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ABSTRACT 
Financial crises typically occur both during economic recessions and 
expansions. The objective of this paper is to quantify the likelihood of 
financial crises and crisis spill-overs across the business cycle in order to 
assess whether and to what extent economic recession episodes are more 
inclined towards financial crises and crisis co-movements than expansion 
periods. Statistical extreme value analysis (EVT) is put at work to 
calculate these marginal and joint tail likelihoods for recessions and 
expansion subsamples. We find that tail risk is procyclical for different 
types of financial assets. Also, systemic risk indicators based on extreme 
co-movements between bank stocks are found to be procyclical which 
confirms earlier research on market-based systemic risk measures. 
Moreover, cross-asset crisis spillovers like flight-to-quality effects 
between stocks, bonds or gold become much more pronounced during 
recessions. Finally, we show that diversifying portfolio tail risk becomes 
more difficult during recessions. To our knowledge, applying EVT 
techniques to business cycle regimes (or other economically meaningful 
sample partitions) is novel to the literature on financial extremes and 
extreme value analysis. EVT measures can also be made dependent on 
multiple regimes and regime determination can be made endogenous.        
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1. Introduction 

Crisis episodes like the dotcom bubble burst, the 2007-2009 banking crisis or the 

euro area sovereign debt crisis are a reminder to academics, institutional investors and 

policy makers that “co-crash” linkages in financial markets or, alternatively, asset 

substitution phenomena like “flight-to-quality” or “flight-to-liquidity” exist and can be 

severe especially during periods of market stress. The severity of financial crises and 

crisis spillovers also potentially determines how severe the impact may be on real 

economic activity. Alternatively, flight-to-quality or flight-to-liquidity spillovers may also 

enhance overall financial stability or increase the potential for diversifying the portfolio 

tail risk of large institutional investors like pension funds.  

The vast majority of empirical studies on financial crises and crisis spillovers 

implemented some form of correlation analysis methodology see e.g. King and 

Wadwhani (1990); Lin et al. (1994); Susmel and Engle (1994), Bae et al. (2003), 

Manganelli et al. (2004), Cappiello et al. (2005) or more recently Bekaert et al. (2009, 

2010, 2012) and White et al. (2013). Methodologies include, inter alia, multivariate 

versions of factor models, DCC-GARCH specifications, limited dependent variables 

models (multinomial probit and logit), multivariate quantile regressions etc. These 

articles typically study whether financial markets are more strongly co-moving during 

periods of market turbulence compared to periods of low market volatility and also 

question the direction of international spillovers. An increasingly important subset of this 

“market linkages” literature focuses on whether financial crises are "contagious" (see 

Forbes and Rigobon (2002); Bae et al. (2003); Chan-Lau et al. (2004); Bekaert et al. 

(2005)). Hartmann et al. (2006) argue that the financial contagion concept is far from 

unambiguously defined and discuss the most frequent interpretations that co-exist 

nowadays. Brownlees and Engle (2012), Acharya et al. (2010) and Adrian and 

Brunnermeier (2011) measure bank linkages between the top US financial institutions by 

introducing alternative indicators of systemic risk whose estimation is based on some 

form of covariance analysis.   

The main objection against the (bulk of the) market linkages literature is twofold in 

that it (i) is very correlation-oriented and (ii) often does not capture true crisis episodes in 



the “systemic” sense of the word (i.e. very low frequency events) when focusing on high 

volatility regimes. Multiple correlation pitfalls imply that correlations can be very 

misleading indicators of dependence during crisis episodes.  For example, Boyer et al. 

(1999) and Ang and Chen (2002) show that for the bivariate normal distribution the 

correlation varies considerably when conditioned on subsets of the overall distributional 

support. The conditional correlation eventually goes to zero when truncated on the tail 

area. This implies that when correlation analysis is employed in conjunction with the 

normality assumption to assess, say, indicators of systemic risk, this will almost certainly 

result in severe underestimation; moreover, truncated correlations differ across different 

classes of multivariate distributions; also, correlations can only capture linear dependence 

whereas one might suspect crisis spillovers to be fundamentally nonlinear phenomena.1 

For a more in-depth treatment of the pitfalls of correlation analysis, see e.g. Embrechts et 

al. (1999). Another problem with existing comovement approaches is that it is 

questionable whether they truly capture the low-incidence character of crises and crisis 

comovements. For example, co-quantile regressions typically focus on the 5% or 1% tail 

area which reflects crisis events that are expected to happen once in 20 days and once in 

100 days, respectively. This can hardly be considered as extreme in the sense of large 

adverse shocks triggering companies into overnight insolvency. The latter types of 

extreme low-incidence events are the ones we are interested in.  

Mainly because of the above concerns regarding the applicability of covariance 

analysis during periods of high market volatility, a growing body of literature applies 

extreme value analysis (EVT).2 Loosely speaking, EVT enables one to estimate marginal 

and joint probabilities of infrequent tail events like crises without the need to resort to a 

                                                 
1 The latter pitfall can nevertheless be partly remedied by integrating elements of non-linear time 

series analysis (e.g. jump diffusions) in multivariate comovement models based on GARCH or stochastic 
volatility frameworks. 

2 In univariate and bivariate settings EVT has been previously implemented to assess the severity 
of extreme market (co-) movements. For example, Koedijk et al. (1990, 1992) and Hols and de Vries 
(1991) study the (heavy) tails of foreign exchange rate returns. Jansen and de Vries (1991) and Longin 
(1996) analyze stock market booms and busts whereas de Haan et al. (1994) consider extreme up- and 
downturns in bond markets. Bivariate EVT has been employed to measure extreme stock market spillovers 
in either a parametric fashion (Longin and Solnik (2001)) or a semi-parametric way (see Straetmans, 2000; 
Poon et al., 2004). Hartmann et al. (2003, 2004) address various forms of currency and stock-bond 
spillovers. Finally, Hartmann et al. (2006), de Jonghe (2010), Zhou (2010) and Straetmans and Chaudhry 
(2013) apply EVT techniques to assess tail risk and systemic risk of financial institutions. 



parametric probability law for the returns. As will be discussed in the estimation section 

of this paper, some mild conditions on the tail behavior of the returns suffice for the 

purpose of estimation and statistical inference. Also, extreme value analysis studies the 

tail behavior of the unconditional distribution of financial returns which constitutes a 

second methodological difference with the bulk of the comovement literature 

traditionally focusing on the conditional distribution of returns (all kinds of conditional 

GARCH, stochastic volatility, co-quantile regressions etc.).3  

In this paper we take an intermediate position between these two long-standing 

traditions of either modeling the multivariate distribution in a conditional fashion (time 

dependent and typically with a short-term focus) or in an unconditional way (time 

independent and typically with a long-term focus). We develop the idea that the 

unconditional tail of financial return distributions (despite being stationary in an 

unconditional sense) may exhibit time dependent “regimes” of some kind. More 

specifically, we assume that the parameters governing the univariate (Pareto-type tail 

decline) and multivariate (tail dependence structure or tail copula)) tail behavior can 

change through time due to e.g. shifts in monetary or fiscal policy regimes, financial 

liberalization (e.g. liberalization of capital controls, prudential FX measures, exchange 

rate regimes etc.) or changes in certain macro-economic variables to name only a few 

possible causes.  

In the aftermath of Hamilton’s (1990) regime-switching paper, an “academic 

industry”  developed on regime switching behavior in financial markets, see e.g. Engel 

and Hamilton (1990), Hamilton and Susmel (1994), Bekaert and Harvey (1995), Gray 

                                                 
3 Conditional models enable one to identify dynamic (time varying) risk measures that are widely 

used by risk managers and investors. The latter agents typically exhibit short time horizons for sake of 
short-term volatility forecasting and portfolio rebalancing. However, for long-term investors, financial 
regulators and supervisors that care about e.g. assessing the likelihood of financial instability, the more 
relevant exercise to undertake seems the assessment of extreme risks and worst cases scenarios based on 
the unconditional tail of portfolio returns. The unconditional return distribution will typically render more 
conservative outcomes than dynamic risk measures based on the conditional return distribution. Although 
conservativeness in risk assessment may indeed be desirable from a regulatory or supervisory point of 
view3, it may be less desirable for banks or portfolio investors themselves; financial institutions do not want 
to see their profitability squeezed too much and risk-averse portfolio investors may well care about tail risk 
events but typically also care about realizing some decent return.  

 



(1996), Ang and Bekaert (2002), Baele (2005), Guidolin and Timermann (2008) or Ang 

and Timmermann (2011). In contrast, only a small number of papers tested for structural 

breaks in the unconditional tail behaviour of financial returns. The presence of structural 

breaks in univariate tail behavior (i.e. the tail index) has been investigated for different 

asset classes: exchange rates (Koedijk et al. (1990, 1992)), Bund Futures returns (Werner 

and Upper (2002)) and stock markets (Jansen and de Vries (1991), Pagan and Schwert 

(1990), Quintos et al. (2001), Galbraith and Zernov (2004) and Straetmans et al. (2008)). 

Straetmans and Candelon (2013) investigate the tail index constancy hypothesis for a 

variety of financial assets and summarize the univariate breakpoint literature. The general 

picture that emerges from this univariate EVT literature is that the tail index is 

remarkably stable: only emerging currency returns seem to exhibit jumps in the tail 

index, most probably due to changes in exchange rate regimes. As for temporal changes 

in the multivariate tail dependence structure, the number of studies is even more limited. 

Straetmans (1998) found only weak evidence for structural breaks in extreme linkages 

between international stock markets; on the other hand, the same author established that 

extremal spill-overs between European currencies expressed against the Dmark 

numeraire were seriously dampened due to the introduction of the European Monetary 

System (EMS). More recently, Straetmans et al. (2008) established a statistically 

significant “9/11 effect” in conditional co-crash probabilities between US sectoral indices 

and a market index. Finally, using alternative market-based (extreme value) indicators of 

systemic risk, Hartmann et al. (2006) and Straetmans and Chaudhry (2013) show that 

systemic risk has increased at both sides of the Atlantic. 

The main contribution of this paper is to build further on this breakpoint literature by 

questioning the existence of regimes in the tail behavior of financial asset returns. More 

specifically, we investigate whether the tail behavior of asset returns (either single asset 

tail fatness or cross-asset strength of tail dependence) changes with the business cycle.  

Traditional applications of EVT do not take economic cycles into account and estimate 

tail features using a much return data as possible, i.e. the “full” sample.  However, it 

seems natural to assume that the propensity towards financial crises or crisis spillovers is 

nonconstant over time and e.g. depends on the phase of the business cycle. If that is the 

case, full sample measures for e.g. tail-VaR or crisis spillover indicators will be biased 



estimates of the true state (recession-based or expansion-based estimates). If tail behavior 

varies with the business cycle, unbiased estimation of the tail characteristics requires 

splitting up the full sample into a “recession” and an “expansion” sample.4 First, we 

consider regime-dependent proxies of tail risk for different financial asset classes (stock 

indices, bond indices, bank stocks, exchange rates and commodities). Next, we calculate  

market-based systemic risk measures conditioned on recessions and expansions using the 

stock prices of US financial institutions. Third, we compare the strength of co-crashes vs. 

flight-to-quality between stock and sovereign bond markets across recessions and 

expansions. Finally, we investigate to what extent business cycle phases matter for the 

potential of portfolio risk diversification. To that aim we estimate and minimize both 

portfolio variances and tail risks across the business cycle for simple two-stock portfolios 

selected from the Dow Jones index.        

Anticipating our results, we find that univariate tail risk is strongly procyclical. 

Extreme downside risk is significantly more severe for the recession sample as compared 

to the expansion sample. Second, procyclicality is also present in tail risk and systemic 

risk indicators of selected US financial institutions. Third, previous EVT papers like e.g. 

Hartmann et al. (2004) established that stock-bond co-crashes and flight-to-quality 

phenomena are approximately equally likely over the sample period 1987-1999. In 

contrast, our results suggest that stock-bond co-crashes are less likely than flight-to-

quality during times of market stress and that this asymmetry is largest during recessions. 

More specifically, flight-to-quality from stocks into bonds happens nearly twice as often 

as compared to stock-bond co-crashes during recessions; but the two likelihoods are 

much closer to each other for the expansion sample and the full sample. Finally, we 

establish that portfolio risk (both central risk measures like variance as well as tail risk) is 

much harder to diversify during recessions as compared to expansions, i.e., a 

diversification meltdown.  The minimum tail risk portfolios are also substantially 

different across recessions and expansions which further confirms the rather different 

nature of the tail dependence structure during different phases of the business cycle.   

                                                 
4  Notice, however, this also decrease estimation accuracy because recession and expansion 

samples are smaller than the full sample, i.e. the so-called bias-variance trade off in EVT estimation when 
varying the sample size.   



The paper proceeds as follows. Section 2 summarizes theory on extreme value 

analysis and introduces regimes in the unconditional tails. Regimes are introduced by 

considering mixture models of univariate and multivariate distributional tails. Section 3 

presents semi-parametric estimation procedures that are common in statistical EVT and 

that can be applied on recession-based and expansion-based subsamples. Section 4 

contains empirical results. Conclusions are summarized in the final section 5.       

2. Extreme linkages: probability theory and regime dependence  
 

We first introduce our EVT-based measures of tail risk and tail co-movement (the 

so-called tail-β) based on the unconditional distribution, i.e., without considering regime 

dependence.  The former is identified using a Pareto-type tail decline whereas the latter is 

expressed in terms of the so-called tail copula or stable tail dependence function (2.1). 

Next, we show how regime dependence of our tail risk and tail comovement measures 

can be easily introduced by means of distributional mixtures of univariate and bivariate 

tail models (2.2.).  

2.1.  Probability theory 

Since Mandelbrot (1963), the stylized fact of fat tailed financial returns seems 

generally accepted within the financial economics profession. We employ it as an 

identification scheme for calculating tail likelihoods. Loosely speaking, it implies that the 

exceedance probability for a given exceedance level (or quantile) approximately evolves 

as a power law of the quantile (i.e. polynomial tail decay).  Assume that we are interested 

in the distributional tail of financial return losses. Return losses will be denoted furtheron 

by a positive random variable X which implies we focus on the right tail.5 The 

characterizing property for distributions with a power-type tail decay is the so-called 

regular variation at infinity property: 
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5 This corresponds with the negative of the (log) return series calculated on the original price 

series of the financial asset.  



From this condition it follows that distributions, like e.g. the Student-t, the class of 

symmetric stable distributions or the GARCH class have bounded moments up to α, 

where α is known as the “tail index”. In contrast, distributions with exponentially 

decaying tails or with finite endpoints have all moments finite (bounded). Another way of 

characterizing the class of regularly varying functions is by factorizing them into a power 

law part x  and a slowly varying function part L(x):   

  ,)(  xxLxXP                                                                                            (2) 

with x large and where )(xL is a slowly varying function, i.e.,  
 
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Estimation of the exceedance probability (2) for given quantile x (or, alternatively, of x 

for given exceedance probability p) will be discussed in the next section but basically 

amounts to estimating α and the linear (first order) part of L(x).   

Sofar the assumed power-type tail identification for sharp losses in financial returns. 

We now turn to the characterization of a tail dependence measure for pairs of extreme 

returns. Suppose one would like to know the likelihood that the market value of a bank’s 

equity or, more generally, a financial asset or market index, sharply drops given that the 

same happens for another bank, asset or market. Alternatively, the interest may lie in 

identifying the joint likelihood of a crashing asset and a booming asset as reflecting 

substitution effects during times of market stress (flight-to-quality from risky stocks into 

safe heavens wit lower perceived riskiness like e.g. bonds or gold). Let x and y be the 

quantiles (or “crisis barriers”) above which we speak of a financial crisis or crash (in case 

of a large loss) or, alternatively, a boom (in case of an exceptional gain).6 From 

elementary probability theory (starting from the standard definition of conditional 

probability) we know that 

                                                 
6 To study financial crisis comovements with EVT we use the convention to take the negative of a 

return so that all formulae are expressed in terms of the upper-upper quadrant; but in principle 
comovements in all four quadrants can be studied, i.e. co-crashes but also flight-to-quality from stocks into 
bonds, flight-to-liquidity or safe heaven substitution effects across sovereign debt markets etc. 
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with    yYxXPyYxXP  ,1or   .  

The question arises how the conditional tail probability in (3) should be estimated.     

Upon assuming e.g. multivariate normality, estimating the first and second moments 

(means, variances and covariances) is sufficient in order to calculate the conditional 

probability (3). However, multivariate normality and the associated correlation structure 

are unsuited to assess extreme linkages between asset markets, mainly because the 

conditional probability XYCP  vanishes to zero regardless the covariance levels in the 

distributional centre. In other words, if extremal spillover potential is present in the data, 

it cannot be captured by the multivariate normal distribution. Imposing parametric 

models with tail dependent marginal distributions like e.g. the logistic dependence model 

(Ledford and Tawn (1996); Longin and Solnik (2001); Poon et al. (2004)) constitutes an 

alternative for multivariate normality because the logistic tail dependence allows for 

nonzero values of XYCP  beyond large crisis barriers x and y. However, within a 

parametric framework, one never knows what is the “true” underlying model and we 

therefore decided not to impose a parametric model for the tail dependence structure. 

Instead, we propose a semi-parametric estimation procedure for the tail dependence 

structure. 

We aim to estimate XYCP  when the conditioning quantiles x and y become very 

large. This amounts to inverting the marginal distribution functions for X and Y in order 

to work out the asymptotic equivalent of our linkage measure (3) in terms of the (small) 

probabilities of having very extreme returns. In order to do this, we first introduce the 

upper quantile functions for the return losses X and Y respectively as  
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for some small but positive values u and v and a scaling parameter t. Without loss of 

generality, we choose u,v and t such that tu and tv are smaller than one and thus 

interpretable as excess probabilities. Moreover set   xtuQ 1  and   ytvQ 2  

corresponding with the original crash levels in (3).  

Upon substituting the above quantile functions into (3), one obtains the following 

asymptotic equivalent for (3): 
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The consequence of letting t converge to 0 is that the excess probabilities tu and tv also 

tend to zero, and hence the corresponding quantiles 1Q  and 2Q  grow large. As for the 

limit function  vul , , it is defined as 
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This is the so-called Stable Tail Dependence Function (STDF) and was introduced by 

Huang (1992). This limit function can also be interpreted as a tail version of the statistical 

copula between X and Y. Notice that the copula function that corresponds with a given 

joint distribution  yxF ,  boils down to: 
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and where  1
iF  represent the general inverse functions of the marginal c.d.f. of X, Y 

(i=1,2). In other words, the copula is the joint distribution function with uniformized 

marginals which implies that the function solely reflects cross sectional dependence 

information about the random pair  YX , ; marginal information is filtered away by the 

marginal transforms.  



The STDF can now alternatively be defined as a tail version of the copula function, i.e., a 

“tail” copula: 
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see Huang (1992) for further discussion on this relation.  

   Multivariate extreme value theory deals with existence conditions, properties and 

estimators for this function, see Huang (1992) or De Haan and De Ronde (1998). More 

specifically, one can show that the STDF is one-to-one with the bivariate extreme value 

distribution of the joint extremes of X and Y. In contrast to univariate extreme value 

theory, however, there is no generally applicable parametric limit law for the joint 

extremes. This provides an additional argument to opt for a semi-parametric estimation 

approach for tail dependence structures. 

The curvature of  vul ,  completely determines the tail dependence structure between 

X and Y. Basic properties of  vul ,  are its linear homogeneity, i.e.,    vulvul ,,    

and the inequality 

    vuvulvu  ,,max . 

Equality holds on the left hand side if X and Y are completely dependent in the tail area, 

while equality on the right hand side obtains if X and Y are independent in the tail area. 

Note that independence means that for all Q₁ and Q₂ 

     2121, QYPQXPQYQXP   , 

while tail independence only requires this factorization to hold asymptotically (i.e. for Q₁ 

and Q₂ growing large). Thus it may well be that non-extreme return pairs are dependent 

although their extremes are asymptotically independent, e.g. the earlier example of the 

bivariate normal distribution with tail independent marginals even in the presence of 

nonzero central correlation.  

The STDF enables one to express joint exceedance probabilities as a function of 

marginal exceedance probabilities. In order to show this, let us first introduce some 



further notation for the marginal and joint tail probabilities that appear in (3): 

 xXPp 1 ,  yYPp 2  and  yYxXPp  ,112 . Exploiting the homogeneity 

property of  ,l  one can now easily show that the bivariate excess probability 12p and the 

marginal probabilities 1p  and 2p  are related via the STDF. For sufficiently small 0t , 

it approximately holds that  
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and 2p it approximately holds that  
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In other words, the joint probability 12p only depends on the marginal probabilities 1p  

and 2p  and the tail dependence structure reflected by the curvature of  ,l . The linkage 

measure can thus be expressed as 
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Referring to expressions (3) and (4) as a “tail dependence” measure is somewhat 

misleading because it both reflects information about the tail dependence structure as 

well as the marginal inequality, i.e., 21 pp  . In financial risk management, however, it is 

common to calculate downside risk for common p-values of, say, 5% or 1%.  

Conditioning on a common p-value has the advantage that it makes downside risk 

calculations - as reflected by the quantile or VaR level -  comparable across risky 

positions which is not the case with unrestricted 1p and 2p . Moreover, by setting 

ppp  21  , XYCP  solely reflects information on the tail dependence structure (STDF) 

because one controls for marginal inequalities; thus it becomes a “pure” tail dependence 

measure:  
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The marginal-free expression in (8) holds due to the approximate homogeneity of  ,l

which implies that the marginal probability can be skipped from the numerator and 

denominator of (8). If both returns are completely dependent in the tails, i.e. 

    11,1max1,1 l , then 1XYCP and the pairs of assets, banks etc. co-crash with 

certainty. But without extreme co-movements in the two markets, 0XYCP  since 

  21,1 l  (the case of full tail independence). If the second (conditioning) asset Y 

represents a nondiversifiable risk factor like e.g. a stock market index, we rename 

conditional  probabilities like (3) or (8) as “tail-βs”, see e.g. Straetmans (2008).      

2.2. Mixtures of tail models  

 In line with the traditional assumptions of statistical extreme value analysis, the 

unconditional measures of tail risk and tail comovement introduced in the previous 

subsection are based on stationary unconditional return distributions. Loosely speaking, 

stationarity in this context implies that the parameters governing the univariate and 

multivariate tail behavior are constant in the long-term. However, this does not exclude 

short-term tail parameter variation by means of e.g. regime dependence. Arguably the 

simplest way to introduce regime dependence in our tail risk and tail comovement 

measures is by means of distributional mixture models. The unconditional distributions of 

these mixture models still exhibit stationarity and thus constancy of the tail parameters; 

but the short-term parameters – and thus risk indicators – are allowed to change between 

regimes for a distributional mixture.  

Starting with univariate tail mixtures, assume that the (long-term unconditional) 

univariate marginal distribution of the random variable X is governed by n regimes, i.e., 

     ,
1


n

i ii xFxFxXP         



and where i  is the probability that regime i occurs with corresponding c.d.f.  xFi . 

Obviously, 


n

i i1
1 . It automatically follows that the mixture also holds for the 

corresponding survivor functions, i.e.,  

       


n

i ii xFxFxXP
1

   11                                                                    (9) 

Upon assuming that the regime dependent tail probabilities  xFi1  in (9) exhibit a 

power-type tail decay as described in (2), eq. (9) specializes to a mixture of regularly 

varying functions:  

  


n

i ii
ixxLxXP

1
.)(                                                                                     (10) 

From (10) it becomes clear that we allow for regime dependence in both the tail index 

and the slowly varying part L(.) determining the tail probabilities. It is straightforward to 

show that the regular variation property (1) also applies to the mixture of regularly 

varying functions in (10). In order to illustrate this, we assume (without loss of 

generality) n=2 regimes and 21   . The mixture tail (10) can be factorized as:  

  ,)( 2 xxLxXP  

with   xL        xLxxL 21 112    . Showing that L(x) is also slowly varying is 

straightforward, i.e., 
 
  0    ,1lim 


x

xL

sxL
x

. Thus, the fattest of the mixture tail models 

dominates (i.e., the tail index of the mixture equals 21   ) and thus determines the tail 

decay of the unconditional (long-term) distribution.7 

Turning to the multivariate case, it is equally straightforward to introduce mixtures 

into the tail dependence structure of asset return pairs. More specifically, analogous to the 

univariate case in (9), the joint survivor function can be written as a mixture of survivor 

                                                 
7 Although this result is reminiscent of Feller’s theorem on convolutions of heavy tailed random 

variables (preservation of the tail index  for sums of fat tailed random variables), it should nevertheless not 
be mixed up with the former result, see Feller (1971).  



functions across different regimes. Consequently, the mixture automatically also holds 

for the corresponding stable tail dependence functions, i.e.  

    


n

i iill
1

uu     ,  

with


n

i i1
1  , u   reflects a vector of uniform variables and where     ill  ,  stand for 

multivariate generalizations of the STDF in (5).  

For sake of convenience, we limit ourselves to studying the regime dependence in 

bivariate tail dependence measures like the conditional co-crash probability in (3). 

Moreover, as in the univariate case we only assume the existence of n=2 regimes but all 

concepts are readily generalizable to multiple regimes and multiple assets. We earlier 

argued that the conditional probability (3) can be readily expressed in terms of the stable 

tail dependence function, see (4). Suppose now that the bivariate stable tail dependence 

structure exhibits two regimes, i.e.  

       1,111,11,1 21 lll   . 

This mixture automatically implies a mixture in the conditional probability (8) via the 

following chain of equalities:  

 
      
       
  21

21
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1         

1,1211,12         

1,111,12         

1,12

XYXY

XY

CPCP

ll

ll

lCP













                                                        (11) 

 
3. Estimation and hypothesis testing   
 

Univariate tail index and extreme quantile estimation (reflecting downside risk) as 

well as an estimation procedure for the STDF are presented in Subsection 3.1. In 

Subsection 3.2 we introduce equality tests in order to test the equality of tail indices, tail 

quantiles and conditional probabilities across regimes. Rejecting the null of equal values 

across regimes provides further support for our approach to split up the full sample into 

economically meaningful subsamples. The proposed estimation and testing approaches 



are semi-parametric in nature and mostly follow Hartmann et al. (2004) or Straetmans et 

al. (2008), the only difference being that we condition EVT-based measures on regime-

dependent subsamples instead of the full sample.   

 
3.1. Semi-parametric estimation procedures  
 

We earlier assumed that the tails of financial returns are fat tailed, i.e. conditions (1)-

(2),  implying that tail likelihoods exhibit a power-type tail decay. The semi-parametric 

tail probability estimator from de Haan et al. (1994) is basically a first-order linear 

approximation of (2):  

 

     
 xX

n

m
pxXP nmnx ,ˆ .                                                                          (12) 

 

where the “tail cut-off point” nmnX ,  is the  (n-m)-th  ascending order statistic (or loosely 

speaking the m-th smallest return) from a sample of size n. The constant  nmnX
n

m
,  can 

be seen as the linear part of the slowly varying function in (2). Notice also that for 

nmnXx ,  the corresponding tail likelihood equals the empirical frequency m/n. As for 

values nmnXx ,  , the marginal exceedance estimator basically extends the empirical 

distribution further into the tail and even outside the domain of the historical sample 

(“out-of-sample”), i.e., nnXx , . The tail quantile or crisis barrier x is usually referred to 

as the “Value-at-Risk” (VaR). The VaR is chosen and the corresponding exceedance 

probability estimated in (12).  However, in the empirical application, we will evaluate the 

regime dependence of the quantile or VaR levels for given p-values because it is the VaR 

fro a given p-value that is so widely assessed as downside risk measure in modern-day 

risk management, not the exceedance probability for a given VaR. The quantile estimator  

is simply obtained by inverting the tail likelihood estimator (12):   

 


1

,ˆ 







  np

m
Xx nmnp                                                                                                (13) 



 

Estimators (12)-(13) still require an estimator for the tail index α. We estimate the tail 

index by means of the popular Hill (1975) estimator: 


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


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



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
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
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,1

0
ln

1̂ ,                                                                                         (14) 

where m has the same value and interpretation as in (12). Further details are provided in 

Jansen and De Vries (1991) and the recent monograph by Embrechts et al. (1997). 

The estimation of the bivariate excess probability 12p either requires adopting a 

specific functional form for the STDF, like e.g. in Poon et al. (2004), or proceeding semi-

parametrically. Since there does not exist a unique parametrization for the STDF, we like 

to pursue a semi-parametric estimation method based on the highest order statistics, see 

Huang (1992). An intuitive derivation of this estimator proceeds as follows. We start by 

setting 0/  nkt  in (6) where n equals the sample size and nk 1  represents a large 

real number such that )(nk  and   .0/ nnk  The choice of k is discussed furtheron. 

Since the marginal probability estimates are available from the univariate step, we can 

also replace  vu,  in (6) by  21 ˆ,ˆ pp : 
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In order to turn this expression into an estimator for  ,l , we replace P, 1Q  and 2Q by 
their empirical counterparts such that  
 

         
n

i npknnpkn YYXX
nk

n
ppl

1 ,ˆ,ˆ21  or   1
1

ˆ,ˆˆ
21

,                                                  (16)  

 
 
where 1  denotes the indicator function and where  x  is the integer satisfying 

  1 xxx . The quantiles 1Q  and 2Q have been replaced by order statistics. So, 

loosely speaking the estimator of  ,l  boils down to counting the instances at which one 

or both of the markets experience an extreme return within a given sample period.  



However, the empirical probability measure (16) is still not operational at this stage 

because the marginal probability arguments of the STDF are typically smaller than the 

inverse of the sample size n which implies there are no exceedances to estimate the 

empirical measure.8 However, one can exploit the linear homogeneity property of the 

STDF, i.e.,    21
1

21 ˆ,ˆˆˆ,ˆˆ pplppl   and choose 1  such as to scale up the marginal 

probabilities in (15) and to obtain excess observations. In the remainder of the article, we 

assume that 21 pp   and choose the scaling factor 1 p . Exploiting the linear 

homogeneity of the STDF and assuming the above scaling factor, the estimator  1,1l̂  that 

is required in (8) boils down to:  
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                                          (17) 

 

This estimator evaluates  ,l  inside the tail of the joint empirical distribution whereas in 

the original expression (16), there were no exceedances to employ nonparametric 

counting. Notice that this counting procedure of co-exceedances is also easily applicable 

in higher dimensions. A more extensive discussion on this derivation is provided in 

Huang (1992) or Straetmans (1998).  

An estimator for the conditional probability of simultaneous crashes XYCP  now 

easily follows by combining (8) and (17):  

 

   21,1ˆ2ˆ lPXY     
n

i nknnkn YYXX
k 1 ,,  or   1
1

                                          (18) 

 

Conditional on the proper choice of the nuisance parameters m and k, the estimators of 

the Hill statistic and the stable tail dependence function (STDF) are asymptotically 

                                                 
8 The order statistics that are supposed to estimate the quantiles 1Q and 2Q correspond with the 

historical sample boundaries nnX , and nnY , , respectively.   



normally distributed. Goldie and Smith (1987) and Huang (1992) show that one can 

select m and k such as to minimize the respective asymptotic mean-squared errors 

(AMSE). Consequently, minimizing the sample MSE is the appropriate selection 

criterion. In small samples best practice is to plot the estimators as a function of the 

threshold, i.e.    kPPm XYXY
ˆˆ  and  ˆˆ  , and to select m and k in the region over which 

the estimators tend to be constant. More advanced algorithms for selecting m based on 

minimizing a sample equivalent of the AMSE also exist, see e.g. Beirlant et al. (1999). 

The value m=250 in Table 1 for the Hill statistic and the quantile stimator is made by 

both using Hill plots as well as employing the Beirlant et al. algorithm.  

 
3.2. Hypothesis testing 
 

We want to perform equality tests for estimates of the tail index, the tail quantile, the 

co-crash probability (or, alternatively, the STDF) and the Marginal Expected Shortfall 

(MES) either for single asset tails across business cycle regimes (unequal sample sizes) 

or  across asset tails within a given regime (equal sample sizes). Asymptotic  normality of 

the Hill statistic, the tail quantile estimator and the STDF has been established  by 

Haeusler and Teugels (1985), de Haan et al. (1994) and Huang (1992), respectively.9 Let

est  stand for an estimate of either of these three magnitudes. A simple T-test of the 

equality of est across regimes of asset tail within a given regime boils down to:  

 

   2
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1
2

21

estest

estest
T

 


 ,                                                                                            (19) 

 

which is asymptotically normal in sufficiently large samples.10 The denominator still 

requires the calculation of asymptotic variances. Asymptotic variances for averages (in 

case of the MES) are straightforward to obtain whereas estimable expressions for the 

asymptotic variance of the Hill statistic, the quantile estimator and the STDF directly 

follow from the asymptotic normality derivations for these estimators.  
                                                 

9  As for MES estimates, the Central Limit Theorem guarantees asymptotic normality because 
MES is a sample average.  

10 For sake of convenience, we assume that the covariance term between est1 and est2 equals zero 
which is an obvious simplification.  



 

4. Empirical results 

 
We first provide a description of our data sources in Section 4.1. Estimates of 

extreme downside risk (tail risk) for a variety of financial asset classes are discussed in 

Section 4.2.  Section 4.3 reports estimates of systemic risk for a few representative US 

banks. Section 4.4 compares extreme linkages between stocks and bonds within G-5 

countries. More specifically, we compare stock-bond co-crash likelihoods with flight-to-

quality likelihoods from stocks into bonds. Finally, in section 4.5, we minimize the 

portfolio tail risk for a few representative stock pairs selected from the Dow Jones Index. 

Every EVT application considered distinguishes between full sample, recession-based 

and expansion-based estimates in order to assess whether the differences in tail behaviour 

across business cycle regimes are statistically and economically significant.    

 
4.1. Data description   
 

All considered financial data are extracted from Thomson Datastream. The financial 

time series consist of 7,282 daily prices for stocks, bonds, US$ nominal bilateral 

exchange rates, gold, silver and oil.  The sample runs from 1 February 1985 until 31 

December 2012. We consider 16 (dividend-adjusted) stock price series of representative 

US banks. Next to individual stock prices, we also downloaded G-5 (US, UK, France, 

Germany and Japan) stock indices and corresponding G-5 long-term (10 year maturity) 

government bond indices. In order to estimate systemic risk for our set of representative 

US banks, we condition tail-β’s on the Datastream US bank index. We express stock and 

bond prices in local currency. Prices of oil (Brent Crude), gold and silver are in US$ per 

barrel or per troy ounce, respectively. Financial returns are expressed as log price 

differences between daily closes.11 

The subsample partitioning of our financial time series into recession samples and 

expansion samples is based on different data sources for  business cycle dummies. For 

                                                 
11 We refer to  G-5 stock and bond indices in the tables and the text using the following abbreviations: 
France (FR), Germany (GE), United Kingdom (UK), United States (US), Japan (JP). We consider total 
return indices (=dividend-adjusted and coupon-adjusted) for G-5 stock indices and 10-year benchmark 
government bonds.  



the business cycle phases we make use of two different data sources. To date US business 

cycles, we use the National Bureau of Economic Research (NBER) peaks and troughs in 

economic activity to construct a binary variable that either reflects a recession phase or an 

expansion phase. The turning point dates published by the NBER represent a consensus 

chronology of the U.S. business cycle. As for France, Germany, Japan and the UK, 

business cycle data were downloaded from the Economic Cycle Research Institute 

(ECRI).12 Comparable with what the NBER publishes on US business cycles, the ECRI 

reports binary (0-1) business cycle information without specifying either the raw data 

used or the dating algorithm for determining business cycle peaks and troughs. Both 

NBER and ECRI business cycle dummies are at the monthly frequency.  

 

4.2. Extreme downside risk for different asset classes and the business cycle 

 

Straetmans and Candelon (2013) recently studied the temporal stability in the tail 

index and accompanying quantile or “tail-VaR” for a wide variety of financial asset 

classes and found that structural breaks in univariate tail risk measures are relatively rare 

(except for emerging currency returns). This section’s univariate analysis can be 

interpreted as an extension of this previous study because we consider a more general 

recession-based and expansion-based subsample partitioning instead of subsamples based 

on a single temporal breakpoint.  

Table 1 contains full sample, recession-based and expansion-based estimation and 

testing results for the tail index  and the accompanying quantile or downside (tail) risk  

(conditioned on a p-value of 0.1%) and for a wide variety of asset classes. The “testing 

results” panel reports the equality test of the null hypothesis of equal recession-based and 

expansion-based tail indices and tail quantiles, respectively. Given that Straetmans and 

Candelon (2013) already showed that unconditional (long-term) asset tail risk may 

considerably differ across asset classes, we also consider a relatively large cross section 

of different asset types. More specifically, we distinguish between 5 different asset 

classes: US bank stocks (Panel A), G-5 stock indices (Panel B), G-5 bond indices (Panel 

                                                 
12 The NBER and ECRI business cycle data are available at http://www.nber.org and  
http://www.businesscycle.com 



C), US$ exchange rates (Panel D), and commodities (Panel E). The downside risk for 

banks reflects the downside risk in the market value of bank equity capital. For sake of 

completeness, we also report full sample and subsample average returns and volatilities.  

[Insert Table 1 here] 

The table reveals that recession-based estimates of the standard deviation, the tail 

index and the corresponding tail quantile nearly all exceed their expansion-based 

counterparts for basically all considered assets. It may not come as a surprise that the 

asymmetry in point estimates is most pronounced for bank stocks (panel A). For some 

banks the differences in tail properties across the business cycle is staggering. Half of the 

considered banks exhibits a tail index below 2 during recessions whereas none exhibits 

this property in the expansion phase. Notice this moment violation ( 2 ) implies that in 

recession phases, financial return variances are no longer properly defined (the 

distributional second moment is not finite and thus does not exist).  The huge discrepancy 

in the tail index translates into huge differences in downside risk across the business 

cycle. For example, Bank of America’s 0.1% Value-at-Risk equals a skyrocketing 76% 

during recessions but drops down to 12% during expansions. Most other banks with 

comparable discrepancies in the tail index also show huge discrepancies in their equity 

Value-at-Risk across business cycle regimes.  

Business cycle asymmetries are also present in US$ foreign exchange risk despite the 

fact that we solely partition using the US business cycle whereas the very nature of 

exchange rates implies that two business cycles exhibit potential influence. Along the 

lines of Danielsson and de Vries (1997) or Straetmans and Candelon (2013), the regime 

dependent outcomes for foreign exchange tail-VaR can be used to determine regime 

dependent upper limits on open positions to foreign currency dealers by the treasurers of 

the forex dealing room of an international bank.13 Our innovation here lies in the fact that 

we can make the trading limit regime dependent (higher limits during recessions and 

lower limits during expansions) whereas the previous papers propose trading limits that 

did not distinguish between recessions and expansion phases.   

                                                 
13 See Danielsson and de Vries (1997) for a more elaborate discussion and for other applications of 
extreme quantile estimation for e.g. institutional investors. 



Suppose a trading limit depends on the probability p on a single large negative 

currency return that can bring the bank’s solvency in jeopardy. In this example, the level 

p is interpretable as the insolvency risk the management considers “acceptable”. Suppose 

the management chooses a critical loss level 0<s  which stands for the maximum loss 

that can be incurred without running into solvency problems. A simple way to determine 

the maximum allowable investment I is to set pxsI ˆ/=  with px̂  the extreme quantile 

estimator as defined in (13). Clearly, a full sample trading limit would be too 

conservative relative to the expansion regime and not sufficiently conservative relative to 

the  recession regime, so a regime dependent trading limit seems desirable. Straetmans 

and Candelon (2013) illustrate that trading limits can hugely differ across subsamples 

when considering temporal breaks in the tail index; but the economic magnitudes of 

trading limit differences remains comparable for more complex subsample conditioning 

like the ones performed here. Apart from bank stocks and exchange rates, Table 1 clearly 

shows that other asset classes also exhibit tail asymmetries across business cycle regimes 

albeit to a lesser extent (except bond index returns that hardly show any regime 

dependence).  

Turning to the statistical significance of the asymmetries (right panel “Testing 

results”), the tests reveal that the null hypothesis of equality between tail indices and tail 

quantiles across the business cycle is rejected in a majority of cases at the 1% 

significance level. Rejections are strongest for banks followed by commodities and 

exchange rates. Also, the equality of tail quantiles across regimes is slightly more often 

rejected than tail index equality. This is probably due to the fact that the quantile 

estimates also take account of the assets’ scaling constants, i.e, even if the tail indices are 

invariant across regimes, tail quantiles can still be regime dependent if the scaling 

constants are.  

Finally, notice that despite the fact that financial risk (either measured by the 

standard deviation or the tail quantile) is nearly always higher during recessions, this is 

mostly not reflected into a higher average return during recessions. On the contrary, the 

average recession return falls below the average expansion return in all cases. One 

interpretation of this outcome may be that the idiosyncratic (diversifiable) part of 



volatility and tail risk becomes a relatively more important component of total risk during 

recessions.   

 

4.3. Systemic instability and the business cycle  

 

In this section we discuss recession-based and expansion-based estimation and 

testing outcomes for three separate systemic risk measures: the linear correlation between 

a bank stock return and a banking market index, the tail-β (see e.g. Hartmann et al. (2006) 

or Straetmans and Chaudhry (2013)) and the marginal expected shortfall (MES), see e.g. 

Brownlees and Engle (2012). The latter two systemic risk measures are based on the 

same pairs of losses on individual bank stocks and a banking market index as the 

correlation is. The MES is defined as the expected loss on a (banking or general) market 

index conditional on a large adverse shock in the market price of an individual bank’s 

equity capital. The tail-β was defined in (8) and estimated according to (16) using the 

stable tail dependence function whereas the MES is estimated non-parametrically by 

conditioning the banking market index loss on the 5% and 1% quantile exceedances of 

the empirical distribution of individual bank stock returns.  

The three considered measures differ in the extent to which they explicitly focu on 

the tail behavior. First, the correlation is calculated for the full sample of data pairs 

(including the tails). The MES indicator is conditioned on the tail of the individual bank 

stocks returns but its nonparametric estimation approach does not allow to evaluate the 

indicator very deep in the bivariate tail. Finally, the tail-β and corresponding stable tail 

dependence function  are evaluated “as if” one looks infinitely far into the tail: expression 

(18) does not depend on a cut off point or threshold such that it truly reflects an 

asymptotic value of the co-crash probability. In other words, the EVT-based tail-β looks 

much further in the tail than the MES but we nevertheless also included the MES for sake 

of comparison. Finally, in contrast to linear correlations, the tail-β and MES indicators 

can also detect non-linear comovements if present in the data.  

The estimation results and testing results are summarized in Table 2. The table is 

organized in the same way as Table 1: the left and right part of the table correspond with 

estimation and testing results, respectively. We further distinguish full sample, recession-



based and expansion-based estimates. The testing results panel reflects outcomes for 

testing the null hypothesis of equal recession-based and expansion-based MES and tail-β.  

Turning to the results, we clearly see that our market-based measures are procyclical 

in the sense that their recession values always exceed their expansion values although 

there is still a large cross sectional heterogeneity. This seems to be in line with that part 

of the fundamentals-based banking crisis literature that claims that banking crises and 

systemic instability become more likely during recessions, see e.g. Gorton (1988). The 

economic interpretation of the numbers in the table is straightforward. For example, the 

0.64 full sample value for Keycorp implies that a crash of the banking sector as a whole 

(i.e. a banking market index) coincides with a crash in the market value of Keycorp 

equity in 64% of cases; whereas thus number rises to 69% during recessions and drops to 

54% during expansions. In general, however, the tail-β values are astonishingly high, 

even during periods of economic expansion, which is somewhat unexpected. The 

economic interpretation of the MES outcomes is equally straightforward. Whereas the 

tail-β is a probability, the MES reflects the expected severity of the aggregate loss 

resulting from an adverse shock in individual bank stock. For example, consider again 

Keycorp that exhibits a full sample MES value of 4%. This implies that a crash in 

Keycorp beyond the 5% historical tail quantile is expected to erode the aggregate banking 

market index with  4%. During recessions and expansions, the expected aggregate loss 

fluctuates between 13%  and  3% . Some of the MES values - especially during 

expansions - seem quite low which may also be due to the fact that the nonparametric 

MES estimation approach is not looking very far into the bivariate tail which keeps the 

potential severity of the aggregate impact limited. 5 or 1% cut off values for the 

conditioning of MES hardly reflect extreme comovements between individual bank 

stocks and the market as a whole. If one would be able to evaluate MES much further in 

the tail, it is to be expected that the severity of the reported losses in Table 2 would also 

be much higher. 

As concerns the magnitude of the tail-β or MES differences across the business 

cycle, they are sometimes quite spectacular (e.g. JP Morgan Chase) whereas for others 

they are quite small. In other words, banks seem to differ quite a lot in terms of their 

responsiveness to business cycle fluctuations. One possible explanation for this may be 



that banks that are engaged in more traditional banking activities generating interest-

related revenues are more recession-prone than banks with a relatively important 

investment and trading division (non-interest related revenue sources). However, we 

leave the study of the determinants of this cross-regime variation for future research. It is 

also interesting to note that correlations between bank stock returns and the market as a 

whole are generally higher during recessions. We will also report “recession and 

expansion” correlations in the other tables still to be discussed in order to illustrate this 

alternative dimension of diversification meltdown.14  

Turning to the testing outcomes in the right panel, it is obvious that recession-based 

and expansion-based systemic risk indicators are statistically significantly different from 

each other (typically at the 1% level). Upon looking at the gaps between the regime-

dependent point estimates in the left panel, it is fair to say these differences are also 

strongly economically significant.  

Notice that the considered systemic risk indicators can be turned into anticyclical 

indicators by simply applying the recession-based indicator values to expansions and vice 

versa. In this way, systemic risk is highest during expansions reflecting the build up of 

risks on and off the balance sheets when market volatility and correlations are low. On 

the contrary, systemic risk declines when the risk “bubble” bursts and the systemic crisis 

has struck.  

Finally, it is interesting to observe in Table 2 that the correlation-based systemic risk 

rankings differ from the tail-β ranking. This may be due to the fact that tail-β′s capture 

non-linear spillovers during crisis periods whereas the linear correlations do not.15 

 [Insert Table 2 here] 

 

 

 

                                                 
14Traditionally, the term “diversification meltdown” characterizes a situation of rising 

correlations in highly volatile regimes, see e.g. Ang and Chen (2002).  The question arises 
whether this correlation jumps are genuine changes in interdependence or induced by the rising 
volatilities themselves. Forbes and Rigobon (2002) constitutes the classic reference on 
disentangling financial contagion vs. interdependence in a context of diversification meltdown.  

15 This also holds when comparing rankings based on the CAPM-β and the tail-β, see Straetmans 
and Chaudhry (2013).   



4.4. Co-crash versus Flight-to-quality effects and the business cycle 

During crises, it is typically assumed that some assets that are perceived by investors 

as “safer” and/or more “liquid” may act as “flight to quality”, “flight to liquidity” or “safe 

heaven” assets.16 This implies that the investors sell off the asset whom they perceive as 

riskier and buy the supposedly safer asset. As a result, one expects opposite return 

movements and negative dependence between pairs of these asset returns. The literature 

on these types of substitution effects is suprisingly scant. Using bivariate statistical 

extreme value analysis Hartmann et al. (2004) estimate the potential of co-crashes 

between G-5 stock indices and government bonds, both domestically and cross-border.  

They find that flight-to-quality/liquidity effects into sovereign bonds has happened as 

frequently as co-crashes between stock and bond markets and hence their paper remains 

inconclusive as to which of both phenomena (co-crashes or flight-to-quality) dominates. 

Other more recent studies on whether government bonds or gold may act as safe heavens 

in case of stock crashes include, inter alia, Connolly et al. (2005); Baur and Lucy (2009); 

Brière et al. (2012); Baele et al (2013); but the evidence remains mixed and inconclusive.  

We compare the likelihood of co-crashes (abbreviates as “CO”) vs. flight-to-quality 

(abbreviated as “FTQ”) for three assets (stocks, bonds and gold) by measuring the 

probability of stock-bond co-crashes and flight-to-quality using the conditional 

probability estimator in (18). Although also based on multivariate extreme value analysis, 

our comovement indicator differs from the one in Hartmann et al. (2004). Moreover, the 

latter paper  did not condition on recession and expansion subsamples.  

Although initially defined for pairs of return losses, the bivariate comovement 

measure (18) can be calculated for all four data quadrants. Stock-bond (SB), stock-gold 

(SG) or bond-gold (BG) co-crash probability measures boil down to: 
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                                                                            (20) 

                                                 
16 All three concepts are often used interchangeably in the literature.  



 

Whereas flight-to-quality spillover probability expressions for the same asset pairs read:  
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In the above expressions, the abbreviations S, B and G refer to the returns on stocks, 

bonds and gold, respectively. If the marginal tail probability p becomes small, the 

quantile function      pFpQ 11   grows large (extreme right tail) whereas  pQ 1

becomes very small (extreme left tail). Stocks are considered to be the riskiest asset and 

we want to assess whether the tendency of stock to co-crash with bonds or gold is 

stronger or weaker than selling of stocks and re-investing the proceeds into bonds or 

gold.  

The results are summarized in Table 3. Just like the previous tables, the table is split 

into estimation results (left part) and testing results (right part). Horizontal panels 

distinguish between full sample outcomes (Panel A), recession outcomes (Panel B) and 

expansion outcomes (Panel C). The estimation results refer to all 6 conditional 

probabilities in (20)-(21). The probability estimates generally reveal that cross-asset co-

movements (whether it be CO or FTQ) are present but highly heterogeneous (larger 

cross-asset pair and sample variation). Our main interest, however, lies in assessing 

whether FTQ probabilities exceed CO probabilities, for which type of asset pair this is 

the case and whether the gap between the two likelihoods is regime dependent. More 

specifically, one would expect that the CO-FTQ gap is widening during recessions as 

compared to expansions and the full sample results. The table only provides robust 

evidence for a dominance of FTQ over CO for pairs of stocks and bonds: FTQ 

probabilities exceed CO probabilities for the full sample and the recession sample; but 

the CO-FTQ asymmetry is strikingly bigger during the recession. The dominance of 

stock-bond FTQ is also reflected in the reported correlations: they are mostly negative 



and recession-based correlations are even lower. Moreover, the rise in CO-FTQ spreads 

during recessions is driven by a decrease in CO probability and an increase in FTQ 

probability. The testing outcomes (right panel) show that nearly all these CO-FTQ 

asymmetries are statistically significant for the full sample and the recession sample and 

to a lesser extent for the expansion sample. CO-FTQ asymmetries are also visible for 

other asset combinations but the testing panel shows that most of these asymmetries are 

not statistically significant. 

[Insert Table 3 here] 

 

4.5.  Minimizing portfolio risk 

 

As a final illustration of the role regimes can play in influencing the tail behavior of 

returns, we consider the impact of the business cycle phase on the potential for portfolio 

risk diversification. The regime-dependent correlations in the previous tables already 

shed some light on this issue and suggest that there is also a diversification meltdown 

when entering a recession. However, the traditional concept of diversification meltdown 

refers to a situation where correlations all jump to values close to 1 during high financial 

market volatility regimes. This implies that the potential for diversifying portfolio risk 

melts away during times it is most needed, see e.g. Boyer et al. (1999), Forbes and 

Rigobon (2002) or Ang and Chen (2002). Here we argue that also the real state of the 

economy seems to matter as well for the diversification potential in the financial sphere 

(and this regardless of the state of financial market volatility). We show that this is 

because asset return comovements (either correlations in the distributional centre or 

comovements in the tail) determining the potential for risk diversification depend on the 

business cycle. 

In order to investigate the potential impact of business cycle regimes on portfolio 

risk diversification we opted for the most stylized portfolio setup thinkable: two stocks 

and a risk averse investor that does not care about realizing return. The investor is either 

measuring the portfolio risk of his two-asset portfolio either using the portfolio variance 

or with an EVT-based tail-VaR risk measure like in (13).  Suppose the portfolio return of 

the two-asset equity portfolio is defined in the usual way as   21 1 RwwRRp  .  



Minimizing the portfolio variance     12
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On the other hand, minimizing the Value-at-Risk of a portfolio for a given p-value 

(p) amounts to choosing the portfolio weight w such as to minimize the portfolio quantile 

estimator 
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and with nmnR , the (n-m)-th ascending order statistic of the portfolio return PR .  Notice 

that (22) is equivalent to (13) except that the quantile estimator is made dependent on the 

portfolio investment weight w. 

The empirical application consists in calculating the risk-minimizing portfolio 

weights *w  as well as the corresponding minimized risk levels for the two risk measures 

(minimum standard deviation and minimum VaR). To that purpose we select the 8 largest 

companies (based on market cap) from the Dow Jones index which implies a total of 28 

possible portfolios. Table 4 reports the outcomes of this stylized portfolio risk 

minimization exercise for the full sample, the recession sample and the expansion 

sample. Each of these panels further contains the correlation, the minimizing risk weight 

*w  as well as the corresponding minimized risk (and this for both risk measures: 

portfolio standard deviation and Value-at-Risk).  

First, we observe that the correlations are in line with previous tables: the recession-

based correlations dominate the expansion-based correlations. In line with that result, it is 

not surprising that the recession-based minimized risk (either measured by Value-at-Risk 

or standard deviation) always exceeds its expansion-based counterpart. This can be 

dubbed as an alternative form of diversification meltdown, i.e., portfolio risk is more 



difficult to diversify during recessions because correlations and tail dependencies move 

upward during that phase of the business cycle. It is important to realize that this outcome 

holds regardless the level of financial volatility.  Last but not least, one observes that the 

risk minimizing portfolio weights strongly depend on the chosen risk measure but also on 

the regime.   

 [Insert Table 4 here] 

   

5. Concluding remarks 
 

In this paper we apply statistical techniques from univariate and multivariate extreme 

value analysis on subsamples of financial data. Our motivation for doing this is that 

(univariate) tail properties like the tail index and scaling constant or multivariate tail 

properties like the strength of the tail dependence may depend on regimes like e.g. the 

business cycle. The regime dependence then determines the sample partitioning. 

However, we argue this regime dependence is still reconcilable with stationary 

unconditional long-term return distributions.  

The subsamples are determined according to the business cycle “regime”, i.e., 

recession and expansion subsamples, in order to study whether univariate extreme risk 

(downside tail risk) or extreme return co-movements (co-crashes or flight-to-quality for 

stock and bond pairs, systemic risk for banks etc.) fluctuate across the business cycle. We 

consider different measures of tail risk and tail co-movements across the business cycle 

and find that regime dependence of these measures is quite general across many different 

types of assets or asset pairs. 

In a first application, we establish that the tail indices and corresponding tail 

quantiles (downside tail-VaR) are higher during recessions than during expansions. This 

asymmetry seems to hold for a variety of assets (US bank stocks, G-5 stock and bond 

indices, US$ exchange rates and commodities). The observed regime dependence for 

bank stock tail risk is somewhat in line with the so-called “recession hypothesis” (see e.g. 

Gorton (1988) that states that recessions may trigger bank panics.17 The regime 

                                                 
17 An important difference with papers like Gorton (1988) is that we do not study whether there is a 

relation between lagged states of the business cycle and extreme financial returns. We leave lead-lag 
relationships between extremal behavior and the business cycle for future research.  



dependence in tail risk for foreign exchange rate returns may be exploited to determine 

regime dependent trading limits for bank traders. Previous applications of this idea only 

considered (fully unconditional) full sample trading limits thereby neglecting the 

asymmetry between tail indices and scaling constants across business cycle phases.  

In a second application, we establish regime dependence for market-based indicators 

of systemic risk (correlation, Marginal Expected Shortfall and tail-β) and find that 

systemic risk rises during recessions regardless the considered indicators. Moreover, the 

cross-regime differences are most of the time strongly significant, especially for the 

EVT-based tail-βs. The outcomes are in line with the earlier observed “procyclicality” of 

market-based systemc risk indicators  which is undesirable because it basically signals 

the highest systemic risk during crises and the  lowest prior to crises (when risks are 

supposed to build up  despite low volatilities and correlations). One suggestion to deal 

with this may simply be to re-allocate the indicators of systemic risk to the other business 

cycle regime in order to establish anticyclical behavior. For example, on could think of 

using the recession-based MES to establish capital requirements during expansions or 

vice versa.  

In a third application, we study to what extent flight to safety phenomena between 

stocks, bonds or gold become more or less likely depending on the state of the business 

cycle. We find that flight-to-quality from stocks into bonds for G-5 countries more 

strongly dominates stock/bond co-crashes during recession relative to expansion 

outcomes. The asymmetry also exists for the full sample but much smaller. But empirical 

evidence for flight to quality from stocks or bonds into gold is weak regardless whether 

one considers full samples or whether one conditions on recessions.   

Finally, we establish that diversification meltdowns are not limited to periods of high 

financial volatility only. In fact, the potential for financial risk diversification is also 

reduced during recessions as compared to expansions. We illustrate this point by means 

of minimizing the portfolio variance vs. the portfolio Value-at-Risk  for the recession and 

expansion sample separately. Also, the optimal portfolio weights seem to vary quite 

substantially across the regimes for a given minimized portfolio risk indicator. 
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Table 1 Extreme downside risk for different asset classes and the business cycle 
Note: The table presents estimates and equality tests for the tail index and accompanying quantile 
estimates (p-value of 0.1%) for US bank stocks (Panel A), G-5 stock indices ( Panel B), G-5 bond 
indices (Panel C), exchange rates (Panel D), and commodities (Panel E). The threshold m=250 is 
consistent with making Hill plots and applying the Beirlant et al. algorithm. The equality T-test 
evaluates whether expansion-based and recession-based estimates of tail characteristics differ in a 
statistically significant way. 

                                    Estimations Testing results 

  Full sample Recession Expansion        Equality test 

  % σ%  q % R% σR% R qR% % σE% E qE% aR=aE qR=qE 

  Panel A: bank stock returns (1/2/1985-31/12/2012) 

BANK OF AMERICA  0.025 2.6 2.3 19.1 -0.125 6.0 1.8 76.1 0.042 1.9 2.7 12.3 -3.3 *** 2.5*** 

BB&T  0.040 2.0 2.7 12.8 -0.033 4.0 2.4 29.8 0.048 1.7 3.1 9.2 -2.0 ** 2.8*** 

BANK OF NEW YORK  0.040 2.3 2.8 13.7 -0.066 4.5 1.9 45.7 0.052 1.9 3.3 9.9 -3.9 *** 2.6*** 

COMERICA 0.037 2.1 2.5 14.8 -0.066 4.4 1.9 48.8 0.049 1.6 2.9 9.9 -2.9 *** 2.6*** 

HUNTINGTON BCSH.  0.024 2.9 2.0 24.8 -0.115 7.1 1.8 83.6 0.039 1.8 2.7 12.0 -2.9 *** 2.7*** 

JP MORGAN CHASE  0.032 2.4 2.8 14.4 -0.080 4.6 2.2 39.8 0.045 2.1 3.2 10.7 -3.0 *** 2.7*** 
KEYCORP  

 

0.021 2.5 2.3 18.5 -0.164 5.8 1.8 69.5 0.042 1.7 2.8 11.1 -3.3 *** 2.*** 

NORTHERN TRUST  0.054 2.0 2.8 12.1 -0.016 3.7 2.1 33.6 0.062 1.7 2.9 9.9 -2.4 *** 2.5*** 

PNC FINL.SVS.GP.  0.035 2.2 2.7 13.2 -0.042 4.7 2.4 32.2 0.044 1.7 3.1 9.4 -1.9 * 2.9*** 

WELLS FARGO & CO  0.059 2.3 2.6 14.3 0.001 4.9 2.0 45.1 0.065 1.7 3.3 9.1 -3.5 *** 2.8*** 

M&T BANK 0.059 1.7 2.3 12.8 -0.023 3.4 2.2 30.8 0.068 1.4 2.5 9.2 -1.0   2.6*** 

REGIONS FINL.NEW 0.014 2.7 2.1 21.6 -0.169 6.4 2.1 58.5 0.035 1.9 2.8 11.8 -2.1 ** 2.9*** 

SYNOVUS FINL. 0.027 3.0 2.5 22.0 -0.189 5.1 1.8 65.0 0.052 2.7 2.8 17.5 -3.1 *** 2.3*** 

STATE STREET  0.052 2.6 2.6 15.2 -0.031 5.8 2.0 46.2 0.062 1.9 3.0 10.9 -3.1 *** 2.6*** 

US BANCOR 0.055 2.1 2.5 14.4 -0.066 4.1 1.8 50.8 0.069 1.7 3.1 9.5 -3.9 *** 2.5*** 

ZIONS BANCORP. 0.031 2.6 2.2 20.6 -0.162 5.4 2.0 57.4 0.053 2.0 2.8 12.8 -2.3 *** 2.7*** 

Average 0.038 2.4 2.5 16.5 -0.084 5.0 2.0 50.8 0.052 1.8 2.9 10.9        

  Panel B: Stock index returns of G-5 countries (1/2/1985-31/12/2012) 

US 0.039 1.1 2.7 7.41 -0.045 1.9 2.0 19.9 0.049 1.0 3.0 6.1 -2.8 *** 2.4*** 

GE 0.030 1.2 2.9 7.61 -0.033 1.4 2.5 10.2 0.050 1.1 2.8 7.4 -0.9   1.5   

UK 0.038 1.1 2.6 7.15 0.017 1.3 2.5 9.9 0.043 1.0 2.7 6.3 -0.8   2.0** 

FR 0.039 1.2 2.8 7.79 -0.047 1.7 2.4 13.0 0.050 1.2 2.9 7.0 -1.4   2.0** 

JP   0.005 1.3 2.9 7.72 -0.035 1.5 2.9 8.9 0.021 1.1 2.6 7.7 0.7   0.9   

Average 0.030 1.2 2.8 7.53 -0.028 1.6 2.5 12.4 0.043 1.1 2.8 6.9       

  Panel C: Bond index returns (1/2/1985-31/12/2012) 

US 0.029 0.5 3.3 2.4 0.028 0.6 2.7 4.1 0.029 0.4 3.4 2.3 -1.6   2.0** 

GE 0.026 0.3 3.1 1.9 0.036 0.3 2.3 2.6 0.023 0.3 3.2 1.9 -2.9 *** 1.4   

UK 0.035 0.4 3.2 2.2 0.042 0.4 3.2 2.3 0.033 0.4 3.1 2.3 0.1   0.1   

FR 0.032 0.4 3.1 2.0 0.052 0.4 2.6 2.4 0.029 0.4 3.1 2.0 -1.1   0.7   

JP   0.018 0.3 2.3 2.5 0.026 0.3 2.2 2.6 0.015 0.3 2.3 2.6 -0.3   0.1   

Average 0.028 0.4 3.0 2.2 0.037 0.4 2.6 2.8 0.026 0.4 3.0 2.2       

  Panel D: exchange rate returns (1/2/1985-31/12/2012) 

US$/UK£ 0.005 0.6 3.1 3.5 -0.034 0.8 2.5 6.5 0.010 0.6 3.2 3.2 -1.8 * 2.1** 

US$/JPY -0.010 0.8 3.1 4.5 -0.061 1.2 2.2 10.9 -0.004 0.7 3.3 3.9 -3.2 *** 2.4*** 

US$/SFR -0.010 0.6 3.0 3.4 -0.036 0.8 2.2 7.5 -0.007 0.5 3.5 2.8 -3.3 *** 2.4*** 

Average -0.005 0.7 3.1 3.8 -0.044 0.9 2.3 8.3 0.000 0.6 3.3 3.3       

  Panel E: Commodity returns (1/2/1985-31/12/2012) 

OIL 0.019 2.4 2.8 14.4 -0.087 3.8 2.2 31.9 0.031 2.2 3.3 11.5 -2.9 *** 2.4*** 

SILVER 0.022 2.1 2.5 13.7 -0.046 2.4 2.0 23.8 0.029 2.0 2.5 13.2 -1.6   1.5   

GOLD 0.023 1.0 2.7 6.6 0.018 1.5 2.4 12.7 0.024 0.9 2.9 5.6 -1.4   2.2** 

Average 0.021 1.8 2.7 11.5 -0.038 2.6 2.2 22.8 0.028 1.7 2.9 10.1         
 
 

 
 
 



 
 

Table 2     Market-based indicators of systemic risk and the business cycle 
Note: The table presents estimates (as percentage) and equality tests for three systemic risk measures: the correlation 
between individual bank stock returns and a banking market index, the tail-β (conditioned on the same banking index) 
and the Marginal Expected shortfall (MES). The MES is conditioned on 1% quantile loss exceedances of the banking 
index. Estimates are reported for the full sample, recession sample and expansion sample. The full sample threshold 
m=350 is consistent with making tail-β plots and selecting m in a horizontal range. The equality T-test evaluates 
whether expansion-based and recession-based estimates of tail-β’s and MES differ in a statistically significant way.  
One-sided rejections at the 5%, 2.5% and 1% significance level are denoted with *,** and ***, respectively. 

                                                    Estimation results         Testing results 

              Full Recession           Expansion Equality test 

Tail-β MES Cor Tail-βR MESR CorR Tail-βE MESE CorE Tail-βR=Tail-βE MESR=MESE 

BANK OF AMERICA 63.7 5.3 86.4 74.0 14.5 91.5 62.9 3.8 81.0 1.7 * 5.9 *** 

BB&T 54.0 3.5 71.1 62.3 7.7 83.2 46.3 2.6 61.9 3.2 *** 3.1 *** 

BANK OF NEW YORK 52.0 4.0 74.8 58.4 8.1 78.4 54.3 3.3 73.0 0.7 2.7 *** 

COMERICA 61.7 3.9 78.2 66.2 9.1 84.9 55.8 2.9 72.4 2.1 ** 4.8 *** 

HUNTINGTON BCSH. 52.3 4.5 67.0 58.4 14.0 71.3 48.2 2.9 62.2 2.0 ** 5.0 *** 

JP MORGAN CHASE. 62.9 4.7 83.0 72.7 9.3 89.5 58.3 3.8 79.6 2.7 *** 5.3 *** 

KEYCORP 60.9 4.5 76.8 68.8 12.6 79.6 54.3 .1 73.7 3.1 *** 3.4 *** 

NORTHERN TRUST 53.7 3.4 69.6 62.3 6.9 78.1 50.9 2.6 64.8 2.1 ** 4.2 *** 

PNC FINL.SVS.GP. 58.9 3.9 79.0 59.7 8.8 84.2 53.7 2.9 74.2 1.1 2.3 *** 

WELLS FARGO & CO 59.4 4.2 83.0 74.0 10.7 91.5 51.2 3.0 74.7 3.9 *** 4.6 *** 

M&T BANK 54.3 2.8 68.8 62.3 7.1 82.8 45.1 2.0 57.9 3.4 *** 4.2 *** 

REGIONS FINL.NEW 57.1 4.8 69.8 64.9 12.7 76.2 52.1 3.2 62.4 2.4 *** 3.6 *** 

SYNOVUS FINL. 37.1 4.1 55.0 57.1 9.8 73.4 30.7 3.1 45.3 5.1 *** 2.8 *** 

STATE STREET 52.0 4.0 68.2 61.0 10.5 71.2 48.5 3.0 65.2 2.3 *** 1.8 * 

US BANCOR 51.4 3.6 71.2 67.5 8.7 83.4 46.0 2.6 62.0 3.7 *** 5.2 *** 

ZIONS BANCORP. 50.3 4.3 65.3 61.0 11.7 80.2 43.9 2.9 51.9 3.4 *** 5.3 *** 

Average 55.1 4.1 73.0 64.4 10.1 81.2 50.1 3.0 66.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 3     G-5 co-crashes versus flight-to-quality effects between stocks, bonds and gold 
and the business cycle 
 
Note: The table presents estimates (as percentage) and equality tests for the conditional probability of co-
crashes (“CO”) or flight-to-quality (“FTQ”) for pairs of stocks and bonds (SB), stocks and gold (SG), 
bonds and gold (BG). Estimates are reported for the full sample, recession sample and expansion sample. 
The threshold m=200 is consistent with making tail-β plots and selecting m in a horizontal range. The 
equality T-test evaluates whether estimates of co-crash and FTQ probabilities are equal. We compare CO 
and FTQ probabilities within the full sample, the recession sample and the expansion sample. One-sided 
rejections at the 5%, 2.5% and 1% significance level are denoted with *,** and ***, respectively. 
  Estimation results   Testing results 

  PCO
SB PFTQ

SB CorSB PCO
SG PFTQ

SG CorSG PCO
BG PFTQ

BG CorBG 
PCO

SB 

= PFTQ
SB

PCO
SG = 

PFTQ
SG 

PCO
BG = 

 PFTQ
BG 

  Panel A: Full  
US 7.0 22.5 -9.6 6.0 10.5 -5.3 4.0 9.0 -2.4 4.4*** 1.7* 2.0 ** 
GE 5.0 18.0 -10.7 6.5 10.5 -4.2 6.5 5.0 4.1 4.3*** 1.5   -0.7   
UK 5.5 16.5 -6.6 10.0 10.0 -1.6 7.0 6.0 1.4 3.6*** 0.0   -0.4   
FR 6.0 10.0 0.1 8.0 9.5 -5.3 4.0 4.5 2.0 1.5  

0.5 
  0.2   

JP   6.0 9.0 -6.8 9.0 5.5 4.6 3.0 0.5 0.3 1.1  -1.3   -1.8 * 
Average 5.9 15.2 -6.7 7.9 9.2 -2.4 4.9 5.0 1.1           
  Panel B: Recession 
US 6.8 29.5 -25.2 9.1 22.7 -10.9 2.3 9.1 0.7 2.9*** 1.6   1.1   
GE 3.9 19.5 -18.5 10.4 14.3 -12.7 13.0 5.2 10.9 3.2*** 0.7   -1.7   
UK 4.2 36.6 -28.8 15.5 18.3 4.4 12.7 7.0 0.1 5.3*** 0.5   -1.1   
FR 8.3 18.8 -24.1 10.4 14.6 -13.1 14.6 12.5 9.4 1.5  0.6   -0.3   
JP   1.1 9.2 -15.1 9.2 11.5 5.7 5.7 2.3 1.0 2.5*** 0.5   -1.2   
Average 4.9 22.7 -22.3 10.9 16.3 -5.3 9.7 7.2 4.4             
  Panel C: Expansion 
US 8.6 17.6 -5.1 3.2 7.0 -3.3 3.2 8.0 -3.3 2.6*** 1.7* 2.0 ** 
GE 4.8 19.6 -8.0 7.1 10.1 -0.9 7.7 4.8 -0.9 4.2*** 1.0  -1.1  
UK 7.6 7.6 2.1 8.1 7.0 -4.6 5.8 5.2 -4.6 0.0 -0.4     -0.2   
FR 6.5 9.7 4.8 10.8 9.7 -3.2 2.2 5.4 -3.2 1.2   -0.3      1.6   
JP   10.6 9.9 -3.0 8.1 5.6 4.0 2.5 0.6 4.0 -0.2   -0.9     -1.3   
Average 7.6 12.9 -1.8 7.5 7.9 -1.6 4.3 4.8 -1.6         

 



 
Table 4    Minimum Standard Deviation and Value-at-Risk (VaR) portfolios across business cycles 
Note: The table presents the optimal weights that minimize either the 99% Value-at-Risk (VaR) or standard deviation for 28 equity portfolios consisting of 2 stocks selected from 
the 28 stocks in the Dow Jones index with the largest Market Cap. We distinguish full sample portfolios, recession portfolios and expansion portfolios. Short selling is excluded 
implying nonnegative portfolio weights. The portfolio tail quantile (or Value-at-Risk) is calculated by letting the portfolio weight vary over a grid between 0 and 100%.  The 
weight is selected such as to minimize the portfolio VaR. The minimum variance portfolio is determined using the classic “textbook” formula. 
    Full Recession        Expansion 

   Cor   Min VAR  Min Stdev Cor Min VAR   Min Stdev  Cor    Min VAR Min Stdev 

    Weight   Min Weight   Min   Weight     Min   Weight     Min Weight     Min Weight   Min 

EXXON MOBIL & WAL MART 33.3 59.1 0.078     60.3  0.013 43.0 40.9 0.095 41.1 0.018 31.6     63.0 0.074 63.6 0.013 

EXXON MOBIL & P & G 38.0 43.0 0.078     50.5  0.013 55.9 54.8 0.100 23.3 0.017 34.6     46.6 0.073 54.5 0.012 

EXXON MOBIL & JOHNSON & JOHNSON 40.7 52.7 0.072     46.0  0.013 56.7 11.6 0.079 13.7 0.016 38.1     49.2 0.070 51.1 0.012 

EXXON MOBIL & GENERAL ELECTRIC  45.0 61.9 0.101     64.1  0.014 47.8 100.0 0.144 79.0 0.022 44.2     58.9 0.095 58.6 0.013 

EXXON MOBIL & INTERNATIONAL B.M.  34.4 59.9 0.089     60.4  0.013 51.7 46.7 0.112 38.0 0.018 31.1     61.0 0.085 63.6 0.013 

EXXON MOBIL & JP MORGAN  35.5 76.9 0.092     82.0  0.015 40.5 100.0 0.119 95.3 0.022 34.1     71.2 0.086 75.6 0.013 

EXXON MOBIL & PFIZER  38.0 62.7 0.084     61.2  0.014 54.0 62.1 0.101 41.3 0.019 34.8     68.5 0.080 64.1 0.013 

WAL MART &  P & G 36.9 31.2 0.084     39.5  0.014 57.3 45.4 0.096 33.1 0.017 33.8     29.5 0.080 40.2 0.013 

WAL MART & JOHNSON & JOHNSON 38.5 37.8 0.080     35.1  0.013 53.4 13.4 0.076 24.5 0.015 36.4     32.0 0.079 36.3 0.013 

WAL MART & GENERAL ELECTRIC  45.2 44.3 0.117     51.7  0.015 46.3 97.2 0.153 85.2 0.020 46.2     31.9 0.108 41.3 0.014 

WAL MART & INTERNATIONAL B.M.  32.6 48.4 0.101     49.9  0.014 50.8 47.7 0.113 48.5 0.018 29.7     48.6 0.097 50.0 0.014 

WAL MART & JP MORGAN  35.2 72.1 0.108     73.8  0.016 38.2 100.0 0.126 97.1 0.020 36.1     60.2 0.101 63.3 0.015 

WAL MART & PFIZER  35.9 55.2 0.093     50.1  0.015 47.2 20.4 0.105 52.1 0.018 34.1     51.9 0.090 49.8 0.014 

P & G  & JOHNSON & JOHNSON 46.9 51.7 0.078     45.0  0.013 63.3 27.9 0.080 36.1 0.015 44.5     53.7 0.075 45.8 0.013 

P & G & GENERAL ELECTRIC  42.6 67.3 0.099     63.0  0.014 47.7 99.2 0.133 94.0 0.018 42.6     56.8 0.092 53.2 0.013 

P& G & INTERNATIONAL B.M.  28.8 64.6 0.088     59.2  0.013 53.0 60.2 0.107 63.9 0.016 25.1     60.1 0.084 58.7 0.013 

P & G & JP MORGAN  31.4 78.8 0.088     80.1  0.015 43.9 97.3 0.110 100.0 0.018 29.3     78.1 0.081 70.5 0.014 

P & G & PFIZER  39.3 67.9 0.085     60.9  0.014 58.0 61.9 0.102 69.5 0.017 36.4     72.0 0.082 60.0 0.013 

JOHNSON & JOHNSON & GENERAL ELECTRIC  43.5 61.6 0.103     67.6  0.013 46.6 100.0 0.110 97.4 0.016 44.4     57.1 0.097 57.4 0.013 

JOHNSON & JOHNSON & INTERNATIONAL B.M. 30.7 53.7 0.091     63.1  0.013 48.6 74.5 0.089 72.0 0.015 28.1     56.9 0.088 62.2 0.013 

JOHNSON & JOHNSON & JP MORGAN  31.5 78.0 0.093     82.8  0.014 38.1 93.4 0.089 100.0 0.016 31.6     73.6 0.089 73.9 0.013 

JOHNSON & JOHNSON & PFIZER  53.5 65.4 0.088     69.6  0.014 65.0 89.2 0.084 85.6 0.016 51.9     67.4 0.086 67.7 0.014 

GENERAL ELECTRIC & INTERNATIONAL B.M.  45.5 58.4 0.114     48.2  0.015 55.8 4.9 0.143 7.6 0.020 44.2     54.9 0.105 58.4 0.014 

GENERAL ELECTRIC & JP MORGAN  56.0 73.9 0.129     82.1  0.018 62.7 80.3 0.212 94.7 0.031 52.7     80.4 0.115 76.5 0.015 

GENERAL ELECTRIC & PFIZER  43.6 50.7 0.114     48.4  0.015 49.5 12.5 0.148 14.4 0.020 43.2     51.7 0.108 58.0 0.014 

INTERNATIONAL B.M. & JP MORGAN  39.7 80.9 0.115     75.5  0.017 54.0 99.1 0.133 100.0 0.020 37.5     67.8 0.108 63.5 0.015 

INTERNATIONAL B.M. &  PFIZER  30.8 49.0 0.102     50.2  0.014 45.1 37.2 0.110 53.3 0.017 28.6     53.0 0.098 49.8 0.014 

JP MORGAN & PFIZER  34.0 25.4 0.105     26.7  0.016 44.8 5.3 0.122 - 0.021 32.3     34.3 0.098 37.3 0.015 



 


