuring the
transversal energy flow and using the GBW model. Although seemingly unrelated
to the rest of this thesis, the small-x framework has a strong use of Wilson lines
as well—and hence also has potential use in our new framework—be it at a lesser
extent than the TMD framework.

Finally, in Chapters 10 and 11 we investigated a special class of Wilson lines—
defined on a closed path—called Wilson loops. They are ideal tools to investigate
the renormalisation properties of objects built on a Wilson line structure, like
TMDs and the loops themselves. Renormalisation is governed by the cusp anomal-
ous dimension, if using an adapted renormalisation procedure where additional
divergences are subtracted as well. The loop is then said to be multiplicatively
renormalisable. In the case of TMDs this additional renormalisation is avoided
by use of the CS RGE and either an oft-LC shift or an intercancellation between
different sub-factors. In Chapter 11 we moved to loop space in order to describe
the evolution of Wilson loops in a geometrical way. We focussed on rectangu-
lar planar light-like loops, and derived geometrical evolution equations in a
way similar to the regular MM equations, but avoiding mathematical tools that
would be ill-defined for a cusped contour. In the end, we define the logarithmic
area derivative in Equation 11.32 and conjecture in Equation 11.34 a geometrical
evolution driven by the cusp anomalous dimension and the number of cusps.
We show that it holds for the quadrilateral loop, but also for the TMD as it is in
perfect agreement with the CS evolution equations. In this way we have directly
shown that there is another way to treat the additional divergences of TMDs:
instead of an off-LC shift or an intercancellation of sub-factors, we can subtract
these divergences using our geometrical approach.
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OUTLOOK

The two main results in thesis—the piecewise linear Wilson framework and the
geometric evolution—are still in a stage of active research, as both can be further
explored and applied, as well as strengthened by going to higher orders. While
my supervisor Dr. Igor Cherednikov and fellow Ph.D. student Tom Mertens have
chosen to continue the research on loop space and the geometrical behaviour of
Wilson lines/loops—further adapting the conjecture in Equation 11.34 to make
it mathematically more stable—I prefer to continue with the piecewise linear
Wilson line framework. I am currently finishing the NLO calculations in Feynman
gauge, and will afterwards continue with the first calculations at NNLO, as well
as start calculating some other blobs, different from the self-interaction blobs,
as e.g. blobs connecting an external quark [15]. But my main aim at the moment
is to lift this framework out from the pure theoretical regime, into more applied
physics. To achieve this, I recently engaged myself into two new collaborations.
The first is together with Dr. Ahmad Idilbi, Dr. Miguel Garcia-Echevarria, Prof.
Dr. Ignazio Scimemi and Dr. Alexey Vladimirov, on the calculation of the TMD
collinear and soft factors at NNLO [14]. It is a direct application of the framework
developped in Chapters 6 and 7. The second is together with Prof. Dr. Leonard
Gamberg and Dr. Marc Schlegel, on an investigation of the duality between the
GPD E and the Boer-Mulders and Sivers TMDs [13]. For this calcuation a lensing
function is used which is originally approximated, but can be calculated in a
more direct way using Equations 7.7.
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CONVENTIONS AND REFERENCE FORMULAE

A.1 NOTATIONAL CONVENTIONS

We will use a few different equal sign, to clarify some of our statements. In
particular:

<« . »
A. = “.isequalto...”,
B. = “..isrequired to beequalto...” ,
def . .
C. = “..isdefinedas...or...is defined to equal ...” ,
sup <« »
D. = “assume...to be equalto...
N <« . . »
E. = ...1swrittenas...” ,

F. 1o« s maybe equal to ...” (statement has still to be verified) .

In general, we use the same conventions as in [18]. We will e.g. never use the
comma notation to denote derivatives (as it is too easily confused with misplaced
commas). We will work in natural units:
h=c=¢=kp=1. (A1)
This means in particular that the electromagnetic fine structure constant is given
by
g, 1
C4m o 137.04

Although is « originally only associated to the electromagnetic force, it is com-
mon to define a similar constant for the strong force:

(A.2)

:—. A..
= (A3)

Concerning indices and general variable namings, we try to be as consistent as
possible (which is sometimes difficult due to the limited amount of characters
available in the alphabet). In particular, we will use:
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A. 1,8 tu,v,w,x,y,z for coordinates,
B. k,I,p,q for momenta,
C. W,Vv,p,0 for Minkowskian indices,
D. i,k for Euclidian indices,
and for the spatial part of 4-vectors,
and for fundamental indices (Lie algebra),
and for enumerations in sums and products,
E. a,b,c,d,e, f,g for adjoint indices (Lie algebra),
X, Y, 2, W for summations of adjoint indices (Lie algebra),
G. o590 for Dirac indices.
H n for any integer greater than zero,
and for any directional 4-vector,
. J,K,L,O for Wilson line segments .

We will mainly work in the path integral formalism (see Chapter 3). This implies
that fields aren’t operators, but merely coordinate or momentum functions. It also
implies that we can treat them a plain numbers, commuting with everything.
There are two exceptions: spinor fields anticommute by definition, and non-
Abelian gauge fields are contracted with Lie generators. However, there is a
strong conceptual difference between these fields, and operator fields. E.g. the
generator can be extracted from gauge fields:

A, = A!‘it“, (A.4)

where now Aj, is again just a number (while in canonical quantisation also this
part would remain an operator). This might be a bit confusing, as the gauge
fields are sometimes used as ‘operators, i.e. with the generators absorbed in the
field, as it can reveal certain relations a bit easier (see e.g. Equations 1.56). Just
remember that in our treatment they are never operators in a literal way. The
same is true for spinor fields, as their anticommuting behaviour can simply be
attributed to the Grassmanian coefficients (just numbers) that define it (see e.g.
Equation 3.83).
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A.2 VECTORS AND TENSORS

For the Minkowski metric, we take the common convention

1 0 0 0
0O -1 0 O
g = , (A.5)
0O 0 -1 0
o 0 o0 -1

where Greek indices run over o, 1, 2, 3 (for t, x, y, z). To denote only the spatial
components, we use Roman indices, like i, j, etc. We use the Einstein notation
convention throughout the whole thesis, meaning that repeated indices are to be
summed over. A 4-vector is denoted in italic, a 3-vector in bold and a 2-vector
(the transversal components) in bold and with a subscript L:

p'= (%0 0% pY) = (0% ) = (0% 00 p°) (A.6)

while a length is mostly denoted in italic, be it a length of a 4-, 3- or 2-vector.
The difference should be clear from context, but when needed for clarity, we use
|p| and [p | The scalar product is fully defined by the metric:

xp=x"p’—x-p. (A7)
This implies that we can define a vector with a lower index as

pu=guwp" = (p°=p'=p"p") = (0" -p) = (b, -1 p7) . (AS)
such that

x-p=xtp,. (A.9)

Note that the index switches places when moving the coordinate to the denom-
inator, as is e.g. the case for the derivative:

o Oy . (A.10)

The position 4-vector combines time and 3-position, while the 4-momentum
combines energy and 3-momentum:

xt = (t,x) p'=(Ep). (A1)
A particle that sits on its mass-shell (on-shell for short) has

pz - F2_ |P|2 —s (A12)
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All real particles (having timescales and distances larger than the quantum level)
are on-shell.

Last we define the symmetrisation (...) and antisymmetrisation [...] of a
tensor as

Alwv) _ % (A% + A™) , (A.13a)
Al = % (AW — A" (Aa3b)

A rank-2 tensor has the peculiar property that it can be split exactly in its
symmetric and antisymmetric parts

AW = A) 4 Al] (A14)

This is in general not true for tensors of higher rank. Symmetrising an antisym-
metric tensor returns zero, this implies:

AW 1=0. (As)

It is straightforward to generalise the definition of symmetrisation to tensors of
higher rank:

Alprepn) i' (A#T7Hn 4 al] permutations) , (A.16a)
n!

Alwpn] _ i' (A#7Hn — all odd perm. + all even perm. ) . (A.16b)
n!

A.3 SPINORS AND GAMMA MATRICES

Any field with half-integer spin, i.e. a Dirac field, anticommutes:

v(x)y(y) = -v(y)w(x) x#y. (A.17)

We define gamma matrices by their anticommutation relations
Oy =24"1, (A.18)
with the following additional property:

()" =990 (A19)
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Then we can define the Dirac equation for a particle field y:

(ia—m)l//=0. (A.20)
where the slash is a shortcut notation for

= Y”ay . (A.21)
We can identify an antiparticle field with y if we define:

v=y"°, (A.22)
which satisfies a slightly adapted Dirac equation:

ioyy! +my=0. (A.23)
We can expand Dirac fields in function of a set of plane waves:

y(x) =u'(p)e P (p*=m*p°>0), (A.242)

y(x) = v (p)eP* (p* =m? p° <0), (A.24b)
where s is a spin-index. If we define

u=u"y°, v =y, (A.25)

we can find the completeness relations by summing over spin:

Y ul(p)ut(p) = p+m, (A.26a)
V()W (p)=p-m. (A.26b)
We will identify

A. u with an incoming fermion,
B. u with an outgoing fermion,
c. v with an incoming antifermion,

D. v with an outgoing antifermion.

If we define
i 4
V = 1)’0)’1)’2)’3 = _ZEH L7y uyvypYeo s (A.27a)
pr = yliy”] (y P =) (A.27b)

we can construct a complete Dirac basis:

1, p*, y*, yHy°, y. (A.28)
We will identify
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A. 1 with a scalar,

B. p¥ with a vector,

c. y*¥ with a tensor,

D. p#y> with a pseudo-vector,
E. y° with a pseudo-scalar.

Furthermore, y° has the following properties:

() =7, () =1, {y’.y} = 0. (A.29)

Let’s list some contraction identities for gamma matrices in w dimensions:

y”)/y =w, (A.30a)
YV v = 2-w)y", (A.30b)

Yy Yy =487+ (w-4)y"y*, (A.300)
YV Y yTyu = =297yPy" + (4= w)y"yPy’ . (A.30d)

And some trace identities:

tr(Lpirac) = 4, (A.312)

tr(odd number of ys) = 0, (A.31b)
tr(yy”) =4g", (A.31¢)
tr(y*y"yPy?) = 4(g"¢" - g™ + g"°¢"") , (A.31d)

tr(yH oyt ptintptin) = r(prytinto pfeyt) (A31e)

Let us finish this section by listing some useful relations:

Fk =K, kp+ pk =2p-k, Yk =2k - fy*,  (A32a)
pkp=2pkp-p’k, PEdp =2p-q pk —2p-k pg + p*kg, (A.32b)
kpg+qpk=2p-qk-2q-k p+2k-pg. (A.320)
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A.4 LIGHT-CONE COORDINATES

Light-cone coordinates form a useful basis to represent 4-vectors. For a random
vector k¥, they are defined by

k"= % (K°+ &%), (A.332)
1

k= — (K- k%), A33b

\/2—( ) (A.33b)

k, = (K, k%) . (A.330)

We will represent the plus-component first, i.e.
k# = (k" k™, k) . (A.34)

One often encounters in literature the notation (k™, k*, k), but this is merely
a matter of convention. The factor % normalises the transformation to unit
Jacobian, such that

d“k =dk*dk™d“ "’k . (A.35)
It is straightforward to show that the scalar product has the form

kp=kip +k p"—k,-p,, (A.362)
K*=2k*k™ - K. (A.36b)

This implies that the metric becomes off-diagonal:

0 1 0

10 0
b= (A.37)
R R

00 0 -1

We will drop the index LC when clear from context. Note that this basis is not
orthonormal. Note also that

g gvp = 0%, g g =4, (A.38)
just like the Carthesian metric. We can also define two light-like basis-vectors:

nf=(1%,07,0,), (A.39a)
n’ =(07,17,0,) . (A.39b)

316



A.4 LIGHT-CONE COORDINATES

These are light-like vectors, and maximally non-orthogonal:

ni =0, n? =0, nen_=1. (A.40)

Watch out, as lowering the index switches the light-like components because of
the form of the metric:

ne,=(09,1,0,), (A.412)

n_,=1,0,0,), (A.41b)
such that they project out the other light-like component of a vector:

kon, =k, kn_=k". (A.42)
In other words, we can write

k=(kn)n, +(kn)n_ —k*. (A.43)
For Dirac matrices in LC-coordinates, we have

{y" k) =28k, = 2k" =y k=2k"-ky". (A.44)
Note that

() =07)=0, %{y*,y’}ﬂ,

such that Equation A.18 remains valid in light-cone coordinates.
We can use the light-like basis vectors to construct a metric for nothing but
the transversal part:

gr=g" -2 nﬁ”nﬁ) (A.452)

00 0 O

00 0 O
= (A.45b)

0 0 -1 0

00 0 -1

Note that

gfvgup:(?g—nﬁn_p—nfmp, gfvgl,w:2. (A.46)

Last we can define an antisymmetric metric:

et =t (A.472)

, (A.47b)

S O o O
S O o O
S = O O
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0123 _ o+-12

where we adopt the convention ¢ = +1.

A.5 FOURIER TRANSFORMS AND DISTRIBUTIONS

The Heaviside step function is defined as
0 x<0
0(x) = , (A.48)
1 x>0

and is undefined for x = 0 (sometimes it is hard-coded to equal 0, 1 or !/2, but
we leave it undefined). It can be used to limit integration borders:

+00 +00
/dx O(x—a)f(x)= /dx f(x), (A.492)
e %
/dx O(a-x)f(x)= fdx f(x). (A.49b)
The Dirac é-function is defined as the derivative of the 8-function:
d(x) = 4 0(x), = fdx d(x) =1, (A.50)
dx

and is zero everywhere, except at x = 0. A generalisation to #n dimensions is
straightforward:

fd"x 0" (x) =1. (A.51)

The most important use of the Dirac §-function is the sifting property, which
follows straight from Equation A.51:

f d"x f(x)8"(x — 1) = f(1). (As2)

However, for non-infinite borders, the sifting property gains additional -
functions:

b
/dx d(x—c) f(x)=0(b-c) 8(c—a) f(c). (A.53a)

Similar properties can be derived for the 8-function:
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b b b
/dx O(x—c) f(x) = 0(a—c) /dx f(x)+ 0(b-c) 0(c—a) ]dx f(x), (As3b)

fdx O(c-x) f(x) = 6(c-b) fdx x)+ 6(b—c) 6(c-a) jdx f(x). (As3c)

When dealing with on-shell conditions, we often encounter the combination of
a Heaviside 0 and a Dirac § function. To save space, we define the short-hand
notation

8t (p*-m?) = 8(p*-m*) 6(p°) . (A.54)

When working in LC-coordinates, the integration over p° is replaced by an
integration over p*, hence in this case we define the short-cut as

8 (p* - m?) = 8(p* - m*) 0(p") . (A-55)
Another short-hand notation we will often use to save space is
8 (x) = (2m)" 8" () , (A.56)

because a -function is often accompagnied with powers of 27. The combination
of the two is trivial:

8t (x) =2n8(p* - m?) 0(p*) . (A57)

When dealing with Fourier transforms, we will use the following conventions:

f(k) = /d4x (x) elhx (A.58a)

f(x) = / (‘;ﬂk) o fk) e, (A.58b)

The tilde will always be omitted, as the function argument specifies clearly
enough whether we are dealing with the coordinate or momentum representa-
tion. Note that due to the Minkowski metric, Fourier transforms over spatial
components have the signs in their exponents flipped:

f(x) = f@)3ﬂk)*x (As99)

k) = [@x flx) e, (A59)
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and the same for two-dimensional Fourier transforms. When necessary to em-
phasise the Fourier transform itself, we will use the notation

Flf ()2 [atx flx) ek, (A.60)

O Gy TR (A6

An ‘empty’ Fourier transform gives a §-function:

= fd”x ek* = (27m)" 60 (k) , (A.62a)
T = (‘2173 eikx = 500 (x) (A.62b)

and the Fourier transform of 1/« leads to a Heaviside 6-function:

+o00
1. RTIE O b ik
ETX[E] = 0(x) = £1_r)r5 2mi _/dk k+ise ’ (A.632)
+00
——1'mifdk L ik (A.63b)
T eom S kot -

where the integration should be made by choosing the appropriate complex
contour. A Dirac §-function having a complex argument is in general not well-
defined, as its exponential representation is divergent:'

" (x +iy) = f(zﬂ) e k) - gl [¢57]. ¢ (A.64)

But we will allow this notation anyway, because sometimes a function acts
as a nascent 8¢-function, which implies that—in combination with the sifting
property—it behaves exactly the same as a regular §-function (mostly under
certain conditions). It is possible that such nascent §.-functions allow for com-
plex arguments, and still retain their sifting property (see e.g. the discussion of
the infinite Wilson line on page 174). It is for these situations that we allow the
notation of a complex §-function, but we keep in mind that it can only be used
together with the sifting property, and has no exponential representation.

alx|

1 The only non-divergent Fourier transform of a linear real exponential is that of e™“*' with a > 0.
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To conclude this section, we list two other common transformations. First we
have the Laplace transform:

1= g [ ds f9e, (A652)
)= [arx flx)e, (A65)
0
and second the Mellin transform:
(O RSN (CR (A.662)
f(s) = /d"x f(x)xs-1, (A.66b)
0

which is quite common in QCD (it is e.g. the driving transform behind the
convolution in the DGLAP equations, see Equations 5.45). Both for the inverse
Laplace integral as the inverse Mellin integral, ¢ is chosen such that it is bigger
than all singularities in f(s).

A.6 LIE ALGEBRA

Representations

Let’s revise some basic colour algebra. As is well known, the group which governs
QCD is SU(3), but for the sake of generality we list some basic rules and derive
some properties for SU(N) (more specifically, for su(n), the corresponding Lie
algebra of SU(N)). The latter is fully defined by d4 = N?-1linearly independent

Hermitian generators t* and their commutation relations
a by _ . rabc ,c
[t%,t°] =if" ¢, (A.67)

where the f9%€ are real and fully antisymmetric constants (the so-called structure
constants). The structure constants themselves satisfy the Jacobi identity:

fahxfx cd _ facxfx bd +fadxfx be _ 0. (A.68)
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From a mathematician’s point of view, any set of generators (not necessarily
Hermitian) that satisfy the commutation relations and the Jacobi identity define
a Lie algebra.

In practice we will work with representations of the algebra, where the gen-
erators are represented by dg x dr Hermitian matrices, with dg the dimension
of the representation. Two representations of particular interest are first the
fundamental representation which has dimension dr = N.? It has the additional
unique property that its matrices, if complemented with the identity matrix,
form a set

(1,¢%) .

that acts as a basis for the generator products under matrix multiplication.
The second important representation is the adjoint representation, which is
constructed from the structure constants:

(Ta)hc = _ifahc >

and has dimension d4 = N? — 1. We will make the distinction in notation by
writing the fundamental with lowercase t and the adjoint with uppercase T.
Note that in literature several different notations exist (e.g. tF and t4).

Properties

All matrices are traceless in every representation:

tr(t?) =0. (A.69)
The trace of two matrices is zero if they are different:

tr(t*t") = Dr 8. (A.70)

Dr is a constant depending on the representation. In the fundamental represent-
ation this is by convention almost always Df = % Summing all squared matrices
gives an operator that commutes with all other generators (and combinations of
generators), the so-called Casimir operator

ta ta — CR 1 , (A.71)

A small remark: when working in QCD, It is common to denote the dimension of the fundamental
representation by N, as it represents the number of colours used in the theory. In this section of
the appendix we will use the notation N to keep it general, but in the body of this thesis we will
use the notation N;to enhance interpretation.
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Again, Cp is a constant depending on the representation. Both constants can be
easily related

tt? = CR1 = tr(tt?) = Crtr(1) = Crdg, (A.72a)
tr(t*t") = DR 8" = tr(t*t") = D 8°* = Drda, (A.72b)
Cr Dr
= —=—,
da  dgr

These properties are valid for any representation, not only the adjoint. Let us
now list the constants for the fundamental and the adjoint representation:

1
DF=§, Dy =2Dpdp =N,
da N2 -1
Cp=Dpt - : Ca=Ds=N,
PPN A=Day
dp =N, dy=di -1=N*-1.

Because in the fundamental representation we have a basis that spans its full
product space, we can derive additional properties that are not valid in other
representations. First of all, the anticommutator has to be an element of the
algebra, and thus a linear combination of the identity and the generators:

1
{17, ¢} = Ns“” 1 +do%e s, (A.73)

The constant in front of the identity was calculated by taking the trace and
comparing to Equation A.70, while d**¢ can be retrieved, as well as f*, from

gt =~ we([e 15 (A742)
R
d®c = 2t ({1 t"31) (A.74b)

Equation A.74a is valid in any representation, while Equation A.74b only makes
sense in the fundamental representation.

Because almost every calculation ends with a full colour trace, having the
identity matrix written implicitly is dangerous, as one might forget to add the
factor N coming from its trace. For this reason we will often write % together,
as it is a factor that is trace-normalised to one.

It is easy to check that the d** are fully symmetric and that they vanish when
contracting any two indices:

daah _ dbaa _ daba -0.
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It is interesting to note that in SU(2) all d**¢ vanish. By combining the commut-
ation rules with the anticommutation rules we can find another useful property:

b {r, tb} +[t9, t0]

tt
1 ]l 1
_ E(sab N zhabc £ (A'75)
where we defined
jabe _ gabe | ifabc . (A.76)

¢ is Hermitian and cyclic in its indices:

hahc _ Ebac _ EC Eacb
habc - hhca — hcah

haab _ hhaa _ haba =0
A last useful property is the Fierz identity

1
(") (1) = 115Jk N5ij5k1- (A.77)

It is straightforward to prove this identity; first we write a general element of the
fundamental representation as

X=c"1+ic%t?, (A.78)

which is true only in the fundamental representation.? The c® and ¢“ are easily
calculated:

1

0

c =—tr(X),
S tr(X)

¢ = —2i tr(X1t%) .

We then get the requested by calculating ((X)) o = 087! The Fierz identity is

especially handy to rearrange traces containing contractions:
tr(At? Bt C) = % tr(AC) tr(B) — % tr(ABC) , (A.79a)
tr(t? Bt*) = Cr tr(B) , (A.79b)
tr(At“B) tr(C 19 D) = =  t(ADCB) - i tr(AB) t(CD) . (A790)

where A, B, C, D are expressions built from ¢%’s. But it can be used for standard
products as well, e.g.

N 1 1
t"At? = —tr(A) — - —A. (A.80)
2 N 2N

This is because in other representations the set {1, ¢} doesn’t span the full product space.
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Useful Formulae

To conclude, we list—without proof—some useful properties of the constants
f4b¢, d%b¢ and h%¢. Most of these are easy to prove by straightforward calculation,
but see [155] for a nice approach using tensor products for the more difficult
ones.

The Jacobi identity can be extended to include
signs:

d°*¢, now with all positive

fabxdxcd +facxdxbd +fadxdxbc =0. (A.Sl)

hubc

If we want to find a Jacobi identity with , we have to add the hermitian

conjugate due to the sign change:
fabxhxcd+fachxbd+fadxhxbc -0 (A.82)
A Jacobi identity with only d**¢ also exists, but only in SU(3):

dabxdxcd+dacxdxbd+dadxdxbc _ l (8ab5cd 4 6ac8bd i 8ad6bc) (A.83)
3 . .

Contracting any of the structure constants with a generator gives:

Forre = i (e - 107 (A.842)
1

AP gx = gagh 4 by gab N’ (A.84b)
1

Robx g = gpab _ gab N’ (A.84¢)

— 1

hobx g = ppby _ gab — (A.84d)
N

Contracting any of the structure constants with two generators gives:

N
A = i?t”, (A.85a)
N? -4
d* e = 4, (A.85b)
2N
2
h*7 5t = ——¢ | A.85¢c
N (A.85¢)
— N?-2
h**r ) = t?. (A.85d)
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Contracting any of the structure constants with three generators gives:

N?2 1
VPP =1 —Cp —,
f 2 N
2
g N _4CF£,
N

1
W2 P = —-2Cp —,

N
— 1
WP = (N? - 2) Cr N

Tracing any two structure constants gives:

xay rybx _ ab
fraygrbx o _Ngab,

dxayfyhx -0,
dxaydybx _ N2_48ab
hxuyhyhx _ 2N2_28uh
N b
hxayzyhx _ _iaub
N b
N*-2

zxayﬁybxzz 8ab
N
And tracing any three structure constants gives:

fxayfbefzcx _ _gfabc’

N
dxaey ybz zcx:__dahc’
prapes= -2

N* -4
dxuydyhz zZCx _ abc’
eyt
dxaydyhzdzcx _ Nz_lzdubc
2N ’

hxayhybzhzcx _ 2N2 _Shabc

praypybepzex _ _%( pabe +Eabc) i

hxayﬁybzﬁzcx _ _% (habc T 2Eabc) ,

zxayﬁybzﬁzcx - 2N2 — 3Eahc
—N .

(A.86a)

(A.86Db)
(A.86¢)

(A.86d)

(A.87a)
(A.87b)

(A.87¢)
(A.87d)
(A.87e)

(A.871)

(A.88a)

(A.88b)
(A.88¢c)
(A.88d)

(A.88¢)
(A.88f)

(A.88g)

(A.88h)

Tracing four structure constants quickly becomes messy, so we only list a few f

and d combinations:
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fxayfbefZCwadx :aad8bc+%(8ab8cd+8a58bd)

N
4 Z(fadxfxbc_|_dadxdxhc) , (A.892)
N
fxayf}’hZfzcwdwdx _ Z (fadxdxbc _dadxfxbc) , (A.89b)
1 N> -8
xay ybzdzcwdwdx:_ 8a68bd_6abé\cd _ ad x rxbe
s 3 )= S
_%dadxdxbc) (A.89C)
fxayd}’hZfzcwdwdx _ %(aahé\cd_é\ac(sbd)_% (fadxfxbc+dadxdxhc) , (A.89d)

(A.89e)

A.7 SUMMARY OF THE NOETHER THEOREMS

We make a short summary of the Noether theorems we defined in Chapter 1
Given the following transformation:

xt = xt + e XHE (A.90a)

¢i — ¢i+e"DF + (ayea) Q?a, (A.90b)

the Noether theorems on page 14 and 27 state that if the Lagrangian remains
invariant up to a divergence, i.e.

0L =09, (e"K"), (A.91)

we can construct the following quantities (the Noether tensor resp. Noether
current resp. Noether charge):

pv a def 0L QH“

00,¢; o
oL oL 0L

grad Of + Q" — | =—=—0,¢; - L& | X" K", (A.92b)
90,pi ' 8 ! 99y ¢

Q*E /d3x J%, (A.92¢)
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that are conserved

3,0, F*" % = 0
0,J*"=0
Q“=0,

and satisfy the additional relation
Fvy a jy a
Furthermore, the equations of motion are given by
0L pa =g ( oL Q’“‘)
8¢ ! 0¢i
where the variational derivative is given by:

0L 0L . 9L
Spi  9¢;i 004

(A.93a)
(A.93b)
(A.93¢)

(A.94)

(A.95)

(A.96)

In case of a local internal symmetry, the defined charges don’t have a physical
interpretation and can be ignored. In case of a global symmetry, we have Q4 “ =
0, implying there is no Noether tensor (and the relation in Equation A.94 is

invalidated). The ELEMs then simplify into

8_£:
8p;
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A.8 FEYNMAN RULES FOR QCD
The full Lagrangian for QCD is given by:
— . 1 a aN2  —
L=y(id-m)y- i (0445 - 0,A%)" + g ydy
aoc a vc 1 aox rxc a C AV
- g (A7) AP A - Eng rpredasab A A, (Ag7)

where A = Aj, y#t®. The sum over gluon polarisation states depends on the
gauge, and equals (where in both equations we have made the additional gauge
choice &€ = 0):

Z eu(k)e, (k) = -g" (Lorentz) (A.98a)
pol

k()
> eu(K)a (k) = g+ = 10 (A.98b)
pol

where the light-cone gauge is defined by the vector n~ as n™-A = A™ = 0. The
Lagrangian gives rise to the following (extensive) list of Feynman rules (see the
next doublepage):
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Feynman Rules

P,
i,s o =
P
»- i’b =
P,
i,s o -
P
»- i’s =
k
H> a vovvvvrnel =
k
e (L4 =
p .
i j =

s
1
I

>

ui(p) (initial) (A.99a)
ui(p) (final) (A.99b)
vi(p) (initial) (A.99¢)
vi(p) (final) (A.99d)
ep (k) (initial) (A.99€)
EZ (k) (final) (A.99f)
. sij p+m
i it ie (A.998)
878 (p*-m?) (p+m) (A.99h)
—i 8 Kt kY

W (11— i
=i 5‘11’ k( ny) k% k ky

w_ 9 “ “ A.00i
k2+is[g k-n +f(k-n)2 (&.95))
-8 8% (K*) g (A.99k)

b s+ (12 k(uny)
-8 (k)| g - 2= (A.991)
k-n
B (A99m)
k2 tie only Lorentz gauges .oom
- (A.99n)

n-k+in
8(n-k +in) (A.990)
i gempem " 6ij (A.99p)
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Feynman Rules

i J
3 = iguty* (%) (A.999)
@ a
k
A PP C
g = gufobekk (only Lorentz gauges) (A.99r)
b
. k,n
=]
gik = igutnf (1), (A.99s)
#:a
K o
r e——— = ¢ (A.99t)
cccoooa +00 = ] (no momentum flow) (A.99u)
v, b p>c
N
p q _ € pabc[ juv k=b)P + o"P(p—g)H
o gue e[ 8" (k=p) + g (p D" (Agov)
U,a +gpﬂ(q_k) ]
> C . e[ fabx fxc vo g,V
wY L = g fe el (gt g 0 - gH7 g"P)
:?‘ﬁz —fAeTfr0 (g g¥P - gV gh?) (A.99w)
wi G s 0 (g grT—ghr )
Furthermore:

A. Momentum conservation is imposed at every vertex.
B. Loop momenta have to be integrated with an additional factor 1/(2x)*.
c. Fermion loops (hence ghost loops as well) add an additional factor -1.

D. All Feynman rules are complex conjugated when on the right side of a final-
state cut. Additionally, the 3-gluon vertex and the ghost vertex change sign
if on the right side of a final-state cut.

E. The final result has to be divided by the symmetry factor of the diagram. For
a cut diagram: multiply with a symmetry factor for each side.

F. For each set of k indistinguishable particles in the final state, divide by k!.

G. Impose momentum conservation between initial and final states.

H. Divide by the flux factor. It is 4y/(p1 - p2)? — m#m2 when there are exactly
two incoming particles.




INTEGRATIONS

In this appendix we list come common techniques to solve integrals, and give
some reference formulae as well.

B.1 REFERENCE INTEGRALS

We start with regular integrals, sorted by type. Note that we omitted the constant
term +c that appears in indefinite integrals because of space constraints.

Algebraic Integrals

The easiest type of algebraic integrals are binomial integrals:

n m_ <~ (M 1 nk+1 _m—k
d = —_— , B.
fo a2
/dx (x"+a)™ x" mZ( ) k ;xnk“am“* (B.1b)
5 m+1nk+1 ’ '

fdx (x"+a)" (xP+b)" = i zr: ( )( );x”k“’l“am_kbr—l . (B.ac)
k=01=0

nk+pl+1

Next we have rational integrals. First some properties of complex logarithms:

arctan x = ! In 1= %x (B.1d)
1+ix

artanh x = lln 1+_x (B.1e)
2 1-x

In(-1) =im+ 2ikn In (1) = 2ikn (Baf)

In(i) = %T +2ikm In(-i) = 3— +2ikm (B.1g)
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B.1 REFERENCE INTEGRALS

For the correct derivation of complex logarithms, use polar representation:
i =el(5+2k7) o I (i) = 5 +2ikn. We evaluate logarithms in the region [0, 27].
Rational integrals will almost always result in a combination of polynomials
and/or logarithms:

1-ix

i
4 ke : B.th
/x1+x2 2 l+ix (B.1h)
1 1. 1+x .
/dx 1—x2:§1n1_x’ (B.1i)
1 VA - VA -(2ax+b)
1 \/—1 \/—+(2ax+b) A>0,
—_ = _2 _ 3 .
/dx ax*+bx+c | 2ax+b i A=0, (A=0b>—4ac) (B)
i VA -i(2ax+b)
\Fl \/—+1(2ax+b) A<0,
~ 2 b VA '+(2ax+b)
ln(ax +bx+c) ” \/_l Ve (2axtb) A>0,
X
/dx Il bxtc —1n(2ax+b)+ a2ax+h - A=0, (Bik)
ib —A—i(2ax+b
LIn (ax?+bx+c) - PNy In \/Tﬂgzax:b; A<O,
- XM= k
d = a"In(x - B.l
/xx =a"In(x a)+2a — (Bal)
n n n-1 k
fdx —(xf e =na"'In(x-a)+ aa_ " + kZ::l — kak—lxn—k ) (B.m)
x" m al n-1m xn-k
/dx =2 1 In(x—a;) + Z > = (B.in)
ﬁ(x—ai) i=1 Fl(az a]) s lg(a,—a]) n—-k -

Algebraic integrals with real exponents lead to a Beta function (see Equa-
tion B.7a) or an incomplete Beta function (see Equation B.7c):

(i 5 avebpp_ oo

6/‘dx i+ a)f a B(f-a-1la+1), (B.10)
T (x+a)®

fdx m = (b —1,06+1) . (Blp)

Logarithmic Integrals

The most common logarithmic integrals contain a logarithm and a polynomial:
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n+l  k (_(x)n+1—k
/dx x"In|x+a|= — ((x"+l—(—a)"+l)ln|x+a| - —) , (B.2a)

n/2  2k+1,n-2k
/dx x ln ZZL) , (B.2b)

X+a X+a

X—a

n+l1 o 2k+1

dd
" oc ((xn+l_(xn+l)ln

n/2 2k  n+l-2k
fdx x ln xra "e:VC"L XM |22 +a" M n|x*-a|+ ] re ).
n+l x—a k
(B.2c)
We also list a few integrals of a logarithm divided by x:
fdx % = %lnz(x -a), (B.2d)
ln('x_a) a*b . X—b
/dxﬁ = ln(x—b)ln(b—a)—le(a_b), (B.2e)
In(x-a 1
/dx (i—a)Z) = (In(x—a)+1), (B.2f)
In(x—a) .., 1 -a
/dx (x-b)? = 22 [ln(x—b) - — bln(x—a)] , (B.2g)

/dx (xlil(;)(_xa_) ) azt bia [ln(x—b)ln(b—a) - %lnz(x—a)
le(z:l;)] (B.2h)
[dx( In(x + a) arire 1C[ln(x—b)ln(b—a)—ln(x—c)ln(c—a)

x-b)(x-c¢) b-
()] e

where Li, is the dilogarithm, a specific form of the polylogarithm Li; (see Subsec-
tion Polylogarithms on page 341 and onwards). Note that the distinction between
a = band a # b is mathematically not needed, but we prefer to explicitly state
the different integral as the limit b — a is not so obvious.

Cyclometric Integrals

We list two important cyclometric integrals:
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1
/dx arctan x = x arctan x — Eln (1 + xz) , (B.3a)

1
/dx artanh x = x artanh x + Eln (1 - xz) . (B.3b)

Gaussian Integrals

Gaussian integrals are by far the most common integrals in physics in general.
We list the most common one-dimensional integrals:

+00
/A
fdx e = \/= (B.4a)
— 00 a
+00
[m ¥
/dx e—ax2+bx+c _ ; eaate , (B4b)

% 12n-D) /@ 1T(n+1
/dx xZne—ax2 _ _( ) R _(—12) R (B.4C)
/ 2 2ngn a 2 gt

i 1 n  1T(n+1
/dx x2n+1e—ax2 I n - (l’l ) , (B.4d)

® 1 2, & (n b n-k 1 (@)
dx xne—ax2+bx+c = —eda ( ) (_) 2 , (B.4e)
0/ 2 ZO: k) \2a a5

and the most common multidimensional integrals:

A"y e iATx - B.4f
f detA (B.46)

i / 1y
/dnx e i A ij+b xXi+c _ detA 4 b1+c , (B4g)
7x Alx n even -1
/d X Xy Xy,€ i ‘/detA Al Ay MM Aﬂn i) (B.4h)

where always only the symmetric part of A contributes to the determinant. One
special integral is one that is encountered often when variables are chained:

/dxl---dx ei)l[(xl—a)2+(x2—x1)2+-~-+(b—xn)2] _ 1 (E) e n+l(h a)? . (B.4i)
" n+1\ A
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Gaussian integrals can also be expressed as integrations over complex variables.

Then the square root is gone, and an i” is added:

il 27i)"
/dnzdnz e Z,A’z;:%’ (B'4j)
G n 7» .
/d”z d"z e BAYZW ZiAZ Ui _ —(fl:tlf)l AT (B.4k)

Discrete Integrals

For completeness and because we need it in Chapter 2, we give the discrete
approximation to the integral over an infinitesimal line segment [a, a + €]:

ate

fdx F(x) ~ef (a N g) . (B.sa)

A macroscopic integral can then be approximated as a sum of such infinitesimal
segments:

/dx Fx) = Z(x, xef (552, (B.sb)

where x¢ = a and x,, = b. We can use the same method to discretise line integrals:

a+e

/dx”fﬂ(x)%e”fﬂ (a+§) , (B.5¢)

/dx” fulx) ® Z(x, i l)uf#(x'”' 1) . (B.sd)

B.2 SPECIAL FUNCTIONS AND INTEGRAL TRANSFORMS

In this section we list some common integral relations and transforms, and
special functions.
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Gamma Function

The Gamma Funcion is probably the most well-known special function. It is
defined as

I'(z)% fdt - le! Re(z) > 0. (B.6a)
0

For n € INy it is related to the factorial:

I['(n)=(n-1)! (B.6b)
and has a similar ‘factorial’ property, but for all z:

[(z+1)=2zI(z). (B.6¢)

We can also relate it to the double factorial (now for n € IN, i.e. n can be zero):

r@%):ﬁ@, (B.6d)
where the double factorial multiplies every second number:

a'“a(a-2)(a-4)-- (B.6e)
which gives the logical relation

al=all(a-1)! (B.6f)

An important value of the Gamma function is

r(l) T, (B.6g)

2

which is just a re-expression of a Gaussian integral. There are four inter-related
reflection formulae:

T

[(z)I(1-z) = ———, (B.6h)
sin(7z)

m .

[T (-2) =~ — n(n7)” (B.61)

1 1 T .

F<z+z)l“(§—z) " cos(mz) (B.6})

r(2z) = % 271 (2)r (z + %) : (B.6k)
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The Gamma function has poles in 0 and all negative integers. It can however be
expanded around these poles:

I(e-n)= () ( w(o)(n+1)+(9(e)) nelNy, (B.6l)

where (%) is the digamma function, defined as the logarithmic derivative of
the Gamma function:

I'(2)
O ) =2, B.6
v (2) I2) (B.6m)
For integer values n > 0 it equals
n— 1
j=1

The Gamma function is especially useful when solving integrals, as we can often
express the integral at hand in the form Equation B.6a. For easy reference, we
list a representation with a quadratic exponential:

/dt et = %F (g) Re(a) > 0. (B.60)
0

We can extend Equation B.6a to allow for a complex contour. This gives the
following complex Gamma representations, that are bound to strict convergence
criteria:

fdt 1971l (AHB)t _ () {% (A +iB) ™™ VA,B>0,Re(a) >0, (B.6p)
fdt 1971 e 1 ATB) P (0)(=)¥ (A+iB)™® VA,B>0,Re(a)>0, (B.6q)
fdt £ HAL T () (£1)7 A VA,0<MRe(a) <1.  (B.6r)

Note that integrals with an exponent e (A718) or 71 (4*18) are divergent for B > 0.
For easy reference, we also list some complex quadratic representations:
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[far eten oy (%) i5(A+iB)F  VAB>0,%(a)>0, (Bs6s)
0

N | =

fdt ol e (A-IB)E r(%) (-1)2 (A—iB)"? VA,B>0,Re(a)>0, (B.6t)
0

N | =

i : 1 .
/dt a1 AL T (%) (£i)zA™2 VA,0<Re(a) <2.  (B.6u)
0

Beta Function

The Beta function is defined as
1
B(a, p) f d 271 (1= £)f! Re(a), Re(B) > 0, (B7a)
0

It can be expressed in terms of I'-functions:
T(a)T'(«)
T(a+pB)

When solving complex integrals, it is sometimes convenient to use the incom-
plete Beta function, which is defined as

B(a, B) = (B.7b)

B(z;a,B)E /dt 11— )P, (B.7¢)
0
such that
B(L;a,B8) = B(a, B). (B.7d)

A useful property is its mirror symmetry:
B(x;a,8) =B(1-x;5,a), (B.7e)

which follows directly from the definition. Especially helpful is its series expan-
sion (see [156]):

S Bla+1,n+1) n+1)
—x

= B(a+B,n+1) (B.70)

B(x;a, ) = ix“(l—x)ﬁ (1+
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Polylogarithms

When integrating logarithms, the result will often depend on the so-called
polylogarithm, which is defined by its series expansion:

Lis(z)= ) —. (B.8a)

It can also be defined as a recursive integral:

Lls(t)

Lisn(2) = f dt (B.8b)

For s <1and s integer, the polylogarithm can be expressed as a regular function:

Li(z) = -In(1-2), (B.8¢)
Lig(2) = é (B.8d)
Li_,(z) = (zaa—z) é (B.8e)

The polylogarithm of 0 is always 0 itself, and the polylogarithm of 1 equals the
Riemann {-function:

Li;(0) =0, (B.8f)
Lig(1) = ¢(s) . (B.8g)

Of particular interest is the following asymptotic behaviour:
Lis(e) =T(1-s)(-¢)"", (B.8h)

which is valid for |e| > 0 and Re(s) < 1. The polylogarithm emerges naturally in
the solution to Bose-Einstein and Fermi-Dirac integrals:

o0 kS
fdk o =T(s+1) Liga(e"), (B.81)
f = I(s+1) Lign(-¢"), (B.8j)
0 e+

where T is just the Gamma function.
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The most common polylogarithm is the dilogarithm Li,. Three particular
values are:

2 7_[2

Liy(1) = {(2) = % . L(0)=0,  Li(-D=-T.  (BsK

It satisfies some additional useful properties:

1
Liy(2) + Liz(-z) = 3 Li,(2%), (B.8l)
2
Lip(z) + Lip(1-2) = < -InzIn(1-2), (B.8m)
1 21
Liy(z) + Li, (;) = —% -5 In*(-z), (B.8n)
Li(1-2z) + Li, (l—l) :—%lnzz, (B.80)
z
. . 1. 2 7'[2
Liz(-z) - Lip(1-2) + 2 Lip(1-27) = - InzIn(1+2). (B.8p)

However only the first two relations are valid for the full complex plane.

Elliptic K-Function

The elliptic K-function is defined as:

K(k)= _[ d (B.9a)
1- k sin’ (p

It is divergent for k = 1 and becomes complex for k > 1. A related integral is

3 1 4 2b
d . = ‘K( ), (B.gb)
O/.(P\/avtbcosqo Va+b a+b

which is divergent for a = +b.
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Integral Transforms

An integral transform that we will use a lot, is the so-called Schwinger paramet-
erisation, which is a complex exponential integral representation for a denomin-
ator (where k € R and ¢ > 0):

1 T
Py —i /da el (k+ie)a (B.10a)
0
1 s i(k-ie)a
ie =i /d(x e . (B.10b)
0

We can summarise this if we define o = +1 to be the sign in front of ie:

1 o
Ay —io/doc elo(kHioe)a (B.100)
0

Note that we can use lower half integrals as well:

0
1 .
=i f da eti(k+ioa (B.10d)
1 0
Py, =i /d(x el (k-ie)a (B.10e)

It is possible to define a similar parameterisation with a real exponential, but
then the sign of k matters:

% _ f da e ke k>0, (B.10f)
0
1 r ka
%:—/d(xe k<0. (B.10g)
0

Having to split up an expression in two terms in function of the sign of k is a bit
cumbersome, which is why we won't use the latter parameterisation.

Another parameterisation we will often use is the so-called xL parameterisa-
tion, that is used to simplify integrals of the form

]o]od(x dp f(a, B). (B.11a)
0

0
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The trick is to use the parameterisation:
a=xL, f=010-x)L, dadpf =LdLdx . (B.11b)

The integral then simplifies into

1L
fdx/dL Lf(xL,(l—x)L), (B.11¢)
0 0

which is often easier to solve when starting with the L integration. It can be
easily generalised to any number of integrations:

1 L n
(n—l)!/dxl..-dxn de 8(1—2x,~) L' f(xL,...,x4L). (B.uud)
0 0

The normalisation comes from the fact that

1
n 1
Ofdxl ~dxy 8(1— Zx,-) = CE (B.11e)

One word of caution however, as the §-function will chain its influence in all
the x; integrations. This is due to the fact that for non-infinite borders, the
sifting property gains additional 0-functions (see Equations A.53). This implies
in general:

jdxl...jdxn 6(1—Zn:x,~) f(x1,..osx,)
0 0

1
:fdxl
0

1
= fdtldtz codtyy TR,
0

n—=2
1-x1 1-x1—x2 1-> x;

n—-1
fdxz /dx3 fdx,,_l f(xl,...,xn_l,l—z Xi), (B.11f)
0 0 0

X f(l—tl, tl(l—tz), tltz(l - t3), e tltz“'tn_l) .
(B.u1g)

To get to the last step, we used the transformation

X = (i:[ tj) (1— t,‘).
J
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Each of these three expression can be more easy to use or not, depending on the
structure of f.

If we combine the Schwinger and the xL-parameterisation, we get the well-
known Feynman parameterisation:

1

11 1
——= [dx . (B.12a)
AB , (xA+ (1-x)B)?
We can easily generalise this for # fractions, each with a power m;:
n
1 F(Zml) j.d q s(1 i xlmlfl...x;”nfl ® b)
= X1 --dx - X . (Ba2
AT AT T(m) - T(mg) S TERRE

(inAi) |

Whether we use the Schwinger parameterisation, the xL-parameterisation or
the Feynman parameterisation is situation-dependent, but remains above all a
matter of personal taste. Closely related to these parameterisations is the fact
that we can use the Gamma function to our advantage:

1 _ 1 r a-1 _-—-At
'l NO) /dt et (B.13)
0

which can be a huge simplification when A is not too complicated.
Totally unrelated to the integral transformations but still worth mentioning,
an important property of line integrals is the gradient theorem:

b
Jax auf(x) = £(b) - f(a). (Bas)

B.3 DIMENSIONAL REGULARISATION

Dimensional regularisation is introduced in Subsection Regularisation on page 91
and onwards. Here we will list some common loop integrals as a quick reference.
Most common loop integrands can be transformed into the form (k* — A)™",
for which we will give a set of solutions. Furthermore, integrands with momenta
in the numerator can be simplified as well. First of all, terms with an odd power
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of k vanish by symmetric integration. Also by symmetry arguments, we can
replace:

k2
Ktk - —gh, (B.152)
w
4
KKV KPK = —— (gMV gPT 4 gHP gVT 4 oHT oVPY B.1sb
w(w+2)(g g +g"g" +g"g") (B.15b)

The most straightforward way to use dimensional regularisation, is when the
integrand only depends on k*. Because then we can make a Wick rotation, move
to spherical coordinates and calculate the angular part separately:

' 2
(2m)°  (4m)5T(2)

(B.16)

Dimensional regularisation is often accompanied by a subtraction scheme. We
will only use the MS scheme, and mostly with Collins’ convention of dividing
the result by a factor

_ (4n)°

Se = . B.
=T e (B.17)
The more common regular subtraction is done by dividing by
Se = (4me™VE) (B.18)

but we prefer Collins’ convention as it works better with the double poles that
originate from LC segments.

Euclidian Integrals

Let us now list some common Euclidian integrals in dimensional regularisation.

On the second line of each integral we give the condition for it to be divergent
and the expansion in the poles for the latter case.

ks 1 N Gt ) S

(Zﬂ)w (k%*—A)n = (47_[)% r(l’l) > (B.19a)

dron \J AT (O 1oL
= = - - - +In4r-1InA|,
( d even ) (4m)% (n-1)!(-n)! | e VE Zj

© 2 T(n-2-1) .
L S (n=5-1)  eurn (Baob)
(2m) (k% + A) (4m)z 2 [(n)
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A‘2‘+1 " (_)d+1 n 1 %*’1_"1
(d22n—2) ——yp+Y, —+Indn-InA|,
d even (471)2 2 (n-1)! ( +1- n) J
d“k k4 1 +2)T(n-5-2) .
Ew E 7 = @ w(w ) ( 2 ) A?+2_n > (B.19C)
@n)° (kR+a)" (4m)i 4 I'(n)
A%+27n ( +2) ( )7771 1 %+2—n
( d>2n-4 ): _ wlw ’_YE““Z +In4n-InA|.
d even (4m)2 4 (n-1)! ( +2— n)' €

We can generalise an Euclidian dimensionally regulated integral to real positive
values of the exponents, as

) « 3] )
/d kEw (k) _ 1 wAgﬂxfﬁr(“"'E)wr(ﬁ_“_E)‘ (B.20)
@m)° (k2 +a)f  (4m)% r($)r(p)
From this we can deduce that
Jaoke (k)" =0, (B.21)

-0
because in the denominator we have I'(f) Lt 1/8, hence the fraction goes to
zero in this limit. This is valid Va > 0. For any function that only depends on
the square of the momenta, we can write:

d“ke
(27)”

Kokl (k) =

1
(4m)2 2 F

olmpz. . ghin-1pin)

ﬂ l
i Z f df kp " f(kz), (B.22)
2 2

for n even (for odd n the integral is zero). Note that in the case of a Minkowskian
integral, the §-functions are replaced with g#"’s.

Wick Rotation and Minkowskian Integrals

Calculating Minkowskian loop integrals can be straightforwardly done by Wick
rotating the momenta to Euclidian space, by making the substitution

KOk K = k2. (B.23)



B.3 DIMENSIONAL REGULARISATION

There are some intricalities with Wick rotations, as one has to make sure not to
cross the poles. See Section 7.3 for a digression on this topic. Furthermore, one
has to be consistent in the whole formulation. E.g. §-functions change as well
under a Wick rotation:

8™ (k) =160 (k). (B.24)

To see this, we move to the exponential representation of the §-function:

d"x . d"x .
8(11) k) = / ikx _ s E  —ikpxg _ 8(") kr).
( ) 27_[)7[ € 1 (27_[)11 € 1 E ( E)

The Mikowskian loop integrals are then the same as the Euclidian ones, up to a
possible sign difference:

d%k 1 ( )n (i’l B _) L-n
Az, B.
(2m)® (kz—A) (47'[)2 ['(n) (B.252)
dsan \_ AT (9 1 i
( d:veﬁ ) _1(47.[)% (H—l)!(%—n)! (E_YE+Zj+ln47l’—lnA),
d“k K2 . (_)n+l ol (n _ % _1) ool
- 5 AT, B.25b
(2m)* (k2 -a)" (47'[)% 2 ['(n) (B.25b)
dsma \_ AT (f 1R
( devrén )_ (4ﬂ)2 z(n 1),(%+1 n)!(e )’E+Z j+1n47'[ lnA),
d°k Ko ()" w(w+2)T (n-%-2) 2430
2m)® (k2—A)" _1(471)% 1 () , (B.25¢)

d
$+2-n

( d>2n-4 ): AT w(w+2) (-)2 1
d even (471)% 4 (n—l)!(%+2—n)!

We list some other common Minkowskian integrals:

dw w w
In(k“-a)=- (——) az, (B.26a)
(2m)® (=a) = (471)* 2
w . w 2
d—kw ek -ibk _ ! —a 2 e%, (B.26b)
(27t) (4m)2

/d“’k 1 e i T(§-a) 1
(

2m)“ (_kZ)ae T4t T(a) ()i (B.26¢)
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B.4 PATH INTEGRALS

Two transversal integrations:

w-2
/d—c’jfz etk - - (B.27a)
(2m) (4m)27" (i)
w=2 . [(¢-a-1
/ L G L R
(27_[)(0 (kl)‘x 4“7-[5_1 F(OC) (bi)i_“_l

One integral that frequently appears after making a (dimensionally regulated)
transverse momentum integration is:

Akt Ak~ it 11 i
ar-ar- el(ak k™ +p*k™+p kT +ie) _ __e—;p”'p ) (B.28)
(2m)? 2ma

B.4 PATH INTEGRALS

Here we list some results with path integrals from Section 3.1.

Properties

Every path integral is required to be linear and translation invariant. A rotation
of the fields gives an extra determinant in front. These properties can be written
together as:

D¢ (aF(9)+bG9)) = a [Dg Flg]+b [Dg GIs],  (Basa)
fD¢ F[L$ + y] = detL /D¢ F[4], (B.29b)

where we used the short-hand notation

o [d'x L(nx)$(x), (8.30)
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inside the functional F. We will keep using this short-hand, just remember that
the fields are integrated over their coordinates. The real scalar Gaussian path
integral is given by:

/Dqﬁ K¢ = Ng \/delzw , (B.31a)
#K9 =~ [dxd'y $()K(x )02, (B31b)
Ng = lim N2 (B.31¢)

n—oco

If there is an extra linear term in the Gaussian exponent, we can complete the
square:

/D¢ e KOG _ (1JK7T fD¢> e K¢ (B.32)

We can use this property to calculate Gaussian integrals with extra field factors
in front of the exponential:

0 0 1
D e tKe _ 0 O KT /p K¢ B.
JPb a2 o ted | D e (B33
(” -l Kol
22 (1112 ’ zn lin /D¢ e . (B-34)
Complex scalar Gaussian path integrals are calculated in a similar way:
D¢ D$ e K¢ = B.
f $D¢ e Tet A A (B.352)
Ng = r}LIElO(Zni)”, (B.35b)
/ DPDG e PKeHT#4I _ JK fp(/) D§ e K¢, (B.35¢)

- = - 3 d 6 6 o 1
DODG ;b ¢ ¢, e Kb 2 % . 2 2 JK
/ ¢ (/) ¢ 1¢]1 ¢ n(p]n € 6]11 6]]2 61171 8]] ]]:0

y /D¢D$ K9 (B3sd)

In analogy with the discrete integration, we can give a path integral definition
for the functional §-function:

i fd'x ¢(x)w(x)
3(¢) = wa e . (B.36)

350



BIBLIOGRAPHY

1]

[9]

I. O. CHEREDNIKOV, T. MERTENS, and F. E. VAN DER VEKEN (2014). Wilson
Lines in Quantum Field Theory. De Gruyter Studies in Mathematical
Physics. De Gruyter, Berlin. (Cited on page v.)

I. O. CHEREDNIKOV, T. MERTENS, and F. F. VAN DER VEKEN (2013).
“Cusped light-like Wilson loops in gauge theories” Phys. Part. Nucl. 44,
250-259. arXiv:1210.1767 [hep-ph] (Cited on pages v and xii.)

I. O. CHEREDNIKOV, T. MERTENS, and F. F. VAN DER VEKEN (2012). “Evol-
ution of cusped light-like Wilson loops and geometry of the loop space”
Phys. Rev. D86, 085035. arXiv:1208.1631 [hep-th] (Cited on
pages v and xii.)

F. F. VAN DER VEKEN (2014). “Piecewise linear Wilson lines” EP] Web
Conf. In print. arXiv:1409.3190 [hep-ph] (Cited on pages v
and xi.)

E F. VAN DER VEKEN (2014). “Calculation of colour traces and generators”
In preparation to submit to Phys. Lett. B. (Cited on pages v and xi.)

E E VAN DER VEKEN (2014). “Working with piecewise linear Wilson
lines.” In preparation to submit to Phys. Rev. D. (Cited on pages v and xi.)

I. O. CHEREDNIKOV, T. MERTENS, P. TAELS, and E F. VAN DER VEKEN
(2014). “Evolution of transverse-distance dependent parton densities at
large-xp and geometry of the loop space” Int. J. Mod. Phys. Conf. Ser. 25,
1460006. arXiv:1308.3116 [hep-ph] (Cited on pages vi and xii.)

E F. VAN DER VEKEN (2013). “Evolution and dynamics of cusped light-like
Wilson loops” PoS Hadron2013, 134. arXiv:1405.4017 [hep-ph]
(Cited on pages vi and xii.)

E E VAN DER VEKEN (2013). “Evolution and dynamics of cusped light-like
Wilson loops.” Nuovo Cim. C36,89-94. arXiv:1302.6765 [hep-th]
(Cited on pages vi and xii.)

351


http://arxiv.org/abs/1210.1767
http://arxiv.org/abs/1208.1631
http://arxiv.org/abs/1409.3190
http://arxiv.org/abs/1308.3116
http://arxiv.org/abs/1405.4017
http://arxiv.org/abs/1302.6765
http://arxiv.org/abs/1302.6765

[10]

[11]

[12]

(13]

[15]

[16]

[17]

(18]

[19]

BIBLIOGRAPHY

F. F VAN DER VEKEN, I. O. CHEREDNIKOV, and T. MERTENS (2012). “Evol-
ution and dynamics of cusped light-like Wilson loops in loop space.” AIP
Conf. Proc. 1523, 272—275. arXiv:1212.4345 [hep-th] (Cited on
pages vi and xii.)

I. O. CHEREDNIKOV, T. MERTENS, and E E VAN DER VEKEN (2012). “Loop
space and evolution of the light-like Wilson polygons.” Int. J. Mod.
Phys. Conf. Ser. 20, 109-117. arXiv:1208.5410 [hep-th] (Cited
on pages vi and xii.)

E FE. VAN DER VEKEN (2014). “A new approach to piecewise linear Wilson
lines” Submitted to Int. J. Mod. Phys. Conf. Ser. arXiv:1411.3372
[hep-ph] (Cited on pages vi and xi.)

L. P. GAMBERG, M. SCHLEGEL, and F. F. VAN DER VEKEN (2014). “Final
state interactions and the Boer-Mulders function” Work in Progress.
(Cited on pages vi and 308.)

M. Garcia ECHEVARRIA, A. S. IDILBI, I. SciMEMI, and F. FE. VAN DER
VEKEN (2014). “Universality of the soft function in QCD.” Work in Pro-
gress. (Cited on pages vi and 308.)

E E VAN DER VEKEN (2014). “Calculational techniques for Wilson lines”
Work in Progress. (Cited on pages vi and 308.)

I. O. CHEREDNIKOV and T. MERTENS (2014). “Fréchet derivative for light-
like Wilson loops.” Submitted. arXiv:1401.2721 [hep-th] (Cited
on pages xii and 297.)

T. MERTENS (2014). “Generalized loop space and TMDs.” EP] Web Conf.
73, 02011. (Cited on pages xii and 297.)

M. E. PeskiN and D. V. SCHROEDER (1995). An Introduction to quantum
field theory. Advanced Book Program. Westview Press, Boulder, CO.
(Cited on pages 2, 12, 46, 62, 114, 121, and 310.)

R. J. RIVERS (1987). Path Integral Methods in Quantum Field Theory.
Cambridge monographs on mathematical physics. Cambridge University
Press, Cambridge. (Cited on pages 2, 46, and 62.)

U. MOSEL (2004). Path integrals in field theory: An introduction. Springer,
Berlin. (Cited on pages 2, 46, 62, 75, and 82.)

E ManDL and G. SHAW (2010). Quantum Field Theory. John Wiley &
Sons, Chichester, 2nd edition. (Cited on pages 2, 46, and 75.)

352


http://arxiv.org/abs/1212.4345
http://arxiv.org/abs/1208.5410
http://arxiv.org/abs/1411.3372
http://arxiv.org/abs/1411.3372
http://arxiv.org/abs/1401.2721

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

BIBLIOGRAPHY

M. SREDNICKI (2007). Quantum field theory. Cambridge University Press,
Cambridge. (Cited on pages 2 and 121.)

H. GoLDSTEIN, C. P. J. POOLE, and J. L. SAFKO (2000). Classical Mechanics.
Addison Wesley, San Francisco, CA, 3th edition. (Cited on pages 4 and 5.)

I. M. GELFAND and S. V. FoMmIN (1963). Calculus of Variations. Dover
Publications, Mineola, NY. (Cited on pages 5 and 24.)

E. NEUENSCHWANDER, DWIGHT (2011). Emmy Noether’s Wonderful The-
orem. The Johns Hopkins University Press, Baltimore. (Cited on page 5.)

E SCHWABL (2005). Advanced Quantum Mechanics. Springer, Berlin.
(Cited on page 16.)

M. CASELLE (2000). “Lattice gauge theories and the ads / cft correspond-
ence” Int. J. Mod. Phys. A1s, 3901-3966. arXiv:hep-th/0003119
[hep-th] (Cited on page 42.)

L. FADDEEV and V. Porov (1967). “Feynman diagrams for the Yang-Mills
field” Phys. Lett. B25, 29-30. (Cited on page 80.)

G. LEIBBRANDT (1987). “Introduction to noncovariant gauges.” Rev. Mod.
Phys. 59, 1067. (Cited on page 88.)

M. PoLjsAK (1994). “A note on the extended mandelstam-leibbrandt
prescription for gauge theories in temporal gauge” Phys. Lett. B32o0,
74-82. (Cited on page 88.)

J. C. CoLLINS (1984). Renormalization. Cambridge Monographs on
Mathematical Physics. Cambridge University Press, Cambridge. (Cited
on pages 93, 113, 114, and 220.)

G. LEIBBRANDT (1975). “Introduction to the technique of dimensional
regularization” Rev. Mod. Phys. 47, 849. (Cited on page 93.)

J. CoLLINS (2011). Foundations of perturbative QCD, Cambridge mono-
graphs on particle physics, nuclear physics and cosmology, vol. 32. Cam-
bridge University Press, Cambridge. (Cited on pages 111, 121, 154, 188,
and 229.)

R. D. FIELD (1989). Applications of Perturbative QCD, Frontiers in Physics,
vol. 77. Addison-Wesley, Reading, MA. (Cited on page 121.)

353


http://arxiv.org/abs/hep-th/0003119
http://arxiv.org/abs/hep-th/0003119

(35]

(38]

[39]

[40]

[41]

BIBLIOGRAPHY

R. K. ErL1s, W. J. STIRLING, and B. R. WEBBER (1996). QCD and collider
physics, Cambridge monographs on particle physics, nuclear physics and
cosmology, vol. 8. Cambridge University Press, Cambridge. (Cited on
page 121.)

J. R. ForsHAW and D. A. Ross (1997). Quantum chromodynamics and
the pomeron, Cambridge Lecture Notes in Physics, vol. 9. Cambridge
University Press, Cambridge. (Cited on page 121.)

T. MuTta (1998). Foundations of Quantum Chromodynamics: An Introduc-
tion to Perturbative Methods in Gauge Theories, World Scientific Lecture
Notes in Physics, vol. 78. World Scientific, Signapore. (Cited on page 121.)

V. BARONE and E. PREDAZzI (2002). High-energy particle diffraction. The-
oretical and Mathematical Physics. Springer, Berlin. (Cited on page 121.)

A.D. MARTIN (2008). “Proton structure, partons, QCD, DGLAP and bey-
ond” Acta Phys.Polon. B39, 2025-2062. arXiv:0802.0161 [hep-ph]
(Cited on page 134.)

P. KoTko (2014). “Wilson lines and gauge invariant off-shell amplitudes”
JHEP 1407, 128. arXiv:1403.4824 [hep-ph] (Cited on page 172.)

J. S. BaLL and T.-W. CHI1U (1980). “Analytic properties of the vertex
function in gauge theories. 27 Phys. Rev. D22, 2550. (Cited on page 210.)

A. 1. DAVYDYCHEV, P. OsLAND, and O. TARASOV (1996). “Three gluon
vertex in arbitrary gauge and dimension.” Phys. Rev. D54, 4087-4113.
arXiv:hep-ph/9605348 [hep-ph] (Cited on page 210.)

J. C. CoLLINs and D. E. SOPER (1981). “Back-To-Back Jets in QCD.” Nucl.
Phys. B193, 381. (Cited on page 229.)

J. C. CoLLins and D. E. SOPER (1982). “Parton Distribution and Decay
Functions” Nucl. Phys. B194, 445. (Cited on page 229.)

J. C. Corrins, D. E. SOPER, and G. F. STERMAN (1983). “Factorization for
One Loop Corrections in the Drell-Yan Process” Nucl. Phys. B223, 381.
(Cited on page 229.)

J. C. CoLLINS, D. E. SOPER, and G. F. STERMAN (1982). “Does the Drell-Yan
Cross-section Factorize?” Phys. Lett. B1o9g, 388. (Cited on page 229.)

J. C. CoLLiNns, D. E. SOPER, and G. F. STERMAN (1985). “Transverse Mo-
mentum Distribution in Drell-Yan Pair and W and Z Boson Production”
Nucl. Phys. B250, 199. (Cited on page 229.)

354


http://arxiv.org/abs/0802.0161
http://arxiv.org/abs/0802.0161
http://arxiv.org/abs/1403.4824
http://arxiv.org/abs/hep-ph/9605348
http://arxiv.org/abs/hep-ph/9605348

BIBLIOGRAPHY

[48] X.-D. J1, J.-P. MA, and F. YUAN (2005). “QCD factorization for semi-
inclusive deep-inelastic scattering at low transverse momentum.” Phys.
Rev. D71, 034005. arXiv:hep-ph/0404183 [hep-ph] (Cited on
page 229.)

[49] X.-D. J1, J.-P. M4, and E. YuaN (2004). “QCD factorization for spin-
dependent cross sections in DIS and Drell-Yan processes at low trans-
verse momentum.” Phys. Lett. B597, 299-308. arXiv:hep-ph/0405085
[hep-ph] (Cited on page 229.)

[50] X.-p.]J1and F. YUAN (2002). “Parton distributions in light cone gauge:
Where are the final state interactions?” Phys. Lett. B543, 66-72.
arXiv:hep-ph/0206057 [hep-ph] (Cited on page 229.)

[51] D. BOER, P. MULDERS, and E PIJLMAN (2003). “Universality of T odd
effects in single spin and azimuthal asymmetries” Nucl. Phys. B667,
201-241. arXiv:hep-ph/0303034 [hep-ph] (Cited on page 229.)

[52] J. C. CorLiNs and F. HAUTMANN (2000). “Infrared divergences and
nonlightlike eikonal lines in Sudakov processes.” Phys. Lett. B472, 129-
134. arXiv:hep-ph/9908467 [hep-ph] (Cited on page 229.)

[53] F. HAUTMANN (2007). “Endpoint singularities in unintegrated par-
ton distributions” Phys. Lett. B655, 26-31. arXiv:hep-ph/0702196
[HEP-PH] (Cited on page 229.)

[54] A. BELITSKY and A. RADYUSHKIN (2005). “Unraveling hadron struc-
ture with generalized parton distributions” Phys. Rept. 418, 1-387.
arXiv:hep-ph/0504030 [hep-ph] (Cited on page 229.)

[55] A. V. BELITSKY, X. J1, and F. YUAN (2003). “Final state interactions
and gauge invariant parton distributions.” Nucl. Phys. B656, 165-198.
arXiv:hep-ph/0208038 [hep-ph] (Cited on pages 229 and 247.)

[56] A.BAccHETTA, U. D’ALESIO, M. DIEHL, and C. A. MILLER (2004). “Single-
spin asymmetries: The Trento conventions.” Phys. Rev. D70, 117504.
arXiv:hep-ph/0410050 [hep-ph] (Cited on pages 229 and 238.)

[57] A.BACCHETTA (2011). “Transverse-momentum-dependent parton dis-
tributions (TMDs).” AIP Conf. Proc. 1374, 29-34. arXiv:1012.2315
[hep-ph] (Cited on page 229.)

[s8] A. BACCHETTA. “Transverse momentum distributions” URL
http://www2.pv.infn.it/~bacchett/teaching/Bacchetta_

355


http://arxiv.org/abs/hep-ph/0404183
http://arxiv.org/abs/hep-ph/0405085
http://arxiv.org/abs/hep-ph/0405085
http://arxiv.org/abs/hep-ph/0206057
http://arxiv.org/abs/hep-ph/0206057
http://arxiv.org/abs/hep-ph/0303034
http://arxiv.org/abs/hep-ph/9908467
http://arxiv.org/abs/hep-ph/0702196
http://arxiv.org/abs/hep-ph/0702196
http://arxiv.org/abs/hep-ph/0504030
http://arxiv.org/abs/hep-ph/0504030
http://arxiv.org/abs/hep-ph/0208038
http://arxiv.org/abs/hep-ph/0410050
http://arxiv.org/abs/hep-ph/0410050
http://arxiv.org/abs/1012.2315
http://arxiv.org/abs/1012.2315
http://www2.pv.infn.it/~bacchett/teaching/Bacchetta_Trento2012.pdf
http://www2.pv.infn.it/~bacchett/teaching/Bacchetta_Trento2012.pdf

[61]

[62]

BIBLIOGRAPHY

Trento2012.pdf.  Lecture notes at the ECT* doctoral training
programme. (Cited on pages 229 and 244.)

D. Boer, M. DieHL, R. MILNER, R. VENUGOPALAN, et al. (2011).
“Gluons and the quark sea at high energies: Distributions, polariza-
tion, tomography.” A report on the joint BNL/INT/JLab program.
arXiv:1108.1713 [nucl-th] (Cited on pages 229 and 238.)

S. MERT AYBAT and T. C. ROGERS (2011). “TMD factorization and evol-
ution for TMD correlation functions” Int. J. Mod. Phys. Conf. Ser. 04,
97-105. (Cited on page 229.)

S. M. AYBAT, A. PROKUDIN, and T. C. ROGERS (2012). “Calculation of
TMD Evolution for Transverse Single Spin Asymmetry Measurements.”
Phys. Rev. Lett. 108, 242003. arXiv:1112.4423 [hep-ph] (Cited on

page 229.)

S. M. AYBAT, J. C. CoLLINS, J.-W. Q1u, and T. C. ROGERS (2012). “The
QCD Evolution of the Sivers Function” Phys. Rev. D85, 034043.
arxXiv:1110.6428 [hep-ph] (Cited on page 229.)

E. AvsAR (2012). “TMD factorization and the gluon distribution in high
energy QCD.” Unpublished. arXiv:1203.1916 [hep-ph] (Cited on
page 229.)

J. CoLLINS (2013). “TMD theory, factorization and evolution.” Unpub-
lished. arXiv:1307.2920 [hep-ph] (Cited on page 229.)

I. CHEREDNIKOV and N. STEFANIS (2008). “Renormalization, Wilson lines,
and transverse-momentum dependent parton distribution functions.”
Phys. Rev. D77, 094001. arXiv:0710.1955 [hep-ph] (Cited on
page 229.)

I. CHEREDNIKOV and N. STEFANIS (2008). “Wilson lines and transverse-
momentum dependent parton distribution functions: A Renormalization-
group analysis” Nucl. Phys. B802, 146-179.  arXiv:0802.2821
[hep-ph] (Cited on page 229.)

I. CHEREDNIKOV and N. STEFANIS (2009). “Renormalization-group prop-
erties of transverse-momentum dependent parton distribution functions
in the light-cone gauge with the Mandelstam-Leibbrandt prescription.”
Phys. Rev. D80, 054008. arXiv:0904.2727 [hep-ph] (Cited on
page 229.)

356


http://www2.pv.infn.it/~bacchett/teaching/Bacchetta_Trento2012.pdf
http://www2.pv.infn.it/~bacchett/teaching/Bacchetta_Trento2012.pdf
http://arxiv.org/abs/1108.1713
http://arxiv.org/abs/1108.1713
http://arxiv.org/abs/1112.4423
http://arxiv.org/abs/1110.6428
http://arxiv.org/abs/1110.6428
http://arxiv.org/abs/1203.1916
http://arxiv.org/abs/1307.2920
http://arxiv.org/abs/0710.1955
http://arxiv.org/abs/0802.2821
http://arxiv.org/abs/0802.2821
http://arxiv.org/abs/0904.2727

(68]

[70]

(71]

[75]

[76]

[77]

(78]

BIBLIOGRAPHY

N. Steranis and I. CHEREDNIKOV (2009). “Renormalization-group
anatomy of transverse-momentum dependent parton distribution func-
tions in QCD” Mod. Phys. Lett. A24, 2913-2923. arXiv:0910.3108
[hep-ph] (Cited on page 229.)

I. CHEREDNIKOV, A. KARANIKAS, and N. STEFANIS (2010). “Wilson lines in
transverse-momentum dependent parton distribution functions with spin
degrees of freedom.” Nucl. Phys. B840, 379-404. arXiv:1004.3697
[hep-ph] (Cited on page 229.)

I. CHEREDNIKOV and N. STEFANIS (2011). “Transverse-momentum-
dependent parton distributions at the edge of the lightcone” Int. J. Mod.
Phys. Conf. Ser. 4, 135-145. arXiv:1108.0811 [hep-ph] (Cited on

page 229.)

X.-D.J1,J.-P. M4, and E Yuan (2005). “Transverse-momentum-dependent
gluon distributions and semi-inclusive processes at hadron colliders”
JHEP o507, 020. arXiv:hep-ph/0503015 [hep-ph] (Cited on
page 236.)

F. DOMINGUEZ, C. MARQUET, B.-W. X140, and F. YUAN (2011). “Universal-
ity of unintegrated gluon distributions at small x”” Phys. Rev. D83, 105005.
arxXiv:1101.0715 [hep-ph] (Cited on page 237.)

A. BACCHETTA, C. BOMHOF, P. MULDERS, and E. PJLMAN (2005). “Single
spin asymmetries in hadron-hadron collisions.” Phys. Rev. D72, 034030.
arXiv:hep-ph/0505268 [hep-ph] (Cited on page 245.)

M. BUFFING and P. MULDERS (2014). “Color entanglement for azimuthal
asymmetries in the Drell-Yan process.” Phys. Rev. Lett. 1129, 092002.
arxiv:1309.4681 [hep-ph] (Cited on page 245.)

M. BUFFING and P. MULDERS (2014). “Color effects for transverse mo-
mentum dependent parton distribution functions in hadronic processes.”
arXiv:1410.6345 [hep-ph] (Cited on page 245.)

Y. V. KovcHEGOV (2011). “Introduction to the Physics of Saturation.” Nucl.
Phys. A854,3-9. arXiv:1007.5021 [hep-ph] (Cited on page 254.)

Y. V. KovcHEGOV (2013). “Introduction to the physics of saturation” AIP
Conf. Proc. 1520, 3-26. (Cited on page 254.)

Y. V. KovcHEGOV and E. LEVIN (2012). Quantum chromodynamics at high
energy, Cambridge monographs on particle physics, nuclear physics and

357


http://arxiv.org/abs/0910.3108
http://arxiv.org/abs/0910.3108
http://arxiv.org/abs/1004.3697
http://arxiv.org/abs/1004.3697
http://arxiv.org/abs/1108.0811
http://arxiv.org/abs/hep-ph/0503015
http://arxiv.org/abs/1101.0715
http://arxiv.org/abs/hep-ph/0505268
http://arxiv.org/abs/hep-ph/0505268
http://arxiv.org/abs/1309.4681
http://arxiv.org/abs/1309.4681
http://arxiv.org/abs/1410.6345
http://arxiv.org/abs/1007.5021

[80]

(81]

[82]

(85]

(88]

BIBLIOGRAPHY

cosmology, vol. 33. Cambridge University Press, Cambridge. (Cited on
page 254.)

E. A. Kuraktv, L. N. LiraTov, and V. S. FADIN (1976). “Multi - Reggeon
Processes in the Yang-Mills Theory.” Sov. Phys. JETP 44, 443-450. (Cited

on page 254.)

E. KuraAEv, L. LipaTOV, and V. S. FADIN (1977). “The Pomeranchuk
Singularity in Nonabelian Gauge Theories.” Sov. Phys. JETP 45, 199-204.
(Cited on page 254.)

I. BaLiTsKY and L. LipaTOoVv (1978). “The Pomeranchuk Singularity in
Quantum Chromodynamics” Sov. J. Nucl. Phys. 28, 822-829. (Cited on
page 254.)

L. BALITSKY (1996). “Operator expansion for high-energy scattering.” Nucl.
Phys. B463, 99-160. arXiv:hep-ph/9509348 [hep-ph] (Cited on
page 254.)

Y. V. KovcHEGOV (1999). “Small x F(2) structure function of a nuc-
leus including multiple pomeron exchanges.” Phys. Rev. D60, 034008.
arXiv:hep-ph/9901281 [hep-ph] (Cited on page 254.)

Y. V. KovcHEGOV (2000). “Unitarization of the BFKL pomeron on a
nucleus.” Phys. Rev. D61, 074018. arXiv:hep-ph/9965214 [hep-ph]
(Cited on page 254.)

E. IaNcu, K. ITAKURA, and S. MUNIER (2004). “Saturation and BFKL
dynamics in the HERA data at small x” Phys. Lett. B5go, 199-208.
arXiv:hep-ph/0310338 [hep-ph] (Cited on pages 254 and 266.)

L. GriBov, E. LEVIN, and M. RYsKIN (1983). “Semihard Processes in
QCD? Phys. Rept. 100, 1-150. (Cited on page 254.)

K.J. GoLEC-BIERNAT and M. WUSTHOFF (1998). “Saturation effects in
deep inelastic scattering at low Q**2 and its implications on diffraction”
Phys. Rev. D59, 014017. arXiv:hep-ph/9807513 [hep-ph] (Cited
on page 254.)

A. StasTO, K. J. GOLEC-BIERNAT, and J. KWIECINSKI (2001). “Geometric
scaling for the total gamma* p cross-section in the low x region” Phys.
Rev. Lett. 86, 596-599. arXiv:hep-ph/0007192 [hep-ph] (Cited
on page 254.)

358


http://arxiv.org/abs/hep-ph/9509348
http://arxiv.org/abs/hep-ph/9901281
http://arxiv.org/abs/hep-ph/9901281
http://arxiv.org/abs/hep-ph/9905214
http://arxiv.org/abs/hep-ph/9905214
http://arxiv.org/abs/hep-ph/0310338
http://arxiv.org/abs/hep-ph/0310338
http://arxiv.org/abs/hep-ph/9807513
http://arxiv.org/abs/hep-ph/0007192

[89]

[90]

[91]

[92]

[94]

[95]

[97]

(98]

[99]

BIBLIOGRAPHY

K. Kutak and ]. KwIECINSKI (2003).  “Screening effects in the
ultrahigh-energy neutrino interactions” Eur. Phys. J. C29, 521.
arXiv:hep-ph/0303209 [hep-ph] (Cited on page 254.)

J. BARTELS and K. KuTak (2008). “A Momentum Space Analysis of
the Triple Pomeron Vertex in pQCD.” Eur. Phys. J. Cs3, 533-548.
arxXiv:0710.3060 [hep-ph] (Cited on page 254.)

J. L. ALBACETE and C. MARQUET (2010). “Azimuthal correlations of
forward di-hadrons in d+Au collisions at RHIC in the Color Glass Con-
densate” Phys. Rev. Lett. 105, 162301. arXiv:1005.4065 [hep-ph]
(Cited on page 254.)

A. DuMiTRrU, K. DUSLING, F. GELIS, J. JALILIAN-MARIAN, et al. (2011).
“The Ridge in proton-proton collisions at the LHC” Phys. Lett. B697,
21-25. arxXiv:1009.5295 [hep-ph] (Cited on page 254.)

J. ALBACETE, J. MILHANO, P. QUIROGA-ARIAS, and J. Rojo (2012). “Linear
vs Non-Linear QCD Evolution: From HERA Data to LHC Phenomen-
ology” Eur. Phys. J. C72,2131. arXiv:1203.1043 [hep-ph] (Cited
on page 254.)

E. IaNcu, A. LEONIDOV, and L. MCLERRAN (2002). “The Color glass
condensate: An Introduction.” Lecture notes. arXiv:hep-ph/0202270
[hep-ph] (Cited on page 254.)

E. Iancu and R. VENUGOPALAN (2003). “The Color glass con-
densate and high-energy scattering in QCD.” Unpublished.
arXiv:hep-ph/0303204 [hep-ph] (Cited on page 254.)

E. Iancu (2009). “Color Glass Condensate and its relation to HERA
physics” Nucl. Phys. Proc. Suppl. 191, 281-294. arXiv:0901.0986
[hep-ph] (Cited on page 254.)

F. GEL1s, E. IANCU, J. JALILIAN-MARIAN, and R. VENUGOPALAN (2010).
“The Color Glass Condensate” Ann. Rev. Nucl. Part. Sci. 60, 463-489.
arxXiv:1002.0333 [hep-ph] (Cited on page 254.)

K. Kutak, K. GOLEC-BIERNAT, S. JADACH, and M. SKRZYPEK (2012).
“Nonlinear equation for coherent gluon emission” JHEP 1202, 117.
arxXiv:1111.6928 [hep-ph] (Cited on page 254.)

K. KuTak (2012). “Nonlinear extension of the CCFM equation.” Unpub-
lished. arXiv:1206.1223 [hep-ph] (Cited on page 254.)

359


http://arxiv.org/abs/hep-ph/0303209
http://arxiv.org/abs/hep-ph/0303209
http://arxiv.org/abs/0710.3060
http://arxiv.org/abs/0710.3060
http://arxiv.org/abs/1005.4065
http://arxiv.org/abs/1009.5295
http://arxiv.org/abs/1203.1043
http://arxiv.org/abs/hep-ph/0202270
http://arxiv.org/abs/hep-ph/0202270
http://arxiv.org/abs/hep-ph/0303204
http://arxiv.org/abs/hep-ph/0303204
http://arxiv.org/abs/0901.0986
http://arxiv.org/abs/0901.0986
http://arxiv.org/abs/1002.0333
http://arxiv.org/abs/1002.0333
http://arxiv.org/abs/1111.6928
http://arxiv.org/abs/1111.6928
http://arxiv.org/abs/1206.1223

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

BIBLIOGRAPHY

K. KuTak and S. SAPETA (2012). “Gluon saturation in dijet production
in p-Pb collisions at Large Hadron Collider.” Phys. Rev. D86, 094043.
arxXiv:1205.5035 [hep-ph] (Cited on page 254.)

K. KuTak (2012). “Resummation in nonlinear equation for high energy
factorisable gluon density and its extension to include coherence” JHEP
1212, 033. arXiv:1206.5757 [hep-ph] (Cited on page 254.)

M. DEeAK (2013). “Estimation of saturation and coherence effects in
the KGBJS equation - a non-linear CCFM equation” JHEP 1307, 087.
arxXiv:1209.6092 [hep-ph] (Cited on page 254.)

K. Kutak and D. ToToN (2013). “Gluon saturation scale from the KGBJS
equation” JHEP 1311, 082. arXiv:1306.3369 [hep-ph] (Cited on
page 254.)

K. KuTak (2014). “Hard scale dependent gluon density, saturation
and forward-forward dijet production at the LHC” Unpublished.
arxXiv:1409.3822 [hep-ph] (Cited on page 254.)

K. J. GOLEC-BIERNAT and M. WUSTHOFF (1999). “Saturation in
diffractive deep inelastic scattering” Phys. Rev. D60, 114023.
arXiv:hep-ph/9903358 [hep-ph] (Cited on page 265.)

K. J. GOLEC-BIERNAT, ]J. KWIECINSKI, A. D. MARTIN, and P. SUTTON
(1994). “Transverse energy flow at HERA” Phys. Lett. B335, 220-225.
arXiv:hep-ph/9405400 [hep-ph] (Cited on pages 266 and 267.)

J. KwiECINSKI, A. D. MARTIN, and P. SUTTON (1992). “Deep inelastic
events containing a measured jet as a probe of QCD behavior at small x”
Phys. Rev. D46, 921-930. (Cited on page 267.)

J. KwieCINSKI, A. D. MARTIN, P. SUTTON, and K. ]J. GOLEC-BIERNAT
(1994). “QCD predictions for the transverse energy flow in deep inelastic
scattering in the HERA small x regime” Phys. Rev. D50, 217-225.
arXiv:hep-ph/9403292 [hep-ph] (Cited on page 267.)

C. ADLOFF et al. (2000). “Measurements of transverse energy flow
in deep inelastic scattering at HERA” Eur. Phys. J. C12, 595-607.
arXiv:hep-ex/9907027 [hep-ex] (Cited on page 267.)

S. BONDARENKO (2011). “Gluon density and F(2) functions from BK
equation with local impact parameter dependence in DIS on nuclei” Nucl.
Phys. A853, 71-96. (Cited on page 270.)

360


http://arxiv.org/abs/1205.5035
http://arxiv.org/abs/1205.5035
http://arxiv.org/abs/1206.5757
http://arxiv.org/abs/1209.6092
http://arxiv.org/abs/1209.6092
http://arxiv.org/abs/1306.3369
http://arxiv.org/abs/1409.3822
http://arxiv.org/abs/1409.3822
http://arxiv.org/abs/hep-ph/9903358
http://arxiv.org/abs/hep-ph/9903358
http://arxiv.org/abs/hep-ph/9405400
http://arxiv.org/abs/hep-ph/9405400
http://arxiv.org/abs/hep-ph/9403292
http://arxiv.org/abs/hep-ph/9403292
http://arxiv.org/abs/hep-ex/9907027
http://arxiv.org/abs/hep-ex/9907027

[111]

[112]

(113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

(123]

BIBLIOGRAPHY

L. MoTtykA and N. TIMNEANU (2003). “Unintegrated gluon in the
photon and heavy quark production” Eur.Phys.]J. C27, 73-8s.
arXiv:hep-ph/02096029 [hep-ph] (Cited on page 272.)

Y. M. MAKEENKO (1995). “Non-perturbative methods in gauge theory”
Lecture notes. (Cited on pages 276, 282, 283, 284, and 297.)

S. MANDELSTAM (1968). “Feynman rules for electromagnetic and Yang-
Mills fields from the gauge independent field theoretic formalism.” Phys.
Rev. 175, 1580-1623. (Cited on pages 276 and 295.)

K. G. WILsON (1974). “Confinement of quarks.” Phys. Rev. D10, 2445-2459.
(Cited on pages 276 and 295.)

Y. NaAMBU (1979). “QCD and the string model” Phys. Lett. B8o, 372.
(Cited on pages 276 and 295.)

A. M. PoLyakov (1979). “String representations and hidden symmetries
for gauge fields” Phys. Lett. B82, 247-250. (Cited on pages 276 and 295.)

V. DoTseNko and S. VERGELES (1980). “Renormalizability of Phase
Factors in the Nonabelian Gauge Theory” Nucl. Phys. B169, 527. (Cited
on pages 276, 285, and 295.)

A. M. PoLyakov (1980). “Gauge fields as rings of glue” Nucl. Phys. B164,
171-188. (Cited on pages 276, 285, and 295.)

L. Y. AREFEVA (1980). “Quantum contour field equations.” Phys. Lett. Bg3,
347-353. (Cited on pages 276, 285, and 295.)

N. CralGik and H. DorN (1981). “On the renormalization and short
distance properties of hadronic operators in QCD.” Nucl. Phys. B18s5, 204.
(Cited on pages 276, 285, and 295.)

S. AoyaMa (1982). “The Renormalization of the String Operator in QCD.”
Nucl. Phys. B194, 513. (Cited on pages 276, 285, and 295.)

N. STEFANIS (1984). “Gauge invariant quark two point green’s function
through connector insertion to O(a;).” Nuovo Cim. A83, 205. (Cited on
pages 276 and 295.)

I. BALITSKY and V. M. BRAUN (1989). “Evolution equations for QCD string
operators.” Nucl. Phys. B311, 541-584. (Cited on pages 276 and 295.)

361


http://arxiv.org/abs/hep-ph/0209029
http://arxiv.org/abs/hep-ph/0209029

[124]

[125]

[126]

(127]

[128]

[129]

(130]

[131]

(132]

(133]

[134]

BIBLIOGRAPHY

G. KorRCHEMSKY and A. RADYUSHKIN (1987). “Renormalization of the
Wilson Loops Beyond the Leading Order.” Nucl. Phys. B283, 342-364.
(Cited on pages 276, 285, 287, and 290.)

G.’T HOOFT (1974). “A Planar Diagram Theory for Strong Interactions.”
Nucl. Phys. B72, 461. (Cited on page 277.)

S. T. Tsou (2003). “Electric magnetic duality and the dualized stand-
ard model” Int. J. Mod. Phys. A18S52,1-40. arXiv:hep-th/0110256
[hep-th] (Cited on page 28s5.)

J.-L. GERvAls and A. NEVEU (1980). “The Slope of the Leading Regge
Trajectory in Quantum Chromodynamics.” Nucl. Phys. B163, 189. (Cited
on page 285.)

R. A. BRaNDT, E NERI, and M.-A. SaTo (1981). “Renormalization of Loop
Functions for All Loops” Phys. Rev. D24, 879. (Cited on page 285.)

I. KorcHEMSKAYA and G. KORCHEMSKY (1992). “On lightlike Wilson
loops” Phys. Lett. B287, 169-175. (Cited on pages 289 and 302.)

M. GaRrciA ECHEVARRIA, A. IDILBI, A. SCHAFER, and I. SCIMEMI (2013).
“Model independent evolution of transverse momentum dependent distri-
bution functions (TMDs) at NNLL” Eur. Phys. J. C73,2636. URLhttp://
arxiv.org/abs/1208.1281. arXiv:1208.1281 [hep-ph] (Cited
on page 290.)

L. F. ALDAY and J. M. MALDACENA (2007). “Gluon scattering amplitudes
at strong coupling” JHEP 0706, 064. arXiv:0705.0303 [hep-th]
(Cited on page 291.)

L. F. ALpAY and ]. MALDACENA (2007). “Comments on gluon scattering
amplitudes via ads/cft” JHEP o711, 068. arXiv:0710.1060 [hep-th]
(Cited on page 291.)

]J. DRUMMOND, J. HENN, G. KORCHEMSKY, and E. SOKATCHEV (2008). “On
planar gluon amplitudes/wilson loops duality” Nucl. Phys. B795, 52-68.
arxXiv:0709.2368 [hep-th] (Cited on pages 291, 293, and 294.)

J. DRUMMOND, G. KORCHEMSKY, and E. SOKATCHEV (2008). “Conformal
properties of four-gluon planar amplitudes and Wilson loops.” Nucl. Phys.
B795, 385-408. arXiv:0707.0243 [hep-th] (Cited on pages 291
and 294.)

362


http://arxiv.org/abs/hep-th/0110256
http://arxiv.org/abs/hep-th/0110256
http://arxiv.org/abs/1208.1281
http://arxiv.org/abs/1208.1281
http://arxiv.org/abs/1208.1281
http://arxiv.org/abs/0705.0303
http://arxiv.org/abs/0710.1060
http://arxiv.org/abs/0710.1060
http://arxiv.org/abs/0709.2368
http://arxiv.org/abs/0709.2368
http://arxiv.org/abs/0707.0243

BIBLIOGRAPHY 363

[135] Y. MAKEENKO (2003). “Light cone Wilson loops and the string / gauge cor-
respondence” JHEP 0301, 007. arXiv:hep-th/0210256 [hep-th]
(Cited on page 291.)

[136] L. F. ALDAY, B. EDEN, G. P. KORCHEMSKY, J. MALDACENA, et al. (2011).
“From correlation functions to wilson loops” JHEP 1109, 123.
arxXiv:1007.3243 [hep-th] (Cited on page 291.)

[137] N. BeiserT and C. VERGU (2012). “On the geometry of null polygons
in full n=4 superspace” Phys. Rev. D86, 026006. arXiv:1203.0525
[hep-th] (Cited on page 291.)

[138] N. BEISERT, S. HE, B. U. ScHwaB, and C. VERGU (2012). “Null poly-
gonal Wilson loops in full n=4 superspace” ]. Phys. A4s5, 265402.
arxXiv:1203.1443 [hep-th] (Cited on page 291.)

[139] A.BELITSKY, G. KORCHEMSKY, and E. SOKATCHEV (2012). “Are scattering
amplitudes dual to super Wilson loops?” Nucl. Phys. B855, 333-360.
arxXiv:1103.3008 [hep-th] (Cited on page 291.)

[140] A.BELITSKY (2012). “OPE for null Wilson loops and open spin chains”
Phys. Lett. Byo9, 280-284. arXiv:1110.1063 [hep-th] (Cited on
page 291.)

[141] A. BELITSKY (2012). “A note on two-loop superloop.” Phys. Lett. B718,
205-213. arXiv:1207.1924 [hep-th] (Cited on page 291.)

[142] S. MocH, V.],, and A. VoGt (2005). “The quark form-factor at higher
orders” JHEP 0508, 049. arXiv:hep-ph/0507039 [hep-ph] (Cited
on page 292.)

[143] S.]. PARKE and T. TAYLOR (1986). “An amplitude for #n gluon scattering.”
Phys. Rev. Lett. , 2459. (Cited on page 293.)

[144] Z. BErN, L. J. D1xon, and V. A. SMIRNOV (2005). “Iteration of planar
amplitudes in maximally supersymmetric Yang-Mills theory at three
loops and beyond.” Phys. Rev. D72, 085001. arXiv:hep-th/0505205
[hep-th] (Cited on page 293.)

[145] Z. BERN, M. CzAKON, L. J. DixoN, D. A. KOSOWER, et al. (2007). “The
four-loop planar amplitude and cusp anomalous dimension in max-
imally supersymmetric yang-mills theory” Phys. Rev. D75, 085010.
arXiv:hep-th/0610248 [hep-th] (Cited on page 293.)


http://arxiv.org/abs/hep-th/0210256
http://arxiv.org/abs/1007.3243
http://arxiv.org/abs/1007.3243
http://arxiv.org/abs/1203.0525
http://arxiv.org/abs/1203.0525
http://arxiv.org/abs/1203.1443
http://arxiv.org/abs/1203.1443
http://arxiv.org/abs/1103.3008
http://arxiv.org/abs/1103.3008
http://arxiv.org/abs/1110.1063
http://arxiv.org/abs/1207.1924
http://arxiv.org/abs/hep-ph/0507039
http://arxiv.org/abs/hep-th/0505205
http://arxiv.org/abs/hep-th/0505205
http://arxiv.org/abs/hep-th/0610248
http://arxiv.org/abs/hep-th/0610248

[146]

[147]

(148]

[149]

[150]

[151]

[152]

(153]

[154]

[155]

[156]

BIBLIOGRAPHY

I. KorcHEMSKAYA and G. KORCHEMSKY (1996). “Evolution equa-
tion for gluon Regge trajectory”  Phys. Lett. B387, 346-354.
arXiv:hep-ph/9607229 [hep-ph] (Cited on page 295.)

A. A. M1GDAL (1977). “Multicolor QCD as dual resonance theory” Annals
Phys. 109, 365. (Cited on pages 295 and 296.)

Y. MAKEENKO and A. A. MIGDAL (1979). “Exact equation for the loop
average in multicolor QCD.” Phys. Lett. B88, 135. (Cited on pages 295
and 296.)

A. A. M1GDAL (1980). “Properties of the loop average in QCD.” Annals
Phys. 126, 279-290. (Cited on pages 295 and 296.)

Y. MAKEENKO and A. A. MIGDAL (1981). “Quantum chromodynamics as
dynamics of loops” Nucl. Phys. B188, 269. (Cited on pages 295 and 296.)

A. A. M1GDAL (1983). “Loop equations and !/N expansion.” Phys. Rept.
102, 199-290. (Cited on pages 295 and 296.)

T. MERTENS (2013). “Generalized loop space and TMDs” PoS Had-
ron2013, 135. (Cited on page 297.)

I. O. CHEREDNIKOV and T. MERTENS (2014). “On geometric scaling of
light-like Wilson polygons: Higher orders in «;.” Phys. Lett. B734,198-202.
arXiv:1404.6713 [hep-th] (Cited on pages 297 and 305.)

T. MERTENS and P. TAELS (2013). “Evolution of light-like Wilson loops
with a self-intersection in loop space” Phys. Lett. B727, 563-567.
arxXiv:1308.5296 [hep-ph] (Cited on page 297.)

P. DITTNER (1971). “Invariant tensors in SU(3).” Commun. Math. Phys.
22, 238-252. (Cited on page 325.)

M. ABraMowITZ and L. STEGUN (1965). Handbook of Mathematical
Functions. Dover Publications, NY. (Cited on page 340.)

364


http://arxiv.org/abs/hep-ph/9607229
http://arxiv.org/abs/hep-ph/9607229
http://arxiv.org/abs/1404.6713
http://arxiv.org/abs/1308.5296
http://arxiv.org/abs/1308.5296

SOPUE, DADDY CAN'T
PLAY RIGHT NOW.

WWW.PHDCOMICS. COM

P1LED HIGHER AND DEEPER by Jorge Cham
www . phdcomics.com

COLOPHON

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired by
Robert Bringhurst’s seminal book on typography “The Elements of Typographic
Style”. classicthesis is available for both LaTeX and LyX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a
collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of 1st December 2014 (classicstyle).


www.phdcomics.com
http://code.google.com/p/classicthesis/
http://postcards.miede.de/

Antwerpen, December 2014

Frederik Van der Veken

TAQ. — Theoretical Aspects of QCD



	Title
	Dedication
	Samenvatting
	Abstract
	Publications
	Acknowledgments
	Foreword
	Contents
	List of Figures
	Acronyms
	List of Important Equations
	Introduction to QFT and QCD
	1 Symmetries in Quantum Field Theories
	1.1 Classical Field Theory
	 Equations of Motion
	 Characteristics of the Lagrangian
	 Scalar Fields
	 Vector Fields
	 Spinor Fields

	1.2 Symmetries of the Lagrangian
	1.3 Spacetime Symmetries
	1.4 Global Symmetries
	 Free Dirac Lagrangian
	 The Yang-Mills Lagrangian

	1.5 Local Symmetries
	 Localised Equations of Motion
	 Noether's Second Theorem


	2 Geometry of Quantum Field Theories
	2.1 Parallel Transport and Wilson Lines
	 The Parallel Transporter
	 Non-Abelian paths
	 The Covariant Derivative

	2.2 The Gauge Field Tensor and Wilson Loops
	2.3 Summary

	3 Quantisation of Quantum Field Theories
	3.1 Formal Definition of Path Integrals
	 QM Propagator as a Path Integral
	 Definition of the Path Integral
	 Gaussian Path Integral
	 n-Point Gaussian Integrals

	3.2 Quantisation of The Scalar Field
	 The Free Scalar Field
	 The Interacting Scalar Field

	3.3 Quantisation of the Dirac Field
	 Grassmann Numbers
	 The Free Dirac Field

	3.4 Quantisation of the Gauge Field
	 Abelian Gauge Fields
	 Non-Abelian Gauge Field: Lorentz Gauge
	 Non-Abelian Gauge Field: Axial Gauge


	4 Quantum Corrections
	4.1 Working With Quantised Fields
	 Regularisation
	 Mass Dimension Analysis
	 One-Loop Example: Gluon Propagator with Fermion Loop

	4.2 From Theory to Experiment
	 Renormalisation
	 The Callan-Symanzik equation
	 Running Coupling in QCD: Asymptotic Freedom


	5 Basics of QCD
	5.1 Deep Inelastic Scattering
	 Kinematics
	 Invitation: The Free Parton Model
	 A More Formal Approach

	5.2 Parton Distribution Functions
	5.3 Collinear Factorisation and Evolution of PDFs


	Wilson Lines
	6 Wilson Lines
	6.1 A Wilson Line Along a Path
	 Properties of Wilson Lines
	 Path Ordering

	6.2 Piecewise Wilson Lines
	6.3 Wilson Lines on a Linear Path
	 Bounded from Below
	 Bounded from Above
	 Path Reversal
	 Finite Wilson Line
	 Infinite Wilson line
	 External Momenta

	6.4 Relating Different Path Topologies
	6.5 Piecewise Linear Wilson Lines
	 Path Functions
	 Diagrams with Final-State Cuts

	6.6 Eikonal Approximation

	7 Simplifying Wilson Line Calculations
	7.1 Advanced Colour Algebra
	 Calculating Products of Fundamental Generators
	 Calculating Traces in the Adjoint Representation

	7.2 Self-Interaction Blobs
	 Two-Gluon Blob
	 Three-Gluon Blob

	7.3 Wick Rotations
	 Regular Wick Rotation
	 Wick Rotation with Wilson Lines
	 Light-Cone Coordinates: Double Wick Rotation

	7.4 Wilson Integrals
	 2-Gluon Blob Connecting Two Adjoining Segments


	8 Introduction to TMDs
	8.1 Revision of DIS
	 Operator Definition for PDFs
	 Gauge Invariant Operator Definition

	8.2 Semi-Inclusive Deep Inelastic Scattering
	 Conventions and Kinematics
	 Structure Functions
	 Transverse Momentum Dependent PDFs
	 Gauge Invariant Definition for TMDs

	8.3 Evolution of TMDs
	 About the Rapidity Cut-Offs


	9 QCD Towards Small-x
	9.1 Evolution in Longitudinal Momentum Fraction
	9.2 The BK Equation and Saturation
	 Comparison to Population Statistics
	 The GBW model

	9.3 Transversal Energy Flow
	 Calculation of the Structure Functions
	 Numerical Evaluation of the ET-Flow



	Wilson Loops and Evolution
	10 Wilson Loops and Loop Space
	10.1 Large Nc-Limit
	 Colour Representation
	 Colour Representation in the Large-Nc Limit

	10.2 Renormalisation of Wilson Loops and the Cusp Anomalous Dimension
	 Renormalisation of Wilson Loops on the Light-Cone


	11 Geometric Evolution
	11.1 Motivation: Wilson Loops in Super Yang-Mills
	 Super Yang-Mills Theory
	 Planar Scattering Amplitudes

	11.2 Wilson Loops in Loop Space
	11.3 Evolution of Light-Like Rectangular Loops
	 Rectangular Light-Like Loop Calculation at One-Loop

	11.4 Geometric Evolution of TMDs

	Conclusion and Outlook

	Appendices
	A Conventions and Reference Formulae
	A.1 Notational Conventions
	A.2 Vectors and Tensors
	A.3 Spinors and Gamma Matrices
	A.4 Light-Cone Coordinates
	A.5 Fourier Transforms and Distributions
	A.6 Lie Algebra
	 Representations
	 Properties
	 Useful Formulae

	A.7 Summary of the Noether Theorems
	A.8 Feynman rules for QCD

	B Integrations
	B.1 Reference Integrals
	 Algebraic Integrals
	 Logarithmic Integrals
	 Cyclometric Integrals
	 Gaussian Integrals
	 Discrete Integrals

	B.2 Special Functions and Integral Transforms
	 Gamma Function
	 Beta Function
	 Polylogarithms
	 Elliptic K-Function
	 Integral Transforms

	B.3 Dimensional Regularisation
	 Euclidian Integrals
	 Wick Rotation and Minkowskian Integrals

	B.4 Path Integrals
	 Properties


	Bibliography
	Colophon
	Declaration


