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Summary 

A container terminal is a complex system where a broad range of operations are 

carried out involving a wide array of resources that need to interact over a 24 hour 

operating cycle. Since the various activities are mutually related to each other, there is 

a need not only to maximise the efficiency of each one, but also to ensure proper 

coordination, hence to solve integrated decision-making problems. Several factors can 

affect the quality of the services provided and the overall efficiency. Vessel arrival 

uncertainty further complicates the task of the planners and, as a result, of the 

effectiveness of the planning itself, in particular at the operational level. Each arrival 

produces high peak loads for other terminal activities, as well as for the supporting 

arrival activities (pilotage, towage, etc.) and hinterland transportation (waiting, 

congestion etc.). Deviating arrivals only worsen this peak load. 

On a daily level, the actual time of arrival of the vessels often deviates from the 

scheduled time. Despite contractual obligations to notify the Estimated Time of 

Arrival (ETA) at least 24 hours before the arrival, ship operators often have to adapt 

and update the latest ETA due to unexpected circumstances. This aspect results in a 

last-minute change of plans in terminal operations resulting in higher costs. In fact, the 

ability to predict the actual time of a vessel’s arrival in a port 24 hours in advance is 

fundamental for the related planning activities for which the decision-making 

processes need to be constantly adapted and updated. Moreover, disruptions in 

container flows and operations caused by vessel arrival uncertainty can have cascade 

effects within the overall supply chain and network within which the port is part. 

Although vessel arrival uncertainty in ports is a well-known problem for the scientific 

community, the literature review highlights that in the maritime sector the specific 

instruments for dealing with this problem are extremely limited. 

The absence of a reference model that specifies the relationship between vessel arrival 

uncertainty and the involved variables resulted in the application of a specific machine 

learning approach within the Knowledge Discovery in Database process. This 



V 

 

approach, that abandons all prior assumptions about data distribution shape, is based 

on the self-learning concept according to which the relation between an outcome 

variable Y and the set of predictors X is directly identified from the historical collected 

data.  

The approach has been validated thanks to two different case studies: the container 

terminal of Cagliari, located in the Mediterranean basin, and one of the main container 

terminals of Antwerp, located at the North Sea.  

Depending on the framework and planning purposes several estimates can provide 

useful information on vessel arrivals. Sometimes, it can be useful for planners to infer 

a quantitative estimate of the delay/advance in minutes, sometimes it may be useful to 

have a qualitative estimate, even only knowing whether or not an incoming vessel is 

likely to arrive before or after the scheduled ETA. For this reason a two-step 

instrument is proposed is made up of two different modules. 

The fitted algorithmic models used to obtain predictions are Logistic Regression, 

CART (Classification and Regression Trees) and Random Forest. All the proposed 

models are able to learn from experience, following the well-known Data Mining 

paradigm “learning from data”. 

From a practical point of view, the probability, associated to the continuous 

estimation, of specifically identifying the work-shift of the incoming vessel is 

calculated. In all predictions Random Forest algorithms still show the best 

performance. This aspect can help planners, in the daily strategy decision making 

process, in order to improve the use of the human, mechanical and spatial resources 

required for handling operations. This could maximise terminal efficiency and 

minimise terminal costs, hence improving terminal competitiveness.  

Moreover, the interpretation of the discovered knowledge, made it possible to evaluate 

the most discriminating variables of the analysis, even thanks to graphical 

visualisation of the Importance-plots. 
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Sommario 

Il terminal marittimo è un sistema complesso, al suo interno si svolgono una 

molteplicità di operazioni che coinvolgono una varietà di risorse che devono interagire 

in un ciclo operativo che abbraccia le intere 24 ore. Il terminalista mira, nella gestione, 

a massimizzare l’efficienza interna del terminal, ovvero a garantire il maggior numero 

di movimentazioni al minor costo possibile. Le attività operative che si svolgono 

all’interno di un terminal sono caratterizzate da un elevato numero di variabili e 

vincoli che contribuiscono ad accresce il livello di complessità: numerosi elementi, 

non sempre facilmente controllabili, possono influenzare la qualità del servizio offerto 

e l’efficienza complessiva del terminal.  

A rendere ulteriormente complesso il lavoro dei Planners e, conseguentemente 

l’efficacia stessa della pianificazione, è il problema dell’incertezza dell’orario di arrivo 

delle navi in porto. Gli operatori di linea sono obbligati da vincoli contrattuali ad 

inviare periodicamente l’ETA (Estimated Time of Arrival), secondo cadenze temporali 

predefinite. Anche l’ultimo ETA inviato è però spesso soggetto ad aggiornamenti e 

modifiche successive, a causa del verificarsi di eventi imprevisti quali condizioni 

meteo-marine avverse, ritardi nelle lavorazioni ai porti precedenti, etc. A livello 

giornaliero permane, dunque, l’incertezza sull’orario di arrivo delle navi in porto. 

Considerata la forte dipendenza dei processi di pianificazione dal flusso informativo in 

ingresso, una migliore gestione dei ritardi e degli anticipi risulta fondamentale per una 

pianificazione più efficiente delle risorse del terminal (umane, spaziali e meccaniche) 

necessarie per le operazioni di movimentazione, in particolare con riferimento al breve 

periodo. Attualmente infatti, in uno scenario di pianificazione giornaliero, le risorse 

sono spesso sovra o sottodimensionate per sovvenire alle caratteristiche d’incertezza 

che caratterizzano gli arrivi.  

L’approccio al problema appare complesso considerato l’elevato numero di variabili e 

vincoli che influenzano il processo, che riguardano principalmente: 

- Struttura del naviglio (lunghezza, pescaggio, stazza lorda, capacità,..); 
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- Servizio effettuato (sailing direction, rotazione dei porti,..); 

- Piano di carico e tipologia di containers; 

- Organizzazione/Disponibilità del porto precedente; 

- Fattori esterni (condizioni meteo-marine, scioperi,..). 

I processi decisionali dedicati a tali funzioni sono, di solito, talmente complessi da 

risultare ingestibili senza il supporto di adeguati strumenti metodologici. L’obiettivo 

generale della presente tesi risiede nello sviluppo di uno strumento di previsione 

dell’orario di arrivo delle navi in un Terminal Container di transhipment, nel breve 

periodo.  

Lo studio dello stato dell’arte e il confronto con gli operatori del settore hanno 

evidenziato, che nonostante gli sviluppi senza precedenti dell’innovazione tecnologica, 

l'incertezza degli arrivi rimane ancora una sfida per i gestori dei porti. Le specifiche 

applicazioni nel settore appaiono fortemente limitate. Per questo motivo l’approccio 

metodologico utilizzato ricade nel campo del Data Mining e più specificamente del 

Machine Learning. L’osservazione del reale andrà a formare la base di conoscenza 

fondata sull’apprendimento dal passato.  

Gli algoritmi impiegati al fine di ottenere una previsione discreta e continua del ritardo 

sono: regressione logistica, CART (Classification and Regression Tree) e Random 

Forest. 

L’approccio utilizzato è stato validato grazie alla sperimentazione condotta su due 

porti di transhipment Europei: il terminal container di Cagliari, situato al centro del 

Mar Mediterraneo, e uno tra gli otto terminal container principali del porto di Anversa, 

situato nel Mare del Nord. 

Lo strumento di previsione proposto si configura come uno strumento di supporto alle 

decisioni degli operatori portuali in grado di fornire risposte analitiche all’incertezza 

delle informazioni sui flussi in ingresso al Terminal.  

Da un punto di vista operativo, conoscere, con almeno 24 ore di anticipo, l’orario 

effettivo di arrivo delle navi in porto permetterebbe una pianificazione più efficiente 
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delle attività giornaliere del terminal. Questo consentirebbe una notevole riduzione dei 

costi e un miglioramento dell’efficienza interna rendendo, quindi, il terminal 

maggiormente competitivo. Più generale, uno strumento di questo tipo consentirebbe 

un miglioramento delle performance dell’intera catena logistica o rete all’interno della 

quale il porto stesso si inserisce.  
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Samenvatting 

Een containerterminal is een complex system waarin een brede waaier aan operaties 

wordt uitgevoerd. Dit houdt een hele lijst van middelen in die met elkaar in 

wisselwerking zijn binnen een werkingscyclus van 24 uur. Aangezien de verschillende 

activiteiten onderling met elkaar gerelateerd zijn, is het nodig om niet enkel de 

efficiëntie van elke activiteit te maximaliseren, maar ook de geschikte coördinatie te 

verzekeren en dus geïntegreerde beslissingsproblemen op te lossen. Meerdere factoren 

kunnen de kwaliteit van de aangeboden diensten en globale efficiëntie beïnvloeden. 

De aankomstonzekerheid van schepen maakt de taak van de planners nog moeilijker 

en dus ook de effectiviteit van de planning zelf, in het bijzonder op operationeel 

niveau. Elke aankomst produceert sterke piekbelastingen voor andere 

terminalactiviteiten, alsook voor de ondersteunende aankomstactiviteiten (loods- en 

sleepdiensten, etc.) en het hinterlandtransport ( wachttijden, congestie, etc.). 

Afwijkende aankomsten maken deze piekbelasting alleen nog maar erger. 

Op dagelijks niveau wijkt de werkelijke aankomsttijd van de schepen vaak af van de 

geplande tijd. Ondanks contractuele verplichtingen om de verwachte aankomsttijd 

(ETA) tenminste 24 uur voor de aankomst te melden, moeten scheepsoperatoren de 

laatste ETA vaak aanpassen en updaten omwille van onverwachte omstandigheden. 

Dit aspect resulteert in een verandering van de plannen voor de terminaloperaties op 

het laatste moment, wat resulteert in hogere kosten. Het vermogen om de werkelijke 

aankomsttijd van een schip in de haven 24 uur op voorhand te voorspellen, is in feite 

fundamenteel voor de gerelateerde planningsactiviteiten waarvoor de 

beslissingsprocessen constant moeten worden aangepast en geüpdatet.  

Hoewel de aankomstonzekerheid van een schip in de haven een bekend probleem is 

voor de wetenschappelijke gemeenschap, benadrukt het literatuuronderzoek dat de 

specifieke instrumenten om dit probleem aan te pakken extreem beperkt zijn in de 

maritieme sector. 
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De afwezigheid van een referentiemodel dat de relatie tussen de aankomstonzekerheid 

van een schip en de betrokken variabelen specificeert, resulteerde in de toepassing van 

een specifieke machine learning benadering in het Knowledge Discovery in Database 

proces. Deze benadering, die afstand doet van alle voorgaande assumpties over de 

verdelingsvorm van de data, is gebaseerd op het self-learning concept volgens 

hetwelke de relatie tussen een afhankelijke variabele Y en de set onafhankelijke 

variabelen X direct geïdentificeerd wordt uit de historisch verzamelde data. 

De benadering werd gevalideerd door twee verschillende gevalstudies: de 

containerterminal van Cagliari, gelegen in het Middellandse Zeebekken, en een van de 

belangrijkste containerterminals van Antwerpen, gelegen aan de Noordzee. 

Het voorgestelde twee-stappen instrument is opgesteld door twee verschillende 

gerelateerde modules: 

- de discrete-schatting module die een kwalitatieve evaluatie van de 

aankomstonzekerheid van de schepen aanlevert; 

- de continue-schatting module die een kwantitatieve evaluatie van de vertraging/ 

het te vroeg aankomen aanlevert in minuten. 

De gepaste algoritmische modellen gebruikt om voorspellingen te verkrijgen, zijn 

logistische regressie, CART (classificatie en regressiebomen) en Random Forest. Alle 

voorgestelde modellen kunnen leren door ervaring, volgens het welbekende Data 

Mining paradigma “learning from data”. 

Het voorgestelde instrument kan planners helpen in hun dagelijks strategisch 

beslissingsproces en zo het gebruik van menselijke, mechanische en ruimtelijke 

middelen nodig voor de afhandelingsoperaties verbeteren. Dit kan de 

terminalefficiëntie maximaliseren en de terminalkosten minimaliseren, waardoor de 

concurrentiekracht van de terminal gemaximaliseerd wordt.  
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CHAPTER 1: Introduction  

The general research topic of this study is the assessment of the competitive conditions 

of the container liner shipping industry. This introductory chapter explains the purpose 

and the methodology of this research. It is divided into four parts. Subsequently, the 

container liner shipping industry, some forms of cooperation, two anti-trust regulations 

as well as the conceptual framework of this study will be presented. 

 

1.1 Research area 

In the last few decades, the expansion of trade areas, resulting from the process of 

globalisation and from the reinforcement of the world economy, has heightened the 

need to move freight and information faster and more economically. Maritime 

transport with the unitisation of cargo is an effective means of meeting these needs. 

The introduction of the container and the consequent development of intermodality 

have allowed the considerable reduction in transportation costs and the increase of 

transcontinental cargo flows (Woodburn et al., 2008, Kumar and Hoffmann, 2002).  

Today, around 80% of global trade by volume and over 70% by value is carried by sea 

and is handled by ports worldwide (Thana, 2013). In particular, international sea-

freight container transportation has grown exponentially, and nowadays container 

terminals represent a key player in the global shipping network. 

Figure 1.1 shows the global container trade from 1996 to 2013. The trend underlines a 

decrease in 2008 and 2009 due to the crisis that has affected the world’s largest 

economies with major repercussions on the shipping sector. In 2011, world container 

port throughput increased by an estimated 5.9% to 572.8 million 20-foot equivalent 

units (TEUs), its highest level ever (UNCDAD 2012). 
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Figure 1.1: Global container trade, 1996- 2013 

 

Source: UNCDAD 2012 

Since 2011, the European market was one of the largest in terms of handled 

containers, amounting to 741,28 million tonnes in 2011 (own calculations based on 

data from the European Commission). The EU27 freight container transport 

performance in 2011 reached a level which is more than 7% greater than in 2007, i.e., 

before the global economic crisis (Figure 1.2). This huge amount of traffic means that 

port infrastructures need to be continually upgraded to ensure efficient transfer of 

containers within the world global transportation network. 

Figure 1.2: EU27 freight container transport performance from 2007 to 2012 

 
Source: European Commission, 2012 
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Furthermore, the trend towards gigantism and the prevalent hub & spoke policy are 

bringing about changes in the international container market (Coulter, 2002). Traffic is 

being concentrated into hub ports of appropriate size and infrastructure that are able to 

accommodate mega containerships and terminal managers are having to deal with 

increasing competitiveness among terminals (Tongzon and Heng, 2005; Heaver et al., 

2001). Hub ports are changing their role not only as individual places that handle 

vessels but also within supply chains and networks therefore they aim to maximise 

network functioning and effects.  

For the reasons mentioned above, competition among ports has become more and 

more complex and dynamic (Notteboom, 2012). In particular, with reference to the 

European context, Mediterranean and North European hub ports compete to increase 

their traffic travelling from the Far East and the Eastern shore of the Pacific Ocean to 

Europe.  

The efficiency of container handling operations can significantly affect terminal 

competitiveness (Tongzon and Heng, 2005, Vanelslander, 2005) and the 

competitiveness of the entire container supply chain (Sciomachen et al., 2009 

Notteboom and Rodrigue, 2008). In addition, port technology, geographical position 

and terminal structure are the result of strategic decisions and hence cannot be altered 

in the short-medium term. At the tactical and operational levels however, it is possible 

to adopt methodologies for the optimal management of a terminal's resources and the 

logistics processes involved. 

Therefore, this research is a step towards better understanding the needs of terminal 

operators in a daily planning scenario and to develop specific instruments able to 

support planners in the short-term planning activities. 

1.2 Rationale of the study 

 

1.2.1 The problem setting 

A container terminal is a complex system where a broad range of operations are 

carried out involving a wide array of resources that need to interact over a 24 hour 
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operating cycle. Since the various activities are mutually related to each other, there is 

a need not only to maximise the efficiency of each one, but also to ensure proper 

coordination, hence to solve integrated decision-making problems (Salido et al., 2011, 

Won and Kim, 2009, Murty et al., 2005). Several factors, that are not always easy to 

control, can affect the quality of the services provided and the overall efficiency.  

Vessel arrival uncertainty strongly complicates the task of the planners and, as a result, 

of the effectiveness of the planning itself, in particular at the operational level. On a 

daily level, the actual time of arrival of the vessels often deviates from the scheduled 

time. Despite contractual obligations to notify the Estimated Time of Arrival (ETA) at 

least 24 hours before the arrival, ship operators often have to update the latest ETA 

due to unexpected circumstances. This aspect requires several last-minute change of 

plans in terminal operations, for which the decision-making processes need to be 

constantly adapted, resulting in higher costs.  

Although vessel arrival uncertainty in port is a well known problem for the scientific 

community, the literature review highlights that in the maritime sector the specific 

instruments for dealing with this problem are extremely limited. 

Therefore, the purpose of this research is to identify a specific approach that can 

provide, at least 24 hours in advance, reliable estimates on vessel arrivals in order to 

support port managers in short-term planning activities. At the terminal level, 

information on vessel arrival time would facilitate the allocation of the human, 

mechanical and spatial resources required for handling operations. To date, this task 

has been delegated to the planners, i.e., professionals who operate mainly on the basis 

of hands-on experience. The decision-making processes that are involved are often so 

complex as to be unmanageable without the support of adequate methodological 

instruments. The problem solution approach appear extremely complex, considering 

the large number of variables and constraints involved. They are related in particular 

to: 

- Vessel structure; 

- Vessel service; 
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- Vessel owner; 

- Organisation/availability of previous port; 

- Loading plan and type of containers to be loaded/unloaded; 

- Weather/sea conditions; 

- External factors (strikes, breakdowns, etc.); 

- Human resources management (contractual obligations, labor regulations, etc.); 

- Equipment management (repairs, out of service for maintenance, etc.); 

- Space management (berth space and relative distance from the stacked 

containers). 

 

1.2.2 Research objectives 

The general objective of this study is to develop a forecasting instrument that can 

provide reliable information of vessel arrival times in Container Terminals in order to 

support port managers in the daily strategy decision process. 

This general objective leads to a series of specific and operational objectives.  

A first objective of the study is to identify the methodological approaches that can best 

provide analytical and objective answers to the vessel arrival uncertainty problem.  

After defining the approach, a second important goal of the research is to determine 

the algorithm(s) to be used in order to handle late/early arrival times. This may help 

planners to allocate, with greater certainty, all the human, mechanical and spatial 

resources required for handling operations, that are often under/overestimated at the 

planning stage.  

Furthermore, a third purpose is to build a general instrument that can be used in 

various contexts by planners, on the basis of their experience.  

Therefore, this specific research uses two case studies: the terminal container of 

Cagliari and the terminal container of Antwerp, located in the Mediterranean basin and 

in the North Sea respectively. The different characteristics of the phenomenon under 
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study in the two European terminals were crucial in order to expand and generalise the 

conclusions.  

From an operational point of view the main objective of this work is to increase the 

probability of specifically identifying the work-shift the incoming vessel will fall 

within. This will reduce terminal operating costs while improving terminal efficiency 

and hence increasing terminal competitiveness. 

 

1.3 Methodological approach  

The basic idea of the study is to find a statistical approach that allows to make 

predictions of vessel arrivals in container terminals using a set of collected predictors 

that may affect vessel delay or advance. The study of the scientific literature showed 

that there is no reference model specifying the relationship between the delay/advance 

of vessels and the variables that are involved. For this reason, the basic idea of the 

research is to explore the phenomenon by collecting all the variables that may 

potentially influence late/early arrivals in port and then by assessing their predictive 

power. This last aspect required defining the methodological algorithms that are able 

to extract information on the delay/advance of future arrivals using historical data on 

previous arrivals. 

Thus, the methodological approach taken falls into the Knowledge Discovery and Data 

Mining interdisciplinary area that focuses upon methodologies for extracting useful 

knowledge from data. In particular, Data Mining is one step within the Knowledge 

Discovery in Database (KDD) process (Figure 1.3) that allows to extract not known 

information from a data set and transform it into an understandable structure for 

further application. 
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- Random Forest. 

The algorithmic models were built thanks to two different case studies. Considering 

the different characteristics of the outcome distribution in the two cases, the goodness 

of fit of the models was tested and the main variables influencing the process were 

identified. Final models were evaluated considering both goodness of fit and 

interpretability of the results. 

 

1.4 Research structure 

The structure of this dissertation is shown in Figure 1.4.  

Chapter 1 introduces some general remarks as well as the research setting, the 

purpose of the research, the main objectives and the methodological approach that was 

taken. 

The main characteristics of a container terminal system are briefly described in 

Chapter 2 in an effort to highlight the complexity of the processes and operations 

involved therein on an operational level. The first part focuses on the general layout of 

a terminal container and the equipment that is employed. The second part briefly 

describes the main scheduling decisions that planners have to make for each incoming 

vessel.  

Chapter 3 describes the problem of vessel arrival uncertainty in container terminals. 

The literature review focuses on three main goals: the first one is to define the problem 

and to understand how the scientific community addresses it. The second one is to 

highlight how the problem affects all terminal decisions associated with both the main 

planning activities and with the allocation of available resources. The third one is to 

identify a specific methodological approach in order to obtain accurate forecasts. 

Chapter 4 provides a theoretical overview of the machine learning algorithms adopted 

in the KDD approach for estimating, in qualitative and quantitative terms, the 

late/early arrival of ships in the container terminals. Special attention is paid to the 
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logistic regression algorithm as well as to the CART (Classification and Regression 

Trees) algorithm and the Random Forest algorithm.  

Chapter 5 and Chapter 6 analyse the case studies in detail. Chapter 5 describes the 

case of Cagliari, a Mediterranean transhipment container terminal, while Chapter 6 

concerns a transhipment container terminal in the North Sea (Antwerp). In both cases, 

the results regarding the discrete and the continuous estimate of vessel arrival are 

presented. The two sections are presented in sub-sections according to the main steps 

within the KDD approach that is used. Firstly, the chapters describe the examined 

ports, the collected data and the main characteristics of the available variables. Then 

the various phases involved in model application are addressed and the main results 

are discussed. Finally, the two applications are compared. 

The Conclusions are presented in Chapter 7, which is the final chapter. Contributions 

and practical implications of the research are highlighted and future developments are 

proposed. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Research structure 

 

 

10 

 



11 

 

2 CHAPTER 2: Container terminal system 

The main aim of this descriptive chapter is to underline the main characteristics of a 

container terminal system and to emphasise the decisive role that vessel arrival time 

plays in terminal organisation, in particular in a daily planning scenario.  

 

2.1 Introduction 

A container terminal can be described in general terms as a dynamic system where a 

variety of handling operations is carried out for moving containers arriving and 

leaving the terminal by different transport modes, e.g. by ship, truck or train.  

Container terminals can be classified as regional terminals or transhipment terminals, 

depending on the main type of service they provide. Regional terminals are terminals 

where freight arrives and is sorted according to mode of inland transport system. Thus, 

they are usually situated in strategic positions with respect to the important 

consumption areas. On the other hand, the main function of a hub terminal is to 

accommodate the larger container vessels that normally provide transoceanic services. 

The cargo is then loaded onto feeder vessels that are employed for short-sea shipping 

for delivery to the local market. An important aspect to be considered is that different 

vessel sizes imply different container-handling costs and organisation in the terminals. 

In the last few years the share of transhipments with regard to the totality of maritime 

containerised traffic has grown significantly. By using an intermediate hub terminal in 

conjunction with short sea shipping services, it is possible to reduce the number of 

port calls and increase the throughput of the port calls left. Maritime shipping 

companies also elect for transhipment as a way to use their networks more rationally. 

One important factor for determining the type of service generally provided by a 

container terminal is its geographical position, which makes it more or less 

strategically attractive for a specific function.  

Summing up, both regional and hub terminals handle containers: 
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- arriving by ship that continue their journey inland; 

- arriving overland that continue their journey by ship; 

- arriving by ship that use the terminal as a sorting point for onward transportation 

by other ships. 

 

2.2 General layout and Technical Equipment 

The layout of a container terminal consists of four main sub-systems (Figure 2.1) 

(Brinkmann, 2011, Gunter and Kim, 2006, Steenken et al., 2004): 

1. the seaside area where containers are loaded and unloaded onto/from vessels; 

2. the yard area (or stacking area) for storing the containers; 

3. the landside area where containers are loaded and unloaded onto/off the trucks 

and trains; 

4. the cargo handling system, that connects seaside and landside areas to the yard. 

The handling system consists of a variety of equipment for moving containers 

inside the terminal. 

The yard area is usually divided into different blocks which are differentiated into 

rows, bays and tiers. Some yard areas are given over to special types of containers 

such as reefer containers, that require power supply, containers carrying dangerous 

goods or containers of non-standard size that cannot be stacked in the normal way. The 

terminal can also include other areas like parking, office buildings, customs facilities, 

container freight station with an area for stuffing and stripping containers, empty 

container storage, container maintenance and repair areas, etc. 
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To achieve a high level of service, terminal operators constantly seek out different 

strategies that are able to enhance port productivity (Soberon, 2012), particularly in 

terms of: 

- capacity, both physical (availability of space, length of berth,..) and operational 

(congestion); 

- efficiency of equipment and operators’ skills; 

- level of technology adopted in handling equipment and information 

management. 

Figure 2.8: The key factors in port performance  

 

Source: Ferraro, 2006 

Over the last twenty years, in response to the increasingly frequent requests by 

terminal operators having to continually cope with new and complex problems, a 

variety of statistical, simulation and information tools have been devised and tested. 

These have been successfully implemented in operations planning and management 

in numerous terminals, thereby increasing productivity significantly (Steenken et 

al., 2004). 



19 

 

Efficient scheduling of activities plays a decisive role in enhancing efficiency 

within a port terminal. The support of advanced instruments is now becoming 

indispensable for providing high quality services that allow terminals to reduce 

their operating costs and to maintain or enhance their productivity targets (Steenken 

et al., 2004; Vis and de Koster, 2003). 

 

2.4 Main planning activities 

Three different levels can be identified within the planning process of a container 

terminal: strategic, tactical and operational levels. These differ both as to the type of 

decision to be made and to the time horizon that is covered (Ghiano e Musmanno, 

2000).  

The strategic level refers to long-term decisions. Decision making at the strategic level 

mainly concerns the infrastructural (layout, handling equipment, berth and yard 

capacity,..) and economic (contracts with shipping lines,..) aspects of the terminal. The 

time horizon for decisions that are made at the strategic level may involve several 

years. These decisions lead to the definition of a set of constraints under which the 

decisions at the tactical and operational levels have to be made. 

The tactical level refers to medium-term decisions and involves berth and yard 

operations planning. The time horizon in this case usually covers a one-month period.  

The operational level refers to short-term decisions and involves the decisions 

pertaining to quayside and landside operations, on the basis of choices made at the 

tactical level. The operational planning involves more detailed manpower and 

equipment allocation with a view to maximising productivity while minimising costs. 

The time horizon is around 24 hours. 

The research that was carried out refers to the operational level, where the decisions 

that are made have a very short term impact. The major decision-making problems 

involved for each incoming vessel are summarised as follows (Table 2.1): 
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Table 2.1: The main decision-making problems in Container Terminals 

 General Layout 

Strategic 

level 
Berth dimensioning 

Quay crane  

selection 

Handling equipment 

selection 

Yard crane 

selection 

Tactical  

level 

Berth allocation and 

scheduling 
Crane assignment 

Transport vehicles 

assignment 

Storage and 

stacking 

policies 

Operational 

level 

Stowage planning 

Crane scheduling 

Routing and 

scheduling of 

vehicles 

Block 

scheduling 

 Berth allocation Loading/Unloading Internal Transport Yard stacking 

Comprehensive overviews of the main decision making issues at container terminals 

are described by Bierwirth and Meisel (2010), Stahlbock and Voß (2008), Vacca et al. 

(2007), Steenken et al. (2004), Vis and de Koster (2003). 

This descriptive chapter has been developed in order to emphasise and underline the 

complexity of the main processes directly related to each arrival. Moreover, each 

arrival produces high peak loads for other terminal activities as well as for support 

activities upon arrival and hinterland transportation, in particular at the operational 

level. 

 

2.4.1 Berth planning  

The berth planning process is the process whereby berths and processing times are 

assigned to vessels arriving in port to be loaded/unloaded.  

The purpose of the berth allocation is to optimise the berth utilisation and to minimise 

the total vessel turnaround time, reducing the distance of each container from its 

origin/destination parks in the yard as much as possible. Since the arrival of vessels in 

a container terminal follows a predetermined cycle, it is possible to plan berth 

allocation over the medium-term period.  
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2.4.2 Loading/unloading operations 

The ship loading/unloading process can essentially be considered as being made up of 

various sub-processes: stowage planning, quay crane assignment and quay crane 

scheduling. 

When the vessel is berthed, at the tactical level the number of QCs required to 

simultaneously load/unload the ship has to be determined. While, at the operational 

level, once the stowage plan has been drawn up, the next step is to efficiently 

coordinate the QC operations and to distribute the workload among them in order to 

reduce the amount of time required to complete handling operations. Despite being an 

operational issue, the stowage plan is drawn up by both the shipping company and the 

vessel planner. From the terminal operator's point of view, the objectives to be 

optimised differ significantly from those of the shipping company. In fact, while the 

aim of the shipping company is to maximise capacity utilisation while minimising the 

number of movements required for loading/unloading the containers in ports, the aim 

of the terminal operator is to complete the loading/unloading process as quickly as 

possible. A number of operational constraints have to be observed during this process. 

 

2.4.3 Transport of containers 

Organising the internal transport of containers is a rather complex process. The 

horizontal transport vehicles have to be synchronised with the cranes. The type of 

vehicle to be used is a strategic decision and depends on yard configuration. At the 

tactical level, the decision to be made concerns the number of vehicles that are 

required. At the operational the vehicle routing and scheduling needs to be decided.  

Horizontal transport vehicles can be allocated in different ways. One solution consists 

in assigning to each quay crane a predetermined number of vehicles, that operate 

synchronously with the crane. However, this solution presents two major 

disadvantages. The first is that crane and vehicle productivity are closely related: any 

pauses in crane operation will necessarily slow down  the vehicles assigned thereto 

and vice-versa. The second concerns the travel time of each vehicle. Every time a 

vehicle moves with a full load, it has to return empty in the opposite direction. An 
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alternative solution consists in allocating a group of vehicles to two or more adjacent 

cranes, performing both loading and unloading operations, thereby substantially 

reducing the number of empty journeys. 

 

2.4.4 Yard stacking 

The yard may reasonably be considered the heart of the container terminal. The 

problems involved in yard management differ depending on the type of container 

traffic and on how the yard is set up. Depending on operating requirements, the yard is 

usually divided up into different areas. Each area is split up into blocks and each block 

is arranged by bay, row and tier.  

Storage and stacking policies are determined at the tactical level, while at the 

operational level the decisions involve determining the specific place in the storage 

area for each container and the specific number of Yard Cranes that are needed in 

order to ensure an efficient storage process. 

Before loading the containers on board the vessels, they can be transferred to the 

quayside, in accordance with the stowage plan. Repositioning containers in different 

yard areas is known as housekeeping operations. Although these operations are not 

carried out during peak workloads, they are nonetheless time consuming and labor 

intensive.  

At the tactical level, yard areas can be set up in two different ways: either by assigning 

a specific area to a specific ship or alternatively by assigning each berth its own yard 

area.  

 

2.5 Operations centre 

All the operations conducted within a container terminal are set up and 

controlled in real time by the Operations Centre, under the supervision and 

coordination of the Planning Managers. The work conducted in each office of 

the Operations Center is closely related and the offices exchange information on 

the basis of variable schemes. 
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In order to schedule operations, the shipping company must provide information 

for each vessel arriving in port. A documentation office exists for maintaining 

customer contacts and its work consists in gathering the necessary information 

and passing it on to the competent offices in the Operations Center to ensure the 

functional organisation of the seaside, yard and landside areas. 

In particular, the most important information that has to be received is the vessel 

Estimated Time of Arrival (ETA) in port within the port rotation schedule. This 

information is updated several times before the vessel arrival date and the 

reliability of the information improves as the arrival date approaches.  

The other main information that is acquired consists in:  

- the BAPLIE, which provides the characteristics of the containers on-board, 

indicating the ones that need to be unloaded, the ones that are to remain on 

board and the ones that have to be restowed;  

- the inbound COPRAR, which contains the BAPLIE as well as the final 

destination of the containers to be unloaded the next port of call and the ship 

they are to be loaded onto; 

- the outbound COPRAR, which contains the container load list for outbound 

vessels; 

- the MOVINS that contains the loading instructions. 

The submission times of the above documentation differ depending on the services 

that are requested. Once this information has been received, the relevant planning 

decisions can be made by the competent offices.  

The following graph summarises the offices that are responsible for planning 

(Figure 2.9). 
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times. Because of the uncertainty of arrivals in the medium period, the schedule for 

each day assigns “fixed” gangs to one specific shift and “flexible” gangs to a shift to 

be decided during daily scheduling once the actual time of arrival has been determined 

with greater certainty. Contractual terms for flexible shifts specify that a flexible 

worker will be assigned to a shift with only 24 hours notice. In the event demand 

requires additional manpower, then external workers can be hired. The cost of the 

gang differs depending on the specific working shift, for example shifts at night and on 

Sundays are more expensive. Since the cost of hiring external manpower is high, it 

should be avoided as much as possible. The operation managers as well as the control 

room operators may decide to increase those resources when necessary. 

 

2.7  Importance of reliable vessel arrival time 

As can be seen from the above description, the various levels of planning suffer from 

the same critical issues: 

- temporal fragmentation and uncertainty of received information  

Information is received at different, undefined times and has to be continuously 

updated; thus the information is uncertain.  

- complexity of the planning processes  

A multitude of decisions have to be made, with different though closely 

interconnected characteristics. This means that a large number of variables and 

constraints have to be taken into account.  

Vessel arrival uncertainty plays a decisive role in terminal organisation. To know in 

advance the effective time of vessel arrival in port with greater precision would allow 

terminal operators to assign all the resources required for handling operations more 

accurately, avoiding under/over manning at the planning stage. This is especially 

important in short term forecasting, the most crucial time period for successful 

management in terminal operations (Fadda et. al., 2014, Fancello et al., 2011).  

Moreover, disruptions in container flows and operations caused by vessel arrival 

uncertainty can have cascade effects within the overall supply chain within which the 
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port is part. The unreliability of vessel arrival time can affect both hinterland transport 

and logistics costs (Chung and Chiang, 2011) due to the high correlation among the 

various segments of the chain (Sciomachen et al., 2009, Wang and Cullinane, 2006). 

This aspect can incur additional operating costs for the shipping lines related to 

unproductive vessel time and the rescheduling of vessel operations (Vernimmen, 

2007). Furthermore, additional logistics costs to the customers can be mainly caused 

due to additional inventory and production costs resulting from, for exemple, a late 

delivery of materials (Notteboom and Rodrigue, 2008, Notteboom, 2006). 

From the above considerations, knowing the actual time of vessel arrival in port in 

advance would substantially reduce operating costs while enhance the efficiency of the 

services that are provided. Lower operating costs combined with increased 

productivity would enhance the competitiveness of the terminal and the supply chain 

as a whole. 
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3 CHAPTER 3: The vessel arrival uncertainty problem 

This Chapter describes how the scientific community addresses the problem of vessel 

arrival uncertainty in container terminals. Although it is a recognised problem in the 

maritime sector, there are no reference models that provide planners with objective 

and analytical answers. Therefore, one of the specific aims of the study is to find a 

methodological approach that may help fill this gap in the literature. 

 

3.1 Introduction 

The analysis of the scientific literature confirmed that a container terminal is a 

complex system in which a variety of different complicated, inter-related problems 

coexist, most of which require integrated solutions. Thus, the solution to one problem 

often becomes decisive for the other problems related thereto (Salido et al., 2011, Won 

and Kim, 2009, Murty et al., 2005). The issues discussed in the previous chapters 

show that the main planning processes depend strongly on vessel arrival, the first of 

the five major logistic processes in container terminals (Stahlbock and Vob, 2008, Vis 

and De Koster, 2003) (Figure 3.1). 

Figure 3.1: Major logistic processes container terminals 

 

Source: based upon Salido et al., 2011, p. 5. 
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On a daily basis the actual time of arrival remains uncertain. Shipping lines are 

contractually bound to notify their Estimated time of Arrival (ETA) at predetermined 

time intervals. The operator, agent or master of a ship shall notify to the port authority 

the last ETA at the port of destination or pilot station
1
: 

- at least twenty-four hours in advance or; 

- at latest, at the time the ship leaves the previous port, if the voyage time is less 

than twenty-four hours; 

- if the port of call is not known or it is changed during the voyage, as soon as this 

information is available. 

Despite contractual obligations, ship operators often cannot comply with the declared 

last ETA and they have to update it due to unforeseen circumstances. Vessels that 

serve a specific service may arrive in port at different times from week to week due to 

unexpected events like weather or sea conditions, waiting times or delays that may 

have occurred in the previous port, and so on. Thus, in the short-term planning 

scenario, the uncertainty surrounding vessel arrival time in port persists. The actual 

times of vessel arrival in port are extremely uncertain: only half of the vessels arrive 

on time and many vessels do not arrive on the scheduled day (Drewry Shipping 

Consultants, 2008). This aspect strongly affects the number of ships that may have to 

be handled/operated concurrently. Moreover, each arrival produces high peak loads for 

other terminal activities as well as for support activities upon arrival (pilotage, towage, 

etc.) and hinterland transportation (ensuing waiting time , congestion etc.). Deviating 

arrivals can only exacerbate this peak load. 

However, some ports are equipped with information systems that indicate the position 

of the incoming vessel in real time. It can be useful for port operators to have 

instruments that provide reliable information about vessel arrival some time in 

advance. Thus, the instruments can support planners in a daily planning scenario by 

allowing them flexibility when making decisions regarding terminal operations 

management.  

                                                           
1
 article 4 of the Directive 2002/59/EC of the European Parliament and of the Council of 27 

June 2002. 
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To date, this task has been assigned to the planners that operate mainly on the basis of 

their personal experience. However, for planners it is difficult to manage the vessel 

arrival uncertainty problem, in particular because many variables and constraints can 

affect the process. The main factors which may affect arrival time can be summarised 

as follows:  

- Vessel features: length, draft, gross tonnage, capacity, etc.; 

- Vessel service: sailing direction, port rotation, etc.; 

- Organisation of previous port: congestion, distance from the port of interest; 

- Vessel owner; 

- Type of containers to be loaded/unloaded; 

- Weather conditions; 

- External factors like strikes, breakdowns, etc. 

Thus, although vessel arrival uncertainty in port is a well known problem for port 

operators and for the scientific community, the specific instruments for dealing with 

this problem are highly limited and there is no standard definition or way to measure 

vessel delay/advance in ports. 

This problem was raised by Fancello et al. (2011). They presented a decision support 

system for supporting port operators in day to day management that was made up of 

two different modules: a forecasting module and a human resources optimisation 

module. Using a neural network algorithm, the first module faces the problem of 

handle late arrivals in a Mediterranean port.  

The nearest contributions in the maritime sector concern the estimates of container 

throughput in a daily time horizon in order to provide reliable input data for correctly 

scheduling handling operations. Gambardella et al. (1996) proposed a forecasting 

module for estimating the daily container flow in and out of a terminal container, 

which combines two different estimators. The first predicts the number of expected 

containers to be loaded onto a ship due to arrive in port, based on past data. The 

second calculates the percentage of the total number of containers expected to enter 

the terminal by truck, as a function of time till the ship’s ETA. Sideris et al. (2002) 
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developed a tool for predicting daily demand variations in terms of the number of 

containers that are moved through a terminal. In particular, they developed a static 

modelling approach in order to estimate the daily percentages of container movements. 

They built two different models in order to calculate the percentage of the total 

import/export container arrivals/departures on a specific day. With the first model they 

considered historical data based on the previous arrivals/departures, while with the 

second model they readjusted the estimate, using on-line information regarding the 

progress of the arrival/departure process in the terminal. Chou et al. (2008) proposed a 

regression model for forecasting volumes of Taiwan’s import containers, and Chen 

and Chen (2010) attempted to forecast container throughputs at Taiwan’s major ports 

using genetic programming. 

 

3.2 Related planning activities 

Vessel arrival uncertainty may, for instance, require additional handling operations 

within the terminal. Therefore, the problem is commonly studied in conjunction with 

the related processes. Knowing the possible deviation from the scheduled arrival time 

in advance can be important for planners in order to more efficiently allocate the 

manpower, equipment and spatial resources required to carry out handling operations. 

The main risk for planners is underestimating the resources. However, over-estimation 

within any given working period is also to be avoided since it would result in higher 

costs for the terminal. 

A review of the literature highlighted that punctuality of the vessel’s arrival commonly 

effects: 

- Berth scheduling; 

- Human resources and equipment allocation; 

- Yard planning. 

 

 

 



31 

 

3.2.1 Berth scheduling process 

In general, berth spaces are allocated so as to reduce vessel loading/unloading times 

and the distance from the origin/destination container areas in the yard. Often, in the 

event of ship delay, as the containers to be loaded onto the vessel have already been 

moved to the stacking yard, a remarshaling plan is needed to minimise berthing time 

(Zhen et al., 2011, Salido et al., 2011). 

Moorthy and Teo (2006) published one of the earliest studies on berth plan template 

associated with vessel arrival uncertainty. They propose a sequence pair based 

simulated annealing algorithm to solve the problem. The results they obtained show 

that the proposed methodology is able to construct an efficient template for 

transshipment hub operations. Du et al. (2010) extended Moorthy and Teo’s solution 

method and introduced a feedback procedure to the berth allocation problem with 

stochastic vessel delays. In this procedure earlier iterations generate feedback to the 

model to adjust the time buffers for the future iterations.  

Hendriks et al. (2010) studied the berth plan template problem jointly with the quay 

crane reservation problem. They assume that the number of reserved quay cranes for a 

vessel is a function of the punctuality of the vessel’s arrival, and further assume that 

the number of reserved quay cranes is proportional to the cost of operating the berth. 

They propose a mixed integer linear program in order to identify a robust berth plan 

that minimises the crane reservation. Han et al. (2010) considered vessel uncertainty to 

berth assignment and quay crane sequencing problems simultaneously, and developed 

a stochastic mixed integer program. They then solved it with a genetic algorithm. 

Zhen et al. (2011) developed a two stage model to solve the berth allocation problem 

under uncertain arrival time. The aim of the study was to calculate the cost associated 

with the initial schedule and the expected costs of deviation from the initial schedule 

due to late arrivals. Moreover, depending on the contract with the liner, the yard may 

start receiving export containers for a vessel more than one week before the vessel 

arrival. One of the main goals in berth planning is to ensure that the location of 

containers in the yard is as close as possible to the berth location. When vessels that 

were scheduled to use the same berth have an overlap (because one of them or both 
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did not arrive at the expected time) there is a berth conflict: the berth location becomes 

dependent on the arrival time (Bruggeling et al., 2011) 

Ambrosino and Tanfani (2012) used an integrated simulation-optimisation approach to 

solve the Quay Crane Assignment problem and the Quay Crane Scheduling problem 

on the operational level. They use an optimisation model to assign the number of quay 

cranes to the various bays of each ship served by the terminal for each work-shift. The 

results of this first model are used as input for a simulation model that is able to 

reproduce the system’s behavior. The developed model is able to consider some 

causes of variability in the system including unplanned delays. 

 

3.2.2 Human resources and equipment allocation 

It is also important to manage vessel arrival uncertainty in order to determine the 

number of workers required for handling operations (Di Francesco et al., 2013, 

Gambardella et al., 1998). This is a major issue in a port system where the cost of 

manpower is high. In general, mid-term scheduling ensures a gang is available for 

each working day, in conformity with shift arrangements as well as contractual 

obligations and labor regulations. Because of the uncertainty of arrivals in that period, 

the schedule for each day assigns “fixed” workers to one specific shift and “flexible” 

workers to a shift to be decided during the short-term scheduling i.e., once the arrivals 

time are known with greater certainty. Contractual terms for flexible shifts specify that 

a flexible worker will be assigned to a shift with only 24 hours advance notice. 

Sometimes it is also possible to activate additional contracts with external workers or 

to assign a worker two consecutive shifts within the same day. A “double” shift can be 

assigned once or at most twice a week. The additional shift is assigned within the daily 

scheduling (Fancello et al., 2011, Legato and Monaco, 2004). Thus, the authors 

underline that the main difficulty in the daily planning process comes from the 

inherent and unavoidable uncertainty of workforce demand due to uncertainty in 

arrival times.  

Moreover, it is important to know the effective arrival time of vessels in order to 

optimise equipment management for handling operations and for establishing 
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maintenance schedules. This aspect is essential for ensuring the availability and 

functionality of the handling systems that are used (Fancello et al., 2010). 

 

3.2.3 Yard planning process 

The uncertainty of the vessel arrival schedule is one of the main factors that may 

impact the efficiency of yard operations. This is why it is also studied in conjunction 

with the yard planning process. One problem that may arise when a vessel is late is 

that a transshipment link can broken: containers scheduled to be unloaded and then 

loaded onto another vessel may be stocked in the yard because the other vessel has 

already departed. Thus, the yard space that was supposed to be free will be occupied 

for a longer time. Moreover, when the vessels do not arrive at the expected time, there 

is a chance  that two vessels will be close to each other, and they have to handle the 

containers simultaneously (Bruggeling et al., 2011). Terminal operators can then 

choose to de-conflict by moving some of the containers to another location before the 

arrival of the vessels, but that will mean incurring extra costs. However, if they are not 

moved, it will result in a concentration of activities and likely contention for yard 

cranes.  

The first paper that directly addresses the yard planning problem with respect to vessel 

arrival uncertainty was written by Ku at al. (2012). They found a yard template that 

can be modified in the event of changes in service arrival schedule. Many container 

terminals adopt the yard planning strategy whereby containers to be loaded onto the 

same vessels are stacked in groups. Due to this consolidated strategy, a change in 

vessel arrival schedule may cause congestion of trucks at yard locations where groups 

of containers in the vicinity are loading simultaneously.  

In conclusion, the state-of-the-art and the discussions with planners showed that 

although it is a recognised problem in the maritime sector, vessel arrival uncertainty 

still remain a challenge for port operators.  

However, in recent years, arrival uncertainty has been the topic of several studies in 

the air transport sector. 
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3.3 Arrival uncertainty in the air transport sector 

Flight delays at airports have become a very common problem. In particular, a number 

of empirical studies on this topic were carried out by several authors in order to 

identify the causes behind flight delays in the U.S. National Airspace System (NAS). 

Aircraft delay is defined as the difference between the Estimated and the actual time of 

an aircraft’s departure or arrival. 

Mayer and Sinai (2003) examined two potential factors that might explain the extent 

of air traffic delays in the United States: network benefits from hubbing and 

congestion externalities. They used data at the individual flight level on all domestic 

flights by major US carriers and collected data on more than 66 million previous 

flights.  

Wesonga et al. (2012) used a logistic model in order to determine the daily probability 

of aircraft departure and arrival delays. They examined the causes of flight delays and 

cancellations in the American National Airspace System. All flights that arrived or 

departed earlier than expected were considered as being on time. The study analysed 

ground delays and air holding delays at Entebbe International Airport during 1,827 

days of activity between 2004 and 2008. The overall average probability for departure 

and arrival delay over this period was estimated by including the meteorological and 

aviation parameters while computing the exact probability of delay. 

Tu et al. (2008) presented a model for estimating flight departure delay distributions. 

The study focused on data collected at Denver International Airport during a two-year 

period. The purpose was to identify the main factors influencing flight departure 

delays, and to develop a strategic departure delay prediction model. 

Some other machine learning models have been used to describe flight delays, such as 

Ning Xu’s Bayesian network model (Xu, 2007) and Zonglei Lu’s decision tree model 

(Zonglei et al., 2008). To date, there is no existing model that is able to accurately 

predict flight delays. The existing models only provide some reference of the 

prediction. 
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Zonglei et al. (2008) used a machine learning approach in order to predict the daily 

level of delay in the hub-airport of China. The first step involved cluster analysis to 

define five levels of daily alarm related to flight delays at their study airport using data 

recorded in 2006. Then they compared three techniques (Naive Bayes, Decision Trees 

and Neural Network) to obtain an estimate of the alarm level for each day of the 

airport activity.  

 

3.4 Required approach 

In the maritime sector there are no reference models that specified the relationship 

between vessel arrival uncertainty and the variables that can affect the process. 

Therefore, one of the aims of the study is to find a statistical approach that may help 

fill this gap in the literature. 

Overall, the literature review shows that there are two approaches towards the use of 

statistical modelling to reach conclusions from data: one approach assumes that the 

data are generated by a given stochastic data model, while the other treats the data 

mechanism as unknown and uses algorithmic models (Breiman, 2001). Algorithmic 

modelling, both in theory and practice, has developed rapidly in many fields outside 

statistics. It can be used both on large complex data sets and as a more accurate and 

informative alternative to data modelling on smaller data sets.  

Moreover, when major irregularities are present, or for discontinuous and irregular 

time series, the interesting contributions to the literature by numerous authors have 

demonstrated that traditional approaches perform poorly. Traditional statistical models 

do not perform well when data have to be continuously updated. The fitting 

procedures are moreover difficult to implement by non-experts. Concerning dynamic 

learning models (Carbonneau et al., 2007, Potvin and Smith, 2001), the forecast 

update procedure is more robust and can be carried out in a more flexible manner.  

Thus, the approach that is taken falls within the machine learning discipline that 

focuses upon methodologies for exploring and understanding historical arrivals. This 

approach seems to be particularly appropriate in this specific instance where the 
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In general, this step consists of a mixture of three main components: the model, the 

preference criterion and the search algorithm. The literature of learning algorithms 

often does not focus on the description of these three aspects, but they are often 

included in a description of a particular algorithm.  

A wide variety and number of data mining algorithms have been described in the field 

of machine learning. 

 

3.4.1 Classification methods in supervised learning 

Learning problems can be classified as supervised or unsupervised. Classification 

methods are used in the setting of supervised learning. The literature highlights three 

different approaches that can be taken in classification problems: the discriminative 

approach, the regression approach, or the class-conditional approach. 

The discriminative approach (neural networks, support vector machines,..) attempts to 

directly map the explanatory variables Xi to one of the k possible target categories 

y1,y2,....yk. The input space is partitioned into different regions which have a unique 

class label assigned to them.  

The regression approach (logistic regression, decision trees,.) calculates the posterior 

class distribution P(Y|x) for each case and chooses the class for which the maximum 

probability is reached.  

The class-conditional approach (Bayesian classifiers) starts by explicitly specifying 

the class-conditional distributions P(X|yi,θi). After estimating the marginal distribution 

P(Y), Bayes rule is used to derive the conditional distribution P(Y|x). Parametric, 

semi-parametric, and non-parametric methods can be used to estimate the class-

conditional distribution.  

There is no general rule regarding which approach works best, it is mainly related to 

the researcher’s goal and to data characteristics. 
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3.4.2 Regression approach in classification problems 

In this specific application a regression approach is taken. First of all because 

compared with the discriminative approach models and class-conditional approach 

models, the regression models can be explained and interpreted more intuitively.  

Moreover, from a statistical point of view, the literature showed that decision trees 

outperform Neural Networks (NNs) for this specific case. Decision tree patterns can 

be applied to larger data problems and are able to handle smaller data sets than NNs 

(Markham et al.,. 2000). Moreover, they perform better than NN models when data 

sets are smaller with large numbers of irrelevant attributes (Brown et al.,. 1993). 

Decision trees can be used either as prediction tools or as exploratory tools. They aim 

to identify which class of a response variable the data records belong to, knowing the 

values or the categories of one or more explanatory variables. The recursive algorithm 

splits data by applying a depth-first approach (Hunt et al., 1966) or a breadth-first 

approach (Shafer et al., 1996) until all records are classified. Data are split at each step 

using impurity measures (Quinlan, 1993). The decision tree structure consists of a 

root, a number of non-terminal nodes and terminal nodes (leaves). The obtained model 

enables one to classify new unknown records. The decision tree algorithm consists of 

two main tasks: tree growing and tree pruning. Tree growing follows a top-down 

approach. Here, the data set is recursively partitioned until all records belong to the 

same class label (Hunt et al., 1966). On the contrary, tree pruning follows a bottom-up 

approach. In this phase the algorithm minimises over-fitting, thus improving 

prediction accuracy (Mehta et al., 1996). 

A multitude of decision tree models have been developed since the 1960s. The first to 

appear was the Automatic Interaction Detection, AID (Morgan and Sonquist, 1963), in 

which the outcome variable is quantitative. Several other algorithms followed, 

including Exploration of Links and Interaction through Segmentation of an 

Experimental Ensemble, ELISEE (Cellard et al., 1967) and THeta AID, THAID 

(Morgan and Messenger, 1973) for categorical response variables, and MAID (Gillo, 

1972) for quantitative response variables. Numerous algorithms were later developed 

such as CHi-square Automatic Interaction Detection, CHAID (Kass, 1980), 
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Classification And Regression Trees, CART (Breiman et al., 1984), ID3 (Quinlan, 

1986) and C4.5 (Quinlan, 1993). Some authors have proposed variations to the CART 

method that develop non-binary trees (Loh and Vanichsetakul, 1988) or that reduce 

computation time (Mola and Siciliano, 1997). Among these decision trees the most 

relevant statistical contribution was provided by the CART method because it 

distinguishes between a classification tree in which the response variable is 

categorical, and a regression tree in which the response variable is quantitative. 

Therefore, it is especially indicated in this research where the aim is to have a discrete 

and continuous estimate of the vessel arrival uncertainty. 

Over the last few years, decision tree algorithms have been improved and new models 

embodying this approach have been developed. Many hybrid approaches have also 

been developed. In 2002, Conversano proposed the Generalized Additive Multi-

Mixture Models (GAM-MM) using the decision tree approach for regression 

smoothing. Other authors have pursued the same path, for example Chan and Loh 

(2004), Su et al. (2004), Choi et al. (2005) and Horton et al. (2006). In order to 

improve the accuracy of traditional decision tree methods, these algorithms have been 

combined to produce, for example, the tree averaging approach. Another approach is 

the Ensemble methods: Freund and Schapire (1996) introduced an Ensemble method 

called Adaptive Boosting, while Breiman (1996) developed the Bootstrap 

Aggregating, and Random Forest (2001). 
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4 CHAPTER 4: Methodological framework  

This Chapter gives a theoretical overview of the learning techniques adopted within 

the KDD approach in order to obtain qualitative and quantitative estimates of 

late/early arrivals in container terminals. Moreover, the main statistical measures used 

for performance evaluation are described. 

 

4.1 Knowledge discovery in databases approach 

According to Fayyad (1996), these specific approach implemented, which is based on 

the KDD process, involved six main steps that can be summarised as:  

1. Learning the application domain, a step that was needed in order to understand the 

context, the relevant prior knowledge and the goals of the application; 

2. Data selection, in order to create the data set, or to focus the analysis on a limited 

subset of data that had to be explored; 

3. Data preparation, that comprised basic operations in order to clean and prepare the 

data so as to be in the most suitable form for use; 

4. Data mining, the core of the KDD process. In this step the purpose of the model 

derived by the machine learning algorithm(s) was decided. After defining the 

function of data mining, the specific algoritm(s) to be used to search for patterns 

within the data were chosen; 

5. Evaluation and interpretation of the results included interpreting the discovered 

models and, if necessary, going back to any of the previous steps. In this step a 

graphical visualisation of the results was very helpful; 

6. Using the discovered knowledge, consisted in incorporating and using the 

knowledge discovered in order to draw the conclusions. 
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4.2 Algorithms  

This section presents the algorithms that are used to exploit information on past vessel 

arrivals in order to predict the future arrival status of a vessel in port.  

In the following, it is assumed to have a dataset consisting of an n× p matrix where: 

- n is the number of independent observations;  

- p is the number of variables recorded for each observation. 

In particular, Y denotes the target variable (the continuous or binary outcome 

measuring the delay/advance of the ship) and X denotes the vector of quantitative and 

qualitative predictors: X=(X1, X2,…,Xk). 

The algorithms used to obtain predictions are explained below: 

- Logistic Regression; 

- CART; 

- Random Forests. 

 

4.2.1 Logistic Regression 

Logistic regression is the standard way of modelling binary outcomes, i.e., outcomes 

that can assume only two values, zero or one. It assumes that the conditional 

probability of  being one can be modeled as: 

       (1) 

Where:  

- Y is the outcome. The dependent dummy variable (Yi) is zero if a given vessel 

arrived earlier than the expected ETA and one if is delayed; 

- X denotes the vector of input variables: X=(X1, X2,…,Xk); 

- the beta coefficients are usually unknown and must be estimated from the data. 

When βi is positive it implies an increasing rate. When βi is negative it implies a 

Yi

Pr(Yi =1 | X) =
exp( βi Xi∑ )

1+ exp( βi Xi )∑
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decreasing rate. When βi =0 it would mean that the delay/advance of a vessel is 

independent of Xi. 

The fitted model can be used to obtain predictions for new cases. The role of a 

variable in explaining the outcome can be evaluated using classic statistical test 

theory, for example, testing the null hypothesis that the jth coefficient is zero provides 

an easy way to assess the strength of the link between Xj and the outcome variable. 

 

4.2.2 Classification and Regression Trees (CART) 

CART models (Breiman et al., 1984) can be considered local models in the sense that 

they indirectly specify different conditional distributions of Y|Xi, depending on the 

region of the covariate space where unit i lies. This is in contrast with the global 

relationship imposed by classic modelling strategies and allows for greater flexibility. 

On the other hand, this localisation makes it more difficult to assess the global 

explanatory power of the predictors.  

Decision trees are considered powerful tools for extracting meaningful patterns from 

data sets whose records are characterised by a dependent variable and a set of 

explanatory variables (Hastie et al., 2009). These trees attempt to classify unknown 

records using the obtained patterns. The algorithm recursively splits the feature space 

(usually binary splits) into several regions using explanatory variables and split-points 

to obtain the best fit, until a stopping rule terminates the process.  

Assume, for graphical reasons, there are only two explanatory variables, X1 and X2 as 

in Figure 4.1. The first step consists in splitting the feature space at X1 = a1.  Then the 

algorithm splits region X1 ≤ a1 at X2 = a2 and region X1 > a1 at X1 = a3, and lastly, 

region X1 > a3 at X2 = a4 until five regions are generated. The algorithm assigns a 

specific value or label to each region.  

The corresponding regression model predicts Y with a constant value (ck) in region Rk. 

���� � ∑ ��	�
� ��
1, 
2� � ���      (2) 
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4.2.2.1 Regression Trees 

The regression tree algorithm involves two main phases: tree growing and tree 

pruning. In the first phase a tree is built. The aim of the second phase is to reduce tree 

size in order to be able to apply the recognised patterns to other data, as large trees 

give unsatisfactory results when applied to new data. Moreover, an oversised tree 

contains a large number of terminal nodes, making its interpretation difficult and 

running the risk of over-fitting. Data are usually divided into two subsets: a training 

set and a test set . The training set is used for tree growing, while the test set is used 

for tree pruning in order to select the optimal tree.  

Maximal tree construction. Assume there is a data set with p explanatory variables X, 

one dependent variable Y and N records. 

� �
��
����,� ��,� … ��,���,� ��,� … ��,����,�

���,�
� �… ��,���

��  � �  !�!��!�
"      (3) 

Considering the training set, the algorithm splits the feature space into several regions, 

for instance into M regions, by selecting the explanatory variables and split-points. In 

each region the algorithm models the response variable as a constant cm:  

���� � ∑ ��#�
� ��� � ���       (4) 

The best splitting variable and splitting point at each node are determined using a 

greedy algorithm that evaluates the homogeneity of the outcome variable in the 

resulting nodes using a homogeneity measurement. The most common measurements 

of homogeneity for Regression Trees are variance and entropy. 

The best value of cm, that minimises the sum of squared deviation between yi and f(xi), 

is the average value of yi in region Rm: 

$%&'�()� ∑*!+ , ���+�-� . �̂� � 012�!+|�+ � ���    (5) 
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Starting from a predictor variable j and split-point s, with the first split it is possible to 

define: 

���4, 5� � 6
7
8 9 5:         (6) 

and 

���4, 5� � 6
7
8 ; 5:         (7) 

to find the optimal j variable and s split-point it suffices to solve : 

<=>?,@ABCDEF ∑ *GCH EF-JKC�LF�?,@� MBCDEJ ∑ *GCH EJ-JKC�LJ�?,@� N  (8) 

Where: 

�̂� � 012�!+|�+ � ���4, 5��       (9) 

�̂� � 012�!+|�+ � ���4, 5��       (10) 

Once the best j variable and s split-point have been found, it is necessary to repeat the 

previous step by dividing each region into two sub-regions until a stopping rule 

terminates the process. Tree pruning is necessary in order to find a good trade-off 

between goodness of fit and the interpretation and generalisation to new data. 

Available data should drive the best choice of the tree size.  

Tree Pruning for model selection. As a Tree TP has been built, it needs to be trimmed 

to improve the interpretability of the tree and to avoid over-fitting. It is necessary to 

define T Q TPa subtree of TP obtained by pruning a number of subnodes. 

The CART procedure uses a specific tree pruning method known as cost-complexity 

pruning. Let, α ε A0,∞�, called the complexity parameter, express the trade-off 

between tree size and goodness of fit.  

Cost-complexity pruning is defined as: 

TU�V� � ∑ W�X��V�|Y|�
� Z [|V|       (11) 
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where:  

- |T| is the number of terminal nodes in T; 

- Nm is the the number of records within the Rm region N< � #_x= � R<b        (12) 

- Cm is the average of yi in Rm 

cd< � �eB ∑ y=gC�hB         (13) 

- Qm(T) is the squared-error node impurity measure:  

Q<�T� � �eB ∑ �y=gC�hB , cd<��      (14) 

The idea is to find a Tα Q T minimising Cα�T�. Breiman et al. (1984) demonstrate that 

there is a unique sub-tree Tα. that minimises Cα�T�. To find Tα, a weakest link pruning 

approach is applied. This approach is developed by successively collapsing the 

internal node that produces the smallest per-node increase in ∑ W�X��V��  until the 

single node (root) is obtained. In this way a finite sequence of subtrees has been 

generated containing the optimal subtree. 

 

4.2.2.2 Classification Trees 

Classification Trees work like Regression Trees, the only difference is that they try to 

predict a nominal outcome rather than a continuous one. In order to partition the 

covariate space, they use a binary algorithm, graphically despicted as a binary tree, 

which subsequently splits the observations into subsets where the distribution of Y 

becomes more and more homogeneous. The algorithm starts from a single node which 

contains all records. The splitting procedure is defined in each node on the basis of 

covariate values: for a quantitative predictor the split value s assigns the observation to 

the right or to the left subnode depending on whether  or  while for a 

qualitative predictor the splitting rule depends on whether or not, where is 

a subset of the categories of the qualitative predictor. The best splitting variable and 

splitting point at each node is determined by using a greedy algorithm that evaluates 

xi ≤ s xi > s

xi ∈ M M
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the homogeneity of the outcome variable in the resulting nodes using a homogeneity 

measurement, and stops the splitting process when the homogeneity does not 

significantly improve. When the outcome variable is nominal the Gini impurity index 

is used as the homogeneity measurement.  

In a node m, the proportion of class k observations is defined as: 

l̂�m � ��n ∑ ��!+ � o�()�pn        (15) 

where: 

- k=1,2,…,K and pm1+pm2+…+pmK=1; 

- m is the node representing the Rm region; 

- W$ is the total number of records within the Rm region. 

Then, the impurity of a node is maximum when all classes of the dependent variable 

are present in the same proportion. The node impurity is minimum when the node 

contains observations belonging to a single class. 

If k is the majority class in node m, all observations in node m are classified, via 

majority rule, as class k observations: 

o�$� � 0qr $0�ol̂�m        (16) 

The Gini index is defined as: 

s � ∑ l̂�ml̂�mtmum′ � ∑ l̂�m�1 ,vm
� l̂�m�      (17) 

 

4.2.3 Random Forest 

A Random Forest, introduced by L. Breiman (2001), is a multitude of correlated trees 

that can be used for both classification and regression purposes. When the algorithm is 

used for regression, the prediction for a continuous outcome can be obtained by 

averaging single-tree predictions. When the algorithm is used for classification, the 

prediction for a categorical outcome can be obtained by majority voting.  
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The trees of the forest are correlated via random selection, in particular in the 

implementation of the random forest algorithm used in this research: 

a. about two thirds of the data are randomly resampled to grow each tree; 

b. at each node the best splitting variable is selected from among a randomly chosen 

subset of all predictors. 

The idea in random forest algorithms is to improve the variance reduction of bagging 

by reducing the correlation between the trees without increasing the variance too 

much. This is achieved in the tree-growing process through random selection of the 

input variables. Specifically, before each split the algorithm selects a number m≤p of 

the input variables at random as candidates for splitting. For classification purposes, 

the value used for m is √3 and the minimum node size is one. For regression purposes, 

the value for m is p/3 and the minimum node size is five. 

The random selection process is meant to improve the stability of predictions by 

differentiating the trees and then averaging the results. Moreover, the left out 

observations (Out Of Bag, OOB) are used to build an estimator of the prediction error 

(similarly to the cross-validation process) and to rank the relative importance of the 

variables in the prediction task. A natural measurement of performance for a classifier 

is the difference between the proportion of votes for the correct class and the max 

proportion for other classes. This difference is calculated using the OOB data before 

and after a permutation of the values of the variable. If the variable is not important for 

a good classification then the difference should be small and it is possible to define an 

importance measurement by averaging this difference over all OOBs and trees of the 

forest.  

 

4.3 Cross validation 

In practice, a straightforward option is to calculate the performance measurement on 

the data used to estimate the model. These data are usually referred to as the learning 

sample. In this case, the problem with evaluating such a model is that it may 
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demonstrate adequate prediction capability on the training data, but might fail to 

predict future unseen data. 

Another option is to evaluate the generalisation performance of the method or, in other 

words, its ability to generalize on new samples. In this case the performance 

measurements are calculated on independent test data, usually via a γ-fold cross-

validation approach. 

Currently, cross-validation is widely accepted in the data mining and machine learning 

community, and serves as a standard procedure for performance estimation and model 

selection.  

Then for i=1,…,k the model is fitted after removing the ith subset, which is left out to 

evaluate the error on independent test data. The final k tests the data set. 

A γ-fold cross-validation requires the previous random partition of the data set in γ 

non-overlapping subsets (or folds) of approximately the same size. The training set is 

split into γ parts, each of size 
e
γ
. A tree is grown γ times, with each one having a 

different training set consisting of a γ combinations of γ − 1 original parts. The final 

performance measurement can be obtained by averaging the errors in the generated γ 

trees. In data mining and machine learning, 10-fold cross-validation (γ = 10) is the 

most common type (Figure 4.3).  

Figure 4.3: γ -fold cross validation 
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This method is best for medium/small data sets, because it makes efficient use of 

limited amounts of data. 

4.4 Performance metrics 

This section discusses the main statistical measurements used for performance 

evaluation.  

 

4.4.1 Mean absolute prediction error 

When dealing with a prediction problem involving a continuous or interval scale 

variable, a natural performance measurement is the mean prediction error. It is defined 

as the mean absolute difference between the observed and the predicted value: 

The mean absolute error is a common index for measuring the learning results: 

∑
=

−=
n

i

yy
n

MAE
1

||
1

        (18) 

Where: y  is the predicted value of the delay and y is the real actual observed. 

 

4.4.2 Kappa statistic and percentage of misclassified instances 

For a prediction problem involving a dichotomous variable, a binary classifier can 

classify an individual instance into the following four categories: 

- false positive (FP) = the instance is incorrectly identified; 

- true positive (TP) = the instance is correctly identified; 

- false negative (FN) = the instance is incorrectly rejected; 

- true negative (TN) = the instance is correctly rejected. 

  Observed Value 

  P N 

Predicted  

Value 

T True positive False positive 

F False negative True negative 
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Various performance measurements can be derived after recording the frequency of 

each category on test data. The total prediction accuracy (ACC) and Cohen’s Kappa 

coefficient for assessment of the prediction accuracy are given by the following 

formulas. 

N

TNTP

FNFPTNTP

TNTP
ACC

+
=

+++

+
=       (19) 

The ACC is simply the proportion of correctly classified instances, and it can be 

misleading when the proportion of positive and negative outcomes are very different. 
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Where: 

- 
N

TNTP
a

+
=)Pr(  is the relative frequency of agreement between predicted and 

observed levels; 

- 
N

FNTN

N

FPTP
e

+
⋅

+
=)Pr(  is the probability of agreement by chance. 

The kappa statistic (Cohen, 1960) takes into account the agreement occurring by 

chance, thus it can be considered as a more reliable indicator of good prediction 

performance. It ranges from zero (no better prediction than what occurs by chance) to 

one (perfect prediction).  

The kappa statistic is a common statistical measurement of inter-rater agreement for 

categorical items. According to the scale proposed by Landis and Koch, different 

values of Kappa could be associated with different agreement levels (Table 4.1). 
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Table 4.1: Value of Kappa and agreement level 

value of Kappa agreement level 

<0 Less than chance agreement 

0–0.20 Slight 

0.21–0.40 Fair 

0.41–0.60 Moderate 

0.61–0.80 Substantial 

0.81–0.99 Almost perfect 

Table 4.1 may help the researcher to “visualise” the interpretation of kappa. 

When interpreting kappa, it is also important to consider that the estimated kappa itself 

could be due to chance. Therefore, reporting a p-value of a kappa requires calculating 

the variance of kappa and deriving a z statistic. The p value tests whether the estimated 

kappa is not due to chance, but it does not test the strength of agreement. The p value 

is sensitive to sample size, and with a large enough sample size, any kappa above 0 

will become statistically significant. 

Even relatively low values of kappa can nonetheless be significantly different from 

zero but not of sufficient magnitude to extract useful conclusions. Thus, another 

performance metric for evaluating predictive power of a classifier is also used i.e., the 

percentage of misclassified instances. For each algorithm, it shows how accurate the 

prediction is considering the percentage of incorrectly classified delay levels. 
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5 CHAPTER 5: The port of Cagliari case study 

This Chapter discusses the case study of Cagliari. According to the main steps of the 

KDD approach, the statistical results regarding the discrete and the continuous 

estimate of late/early arrivals are presented. Moreover, the interpretation of the 

discovered knowledge, made it possible to evaluate the most discriminating variables 

of the analysis, even thanks to graphical visualisation of the Importance-plot. 

 

5.1 Introduction 

Thanks to its position in the centre of the Mediterranean Sea (Figure 5.1), the port of 

Cagliari plays a major and strategic role as a trade hub. It lies just 11 miles from the 

ideal Gibraltar-Suez route and is thus one of the hubs for transhipment activities in the 

western Mediterranean. The port handles conventional and bulk cargo, Ro-Ro, 

containers, as well as passenger ferries and cruise ships. 

Figure 5.1: Location of the Cagliari port 

 

Source: Port of Cagliari Authority 

The port comprises two areas: the historic port and the industrial port, known as “porto 

canale”. The old port has an overall quay length of 5,800 meters and it serves 

commercial, Ro-Ro and passenger traffic. The industrial port extends over an area of 
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some 400,000 m
2
, with a further 500,000 m

2
 of potentially developable area to meet 

the growing traffic demand. The industrial port has an overall quay length of 1,500 m 

with five berths for container ships. Handling equipment includes: 7 quay cranes, 17 

RTGs, 4 Reach Stackers, 8 Front Loaders, 28 Trucks and 26 Trailers (Port of Cagliari 

Authority) (Table 5.1; Figure 5.2).  

 

Table 5.1: Main characteristics of the Cagliari container terminal  

Quay length 
(m) 

Area 
(ha) 

Quay cranes MHC 
Yard cranes 

RTG 

Capacity 
(1,000 TEU) 

1,520 40 7 1 17 1.3 

 

 

Figure 5.2: The structure of the “porto canale” 

   

Source: Port of Cagliari Authority 

In 2012, the port handled a total of 35,379,123 tonnes of cargo (liquid bulk, dry bulk, 

roll-on/roll-off, break-bulk and containers). Table 5.2 shows the port statistics for 2011 

and 2012. 

Between January and August 2013, the port of Cagliari handled 435,059 TEUs, 

showing an increase of 11.5% over the same period in 2012, without experiencing any 

significant congestion problems. The largest customer of the port is Hapag Lloyd 

(CONTSHIPITALIA, CICT, Port of Cagliari Authority).  
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Table 5.2: Cagliari Port statistics (2011-2012) 

 2011 2012 Difference 

 In-bound Out-bound Total In-bound Out-bound total Tot % 

liquid bulk 15,336,619 11,952,296 27,288,915 13,938,519 11,304,626 25,243,145 -2,360,504 -8.65% 

dry bulk 418,867 113,145 532,012 365,559 196,459 562,018 30,006 5.64% 

Ro-Ro 1,456,985 1,356,266 2,813,251 1,349,043 1,249,536 2,598,579 -214,672 -7.63% 

TEUs 307,630 305,559 613,189 314,518 313,091 627,609 14,420 2.35% 

containers 201,458 200,145 401,603 205,910 204,421 410,331 8,728 2.17% 

pax 90,331 95,100 417,549 73528 85234 239,317 -178,232 -42.69% 
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5.2 KDD process 

The aim of this section is to present the results of the algorithmic models built on 

Cagliari data to solve the problem of vessel arrival uncertainty at the Mediterranean 

container terminal.  

Two different estimates are proposed: 

- a discrete-estimate, with which it is possible to know whether or not an incoming 

vessel is likely to arrive before or after the scheduled ETA.  

In this case, the output variable is a binary one, codify as 0-1. 

- a continuous-estimate, which provides a quantitative evaluation of the difference 

between the scheduled ETA and the actual time of arrival in minutes.  

In this case the outcome is a continuous one. 

This section, which is based on the KDD approach, consists of six main tasks. 

 

5.2.1 Understanding the application domain  

A specific theoretical study was carried out for the first task with the purpose to 

understand the context and to select the variables that can provide a theoretical 

explanation for the vessel arrival uncertainty. Therefore, a six-month period of 

observation was required at the Cagliari container terminal in order to define the 

database and to interview planners about the problems they actually encounter. 

Terminal operations were closely observed during this period, thus making it possible 

to:  

- identify the main causes of delay/advance in ship arrivals in real conditions;  

- analyse the critical aspects and most frequent operational issues associated with 

late/early arrivals in a container terminal; 

- analyse how the terminal reacts to vessel arrival uncertainty, in terms of supplying 

of port services. 
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5.2.2 Data selection 

Data were collected at the individual arrival level. The final database includes all 

arrivals at the container terminal for a period of 30 months, i.e., from January 2010 to 

June 2012.  

The available variables that may potentially influence late/early arrivals in port can be 

divided into two main groups: 

- vessel-related variables, collected thanks to the CICT (Cagliari International 

Container Terminal); 

- weather-related variables, collected thanks to the ISPRA (Institute for Protection 

and Environmental Research). 

 

5.2.2.1 Vessel-related variables 

The input variables collected in port can easily be divided into five main classes:  

1. Variables related to vessel features, :  

- length [m]; 

- gross tonnage [tons]; 

- capacity [TEUs]; 

- vector type (mother or feeder). 

2. Information on the ship owner: 

- owner’s name; 

- owner’s nationality. 

3. Variables related to vessel service: 

- port rotation; 
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- sailing direction; 

- previous port. 

The shipping lines provide service on several routes. Sometimes the routes have 

one sailing direction (standard) or several directions (eastbound/westbound - 

Tyrrhenian bound/Levant bound). 

4. Variables providing an indication of the number of containers to be handled: 

- number of containers to be loaded; 

- number of containers to be unloaded; 

- number of containers to be restowed. 

These variables are used for descriptive purposes, in particular for ranking the 

daily alarm level created by late arrivals at the port of Cagliari during the 

examined period (see section 5.2.3.5). 

5. Variables related to vessel position:  

- last Estimated Time of Arrival (ETA) at the pilot point [dd/mm/yyyy]; 

- Actual time of Arrival (ATA) at the pilot point [dd/mm/yyyy]; 

- berthing time [dd/mm/yyyy]; 

- unberthing time [dd/mm/yyyy]; 

- start operations time [dd/mm/yyyy]; 

- end operations time [dd/mm/yyyy]. 

These variables provide an indication about the position of the vessel from the 

time it arrives at the pilot point to the unberthing time. In particular, the ETA and 

the ATA are essential for calculating the output variable, while the others are 

useful for descriptive purposes. 
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Table 5.3 shows the summary statistics of the continuous potential predictors
2
.  

Table 5.3: Summary statistics of the continuous variables  

Variable Min Q1 Mean Median Q3 Max 
Standard 

deviation 

length 99 149 184 198 264 338 60.9 

gross 

tonnage 
3,784 10,310 17,660 27,470 40,300 97,825 21,733.5 

capacity 350 1,079 1,560 2,519 4,253 8,749 1,884.3 

discharged 

containers 
0 107 212 236 333 1,556 176 

loaded 

containers 
0 114 213 241 348 1,397 161 

restows 0 2 6 18 16 492 42 

 

5.2.2.2 Weather-related variables 

Data concerning weather conditions were collected because they can intuitively 

strongly affect the uncertainty of vessel arrival. From the reference model that was 

taken into consideration
3
, the following quantities are considered in various points of 

the Mediterranean Sea: 

- ug: geostrophic wind speed in the x (positive towards east) [m/s]; 

- vg: geostrophic wind speed in the y (positive towards north) [m/s]; 

- Hs: significant wave height m [ft]; 

- Tp: spectral peak wave period [m]; 

- θd: vector mean wave direction; 

The predictions are available for four time intervals per day: 

- night (00-06); 

                                                           

2
 The summary statistics of the categorical predictors are shown in the Appendix 1. 

3
 The version of the ECMWF (European Centre for Medium-Range Weather Forecasts.) wave 

forecasting system is based on WAM cy4 model as described by Komen et al. (1996). 
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- morning (06-12); 

- afternoon (12-18); 

- evening (18-24). 

The points were selected so as to be representative of the weather conditions in the 

Mediterranean Sea area (Figure 5.3) for each time interval of a given day. Nine points 

were chosen on the basis of their longitude and latitude coordinates (Table 5.4): 

- one is near Cagliari; 

- six are located at a distance corresponding to 12 hours’ sailing before arriving in 

the port; 

-  two at a distance corresponding to 24 hours’ sailing before arrival. 

Table 5.4: Longitude and latitude of the points selected in the Mediterranean Sea 

Point N E sailing distance from Cagliari  

1 39.14 9.10 - 

2 39.03 13.0 12 hours 

3 40.54 12.6 12 hours 

4 41.86 10.8 12 hours 

5 41.36 6.4 12 hours 

6 38.56 5.3 12 hours 

7 36.95 11.88 12 hours 

8 37.34 1.51 24 hours 

9 35.05 15.13 24 hours 
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Figure 5.4: First database structure 

 

The second database takes into consideration 915 days of activity, each of which is 

divided into four main intervals. Therefore, it is composed of 3,660 rows and five 

columns for each selected point in the Mediterranean Sea (Figure 5.5). 

Figure 5.5: Second database structure 

 

Based on the previous port of call and on the ideal route travelled by each vessel, a 

match was created so that each arrival could be associated with the weather conditions 

that were observed in the points nearest to its route. Thus, two or three different points 

can be associated with each arrival, depending on whether the vessel sailed from a port 

that is more or less than 24 navigation hours away from Cagliari. The number of 

associated weather variables can therefore range from 10 to 15 for each arrival. 

 

5.2.3 Data preparation 

Several sub-steps are needed to transform the collected data into the most suitable 

form for analysis. This aspect is crucial in order to improve the quality of data and of 

the data mining results. 
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5.2.3.1 Data cleaning 

This phase refers to the correction of data problems, including missing values, 

extremely values, or values that are logically inconsistent in the dataset.  

First of all, data were cross checked in order to evaluate logical correspondence among 

variables and, then, possible error types or illogical correspondence were corrected. 

Furthermore, missing values and outliers were removed. Missing values were deleted 

because they make up less than 5% of the observations. Observations with extremely 

high or low values of delay were removed using the 1.5 rule (21). On the basis of this 

rule, the outliers were discarded prior to the analysis due to their extra-ordinary 

behaviour and their potentially misleading impact on performance assessment.  

 |QQ| 1.5 +Q >Delay or    |QQ| 1.5 -Q <Delay 133131 −⋅−⋅   (21) 

One of the nine quantile algorithms discussed in Hyndman and Fan (1996). 

After outliers and missing data were deleted, the final dataset includes 1,625 

observations. 

 

5.2.3.2 Creation of new variables  

Creating new variables from one or more existing variables is a common procedure in 

data preparation. On the basis of the practical assistance of the experts, new variables 

have been created that can be useful for estimating vessel arrival uncertainty: 

- ETA has been re-elaborated and broken down into three new variables i.e. ETA-

month, ETA-day and ETA-hour. This variable could be used to evaluate whether 

the reliability of the ETA is different depending on the moment it is sent, for 

example during the night or during the day; 

- Freq_owner. This numerical variable indicates the frequency with which a 

company serves a terminal that in general may influence the service provided by 

the terminal itself; 
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- Previous port distance [nautical miles]. The distance, in nautical miles, from the 

previous port to the Cagliari container terminal has been calculated. 

- Sailing: divided into two categories: sailed and not sailed. This variable indicates 

whether the vessel notified its ETA once it left the previous port or while it was 

still in port. It is calculated as the ratio between the previous port distance and the 

vessel’s average speed. 

Table 5.4 shows the summary statistics of the new continuous potential predictors
4
.  

Table 5.3: Summary statistics of the new continuous variables 

Variable Min Q1 Mean Median Q3 Max 
Standard 

deviation 

Previous Port 

distance 
154 354 751 1,387 1,874 5,210 1,546.2 

Freq_owner 2 31 134 152 168 616 149.6 

 

5.2.3.3 Relationships among variables 

An analysis of the correlations makes it possible to emphasise the linear relationships 

among the various groups of vessel-related variables and to identify the variables that 

are strongly related to others. A chi-square test of independence is used to demonstrate 

whether two categorical variables are related to each other, while the Pearson 

correlation coefficient is calculated among the continuous ones.  

Chi square test 

The chi square test is a test of independence between two variables: 

w� � ∑ �x)yz)�J
z){+
�         (21) 

where Oi is the observed frequency and Ei is the expected frequency. 

                                                           

4
 The summary statistics of the new categorical predictors are shown in the Appendix 1. 
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To test the null hypothesis that two variables are independent, the p-value
5
 is 

compared to the significance level of the test, which was set at 1% in this specific 

study. 

As expected, the p-values between the variables that provide information about vessel 

service are statistically highly significant (p < 0.001) (Table 5.5).  

The results of the significance test were then analysed among the different groups of 

categorical variables. (Table 5.5). 

Table 5.5: χ2 and p-value values for the categorical variables  

 Service Previous Port 
Sailing 

Direction 

Service 1 
1.9

.
10

3 

(< 2.2e-16) 

3.7
.
10

3
 

(< 2.2e-16) 

Previous Port 
1.9

.
10

3
 

(< 2.2e-16) 
1 

4.8
.
10

3
 

(< 2.2e-16) 

Sailing direction 
3.7

.
10

3
 

(< 2.2e-16) 

4.8
.
10

3
 

(< 2.2e-16) 
1 

 

Pearson’s r correlation coefficient  

The linear association between two variables using Pearson’s r coefficient can change 

within the range [-1, +1], where the value r=0 means no correlation. The equation for 

Pearson’s r coefficient is: 

q � ∑ (|y�(}|~��∑ (Jy�(}J��∑ |Jy�|~J�       (22) 

                                                           
5
 The p-value is the probability that the statistics test exceeds the observed value so it tends to be small 

when the null hypothesis is true.  

l � �} , �5/√& � �& , 1; [� 

Where: 

t = the t statistic; �}= the mean of the sample; 

µ = the comparison mean; 

s = the sample standard deviation; 

n = the sample size. 
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This equation requires to calculate the sum of the product of all data pairs, the means 

of both variables, and the sum of the squared values. 

In order to determine whether the correlation is statistically significant or not, a test of 

no correlation based on Pearson's product moment correlation coefficient is used
6
. To 

test the null hypothesis that two variables are independent, the p-value is compared to 

the significance level of the test, which was set at 1% in this study. 

The results of the significance test were then analysed among the various groups of 

continuous variables i. e. among variables related to vessel features (Table 5.6). 

Table 5.6: Pearson coefficient and p-value values for the continuous variables  

 Length GRT Capacity 

Length 1 

0.943 

(<2.2e-16) 

0.938 

(<2.2e-16) 

GRT 

0.943 

(<2.2e-16) 
1 0.97 

Capacity 

0.938 

(<2.2e-16) 

0.975 

(<2.2e-16) 

1 

 

Since the value of the coefficient is very close to 1 and the p-value<0,01, the variables 

related to the vessel features are positively and linearly strongly related. The strong 

relationship is also evident at a graphical level. 

As a result of the previous steps, the dimensions of the database changed: the number 

of records decreased to 1,625 and the number of variables increased to 37. 

                                                           
6
 It is possible to refuse the null hypothesis if:  

l � q√W , 2√1 , q� � �W , 2, [� 
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The histogram of delay distribution is shown in Figure 5.7 for the entire set of 

container vessel calls. Visual inspection of the histograms suggests that the frequency 

distribution is a unimodal distribution that exhibits only one peak.  

Figure 5.7: Delay distribution in the Cagliari Container Terminal 

 

A descriptive analysis showed other important aspects regarding the terminal 

operations over the examined period. Considering that the working day in the Cagliari 

container terminal is divided into four work-shifts of six hours each: 

- 64% of vessels arrive during the first two work shifts (between 1 a.m. and 1 p.m.); 

- 37% of arrivals are at weekends; 

- ship arrivals are regularly distributed over 12 months (Figure 5.8). 

Figure 5.8. Distribution of vessel arrivals during the day, the week and the year 

 

Data analysis also provided important information about the vessel waiting times. The 

average vessel turnaround time is found to be approximately 21 hours. Moreover: 
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- the average waiting time for a berth is approx. 2 hours; 

- the average waiting time in berth before loading/unloading operations is approx. 2 

hours and 30 minutes;  

- once loading/unloading operations have been completed, the average amount of 

time before unberthing is more than 2 hours. 

Minimising the above mentioned times is an important goal for the terminal to 

achieve. 

5.2.3.5 Ranking the delay severity at the daily level  

Preliminary investigations and frequent consultations with professionals revealed that 

the inconvenience created by the uncertainty surrounding arrivals at the container 

terminal of Cagliari is caused mainly by delays. As container traffic is not particularly 

heavy and the container terminal does not experience any significant congestion, ships 

arriving early that cannot be handled straight away due to unavailability of resources 

can wait until their assigned berthing space without creating major difficulties. 

Nevertheless, it was decided to consider both late and early arrivals in the forecasting 

phase in order to obtain a more exhaustive analysis of the vessel arrival uncertainty. 

For descriptive purposes, on the other hand, the exploratory analysis of the 

phenomenon is completed by indicating the daily alarm rate at the port of Cagliari that 

is created by late arrivals during the examined period (see Pani et al., 2013). 

There is no standard index for ranking delay severity in maritime transportation. Thus, 

the variables that are considered as the “dimensions” over which the severity of the 

late arrivals can be measured, were selected. In particular, the following variables were 

chosen for each day of activity: 

1. proportion of delayed vessels; 

2. total delay hours; 

3. total length of the delayed vessels; 

4. total number of delayed mother vessels; 

5. total number of delayed containers (import, export and restows). 
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These are the main indices related to delay complexity management in ports, from the 

port operators’ point of view. 

The first variable represents the proportion of delayed ships on a given day with 

respect to the total number of vessels arriving that day. Ships arriving up to 15 minutes 

before and no later than 15 minutes after the notified ETA are considered on time. The 

second variable considers the total time of delayed arrivals on a given day, expressed 

in hours. The third variable indicates the total length of the vessels not arriving on time 

and provides important information concerning vessel size and berth occupancy. The 

fourth specifies the total number of mother ships arriving late on a given day, while 

the last variable indicates the total number of containers to be handled for each 

delayed arrival on a given day (import+export+restows). It is strongly related to vessel 

berthing time. 

At the end of this process a data set was created composed of 765 rows containing 

information for 765 days of operations. The index ranking the delay severity was 

obtained by partitioning the records and ordering the final groups with respect to the 

chosen dimensions.  

In particular, cluster analysis is used to partition the records into groups maximising 

some measurements of internal homogeneity and external heterogeneity, so that the 

profiles of the objects in the same cluster are very similar, whereas the profiles of 

objects in different clusters are quite distinct.  

Hierarchical cluster analysis 

Cluster analysis techniques can be classified as hierarchical or partitioning. In the 

hierarchical method the number of clusters is not established a priori. Instead, a series 

of partitions occur, which may run from n clusters containing a single object to a 

single cluster containing all objects. The process proceeds sequentially, starting from 

single original records and yielding a nested arrangement of records in groups. A 

common used approach in hierarchical clustering is Ward's method. In Ward’s method 

(Ward, 1963), at each stage the algorithm merges the two clusters that result in the 

least increase in “information loss”, usually measured by the within-cluster variance. 
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By contrast, partitional algorithms, such as the k-means algorithm (Hartigan and 

Wong, 1979), require the prior choice of the number of groups. The algorithm 

randomly chooses a set of initial centres, and then assigns each record to the group 

showing the least distance from its centre. 

A number of graphical procedures and numerical indices have been developed in order 

to choose the “best” partition among the output of a hierarchical cluster analysis. In 

particular, several authors have proposed cluster validity indices, using different 

approaches. As reported by Theodoridis and Koutroubas (1999), these indices can be 

classified as external (based on previous knowledge about data), internal (based on the 

information intrinsic to the data alone) and relative (based on comparison of different 

clustering schema). It is possible to distinguish some specific indices (stability 

measures) that work very well when data are highly correlated (Brock et al., 2008), 

especially among internal validation indices. The stability measures are based on 

comparison between clusters achieved using all variables of data and clusters achieved 

removing the variables, one at a time. 

In this case, both k-means and Ward’s method are used to cluster the daily records. 

The two partition methods substantially overlap (only six records have different 

classification), so the results below refer to Ward’s solution.  

Cluster validity indices 

Six internal indices were chosen from the literature review that was carried out, three 

of which are stability measurements, to identify which partition would be the optimal 

one. 

The three stability measures used are: the Average Proportion of Non-overlap (APN), 

the Average Distance between Means (ADM) and the Figure Of Merit (FOM). The 

APN measures the average proportion of observations that are not included into same 

cluster, considering clusters achieved on all data and on data with a variable removed. 

The ADM measures the average distance between cluster centres, calculated as the 

mean of observations of the cluster, considering clusters achieved on all data and on 

data with a variable removed. The FOM measures the average of variance of the 
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observations in the removed variable. For all these three stability measures small 

values correspond better performances. 

The other three internal indices used are: the Connectivity, the Dunn index and the 

Silhouette width. The Connectivity measures for each observation the number of own 

nearest neighbours not belonging to same cluster. The Dunn index measures the ratio 

of the smallest distance between observations not in the same cluster and the 

maximum distance between observations in cluster. The Silhouette width is the 

average of each observation of the Silhouette value. The Silhouette value measures the 

normalised difference between two the average distances: the first one is the average 

distance between a single observation and all other observations in the same cluster, 

and the second one is the average distance between an observation and the 

observations in the nearest neighboring cluster. In order to correspond better 

performances, Silhouette width and Dunn index should be maximised, instead 

Connectivity minimised. 

Table 5.8 shows the values of cluster validation indices for Ward’s method and the 

optimal scores are highlighted in bold. 

Table 5.8: Values of cluster validation indices 

Indices 3 clusters 4 clusters 5 clusters 6 clusters Best partition 

APN 0.0524  0.0864 0.1080 0.1099 3 

ADM 0.1897 0.2531 0.3332 0.3969 3 

FOM 0.5952 0.5608 0.5459 0.5416 6 

Connectivity  6.9091 24.9250 37.0095 37.1095 3 

Dunn  0.1575 0.0759 0.0670 0.0670 3 

Silhouette 0.6755 0.6884 0.6895 0.6829 5 

As four indices out of six suggest, a three cluster solution is used. 

Table 5.9 shows the mean values of each variable for the three cluster solutions using 

Ward’s method. 
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Table 5.9: Cluster means and standard deviations 

Variables Cluster 1 Cluster 2 Cluster 3 

Total number of mother ships 

delayed 

0 ± 0 0.49 ± 0.50 1.53 ± 0.56 

Proportion of delayed vessels 0.02 ± 0.08 0.69 ± 0.27 0.80 ± 0.19 

Total length of delayed vessels 9.29 ± 34.22 231.0 ± 84 533.0 ± 123 

Total number of delayed containers 15.13 ± 70.5 572.0 ± 277.6 1,421.3 ± 393.3 

Total delay hours 0.03 ± 0.20 1.03 ± 0.98 3.04 ± 1.83 

As expected, the clusters can be naturally sorted by increasing values of the five 

dimensions. The three resulting groups are classified as “low”, “medium” and “high” 

severity, respectively. Therefore, the third class is characterised by the days with: 

- the highest proportion of delayed vessels; 

- the highest number of delayed mother ships, which are the most difficult to 

process; 

- the highest number of delayed longer ships, which are the most difficult to berth; 

- the highest number of containers to process, which require longer berthing times.  

Using this classification it is possible to rank the alarm level of each day in the data set 

and conclude that in the period that was taken into consideration at the Cagliari port: 

- 32% of days were characterised by a “low” delay alarm level; 

- 25% of days were characterised by a “medium” delay alarm level; 

- 43% of days were characterised by a “high” alarm level due to late arrivals. 

 

5.2.4 Data mining  

In this section Classification and Regression model functions are used in order to 

obtain a discrete and a continuous estimates of late/early arrivals. In the first case the 

outcome is a binary one codified as 0-1 (0: delays, 1: advance), in the second case the 

output variable is expressed as the difference between ETA and ATA in minutes.  
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The prediction errors are calculated both on the learning sample and using 10-fold 

cross validation. Referring to the cross validation, part of the data set is used to 

estimate model parameters, and the other part to assess the predictive ability of the 

model. The training set is split into 10 parts, each one of size 
e�P. Each tree is grown 10 

times, with each one having a different training set consisting of 10 different 

combinations of 10-1 original parts. The final performance measurement can be 

obtained by averaging the errors in the generated 10 trees. The training data sets were 

built based on the normalised data of each arrival.  

Classification and regression models were built using R software
7
 and were generated 

by considering the two main different steps (see section 4.2.2): tree growing and tree 

pruning. The first step consisted in the identification of the full regression tree using 

training data. The second one consisted in the definition of the pruned tree obtained 

using validation data by defining the complexity parameter associated with the 

smallest cross-validated error. α is chosen by minimising the cross-validated Cα�T� 

(11).  

Random forests improve predictive accuracy by generating a large number of 

bootstrapped trees, classifying a case using each tree in the new forest, and deciding a 

final predicted outcome by combining the results across all of the trees (an average in 

regression, a majority vote in classification) (see section 4.2.3). 

Several models were built in both cases (discrete and continuous) using different 

combinations of all input variables. The model with a good trade-off between 

goodness of fit and its interpretation and generalisation was chosen.  

To evaluate the goodness of fit of the algorithms to the data, the performance metrics 

illustrated in section 4.4 are considered. The statistical results are a necessary 

condition in order to evaluate and compare the models. Moreover, the interpretation of 

the results is very important in order to understand the different discriminating power 

of the predictors. 

                                                           
7
 Version 2.15.1 GUI 1.52 on a Leopard OS build 32-bit. 
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Table 5.10 shows the kappa statistic and the percentage of misclassified instances (see 

section 4.4.2) for the algorithms used for the discrete estimate i.e., Logistic 

Regression, Classification Tree and Random Forest.  

Table 5.10: Predictive performance for the discrete outcome 

Algorithm Sample 
misclassified 

instances 

Kappa 

Statistic 

Observed 

agreement 

Expected 

agreement 

Logistic Regression 
sample test 32.8% 0.12 67.2% 62.74% 

10-fold cross 

validation 
32.4% 0.10 66.9% 62.12% 

Classification Tree 
sample test 30.4% 0.22 69.55% 63.74% 

10-fold cross 

validation 
31.7% 0.20 68.35% 63.85% 

Random Forest 
sample test 30.3% 0.23 64.81% 60.21% 

10-fold cross 

validation 
31.5% 0.21 65.87% 58.89% 

According to the scale proposed by Landis and Koch (see Table 4.1) for the evaluation 

of the kappa statistics, the predictive performance for the discrete outcome ranges 

from slight (0.10 for logistic regression) to fair (0.21 for Random Forest). The tree 

methods substantially overlap and don’t provide a good estimate of the binary 

outcome. As expected, the results obtained on the sample tests are slightly better than 

the results obtained by cross validation. Cross validation is a good estimate of 

generalisation performance in order to evaluate the goodness of fit of the models. 

Referring to the results that were obtained via cross validation, it is possible to test the 

models’ ability by evaluating their performance on a set of data that was not used for 

training. This makes it possible to avoid the overfitting problem. Thus, the results are 

discussed with regard to the cross validation sample. 

Table 5.11 shows the mean absolute error (see section 4.4.1) for the algorithms used to 

obtain the continuous estimate i.e., Regression Tree and Random Forest. 
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Table 5.11 Predictive performance for the continuous outcome 

Algorithm Sample MAE (min) 

Regression Tree 
sample test 36.80 

10-fold cross 

validation 
38.78 

Random Forest 
sample test 15.89 

10-fold cross 

validation 
35.12 

In the prediction of the continuous outcome, the Random Forest algorithm still shows 

the best performance (Table 5.11). With regard to the results obtained by cross 

validation, the mean prediction error is around 35 minutes. The absolute value of this 

result should be considered since it takes into account a prediction of 35.12 minutes 

late/early, giving an uncertainty range for incoming ships of approx 1 hour and 10 

minutes. 

The result that was obtained is very encouraging from both the scientific and the 

operational point of view. In particular, if the performance is compared with a Neural 

Network model that was tested on the same port (presented in Fancello et al., 2011), 

the mean error in delay prediction changes from around 2 hours and 40 minutes to 

about 35 minutes. However, the results also shows that if both the service and the 

weather-related variables are considered predictors, the mean prediction error is 

reduced by approximately half (see Fadda et al., 2014). 

 

5.2.5 Interpretation of results 

In engineering applications, an understanding of the intuitive meaning of the models is 

needed in order to check their validity. The structure of the trees is not intuitive 

enough to be read, in particular with variables (such us service variables) that have a 

large number of modalities. Thus, the importance-plot of the continuous Random 

Forest model is depicted (Figure 5.9). The importance of the predictors is determined 
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by the Gini Index. Therefore, it is possible to observe the different predictive power of 

the most discriminating input variables and to make some assumptions. 

 



 

 

Figure 5.9: Importantance of predictors for the Random Forest algorithm (continuous model)
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The variables used as predictors can be easily grouped into three categories going 

from the most significant to the least significant.  

Service – This variable considers all the three variables related to service together i.e. 

port rotation, sailing direction and previous port. It appears the most discriminating 

variable on vessel arrival uncertainty probably because can provide important 

information about the service performance and the organisation/occupancy of the 

previous port.  

Weather/sea conditions - the plots underline that the variables capturing weather 

conditions are important determinants of vessel arrival uncertainty. This result is 

extremely intuitive, in fact it is clear that the weather/sea conditions can strongly affect 

navigation times and hence arrival times. The best results are obtained by considering 

the weather-related variables at a distance of 12 hours from the port of Cagliari, most 

likely because this point, that lies in the middle of the route, is quite representative of 

the weather conditions along the whole route. 

Length - Another important discriminating variable is the vessel length. It has been 

chosen as an indicator of the vessel’s features because as compared to the other 

variables in the same group, it also provides important information concerning berth 

occupancy. In general, longer ships are more difficult to process, in particular if they 

do not at the expected times.  

ETA hour and ETA day - These variables underline the fact that the reliability of the 

ETA may depend on the moment in which it has been sent, and in particular, if the 

information has been notified while the vessel is still in port. In this case it can 

highlight variations in performance of the port operators (for example port operators 

working at night experience greater mental and physical fatigue). 

Owner frequency - This variable indicates that the frequency with which a company 

serves a terminal can affect the service offered by the terminals itself. 

Vector Type and Sailed - These type of variables substantiates the fact that once the 

ship has actually set sail for its destination port, then the information becomes more 
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reliable. Information that is notified prior to sailing from the previous port is less 

reliable because the extent of the delay may also include any inefficiencies of the 

previous port. On the contrary, if the information is sent after the ship has left the port, 

any uncertainty will most likely depend on weather/sea conditions alone. This can be 

also the reason because, as the time series of arrivals suggest (Figure 5.6), mother 

ships have a greater tendency to arrive on time than feeder vessel 

 

5.2.6 Consolidation of the discovered knowledge 

The results obtained confirmed Breiman’s approach whereby the model that is built 

using historical data is evaluated on the basis of the forecasting accuracy of the 

algorithms that are used and their ability to fit the data. Based on the tests conducted 

using the data regarding the Cagliari container terminal, the continuous approach 

proved to perform very well, whereas the discrete approach did not yield satisfactory 

estimates.  

In operational terms, the result is nevertheless satisfactory as it enables planners to 

determine the shift of vessel arrival with a good degree of reliability simply by 

considering the continuous estimate. The best result that was obtained reduces the 

interval of uncertainty regarding arrival time in port to approx 1 hour and 10 minutes 

(± 35 minutes) (Figure 5.10). Two basic considerations emerge from this result:  

- the vessel arrival uncertainty can fall within one or, at most, two work shifts. 

Thus, there is the certainty that the resources can be scheduled over 2 work shifts 

at the most; 

- the probability of unequivocally identifying the work-shift of arrival is very high, 

i.e. around 90%. 
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6 CHAPTER 6: The port of Antwerp case study 

This Chapter analyse the case study of Antwerp. The goodness of fit of the continuous 

and discrete models are discussed and the most promising variables affecting vessel 

arrival uncertainty at Antwerp port are highlighted. 

 

6.1 Introduction  

Overall, the Port of Antwerp is Europe’s second largest cargo port, after Rotterdam, 

with 184,134,000 tonnes being handled in 2012. That volume makes it the 17
th

 port 

world-wide (Vlaamse Havencommissie). Furthermore, the Port of Antwerp is 

Europe’s third largest port in terms of container traffic, after Rotterdam and Hamburg, 

thus making it the 15th port world-wide. In 2012, 14,593 vessels called at the port, the 

majority of which were are container vessels. In 2012, the port handled 8.64 million 

TEUs. In tonnage, containers represent the largest volume, but the port also handles 

substantial volumes of liquid bulk, dry bulk, roll-on/roll-off and breakbulk (Vlaamse 

Havencommissie, Containerisation International).  

The Port of Antwerp generated a direct value added of € 9,765.3 mn in 2012, as well 

as 60,815 jobs. The level of investments in Antwerp was at € 2,339.3 mn in 2011. The 

vast majority of value added and jobs are related to the large firms in the port, even 

though the port hosts more SME’s than large firms. As to value added, the non-

maritime cluster represented twice the amount of the maritime cluster. All terminals 

are privately operated, under concession. The largest container terminal operators are 

PSA-Antwerp and DP World, the former retaining more than 80% of the market 

(PSA-Antwerp, DP World Belgium). The largest customer of the port is MSC. 

The port covers more than 13,000 ha of land. It is located inland and is connected with 

the North Sea by the River Scheldt, which is a tidal river (Figure 6.1). The distance 

between the port and the North Sea is about 125 km (Vlaamse Havencommissie). 
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2012. Furthermore, port traffic contributes to additional congestion, but can also lead 

to port-related road traffic being hampered by overall congestion. 

 

6.2 KDD process  

Even in this case the application is structured in six main tasks on the basis of the main 

steps within the KDD process. 

 

6.2.1 Understanding the application domain 

On account of its complex structure, the application to the Port of Antwerp is more 

involved. Before focusing the analysis on a single container terminal, the study must 

focus on the port level.  

The port features eight main container terminals: six located on the oldest right bank 

of the river Scheldt, and two located on the newer left bank (Figure 6.2). Table 6.1 

gives the details of the respective terminals. Two terminals i.e., the PSA-Churchill 

terminal and the DP World Delwaide dock terminal, are multi-purpose terminals, 

which implies that the container capacity cannot be specified only for containers in 

those cases (PSA-Antwerp; DP World Belgium). On the right bank, two of the main 

terminals are located in front of the locks. Locks do not imply waiting, as that would 

be too dangerous, but ships will adjust their speeds when approaching a closed lock. 

The same goes for the approach of an occupied berth. 
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Figure 6.2: Port of Antwerp container terminals 

 

 

Table 6.1: Main characteristics of the Antwerp container terminals 

Terminal Quay length 

(m) 

Area 

(ha) 

Quay 

cranes 

Rail 

cranes 

Barge 

cranes 

Capacity  

(1,000 TEU) 

PSA Deurganck 1,780 102 11 2  2,600 

PSA Noordzee 1,125 79 8 1 1 2,000 

PSA Europe 1,180 72 7 1 1 1,700 

PSA-MSC Home 2,900 167 24 2 3 5,400 

PSA-Churchill 2,260 84 3 3 -  

DP World Antwerp 

Gateway 
2,470 120 9 15 - 1,800 

All container terminals are multi-user terminals, although at the PSA-MSC Home 

Terminal, with its 50% divided ownership between PSA-Antwerp and MSC, the latter 

shipping company is the main user. Furthermore, the DP World Antwerp Gateway is a 

joint venture, and its shareholders include DP World (42.5%), Zim Ports (20%), Cosco 

Pacific (20%), Terminal Link/CMA-CGM (10%) and Duisport (7.5%). 
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6.2.2 Data selection 

A first stage of the analysis was necessary in order to study the port structure. 

Subsequently, all the vessels arriving at Port of Antwerp over a two year observation 

period were taken into consideration. On the basis of the practical assistance of the 

experts and on the data availability, the variables that may have influenced late/early 

arrivals were collected and divided into two main classes: vessel-related variables and 

weather-related variables. The final data made up of 10,611 rows concerning all 

container arrivals at the eight main CTs of this Northern Range port in 2011-2012. 

 

6.2.2.1 Vessel-related variables 

The vessel-related variables, collected thanks to the Port Authority of Antwerp, are 

divided in four main groups: 

1. variables related to the physical structure of the vessel:  

- length [m]; 

- width [m]; 

- gross tonnage [tons]; 

- TEU’s carried.  

2. Variables providing information about the vessel owner: 

- owner’s name; 

- owner’s nationality. 

3. Variables related to the specific terminal of arrival:  

- the berth number; 

- the presence of a lock before reaching the terminal. 

4. Variables that give indications about the vessel position: 
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- last Estimated Time of Arrival (ETA) [dd/mm/yyyy]; 

- the Actual Time of Arrival (ATA) in specific points located in the Scheldt 

river before the port entrance, in particular at the Pilot Station, the 

Flushing, the Coordinatiepunt [dd/mm/yyyy]; 

- berthing time [dd/mm/yyyy]; 

- unberthing time [dd/mm/yyyy]. 

The Previous Port, was available only at a terminal level and was collected in a 

second stage of the analysis thanks to the PSA-Antwerp terminal. 

Table 6.2: Summary statistics of the continuous variables
8
 

Variable Min Q1 Mean Median Q3 Max 
Standard 

deviation 

length 92.75 161.53 220.35 224.90 281.00 397.71 68.4 

width 11.80 25.23 32.20 30.73 32.30 56.40 7.3 

gross tonnage 2,906 15,933 42,533 37,518 55,994 166,085 302.8 

TEU’s 301 1,306 3,628.83 2,824 4,729 44,25 2,992.11 

 

6.2.2.2 Weather-related variables 

On the basis of the ECMWF model, the following data are available at all points 

selected in the North Sea and at each time interval that was considered: 

- ug: geostrophic wind speed in the x (positive towards east) [m/s]; 

- vg: geostrophic wind speed in the y (positive towards north) [m/s]; 

- Hs: significant wave height m (ft) 

- Tp: spectral peak wave period; m 

- θd: vector mean wave direction; 

                                                           
8
 The summary statistics of the categorical predictors are shown in the Appendix 2. 



 

Even in this case, the poi

conditions in the North S

activity, considering the m

Sea: one near Antwerp, tw

and four are located at a 

Antwerp.  

Table 6.3: Lon

Point 

1 

2 

3 

4 

5 

6 

7 

 

Fig

oints were chosen in order to be representative

 Sea (Figure 6.3) for each time interval and 

e main vessel routes. Seven points were chos

two are located at a sailing distance of 12 hour

 a sailing distance corresponding to 24 hours (

ongitude and latitude of the points chosen in the N

N E Navigation distance from Antwe

51.44 3.34 - 

53.27 2.96 12 hours 

50.53 0.63 12 hours 

49.47 -3.87 24 hours 

56.15 0.56 24 hours 

56.06 5.15 24 hours 

54.19 7.86 24 hours 

Figure 6.3: Selected points in the North Sea 

88 

ive of the weather 

d for each day of 

osen in the North 

urs from Antwerp 

s (Table 6.3) from 

 North Sea 

werp 

 



89 

 

6.2.2.3 The outcome variable  

The outcome variable of the study is the delay of the ship. It measures the time 

difference between the ATA and the last notified ETA. Since the ETA point changed 

in the time window it was necessary to consider that before 09:59 of May 1
st
 2012, the 

ETA refers as the moment the vessel passed Flushing, while starting from 09:59 of 

May 1
st
 2012, the ETA refers to the moment the vessel passed the Pilot Station.  

 

6.2.2.4 Database structures 

The first database contains information about 10,611 vessels that arrived in port from 

January 2011 to December 2012. It is made up of 10,611 rows and 13 columns, which 

correspond to the vessel-related variables that were collected (see Figure 5.4). 

The database take into consideration 915 days of activity for each point that was 

selected in the North Sea, each of which is divided into four main intervals, while the 

second database is composed of 3,660 rows and five columns for each selected point 

the North Sea (see Figure 5.5). 

The two databases were merged to create the final one. At the port level, the match 

was created to be able to associate only the point near Antwerp to each arrival because 

the Previous port is unknown. At a terminal level, the associated weather variables for 

each arrival can therefore range from 10 to 15. 

6.2.3 Data preparation 

This step involved several tasks for manipulating and preparing the data for data 

mining in order to improve model accuracy.  

 

6.2.3.1 Data cleaning 

As per the application at Cagliari container Terminal: 
 

- missing data were examined and then deleted since they accounted for less than 

5% of the observations;  
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- data inconsistencies were verified thanks to frequency tables for categorical 

variables and histograms for continuous variables; 

- outliers were removed. Observations with delay values that fall below 

   |QQ| 1.5 -Q 131 −⋅ or above  |QQ| 1.5 +Q 133 −⋅ are, on the basis of the 1.5 

rule, identified as potential outliers and thus were deleted.  

 

After removing outliers and missing data the final dataset at the port level comprises 

9,857 observations. 

6.2.3.2 Creation of new variables  

Also in this case, thanks to the practical support of the experts, new variables have 

been created that can be useful for the analysis: 

- ETA has been re-elaborated and broken down into three new variables: ETA day, 

ETA month and ETA hour; 

- Freq_owner. In order to consider the frequency with which the vessel owner 

serves the port. 

6.2.3.3 Relationships among variables 

Relationships were identified among the continuous vessel-related variables by using 

the Pearson correlation coefficient. Also in this case, the significance level of the test 

is set at equal to 1%. (see section 5.2.3.3). 
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Table 6.4: Pearson’s coefficient and p-value values for the variables related to the vessel 

features 

 length 
gross 

tonnage 
capacity width TEU’s 

length 1 
0,29 

(<2.2e
-16

) 

0.17 

(<2.2e
-16

) 

0.93 

(<2.2e
-16

) 

0.15 

(2.75e-09) 

gross tonnage 
0,29 

(<2.2e
-16

) 
1 

0,39 

(<2.2e
-16

) 

0,23 

(<2.2e
-16

) 

0.51 

(<2.2e
-16

) 

capacity 
0.17 

(<2.2e
-16

) 

0,39 

(<2.2e
-16

) 
1 

0,13 

(<2.2e
-16

) 

0,21 

(<2.2e
-16

) 

width 
0.93 

(<2.2e
-16

) 

0,23 

(<2.2e
-16

) 

0,13 

(<2.2e
-16

) 
1 

0.12 

(1.33e-10) 

TEU’s 
0.15 

(2.75e-09) 

0.51 

(<2.2e
-16

) 

0,21 

(<2.2e
-16

) 

0.12 

(1.33e-10) 
1 

Table 6.4 shows that the p-values are statistically significant and the r coefficient 

values underline that some of the variables have a weak positive correlation. 

 

6.2.3.4 Exploratory analysis 

Histograms of delay distribution are shown in Figure 6.4 for the entire set of container 

vessel calls and by terminal (n.b.: terminal 3 handles a small fraction of total container 

ships and so it has been added to “other terminals”, which comprises all the other 

terminals that are not specifically container terminals). The graphical visualisation of 

the histograms suggests that the delay distribution is bimodal both at the port and at 

the terminal level, but the proportion of vessels in advance and in delay differs across 

terminals (Table 6.5).  

The two-peak distribution shape may probably be related to the sailing constraints due 

to tidal restrictions on port access. Tidal windows in maritime access channels 

complicate the service provided and could lead to changes in the order of port calls. 
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Figure 6.4: Delay distribution at Antwerp port, by terminal 
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At the port level, the average delay is approx minus 80 minutes; the median delay is 

even less. Most arrivals at Antwerp terminals are in advance but the proportion 

reverses in some of the terminals. The large value of the standard deviation implies 

that position measurements do not adequately summarise the delay values, as was 

evident from the bimodality. Various thresholds can be set based on the empirical 

distribution of delays. By-setting a tolerance threshold of 15 minutes, only 1.8% of 

ships arrived “on time” (i.e., within the (ETA-15, ETA+15) interval), 42.9% arrived 

later and the remaining 55.3% arrived earlier than expected. 

Table 6.5: Delay summary statistics by terminal (in minutes) 

 

The exploratory analysis of the data that was conducted at the port level with the 

assistance of the planners made it possible to choose Terminal number 7 for two main 

reasons:  

- availability of data; 

- database size: the number of observation that were collected is very similar to the 

number of observation that were collected in the Cagliari container terminal. 

Here again, it was possible to build a new database made up of 1,361 arrivals, that was 

specific for Terminal 7. The data base contains information for each vessel and 

Terminal Min Q1 Mean Median Q3 Max 
Standard 

deviation 

Total 

arrivals 

Proportion of 

vessels on 

delay 

All Terminals 
-1,045 -320 -78 -147 157 887 345.3 10,611 0.43 

Terminal 1 -1,082 -292 -203 -110 85 871 323.2 772 0.31 

Terminal 2 -1,051 -313 -267 -154 56 872 317.6 743 0.27 

Terminal 4 -1,097 -330 20 -57 167 938 370.1 3813 0.51 

Terminal 5 -1,081 -315 -211 -101 136 909 323.4 260 0.37 

Terminal 6 -1,091 -300 -183 -56 169 919 339.6 273 0.42 

Terminal 7 -1,090 -337 -243 -102 176 933 372.7 1,361 0.40 

Terminal 8 -1,054 -313 -149 -59 180 924 338.6 1,442 0.44 
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includes 14 vessel-related variables and 15 weather-related variables. In fact, thanks to 

the Previous Port, weather conditions are considered in three points along the route for 

each arrival. 

Also at the terminal level a preliminary step of data preparation was required. In this 

case it was possible to create as new variables also: 

- Previous port distance [nautical miles]: this variable was created, only at a 

terminal level, and represents the distance in nautical miles between the previous 

port and the specific container terminal in Antwerp.  

- Sailing. This variable indicates whether the vessel notified its ETA once it left the 

previous port or while it was still in port. It is calculated as the ratio between the 

previous port distance and the vessel’s average speed. 

 

6.2.4 Data mining 

The results of the data mining application are shown in this section. The algorithmic 

models are described considering both the flexibility in representing the data and the 

interpretability of the results. 

In this case study, several trees and forets were built using different subsets of all input 

variables and estimating the model parameters. The predictive performances are 

shown both on the learning sample and using 10-fold cross validation, but are 

evaluated with reference to the cross validation procedure. All models were built using 

R software (see section 5.2.4). 

Table 6.6 and Table 6.7 show the results for the binary output variable at the port level 

and the terminal level, respectively. 
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Table 6.6: Predictive performance for the discrete outcome (port level) 

Algorithm Sample 
misclassified 

instances 

Kappa 

Statistics 

Observed 

agreement 

Expected 

agreement 

Logistic 

Regression 

Sample test 25% 0.46 73.64%  50.50%  

10-fold cross 

validation 
28% 0.45  70.81% 50.04% 

Classification 

Tree 

Sample test 21% 0.58 79.89% 49.93% 

10-fold cross 

validation 
26% 0.57 80.45% 51.06% 

Random 

Forest 

Sample test 15% 0.67 83.99% 50.14% 

10-fold cross 

validation 
16% 0.72 84.93% 50.20% 

 

Table 6.7: Predictive performance for the discrete outcome (terminal level) 

Algorithm Sample 
misclassified 

instances 

Kappa 

Statistics 

Observed 

agreement 

Expected 

agreement 

Logistic 

Regression 

Sample test 20% 0.59 79.26% 49.56% 

10-fold cross 

validation 
22% 0.55 78.32% 49.50% 

Classification 

Tree 

Sample test 19% 0.61 79.78% 49.88% 

10-fold cross 

validation 
22% 0.59 79.43% 49.76% 

Random 

Forest 

Sample test 20% 0.65 79.69% 50.19% 

10-fold cross 

validation 
17% 0.63 80.20% 49.68% 

As Table 6.6 and Table 6.7 clearly show, the discrete models perform well for the 

Antwerp container terminal data. This is demonstrated not only by the statistical kappa 

value and by the percentage of misclassified cases, but also by the percentages of the 

observed and expected agreement. 

As the distributional form of the output variable suggests, with regard to the two 

distinct peaks, the algorithms fit the data very well in the discrete case, where the 

outcome is dichotomic.  
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Random forest showed the best performance in both cases. Based on the evaluation of 

the kappa statistics, the predictive performance for the discrete outcome ranges from 

moderate (0.45 for logistic regression) to substantial (0.72 for Random Forest). The 

percentage of misclassified instances is around 16% at the port level and 17% on 

terminal 7. In both cases the result is considerable from a statistical point of view. In 

general, it is easy to see that all models generally performed better on the whole 

dataset than on the smallest subset of Terminal 7. This is because less information is 

available due to the limited size of the dataset. 

Table 6.8 and Table 6.9 show the results for the continuous output variable at the port 

level and the terminal level, respectively. 

Table 6.8: Predictive performance for the continuous outcome (port level) 

Algorithm Sample MAE (min) 

Regression Tree 

Sample test 217.44 

10-fold cross 

validation 
218.89 

Random Forest 

Sample test 85.82 

10-fold cross 

validation 
179.44 

 

Table 6.9: Predictive performance for the continuous outcome (terminal level) 

Algorithm Sample MAE (min) 

Regression Tree 

Sample test 209.32 

10-fold cross 

validation 
218.24 

Random Forest 

Sample test 88.08 

10-fold cross 

validation 
188.36 

In the prediction of the continuous outcome, Random Forest algorithms still show the 

best performance even if the mean prediction error is quite high.  

Though satisfactory in scientific terms, the results are not yet acceptable for the 
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specific operating context. In fact, in scientific terms it is easy to deduce that the mean 

prediction errors give an uncertainty regarding arrival time in port of around 5h 52’ 

and 6h 16’, respectively. Therefore, the probability of univocally identifying the work-

shift of arrival is very low. 

Regarding the two case studies that were examined, it has been shown that the models’ 

forecasting accuracy is closely related to the distributional form of the output variable. 

The Antwerp data reveal that the continuous models are limited in their ability to 

capture bi-modality. Therefore, the continuous models do not perform as well as they 

do for the Cagliari container terminal where the output variable has unimodal 

distribution. 

 

6.2.5 Interpretation of results 

In this section some consideration are made concerning the predictive power of the 

predictors and their association with vessel arrival uncertainty. The importance plot 

shows each variable on the y-axis, and their importance on the x-axis. The Gini 

coefficient is the measurement of homogeneity that is used. The changes in Gini are 

listed for each variable and normalised at the end of the calculation. Variables that 

result in nodes with higher purity have a higher decrease in Gini coefficient. 

The importance-plots of the discrete Random Forest models are compared in the two 

cases, at the port level and at the terminal level (Figure 6.5, Figure 6.6). 
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The plots clearly show the main variables impacting vessel arrival uncertainty.  

In both cases, the variables capturing vessel size are important determinants of 

uncertainty. They can directly affect both navigation/sailing times and the possible 

effects on container handling productivity. This aspect can be important if the transit 

time from the previous port is less than 24 hours and the last ETA is notified before 

the vessel has already left the port.  

At the port level, the variables characterising the specific terminal, the terminal 

location and the presence of the lock may reasonably impact on the early/late arrivals.  

Another important aspect concerns the discriminating power of the weather-related 

variables. At the port level, these variables have less significance. The reason for this 

result can be explained by considering that although the point that was selected, in the 

North Sea close to Antwerp is indicative, it does not represent the weather conditions 

encountered during the route very well. The discriminating power of the weather-

related variables increases at the terminal level since the point that was considered for 

the forecast is an intermediate point along the route. 

Vessel ownership appears more discriminating at the terminal level, most likely 

because the frequency with which a company serves a terminal may affects the service 

offered by the terminal itself.  

In conclusion, a possible time dependence in the reliability of the information based on 

ETA hour and ETA day emerges in the Antwerp case as well. 

 

6.2.6 Consolidation of the discovery knowledge 

The results for the Antwerp terminal confirm those obtained for Cagliari. From an 

interpretative point of view, the variables that most strongly influence arrival 

uncertainty remain substantially the same. Considering the goodness of fit of the 

algorithms, as far as the Antwerp container terminal is concerned the discrete models 

are very flexible in representing data when the distribution of the outcome is a double-

peak distribution. However, the continuous algorithms show very relevant 
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performance in capturing data characteristics when the distribution exhibits a 

unimodal behavior. 

The problem can therefore be solved by considering that in statistics a n-modal 

distribution is a continuous probability distribution with n different modes, that appear 

as distinct peaks in the probability density function. The bimodal distribution most 

commonly arises as a mixture of two different unimodal distributions. On the basis of 

this aspect, a test was conducted using the data regarding Terminal 7, examining late 

and early arrivals separately.  

In both cases the frequency distribution is unimodal (Figure 6.7).  

 

Table 6.10 shows the delay and advance summary statistics. 

 

Table 6.10: Delay and advance summary statistics. 

Dataset Min Q1 Median  Mean Q3 Max 
Standard 

deviation 

Delay 15 130 207 281 376 929 208 

Advance -1,090 -386 -318 -364.5 -271 -16 188 
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Figure 6.7: Frequency distributions of the delays (a) and advances (b) at Terminal 7 
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The continuous estimates obtained for the two datasets are shown in Table 6.11 and in 

Table 6.12. 

 

Table 6.11: Predictive performance for the continuous outcome (terminal level-delay) 

Algorithm Sample MAE (min) 

Regression Tree 

Sample test 122 

10-fold cross 

validation 
145 

Random Forest 

Sample test 65 

10-fold cross 

validation 
119 

 

Table 6.12: Predictive performance for the continuous outcome (terminal level-advance) 

Algorithm Sample MAE (min) 

Regression Tree 

Sample test 112 

10-fold cross 

validation 
123 

Random Forest 

Sample test 51 

10-fold cross 

validation 
102 

As expected, the results obtained with the continuous models are satisfactory. 

Moreover, in this case the prediction error that was obtained should not be evaluated 

in terms of absolute value but should be reduced by half, thus increasing the 

probability of unequivocally identifying the shift to be assigned to the vessel's arrival. 

Considering that the working day in Antwerp is set up in 3 eight-hours working shifts, 

it is easy to deduce that in case of late arrival the possibility of univocally determining 

the demand for each shift is 80%, while in case of early arrival it is around 86% 

(Figure 6.8).  
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7 CHAPTER 7: Conclusions 

This chapter discusses how this research contributes to the existing knowledge and the 

implications of the research itself. The results are discussed at the scientific and 

practical levels. 

 

7.1 The contribution of the research 

This research was set up to search for a solution to the vessel arrival uncertainty 

problem in container terminals.  

The main issue for enhancing planning efficiency in container terminals is the 

prediction of ship arrival times. Furthermore, considering the strong dependence of 

planning processes on incoming information flow, a reliable estimate of the actual 

time of arrival 24 hours in advance could help planners in a daily planning scenario. In 

particular, this would facilitate the terminal operations management with regard to the 

allocation of the human, mechanical and spatial resources that are required for 

handling operations, which are often under/overestimated at the planning stage.  

The literature review described in Chapter 3 reveals that very few studies deal 

explicitly with this problem. The absence of a reference model that specifies the 

relationship between vessel arrival uncertainty and the involved variables resulted in 

the application of a specific machine learning approach. This approach, that abandons 

all prior assumptions about data distribution shape, is based on the self-learning 

concept according to which the relation between an outcome variable Y and the set of 

predictors X is directly identified by the previously collected data.  

The methodological approach has been validated thanks to two case studies: the 

transhipment container terminal of Cagliari and the transhipment container terminal of 

Antwerp.  
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A period of observation was conducted in both terminals in order to analyse the 

context, interview experts and collect all the variables that may potentially influence 

late/early arrivals in port.  

On the basis of the output variable distribution shape, different estimates are required: 

- a discrete-estimate that provides a qualitative evaluation of the delay/advance; 

- a continuous-estimate that provides a quantitative evaluation of the vessel arrival 

uncertainty. 

In the first case, the output variable is a binary one codified as 0-1, in the second case 

it is a continuous variable that is expressed in minutes. The fitted algorithmic models 

used to obtain predictions include Logistic Regression, Classification and Regression 

Tree and Random Forest. All the proposed models are able to learn from experience 

following the well-known Data Mining paradigm “learning from data”. 

Investigation of the case studies validates the methodology and provides important 

findings regarding the goodness of fit of the models on the data and the main variables 

affecting the process. 

In particular, it was seen that the reliability of the prediction changes on the basis of 

the outcome distribution shape. The results obtained in the two terminals that were 

studied can be analysed considering the different frequency distribution of the delay: 

the Cagliari container terminal shows a unimodal distribution composed of a distinct 

peak, while the terminal container in Antwerp underlines a bimodal distribution 

composed of two different peaks. The applications highlight that, due to the strong 

bimodality, the discrete algorithms are very flexible in representing data when the 

distribution of the outcome shows two distinct modes. However, the continuous 

algorithms have a highly relevant performance in capturing data characteristics when 

the distribution exhibits unimodal behavior.  

As expected, Random Forest algorithms still show the best performance in all 

predictions. Moreover, the evaluation of the discovered knowledge made it possible to 

highlight the most discriminating variables of the analysis, even thanks to the 

graphical visualisation of the Importance-plots. 
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7.2 Practical implications 

The practical aspects of the research results make them relevant for application in 

container terminals. 

The research concerns a purely operative setting where planners need to make 

predictions about future arrivals in order to have useful information that can be used in 

a daily strategy decision making process. In order to do that, it is crucial for planners 

to know whether the vessel will fall within the scheduled work shift or in a different 

one. Therefore, the practical usefulness of this research lies in identifying the 

probability, associated with the continuous estimate, of specifically identifying the 

work-shift the incoming vessel will fall within. 

CAGLIARI CASE 

If the delay has a unimodal distribution, the continuous model suffices to obtain a 

substantial range of uncertainty.  

In the Cagliari case, in fact, the mean prediction error in minutes makes it possible to 

determine the uncertainty range for each ship arrival with a high degree of reliability: 

the probability of unequivocally identifying the work-shift of arrival is very high, i.e., 

around 90%. 

 

ANTWERP CASE 

If the delay distribution is not unimodal, the problem can be solved by considering that 

a n-modal distribution arises as a mixture of n different unimodal distributions.  

In the Antwerp case the outcome distribution is a continuous probability distribution 

with two different modes, that appear as distinct peaks in the probability density 

function. This aspect suggested to use a two step instrument. The first step uses a 

discrete model to determine whether an incoming vessel is likely to arrive late or in 

advance. This information will allow us to consider the unimodal distribution of the 

delays or the advances separately in order to obtain a reliable forecast in minutes. 

In this case the probability of unequivocally identifying the work-shift of arrival is 

approx 81% and 86%, respectively, for delays or advances.  

The slightly higher mean prediction error in this case can be attributed to the higher 
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standard deviation value of the outcome. 

The practical results of this research will contribute to the development of more 

efficient solutions for the management problems that terminal operators are called 

upon to solve. The instrument that is proposed can help planners, together with their 

experience, to have reliable indications on vessel arrival times. Moreover, once a 

machine learning algorithm has been successfully trained and tested, the planner can 

use it to obtain a prediction simply by substituting the input values for the vessel for 

which the forecast is required.  

In summary, to know with greater certainty vessel arrival times can improve the use of 

the available resources (human resources and equipment as well as spatial resources) 

required for handling operations and for support activities. This could maximise 

terminal efficiency and minimise terminal costs, hence improving terminal 

competitiveness.  

 

7.3 Suggestions for future research 

This research also provides basis for further studies. 

One of the main lines of research that results directly from this study concerns the 

introduction into the model of new variables. In particular: 

- external factors like strikes, mechanical problems or breakdowns that, during 

discussions with planners, were mentioned as potential influential variables in 

vessel arrival uncertainty; 

- tidal flow data, in order to investigate if the bimodality of the distribution in the 

Northern range port might be related to sailing constraint due to tidal restrictions 

on port access. 

Another important future research area concerns the evaluation of management fallout 

caused by late/early arrivals in the system as a whole. In particular, it would be 

important to quantify the actual costs for a terminal and to analyse the economic and 

organisational benefits that might derive from the use of the proposed instrument.  
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With regard to future applications of the methodology, it must be taken into account 

that the outcomes of the analysis can be susceptible to the availability and the quality 

of the input data. It could be interesting to refer to a broader historical period of 

observation and evaluate any improvements in forecasting. 

Lastly, it might be interesting to calculate the daily alarm rate at the port of Antwerp 

generated by late/early arrivals which, due to lack of data, is not included in the 

preliminary exploratory analysis. 
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8 Appendix 1  

Summary statistics of the categorical predictors at the 

Cagliari CT 

 

This section shows the summary statistics of the continuous potential predictors 

collected at the Cagliari container terminal. 

 

 

VESSEL TYPE Frequency 

MOTHER 912 

FEEDER 1057 
 

 

 

 

 

VESSEL OWNER Frequency 

ARKAS CONTAINER TRANSPORT S.A. 268 

CMA CGM 31 

EMES SHIPPING & TRANSPORT 136 

HAMBURG SUD 99 

HANJIN SHIPPING 42 

HAPAG-LLOYD 616 

METZ CONTAINER LINE 15 

NIPPON YUSEN KAISHA 5 

ORIENT OVERSEAS CONTAINER LINE 158 

SEA STAR LINE 4 

UNITED ARAB SHIPPING COMPANY 7 

UNITED FEEDER SERVICES 361 

XPC 231 
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VESSEL SERVICE Frequency 

AEX 260 

ASA 191 

CBS 85 

CMS 8 

CSA 64 

EU2 15 

IAS 37 

IAX 29 

IOS 260 

LES 1 

LTX 68 

LVA 75 

MCA 134 

MGX 131 

MINA 8 

MPS 103 

MSX 4 

NAX 18 

SAX 53 

SPOT 75 

STX 79 

TLB 207 

TYR 56 

WBS 8 
 

 

The vessel service considers all the three variables related to service together i.e. 

port rotation, sailing direction and previous port. Some examples of the most 

frequent vessel service are illustrated as follow. 
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SERVICE PORT 1 PORT 2 PORT 3 PORT 4 PORT 5 PORT 6 PORT 7 PORT 8 PORT 9 PORT 10 PORT 11 PORT 12 PORT 13 PORT 14 PORT 15 

AEX 
Cagliari     

ITALY 

Halifax 

CANADA 

New York   

USA 

Savannah   

USA 

Norfolk       

USA 

New York   

USA 

Halifax       

CANADA 

Cagliari      

ITALY 

Jeddah 

SAUDI 

ARABIA 

Colombo 

SRI LANKA 

Singapore 

SINGAPORE 

Vungtao 

VIETNAM 

Laem 

Chabang 

THAILAND 

Singapore 

SINGAPORE 

Colombo      

SRI LANKA 

 

 

 

SERVICE PORT 1 PORT 2 PORT 3 PORT 4 PORT 5 PORT 6 PORT 7 PORT 8 PORT 9 PORT 10 

IOS 
Cagliari    

ITALY 

Hamburg 

GERMANY 

Tilbury     

UNITED 

KINGDOM 

Antwerp 

BELGIUM 

Tanger     

MOROCCO 

Cagliari      

ITALY 

Jebel ali      

UNITED A. 

EMIRATES 

Karachi 

PAKISTAN 

Nhava Sheva   

INDIA 

Mundra       

INDIA 

 

 

 

SERVICE PORT 1 PORT 2 PORT 3 PORT 4 PORT 5 PORT 6 PORT 7 PORT 8 PORT 9 PORT 10 PORT 11 PORT 12 PORT 13 

TLB 
Cagliari 

ITALY 

Genoa      

ITALY 

La Spezia    

ITALY 

Leghorn 

ITALY 

Naples     

ITALY 

Cagliari      

ITALY 

Mersin    

TURKEY 

Haifa     

ISRAEL 

Ashdod      

ISRAEL 

Alexandria 

EGYPT 

Salerno 

ITALY 

Naples       

ITALY 

Trapani      

ITALY 
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SAILING DIRECTION Frequency 

Eastbound 309 

Westbound 297 

Tyrrhenian bound 98 

Levant bound 109 

Standard 1156 
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PREVIOUS 

PORT 
Country Nautical Miles Distance Frequency 

Alexandria Egypt 1,130 7 

Algeciras Spain 714 5 

Algiers Algeria 329 13 

Ancona Italy 846 88 

Annaba Algeria 154 2 

Antwerp Belgium 2,070 1 

Ashdod Israel 1,363 3 

Barcelona  Spain 371 109 

Castellon Spain 448 9 

Catania Italy 371 7 

Civitavecchia Italy 234 1 

Colombo Sri Lanka 4,719 105 

Damietta Egypt 1,260 2 

Fos Sur Mer France 365 1 

Genoa Italy 354 16 

Gioia Tauro Italy 325 13 

Halifax UK 3,390 119 

Haydarpasa Turkey 1,119 3 

Istanbul   59 

Izmir Turkey 961 71 

Jeddah 
Saudi 

Arabia 
1,874 44 

La Spezia Italy 326 3 

Livorno Italy 301 42 

Malta Malta 329 84 

Marseille France 350 3 

Mersin Turkey 1,346 10 

Messina Italy 351 1 

Montreal Canada 3,889 4 

Mundra  India 4,171 60 

Naples Italy 267 109 

New Orleans USA 5,210 43 

Palermo Italy 217 13 

Piraeus Greece 884 9 

Port Everglades Florida  4,530 8 

Port Said Egypt 1,241 9 

Ravenna Italy 920 3 

Rijeka Croatia 437 2 

Salerno Italy 284 32 

Savannah Georgia  4,235 14 

Southampton England 1,875 16 
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PREVIOUS 

PORT 
Country Nautical Miles Distance Frequency 

Tanger Morocco 751 130 

Tarragona Spain 406 4 

Thessaloniki Greece 1,015 91 

Trapani Italy 177 3 

Tunis Tunisia 163 63 

Vado Ligure Italy 355 7 

Valencia Spain 456 228 
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9 Appendix 2  

Summary statistics of the categorical predictors at the 

Antwerp CT 

 

PREVIOUS 

PORT 
Country 

Nautical Miles 

Distance 
Frequency 

Aarhus Denmark 511 13 

Abidjan 
Cote 

D'Ivoire 
3,725 3 

Algeciras Spain 1,357 45 

Boston USA 3,091 1 

Bremerhaven Germany 319 443 

Buenos aires Argentina 6,361.81 1 

Charleston 
South 

Carolina 
3,771 112 

Copenhagen Denmark 536 4 

Dunkerque France 98 20 

Felixstowe England 137 208 

Gavle Sweden 965 8 

Gotthenburg Sweden 560 31 

Hamburg Germany 370 209 

Helsingborg Sweden 549 4 

Helsinki Finland 998 4 

Jeddah Saudi Arabia 4,000 1 

Kiel Germany 387 1 

Kotka Finland 1,057 6 

Liverpool England 668 1 

Port Kelang Malesia 8,126 3 

Port said Egypt 3,280 2 

Rauma Finland 986 29 

Rotterdam Netherlands 126 167 

Santa Marta Colombia 4,510 2 

Shanghai China 10,463 1 

Singapore Singapore 8,300 1 

St Petersburg Russia 1,146 9 

Tanger Morocco 1,336 22 

Tanjung 

Pelepas 
Malaysia 8,288 

2 

Valencia Spain 1,740 2 

Yantian Cina 11,206 1 

Zeebrugge Belgium 62 5 
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