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Thesis objective and overview

In 1994 it became possible to fabricate core-shell spherical nanoparticles called nanoshells. Since
then, much experimental and theoretical research on these structures has been performed.
This research is inspired by a number of interesting applications of such particles, ranging
from biosensors over cancer treatment to faster data transfer on a small scale. Although the
dimensions of nanoshells are in the nanometer regime, often macroscopic theoretical descriptions
are applied to these structures. On the other hand, there exist quantum-mechanical calculations
in which e¤ective single-particle Schrödinger equations are solved self-consistently. Even though
in that work an e¢ cient algorithm was developed based on �nite di¤erence numerical integration
of the Schrödinger equations, it was only possible to describe nanoshells that have sizes smaller
than what is experimentally achievable at present.
The objective of this thesis is to calculate the ground-state density and work function of

SiO2-Au nanoshells of manufacturable sizes, with an inner core of at least 40 nm and a minimum
shell thickness of 15 nm.
In order to derive the work function we considered a model without external potential, in
which the electrostatic interaction of the conduction electrons of the shell with a homogeneous
neutralizing background and with each other leads to a potential that con�nes the electrons
mainly to the shell.
The thesis contains three parts and ends with a summary and general conclusion. The �rst

part is the introduction. It starts with an appetizer that contains some basic concepts of
non-relativistic quantum mechanics. Then we explain the general theory and the system con-
sidered in this thesis: density-functional theory and nanoshells. We also discuss the application
of nanoshells as high-pressure gauge which was investigated during this Ph.D. To end the intro-
duction, we present some conventions and approximations that are used in the rest of the thesis.
The introduction is followed by part two on a feasibility study of performing orbital-based
calculations for the nanoshells of interest. We start with setting out the bookkeeping that is
involved for the degenerate orbitals of a spherically symmetric system, and explain how these
orbitals can be determined with the Transfer Matrix Method. We then apply this method to
noninteracting fermions in a �nite and in�nite spherically symmetric potential well. From these
calculations, it is obvious that solving self-consistent equations for manufacturable nanoshells
is very demanding and quickly becomes impossible when the size of the nanoshells increases.
In part three on orbital-free calculations, we �rst give some background that is useful for
the �density-functional Monte Carlo�(DFMC) method that we developed. Subsequently, the
method is explained. We then compare the results of DFMC for a small nanoshell with those
of Kohn-Sham calculations and study the in�uence of the permittivities and the size on the
e¤ective potential energy and work function of manufacturable nanoshells. The part is ended
with a conclusion of the calculations and a positioning and outlook of DFMC.

Research funded by a Ph.D. grant of the Agency for Innovation by Science and Technology,
Flanders (IWT Vlaanderen)
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Introduction
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The introduction is meant to give enough background to be able to understand the main
parts of the thesis on orbital-based and orbital-free calculations. We start with a chapter in
which some basic concepts are brie�y repeated to set the stage for a thesis involving non-
relativistic quantum mechanics. Afterwards, the theory on which this thesis is based is ex-
plained: density-functional theory. We discuss the origin of this theory and two types of
implementations that are used at present. This chapter is followed by a chapter on nanoshells.
We explain what they are, how they are made, how they work and which methods have been
used to theoretically describe their properties. We end the chapter with some interesting appli-
cations. At the end of the introduction, the conventions and approximations used in this thesis
are set out.
In this introductory part, mainly existing background material from the literature is sum-

marized, supplemented with an original contribution in section 3.6.6.
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Chapter 1

Basic concepts

The purpose of this chapter is to bring into mind some basic concepts of non-relativistic quan-
tum mechanics, to just give a �avor of some more advanced topics and to have some expressions
at hand. More extensive information can be found in basic quantum mechanics books.
First things �rst: �rst quantization. For static systems consisting of atoms one seeks in

this formalism the solution of the Schrödinger equation

Ĥ	ec (r1; :::; rNe ;R1; :::;RNc) = E	ec (r1; :::; rNe ;R1; :::;RNc) : (1.1)

In this equation, 	ec (r1; :::; rNe ;R1; :::;RNc) denotes the many-particle wave function for the
electrons and the atomic cores, E an energy eigenvalue of the system, fr1; :::; rNeg the positions
of the Ne electrons in the system and fR1; :::;RNcg the positions of the Nc atomic cores. The
Hamiltonian (operator) Ĥ for an unperturbed system is given by

Ĥ = � ~2

2me

NeX
i=1

r2
i +

1

2

NeX
i;j=1

j 6=i

e2

jri � rjj

�~
2

2

NcX
I=1

1

MI

r2
I +

1

2

NcX
I;J=1

J 6=I

ZIZJe
2

jRI �RJ j

�
NeX
i=1

NcX
I=1

ZIe
2

jri �RI j

with ~ Planck�s constant h divided by 2�, me the electron mass, ri the nabla operator working
on particle i, e the electron charge, MI the mass of the atomic cores and ZI the atomic mass
number of atomic core I. The �rst line in the right-hand side contains the contribution of
the kinetic energy of the electrons and the Coulomb interaction between the electrons, the
second line contains the same kind of energy contributions for the atomic cores and the last
line contains the contribution due to the interaction between the electrons and the atomic cores.
For most systems it is impossible to solve the many-particle Schrödinger equation (1.1) exactly
and approximations are unavoidable.
The Born-Oppenheimer approximation [13] is a �rst approximation that is often used.

In this approximation the atomic cores are considered to be immobile. Because the atomic core
coordinates fR1; :::;RNcg are �xed, the wave function can be factorized as
	ec (r1; :::; rN ;R1; :::;RNc) = 	e (r1; :::; rNe)	c (R1; :::;RNc) with 	e (r1; :::; rNe) the electron
wave function and 	c (R1; :::;RNc) the wave function of the atomic cores. In this way the
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Schrödinger equation for the electronic problem is given by (in atomic units)0BBBBBBB@
�1
2

NeX
i=1

r2
i| {z }

T̂

+
1

2

NeX
i;j=1

j 6=i

1

jri � rjj| {z }
Û

+
NeX
i=1

vc (ri)

1CCCCCCCA
	e (r1; :::; rNe) = E	e (r1; :::; rNe) (1.2)

in which vc (ri) contains the in�uence of the cores on the electrons.
If the system under study is a metal and one is only interested in the distribution of the
conduction electrons, one often considers the wave functions of the core electrons to be the
same as in the unperturbed atom. The electron wave function can then be written as a product
of a wave function of the conduction electrons and a wave function of the core electrons. It is
said that the conduction electrons are moving in a background of metal ions. In what follows,
we denote the number of conduction electrons by the symbol N , the wave function of the
conduction electrons by 	(r1; :::; rN) and the potential energy due to the background and a
possible external static perturbation by v (r). Then the Schrödinger equation for the conduction
electrons becomes0BB@�12

NX
i=1

r2
i +

1

2

NX
i;j=1

j 6=i

1

jri � rjj
+

NX
i=1

v (ri)

1CCA	(r1; :::; rN) = E	(r1; :::; rN) : (1.3)

A further approximation that one can use is the uniform-background or jellium model. In
this model the background charges are supposed to be uniformly and homogeneously spread
with a constant density equal to n0 = 3= (4�r3s) with rs the Wigner-Seitz radius. This model is
used in the thesis.
In equations (1.2) and (1.3) we used (Hartree) atomic units, abbreviated as a.u. We will

use this system of units throughout the thesis. In practice the use of these units comes down to
the following: everywhere one might expect a factor ~, me, e or 4�"0 (with "0 the permittivity
of vacuum), these factors will not be there. This is because the units of mass M , charge Q,
angular momentum L and �electric constant�E are given by

[M ] = me

[Q] = [I] [t] = e

[L] = [E] [t] =
[M ][L2]
[t]

= ~

[E] =
[M ][L3]
[t2][Q2]

= 1
4�"0

in which I denotes current, t denotes time, E denotes energy and the square brackets [X] mean
�unit of X�. In this system of units, the units of length L and energy E are the Bohr radius
aB and the Hartree H de�ned as

[L] = aB =
4�"0~2

mee2

[E] = H =
mee

4

~2

�
1

4�"0

�2
:

The following conversions between di¤erent length and energy units apply (SI stands for �sys-
tème international�):

[L]a.u. = aB ' 5:291772108� 10�11 [L]SI ' 0:052918 nm
[E]a.u. = H ' 4:359744178� 10�18 [E]SI ' 27:211 eV:
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An important quantity in this thesis is the electron (particle) density n (r) at position r
of the conduction electrons of a metal which is the number of particles per unit of volume such
that

R
n (r) dr = N .

Solving the many-particle electronic Schrödinger equation (1.2) or (1.3) can only be done
exactly for very few systems, see e.g. Ref. [70] for an example. Therefore one has to resort
to approximate methods. A picture that is of use for such methods is the picture of non-
interacting fermions, also referred to as the ideal Fermi gas. In this picture, the Hamiltonian
of equation (1.3) reduces to a sum of single-particle Hamiltonians Ĥi:

Ĥ =
NX
i=1

Ĥi =
NX
i=1

�
�1
2
r2
i + v (ri)

�
: (1.4)

For distinguishable particles, a wave function corresponding to the Hamiltonian (1.4) can
be written as a product of single-particle wave functions. Fermions with the same spin are
indistinguishable and subject to the Pauli exclusion principle: no two electrons with par-
allel spin can have the same spatial quantum numbers. It follows that the wave function
	(�; r1� ; :::; rN�) for particles with the same spin � has to be written as a Slater determinant of
normalized single-particle spin orbitals  fqgk (�; rj�) =  fqgk (rj�)� with a representation � for
the spin component,  fqgk (rj�) single particle wave functions and fqgk a set of spatial quantum
numbers (labeled with an index k for simplicity):

	(�; r1� ; :::; rN�) =
1p
N�!

���������
 fqg1 (�; r1�)  fqg2 (�; r1�) :::  fqgN�

(�; r1�)

 fqg1 (�; r2�)  fqg2 (�; r2�) :::  fqgN�
(�; r2�)

::: ::: ::: :::
 fqg1 (�; rN�)  fqg2 (�; rN�) :::  fqgN�

(�; rN�)

��������� : (1.5)

An experimental realization that is well described by the non-interacting many-body wave
function (1.5) is the ultracold gas of spin polarized fermionic 40K atoms in a magnetic trapping
potential v (r) [51]. For a system containing N" particles with spin ", N# particles with spin #
and N = N" +N#, the wave function is then constructed as the product of the wave functions
of the two spin components:

	(r1; :::; rN) = 	
�
"; r1" ; :::; rN"

�
	
�
#; r1# ; :::; rN#

�
: (1.6)

Such wave function ful�lls the Pauli exclusion principle. If two particles with the same spin
would have the same spatial quantum numbers, then two colums of the Slaterdeterminant (1.5)
would be identical and the determinant is equal to zero. As a consequence the wave function
	(�; r1� ; :::; rN�) would be zero and so would the total wave function (1.6): a system in which
two particles with the same spin have the same spatial quantum numbers does not exists. A
wave function that ful�lls the Pauli exclusion principle is anti-symmetric under the exchange
of particles with the same spin:

	(�; r1� ; :::; ri� ; :::; rj� ; :::; rN�) = �	(�; r1� ; :::; rj� ; :::; ri� ; :::; rN�) : (1.7)

The single-particle wave functions  fqgk (r) can be found by solvingN single-particle Schrödinger
equations �

�1
2
r2 + v (r)

�
 fqgk (r) = �fqgk fqgk (r)

where particles with the same spin must have a di¤erent set of spatial quantum numbers.
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It is useful to note that for non-interacting fermions the many-particle density n (r) can be
calculated as

n (r) =
NX
p=1

��� fqgp (r)���2
with fqgp = ffqgk ; "g or fqgp = ffqgk ; #g ; and that the total energy is equal to

E =

NX
p=1

�fqgp : (1.8)

At zero temperature and for fermionic particles, the lowest energy orbitals are subsequently
�lled by the number of particles up to a highest energy level called the Fermi energy �F . For
systems at zero temperature and with spin balance the density and energy are equal to

n (r) =

NX
p=1

��� fqgp (r)���2 = 2 N=2X
k=1

��� fqgk (r)���2
E =

NX
p=1

�fqgp = 2

N=2X
k=1

�fqgk :

We now brie�y discuss some problems that are treated in basic quantum-mechanics courses in
the framework of non-interacting particles and to which we will refer in the thesis. The �rst
one is the one-dimensional in�nite square well for which

v (r) = v (x) =

�
0 0 < x < a
1 elsewhere

:

The boundary conditions for the single-particle wave functions are  (x = 0) =  (x = a) = 0.
The single-particle wave-functions and energies are given by

 k (x) =

r
2

a
sin
�
k
�

a
x
�

�k =
1

2

��
a

�2
k2

with k 2 N0. The lowest-energy single-particle wave functions are visualized in �gure 1.1.
A related but somewhat more complicated problem is that of the one-dimensional �nite square
well. This problem is characterized by the external potential

v (r) = v (x) =

8<:
UI x < 0
0 0 < x < a

UIII a < x

with 0 < UI < 1 and 0 < UIII < 1. For particles that are bound to the well, the piecewise
solutions in each region that lead to an integrable wave function are given by

 I (x < 0) = A exp
�p

2 (UI � �)x
�

 II (0 < x < a) = C sin
�p
2�x
�
+D cos

�p
2�x
�

 III (a < x) = F exp
�
�
p
2 (UIII � �)x

�
:
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Figure 1.1: Single-particle wave functions  k (x) in a one-dimensional in�nite potential well
between x = 0 and x = a corresponding to k = 1 (red solid line), k = 2 (blue dashed line) and
k = 3 (green dash-dotted line).

The wave function and its derivative should be continuous everywhere. This leads to conditions
from which the single-particle energies � can be derived. It turns out that the energy levels
are somewhat lower than the energy levels of an in�nite square well with the same width. The
wave functions are very similar to those of the in�nite well, except that they are not zero at
the well boundaries but that they show an exponential decay outside the well.
The last example we discuss is that of the hydrogen-like atom. The external potential in
this problem is spherically symmetric:

v (r) = v (r) = �Z
r
:

For this spherically symmetric system one writes the single-particle wave functions as a product
of a radial component and two angular components:  (r) = R (r)� (�) � (') with r 2 [0;1[ ;
� 2 [0; �[ ; ' 2 [0; 2�[. The angular part is described by spherical harmonics Y`;m (�; ') with
the angular quantum number ` 2 N and magnetic quantum number m for which m = �`; :::; `.
The di¤erential equation for the radial part is then given by

d2R (r)

dr2
+
2

r

dR (r)

dr
+

�
2

�
�+

Z

r

�
� ` (`+ 1)

r2

�
R (r) = 0:

The energy levels and the normalized radial single-particle wave functions of this poblem are

�n = � Z2

2n2

Rn;` (r) =

s�
2Z

n

�3
(n� `� 1)!
2n (n+ `)!

�
2Zr

n

�`
e�

Zr
n L

(2`+1)
n�`�1

�
2Zr

n

�
with n 2 N0 and L(�)p (x) an associated Laguerre polynomial. The boundary conditions lead to
the restriction ` � n� 1.
Before discussing some methods to treat the system of interacting particles approximately,

we address a physical principle and two mathematical tools that were used to derive these
methods.
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The physical principle is the variational principle of quantum mechanics. It concerns the
energy, or expectation value of the Hamiltonian, in a state described by the wave function
	(r1; :::; rN). The variational energy is de�ned as

E [	] �
D
Ĥ
E
�
R
:::
R
	� (r1; :::; rN) Ĥ	(r1; :::; rN) dr1:::drNR

:::
R
	� (r1; :::; rN)	 (r1; :::; rN) dr1:::drN

(1.9)

with 	� (r1; :::; rN) the complex conjugate of 	(r1; :::; rN) and where the integrals span the
entire space. It turns out that the energy calculated from a guess 	(r1; :::; rN) for the ground-
state wave function 	GS (r1; :::; rN), is an upper bound to the true ground-state energy EGS,

EGS � E [	GS] � E [	] :

Stated di¤erently: full minimization of E [	] with respect to the allowed N -electron wave
functions will give the correct ground-state wave function 	GS (r1; :::; rN) and energy EGS:

EGS = min
	(r1;:::;rN )

E [	] : (1.10)

The quantity E [	] to be minimized is not a function but a functional, which simply stated
is a function of which the argument is a function (indicated between square brackets [ ]). The
derivative of such functional with respect to its argument is called functional derivative and is
denoted as �F [f ] =�f (r). A rule that is used in the thesis is that if F [f ] =

R
g (f (r)) dr with

g (f (r)) containing no derivatives of f (r), then

�F [f ]

�f (r)
=
@g (f)

@f

����
f=f(r)

:

For example if F [f ] = 3
R
[f (r)]4=3 dr, then �F [f ] =�f (r) = 4 [f (r)]1=3.

Another mathematical tool is necessary because minimization will have to be performed under
certain constraints. For such kind of �constrained minimization�one can use Lagrange multi-
pliers. Say we want to minimize the function f (x; y) = x+y but require that fx; yg are points
on the unit circle, so they are subject to the constraint x2+y2 = 1 or g (x; y)�1 = x2+y2�1 = 0.
This can be done by minimizing the auxiliary function

� (x; y; �) = f (x; y) + � [g (x; y)� 1] = x+ y + �
�
x2 + y2 � 1

�
in which � is the Lagrange multiplier. By equating the partial derivatives of � (x; y; �) to zero,
we get a set of equations of which the solutions lead to the extrema of f (x; y) that obey the
required condition. We get

@� (x; y; �)

@x
= 1 + 2�x = 0

@� (x; y; �)

@y
= 1 + 2�y = 0

@� (x; y; �)

@�
= x2 + y2 � 1 = 0:

From these equations it follows that (x; y) =
�
�1=

p
2;�1=

p
2
�
is the point on the unit sphere

that gives a minimum value of f (x; y; ). This is how Lagrange multipliers work for functions.
One can require more constraints, and each constraint results in another Lagrange multiplier.
The tool can also be used for extremizing functionals.
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We now turn to the problem of interacting electrons.
A �rst approximation in order to deal with interacting particles was proposed by Hartree [39].
In the Hartree approximation, the many-particle wave function is written as a product of
normalized single-particle wave functions

	(r1; :::; rN) =  fqg1 (r1) ::: fqgN (rN) : (1.11)

With Ĥ given as in equation (1.3), application of the variational principle (1.10) of quantum
mechanics to minimize E [	] under the constraint that the many-particle wave function has
the form (1.11), leads to the so-called Hartree equations0BB@�12r2 + v (r) +

NX
p0=1
p0 6=p

Z  �fqgp0 (r
0) fqgp0 (r

0)

jr� r0j dr0

1CCA fqgp (r) = �fqgp fqgp (r) : (1.12)

In these e¤ective single-particle equations, an electron is considered to move in a potential
determined by the classical �mean �eld� Coulomb potential created by the other electrons
(the third term between brackets). Because via this potential the wave function and energy of
the considered electron depend on the wave functions of the other electrons, Hartree proposed
to solve the equations self-consistently. This means that one solves equations (1.12) in
subsequent iterations with in each iteration i the e¤ective potential calculated from the wave
functions in step i� 1:0BB@�12r2 + v (r) +

NX
p0=1
p0 6=p

Z h
 �fqgp0 (r

0)
ii�1

 i�1fqgp0
(r0)

jr� r0j dr0

1CCA 
(i)
fqgp

(r) = �
(i)
fqgp

 
(i)
fqgp

(r) :

These iterations are performed until all the wave functions converge to a solution. Under the
assumption that the many-particle wave function can be factorized as (1.11), the density can
be calculated as in the case of non-interacting particles:

n (r) =

NX
p=1

��� fqgp (r)���2 :
The wave function proposed by Hartree does not ful�ll the anti-symmetric condition (1.7) of
a fermionic wave function. Therefore a more correct result will be found if, instead of a wave
function of the form (1.11), a wave function of the form (1.6) is assumed in the minimization
of the energy E [	]. This leads to the Hartree-Fock equations [33] which for systems with
spin balance take the form266666666664

0BB@�1
2
r2 + v (r) +

X
�0

N=2X
k0=1

fk0;�0g6=fk;�g

R  �fqgk0
(�0;r0) fqgk0

(�0;r0)

jr�r0j dr0

1CCA fqgk (�; r)

�

0BB@N=2X
k0=1
k0 6=k

R  �fqgk0
(�;r0) fqgk (�;r

0)

jr�r0j dr0

1CCA fqgk0 (�; r)

377777777775
= �fqgk fqgk (�; r) :
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In comparison with the Hartree equations (1.12) an extra term has appeared. This extra term
is called the exchange contribution. It lowers the energy with respect to the energy found
within the Hartree approximation. The exchange e¤ect consists in a weakening of the e¤ect of
the classical Coulomb repulsion due to the fact that electrons with parallel spin are not allowed
to occupy the same space. As in the cases of the non-interacting particles and the Hartree
approximation, the density is calculated from

n (r) =

NX
p=1

��� fqgp (r)���2 :
Although the Hartree-Fock approximation is an improvement over the Hartree approximation,
it still is an approximation. The exact wave function of a system of many interacting particles
is often not a single determinant or a simple combination of a few determinants. The error
that is made in using an approximate ansatz for solving the many-particle problem is called
correlation. We note that �the�correlation correction does not exist because the correction
depends on which approximation is made. So the di¤erence E(HF )C between the exact energy E
and the Hartree-Fock energy EHF ,

E
(HF )
C � E � EHF ;

is the correlation energy associated with the Hartree-Fock approximation. We will encounter
another �type�of correlation energy below.
A small remark on the factors �fqgk in the Hartree(-Fock) equations is in place. They are not
single-particle energy levels. The only �meaning�that can really be assigned to them, is that
they are the Lagrange multipliers - with the dimensions of an energy - used in the minimization
of the energy functional to assure that the orbitals are normalized.
Before we go to the last topic of this chapter on basic concepts, we want to introduce

a generalization of the formulation used above. The wave function 	(r1; :::; rN) which was
introduced earlier is actually the representation of a general state j	i in the basis of the
spatial coordinates jr1:::rNi, denoted as

	(r1; :::; rN) = hr1:::rN j	i :

The notation j	i is called ket and the notation h	j is called bra. The inner product between
two states is given in position representation by

h�j	i =
Z
:::

Z
�� (r1; :::; rN)	 (r1; :::; rN) dr1:::drN :

An operator Â transforms a ket into another ket, Â j	i = j	0i, and its adjoint Ây transforms
the corresponding bra: h	j Ây = h	0j. For operators corresponding to observables, Â = Ây. In
position representation we write the expectation value of operator Â asD

�
���Â���	E = Z :::

Z
�� (r1; :::; rN) Â	(r1; :::; rN) dr1:::drN :

In this notation the energy of a system in a certain state, expression (1.9), can be written as

E [	] �

D
	
���Ĥ���	E
h	j	i :
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As a last topic of this chapter we want to address brie�y the concept of second quantiza-
tion. In this formalism, the description of states is not limited to a space with a �xed number
of particles. Particles can be created and annihilated (destroyed). Operators that transform
a state with a certain number of particles into a state with another number of particles, are
called creation and annihilation operators. There are two types. The �rst type is discrete and
is denoted by âyk and âk which create, respectively destroy, a particle characterized by the set of

quantum numbers k. The second type are the �eld operators  ̂
y
� (r) and  ̂� (r) which create or

annihilate a particle at position r with spin �. For some of these operators it matters in which
sequence they are applied to a state. This is for fermions indicated by the anti-commutation
relations. The anti-commutator

n
Â; B̂

o
of two operators Â and B̂ is given byn

Â; B̂
o
= ÂB̂ + ÂB̂:

For the fermionic �eld operators the following anti-commutation relations hold:n
 ̂
y
� (r) ;  ̂

y
�0 (r

0)
o

= 0n
 ̂� (r) ;  ̂�0 (r

0)
o

= 0n
 ̂� (r) ;  ̂

y
�0 (r

0)
o

= � (r� r0) ��;�0 :

One can derive that the particle density can be written as

n (r) =
X
�

D
	
��� ̂y� (r)  ̂� (r)���	E ; (1.13)

and that the Hamiltonian of (1.2) in second quantization with �eld operators looks like

Ĥ = �1
2

X
�

Z
 ̂
y
� (r)r2 ̂� (r) dr+

1

2

X
�;�0

Z
 ̂
y
� (r)  ̂

y
�0 (r

0)  ̂�0 (r
0)  ̂� (r) drdr

0

jr� r0j

+
X
�

Z
v (r)  ̂

y
� (r)  ̂� (r) dr:

The expression of the Hamiltonian that is used in the paper of Hohenberg and Kohn on density-
functional theory [44], is found by performing partial integration to the �rst term and using
the fact that there are no currents at the boundary of a system in the ground state.
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Chapter 2

Density-functional theory (DFT)

In the previous chapter we have seen that a non-relativistic static quantum-mechanical system
containing N conduction electrons can approximately be described by the time-independent
Schrödinger equation (1.3). The solution of this equation is given by the many-particle wave
function 	(r1; :::; rN), dependent on 3N variables, and the energy eigenvalues of the system.
For the ground-state energy the variational principle (1.10) is valid. Because the many-particle
Schrödinger equation is for most systems not exactly solvable, this variational principle was
used to derive approximate self-consistent equations.

This wave-function formalism originated really at the beginning of the development of quan-
tum mechanics. But already one year after the paper of Schrödinger in 1926, Thomas [123] and
Fermi [32] developed a model in which not the many-particle wave function was used as the
basic quantity, but the particle density n (r). Using the density instead of the wave function as
central variable has the advantage that n (r) is dependent on 3 variables instead of 3N . Thomas
and Fermi did not prove that the particle density could be considered at the same footing as
the many-particle wave function. Because of the lack of proof and because the results of the
model were not that good as those of wave function calculations, the idea of using the density
as basic variable moved to the background.

This changed in 1964 with the paper of Hohenberg and Kohn [44]. In this paper, it was
proven that the density n (r) determines implicitly all properties derivable from the many-
particle Hamiltionian by solving the Schrödinger equation for the ground state. In this way,
the ground-state energy could be written as a functional of the density. Moreover a variational
principle for the ground-state energy functional with respect to n (r) was derived. This work
was considered to be so important that it was attributed a Nobel Prize in 1998 [62]. With
the theorems of Hohenberg and Kohn, it was accomplished that considering the density as
basic variable was not just a model anymore, it had become a theory: the density-functional
theory (DFT). One year later, Kohn and Sham [60] used the density-functional variational
principle to derive self-consistent equations that are similar to the Hartree or Hartree-Fock
equations, but in which both exchange and correlation e¤ects can be included. This type of
implementation of DFT is called orbital-based DFT, as opposed to orbital-free DFT in which
extensions of the Thomas-Fermi theory are used which are entirely based on the density.

In the rest of this chapter, we will give some more explanation on the original model, the
theorems of Hohenberg and Kohn and the two implementation types of DFT that exist to date
and that are widely applied in chemistry and physics [62,92]. The text is based mainly on the
original articles and on Ref. [89].
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2.1 Origin: (extended) Thomas-Fermi model

2.1.1 The Thomas atom

The story of density-functional theory actually begins with the papers of Thomas [123] and
Fermi [32]. Thomas wanted to �nd a way to calculate the e¤ective electric �eld in atoms from
purely theoretical considerations, without �tting to data. He developed a method that leads to
approximate �elds and that can only be used for heavy atoms (with a high electron density).
To derive an equation he used the following assumptions:

1. Relativistic corrections can be neglected.

2. In the atom there is an e¤ective �eld given by the potential V (r) that is only dependent
on the distance r from the core and that has the properties

V (r) ! 0 if r !1
V (r) r ! Q if r ! 0

with Q the charge of the core.

3. The electrons are uniformly distributed in the six-dimensional phase space for the move-
ment of the electron, i.e. they are distributed as f (r;p) = f0, with two electrons per ~3
of the six-dimensional volume. The part of phase space that contains electrons is limited
to the part for which orbitals are closed (i.e. the orbitals are completely �lled).

4. The potential V (r) itself is determined by the core charge and the distribution of electrons.

Assumption 2 re�ects in fact the limiting behavior of an atomic potential. In assumption 3
we recognize features of quantum mechanics being developed at that time: electrons with
opposite spin can be in the same volume of phase space. The fourth assumption is actually
that the potential is classical. This means that it can be de�ned from the Poisson equation
�V (r) = �4��exc (r) with �exc (r) the excess charge density which is the sum of the electron
charge density �n (r) and the background charge density �b (r), so �exc (r) = �b (r)� n (r).
Under the assumptions 1 and 2 the Hamiltonian of the electron movement is given by

Ĥ =
p̂2

2
� V̂

with p̂ the momentum(operator) of the electron. Now Thomas used the following reasoning.
An electron would escape from the atom if its energy is larger than or equal to V (r !1) = 0.
So for electrons that are part of the atom, one can determine an upper bound pF for the
momentum:

p2F (r)

2
� V (r) = 0 (2.1)

+
pF (r) =

p
2V (r): (2.2)

Using assumption 3 one can �nd the following relation between �pF and the density �n of a
homogeneous electron gas:

�n = (density in phase space)� (occupied part of phase space)

=
2

(2�)3
� 4�
3
�p3F =

1

3�2
�p3F : (2.3)
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The next step is the most crucial one of the derivation. The relation (2.3) between the max-
imum momentum and density of a homogeneous electron gas is used locally, i.e. the electron
density n (r) in the atom is written as:

n (r) =
1

3�2
p3F (r) :

Combining this equation with the expression (2.2) for pF (r), we �nally �nd a relation between
n (r) and V (r):

n (r) =
2

(2�)3
4�

3
[2V (r)]3=2 :

The potential V (r) and the density n (r) can be derived by combining this equation with the
Poisson equation.
For later use we note that with expression (2.3), the kinetic energy in equation (2.1) can be

written as a function of the density. This results in the so-called Thomas-Fermi equation

1

2

�
3�2
�2=3

[n (r)]2=3 � V (r) = 0: (2.4)

2.1.2 Inclusion of exchange

In the Thomas-Fermi model the potential energy was considered to be classical and for the
kinetic energy the expression of a uniform electron gas was used locally. Some years later,
Dirac [24] derived a way to include exchange in the Thomas-Fermi model. Like in the case of
the kinetic energy, the expression of the Hartree-Fock exchange of the homogeneous electron
gas was used locally. This led to the so-called Thomas-Fermi-Dirac equation

1

2

�
3�2
�2=3

[n (r)]2=3 �
�
3

�

�1=3
[n (r)]1=3 � V (r) = 0

which has an extra term in comparison with the Thomas-Fermi equation (2.4) (a derivation of
this term can also be found in e.g. Ref. [59]).
Dirac derived this term because he experienced in the early years of quantum theory that, as

we said before, the solution of the many-particle Schrödinger equation is �far too complicated
to be practical�and that the self-consistent e¤ective single-particle equations were also �hardly
practicable when one has to deal with very many electrons�. He already argued that the
whole state of the atom is completely described simply by its (electric) density and that one
thus can deal with any number of electrons by working with just one �matrix density function�.
Apparently the argument of Dirac was not convincing enough, but that of Hohenberg and Kohn
was. In the following section we will therefore discuss their theorems which really launched
�density-functional theory�.
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2.2 The Hohenberg-Kohn theorems

The formal justi�cation of density-functional theory was originally given by two theorems
proven by Hohenberg and Kohn [44, 62]. These theorems, which concern the ground state Ev
of interacting particles in an external potential v (r), can be formulated as follows:

1. The many-particle ground-state properties are uniquely determined by the particle density
n (r), at least for non-degenerate ground states and up to an arbitrary constant for v (r).
An important aspect of this theorem is that the ground-state energy Ev is a unique
functional of n (r):

Ev = Ev [n] : (2.5)

2. The energy functional Ev [n] has as its minimum value the correct ground-state energy
EGS associated with v (r) if the number of particles N [n] �

R
n (r) dr is kept constant:

EGS � Ev [nGS]
N [n]=N
= min

n(r)
Ev [n] : (2.6)

The ground-state energy can be written as

Ev �
D
	
���T̂ + V̂ + Û

���	E = T [n] + V [n] + U [n]:

In this expression, T̂ , V̂ and Û are the operators of the kinetic energy, the external potential
energy and the electron interaction energy, and T [n] �

D
	
���T̂ ���	E, V [n] � D

	
���V̂ ���	E and

U [n] �
D
	
���Û ���	E are the corresponding functionals. Hohenberg and Kohn de�ned a �univer-

sal�functional F [n (r)] �
D
	
���T̂ + Û

���	E = T [n] +U [n] which does not (formally) depend on

the external potential v (r). Then the energy functional can be written as

Ev [n] =

Z
v (r)n (r) dr+ F [n] : (2.7)

If the universal functional F [n] would be known exactly, then the exact ground-state electron
density could be derived from equations (2.7) and (2.6). Unfortunately F [n] is, to this date,
only known approximately. For practical purposes one extracts from this functional the classical
Coulomb interaction UCoul [n] so that

F [n] = UCoul [n] +G [n] =
1

2

Z Z
n (r)n (r0)

jr� r0j drdr0 +G [n]

with G [n] another universal functional that contains the kinetic energy and the non-classical
part of the electron-electron interaction (exchange and correlation). Notice that G [n] is for
sure a functional of n because F [n] is a functional of n from which we have extracted a part
that is a functional of n. The energy functional (2.7) is then written as

Ev [n] =

Z
v (r)n (r) dr+

1

2

Z Z
n (r)n (r0)

jr� r0j drdr0 +G [n] (2.8)

with the universal functional G [n] de�ned as

G [n] = T [n] + U [n]� UCoul [n] : (2.9)
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2.3 Orbital-based DFT

This type of implementation of DFT is based on the self-consistent equations of Kohn and
Sham [60]. There exist equations similar to the Hartree equations and equations similar to the
Hartree-Fock equations. To see how self-consistent equations can be derived from the theorems
of Hohenberg and Kohn, we follow the idea of the original paper which is somewhat more
intuitive than the more rigorous derivation, which can be found in e.g. Ref. [89].
Kohn and Sham �rst proposed the following ansatz to the universal functional G [n]:

G [n] � Ts [n] + E
(KS)
XC [n] (2.10)

in which Ts [n] is the kinetic energy of a system of non-interacting electrons with density n
and E(KS)XC [n] is, by the de�nition of Kohn and Sham1, the exchange and correlation energy of
an interacting system with density n. It follows from the theorems of Hohenberg and Kohn
that for a system of non-interacting electrons, Ts [n] is a unique functional of the density. For
other systems it is an assumption that the universal functional G [n] can be split up in terms to
which the mentioned meaning can be attributed. With the ansatz (2.10), the energy functional
is written as

E(KS)v [n] = Ts [n] +

Z
v (r)n (r) dr+

1

2

Z Z
n (r)n (r0)

jr� r0j drdr0 + E
(KS)
XC [n] : (2.11)

Under the assumption (2.10), Kohn and Sham derived two types of equations: Hartree-like
and Hartree-Fock-like. We only discuss the �rst type because this is the one that is most often
used.
To explain the idea of Kohn and Sham, we �rst consider the case of non-interacting particles.

For this case the correct energy functional (2.5) and the Kohn-Sham energy functional (2.11)
coincide. Constrained minimization of the energy functional, with a Lagrange multiplier � to
incorporate particle conservation, leads to the equationZ

�n (r)

�
�Ts [n]

�n (r)
+ v (r)� �

�
dr = 0: (2.12)

Now we have seen in chapter 1 on basic concepts that the problem of non-interacting particles
can be treated by solving N single-particle Schrödinger equations�

�1
2
r+ v (r)

�
 fqgk (r) = �fqgk fqgk (r) (2.13)

from which the density can be calculated as

n (r) =

NX
p=1

��� fqgp (r)���2
with fqgp = ffqgk ; �g. In this case, the total kinetic energy can be calculated from the orbitals
as follows. We have from equations (2.11) and (1.8) the equalities

Ev [n] = Ts [n] +

Z
v (r)n (r) dr

=

NX
p=1

�fqgp =

NX
p=1

Z
 �fqgp (r) �fqgp fqgp (r) dr (2.14)

= �1
2

NX
p=1

Z
 �fqgp (r)r

2 fqgp (r) dr+

Z
v (r)n (r) dr

1We attached the superscript (KS) to this part of the energy to indicate the di¤erence with the correlation
energy de�ned in the framework of the Hartree-Fock approximation.
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so Ts [n] can be calculated as:

Ts [n] = �
1

2

NX
p=1

Z
 �fqgp (r)r

2 fqgp (r) dr:

In the case of interacting particles, constrained minimization of the Kohn-Sham energy
functional (2.11) leads to the conditionZ

�n (r)

�
�Ts [n]

�n (r)
+ v (r) +

Z
n (r0)

jr� r0j dr
0 + uXC (n)� �

�
dr = 0: (2.15)

with uXC (n) = �E
(KS)
XC [n]

.
�n (r). Kohn and Sham saw an analogy between this equation and

equation (2.12) for non-interacting particles. Using an e¤ective potential energy

ueff (r) = v (r) +

Z
n (r0)

jr� r0j dr
0 + uXC (r) ; (2.16)

the constrained minimization condition (2.15) for interacting particles is formally the same as
the one for non-interacting particles (2.12):Z

�n (r)

�
�Ts [n]

�n (r)
+ ueff (r)� �

�
dr = 0:

This led Kohn and Sham to propose that the problem ofN interacting particles could be treated
by solving self-consistently N e¤ective single-particle Schrödinger equations of the form�

�1
2
r2 + ueff (r)

�
 fqgk (r) = �fqgk fqgk (r) (2.17)

with ueff (r) given by expression (2.16), and by calculating the density as for non-interacting
particles:

n (r) =
NX
p=1

��� fqgp (r)���2 : (2.18)

The energy minimization thus leads to Hartree-like equations in which the e¤ective energy ueff (r)
is dependent on the density (in the rigorous derivation the �eigenenergies�are again Lagrange
multipliers used to ful�ll the constraint that the �orbitals�are normalized). If we now calculate
Ts [n] from the orbitals as in expression (2.14) by integrating the Kohn-Sham equation (2.17),
we �nd that the kinetic energy of the formally non-interacting particles can be calculated as

T (KS)s [n] =

NX
p=1

�fqgp �
Z
v (r)n (r) dr�

Z Z
n (r0)n (r)

jr� r0j dr0dr�
Z
uXC (r)n (r) dr: (2.19)

Combining expressions (2.11) and (2.19) we get the following expression for the total energy:

E(KS) =
NX
p=1

�fqgp �
1

2

Z Z
n (r0)n (r)

jr� r0j dr0dr+ EXC [n]�
Z
uXC (r)n (r) dr: (2.20)

For the derivation given above, Kohn and Sham originally assumed an exchange-correlation
energy of the form

EXC [n] =

Z
n (r) �XC (n (r)) dr: (2.21)
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We mention expression (2.21) because it is an approximation to the exchange-correlation energy
that is often used, also in this thesis. It is called Local Density Approximation (LDA). In
this approximation, it is assumed that the exchange-correlation energy per particle �XC (�n) of
the homogeneous electron gas with density �n can be used locally, like is done with the kinetic
energy in the Thomas-Fermi model and the exchange energy in the Thomas-Fermi-Dirac model.
The approximation is supposed to give quite good results in two limiting cases: in the case the
density is slowly varying and in the case the density is high. Kohn and Sham showed that in
the �rst case, the energy (2.20) has errors of the order jrj2, or equivalently, of the order r�20
with r0 the distance over which there is an appreciable change in density. They also showed
that in this limit, the density is determined with a greater accuracy, of the order jrj4. In the
limit of high density, the exchange-correlation energy is small in comparison with the kinetic
energy and the inaccuracy in representing these energies becomes negligible.
The disadvantage of orbital-based calculations is that only a limited number of orbitals can

be treated, so a limited number of particles or systems for which a large enough reduction by
symmetry can be applied, e.g. in crystals where each periodic cell contains a su¢ ciently small
number of particles or in spherically symmetric systems where the energy levels are degenerate.
There exist some linearly scaled orbital-based DFT implementations (see e.g. references in
Ref. [127]), but these are still complicated to implement and more computationally demanding
than orbital-free DFT. Moreover, in these methods use is made of �orbital localization�which
restricts the applicability to non-metallic systems for which the orbitals can be exponentially
localized. For metallic systems that cannot be treated orbital-based, we thus have to rely on
orbital-free DFT of which the existing implementation is explained in the next section.

2.4 Orbital-free DFT

From the theorems of Hohenberg and Kohn it follows that the particle density n (r) can be
considered as the basic quantity instead of the many-particle wave function 	(r; r2; :::; rN).
Based on these theorems, Kohn and Sham derived self-consistent e¤ective single-particle equa-
tions. These equations have the advantage over the Hartree(-Fock) equations that in theory all
quantum-mechanical many-particle e¤ects can be included. But an attentive reader will have
noticed that starting from a theory that is based on the particle density n (r), a single-particle
wave-function-like scheme was constructed. The Kohn-Sham formalism thus not remedies the
drawback of the Hartree(-Fock) scheme that was mentioned by Dirac to be �hardly practicable
when one has to deal with very many electrons�. Executing Kohn-Sham calculations is not
feasible if the number of orbitals to be calculated becomes too large because in every iteration
N di¤erential equations have to be solved.
Today, there exist systems for which a rather large number of particles prevents a description

based on Kohn-Sham calculations, but for which quantum-mechanical e¤ects are large enough
so that treating the systems classically would give erroneous results. Examples of such systems
are nanoshells, stellar matter, quantum dots and other con�ned systems. For such systems one
tries to calculate properties without making use of orbitals [43,96,112]. In standard2 orbital-free
DFT, one tries to solve as directly as possible the Euler equation

�Ev [n]

�n (r)

����
N constant

=
�T [n]

�n (r)
+ v (r) +

Z
n (r0)

jr� r0j dr
0 +

�E
(HK)
XC [n]

�n (r)
= �: (2.22)

that follows from the constrained minimization of the energy (2.8) where we have de�ned
E
(HK)
XC [n] as E(HK)XC [n] � U [n] � UCoul [n]. This equation is also referred to as the �Thomas-
Fermi-Hohenberg-Kohn�equation. So in every iteration only one equation has to be solved.

2as opposed to the new orbital-free method we will propose in this thesis.
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There are some drawbacks of this method. For the �rst one, we do not o¤er a solution with
the new method proposed in this thesis. But our method o¤ers a straightforward solution for
the other issues for which before only quite arti�cial solutions were constructed. We will now
discuss these issues brie�y.
First of all, apart from rather well investigated expressions for EX [n] and EC [n] as needed

in the Kohn-Sham scheme, a functional form of T [n] is required. This is a topic of actual
research [45, 93, 127] because up to date no functional has been found that reproduces all
expected physical features like e.g. the shell structure in atoms.
Secondly, one needs a value for the Lagrange multiplier � in eq. (2.22). This parameter is

identi�ed with the negative of the �rst ionization energy or with the chemical potential. If one
does not know a value for this constant from experiment or other calculations, one has to do
some more e¤ort to incorporate the constraint, as is discussed in e.g. Ref. [127] on p. 158-160.
Although a physical meaning might be attached to � for the correct energy functional, it is not
clear whether this meaning is justi�ed when approximate functionals are used.
Another issue that arises in solving the Thomas-Fermi-Hohenberg-Kohn equation is that

non-negativity of n (r) is not guaranteed in general if n (r) is used directly as the generalized
coordinate in conventional optimization algorithms (see e.g. Refs. in Ref. [127]). One way in
which this is bypassed is by using an arti�cial new variable ' (r) for which n (r) = [' (r)]2.
Another way by which this issue is dealt with, is to set n (r) = 0 wherever the density would
become negative or complex.
Finally, if one manages to bypass all aforementioned problems, one is often left with a non-

trivial di¤erential, integral of integrodi¤erential equation to be solved if one wants to include a
realistic external potential and quantum-mechanical many-particle e¤ects.



Chapter 3

Nanoshells

3.1 System and notations

A nanoshell is a nanosize particle consisting of a dielectric core surrounded by a uniform con-
ducting shell, as shown in �gure 3.1. In this thesis, we will denote the radius of the core by RC ,
the overall radius of the particle by RS and the permittivity of the core, the shell and the
environment by "C , "S and "E respectively.

Figure 3.1: Visualization of a nanoshell. In the thesis the following notations will be used:
RC for the radius of the dielectric core, RS for the outer radius of the metallic shell, and "C ,
"S and "E for the permittivity of the core, shell and environment respectively (�gure of the
nanoshell made by N. Van den Broeck).

We will investigate the in�uence of parameters such as permittivities and size on some prop-
erties of nanoshells, and we have therefore chosen a benchmark nanoshell for comparison.
We considered a hollow nanoshell in vacuum, so "C = "S = "E = 1, with RC = 40 nm and
RS = 55 nm. This nanoshell contains 2:5587435 � 107 conduction electrons. The sizes are
the minimum sizes that can be achieved at the moment for nanoshells with a SiO2 core and a
golden shell [66]. SiO2-Au nanoshells of comparable dimensions are commercially available and
are used in e.g. experiments on cancer treatment [82]. Figure 3.2 shows the relative magnitude
of the benchmark nanoshell and the largest nanoshell that has been treated with Kohn-Sham
calculations by Nordlander and Prodan [87].
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Figure 3.2: The relative magnitude of the smallest manufacturable nanoshell and the largest
nanoshell that has been treated with Kohn-Sham calculations.

3.2 Fabrication

There exist nanoshells of di¤erent kinds of materials and each type of nanoshell has a distinct
production process. In this section we explain brie�y the fabrication of SiO2-Au nanoshells
which are most relevant for the thesis. The basic steps in the fabrication of such nanoshells are
visualized in �gure 3.3 [88,38,53].

First a SiO2 spherical nanoparticle is fabricated. This is done by the Stöber method [119].
With this method, one can fabricate particles that are quite uniform in size. The resulting core
is amorphous [53].
Because both SiO2 and gold are chemically quite inert, bifunctional molecules are attached to
the core surface to enhance coverage of shell material.
To the functional surface, small gold colloid particles are bounded. Typically a surface coverage
of approximately 25% is obtained.
The partially covered particle is then immersed in a electroless plating solution. The total
amount of metal to be plated corresponds to the desired thickness of the shell. With this
procedure, one can fabricate particles with a rather homogeneous distribution of the shell
thickness.

Figure 3.3: Basic steps in the fabrication of SiO2-Au nanoshells (�gure taken from Ref. [38]).
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3.3 Working principle

The interesting applications we will mention below are possible because of a phenomenon called
Localized Surface Plasmon Resonance (LSPR) [53,73].
When light is shone on a nanoshell, the conduction electrons of the shell will collectively oscil-
late. Hence the part �Plasmon�in the name: with a collective movement of electrons a kind
of �quasiparticle�is associated, called a plasmon.
The inner part of the shell remains locally neutral, so the interesting physics takes place at the
surfaces of the shell where charge excess is induced. For nanoshells that are small with respect
to the wavelength of the light there will be a dipole distortion as shown in �gure 3.4, for larger
particles also higher order modes will be present.

Figure 3.4: Possible surface excess charge densities induced in a nanoshell that is small with
respect to the wavelength of the incident light.

At a certain frequency, the oscillation of the electrons becomes resonant, leading to enhanced
absorption or scattering and a strongly enhanced near �eld in the immediate vicinity of the
particle. This can be detected from e.g. the extinction spectrum which shows a peak at this fre-
quency. As seen in �gure 3.5, the resonance frequency can be tuned by changing the dimensions
of the nanoshell. The tunability is more �exible than for solid metallic particles because of the
interplay between the plasmons at the inner and outer surface of the shell. This tunability is
important for applications in which one wants to have a resonance in a given part of the spec-
trum (e.g. near infrared for biomedical applications), or in which one wants to avoid response
for certain wavelengths to exclude overlap with other signals. The resonance frequency not
only depends on the dimensions of the nanoshell but also on the constituent materials, on the
environment and on interaction with nearby nanoshells. For a �xed core/shell ratio, one can
change the functional behavior of the nanoshell: in the small-particle or dipole limit, where the
particle size is small with respect to the wavelength of the incident light, light will be absorbed
at the resonance frequency. As the particle size is increased, light will become scattered at reso-
nance [38]. This functional tunability is also important for applications, because it will depend
on the application for which one wants to use a nanoshell whether absorption or scattering is
desired or maybe unwanted. Nanoshells can be stored in a �ask as seen in �gure 3.6, with the
color of the liquid dependent on which type of nanoshell is present1.
There exists an analogous phenomenon in �at structures where the plasmons can travel along
the surface. This is called �Surface Plasmon Resonance�(SPR). To make the distinction be-
tween this phenomenon and the mechanism we just described, where the electrons are localized
on a nanoparticle, the word �Localized�was added to the term.

1They have to be stored in the refrigerator, but not too close to a freezer compartment ...
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Figure 3.5: Optically most active dipole resonance of a SiO2-Au nanoshell for a �xed total radius
of RS = 75 nm and di¤erent core radii RC (RC = 50 nm, RC = 55 nm and RC = 60 nm). The
spectrum is calculated using Mie theory (see section 3.5.1) with "C = 2:0449 [111], "E = 1 and
for the frequency dependent dielectric function of the shell the Drude form " (!) = "b � !2p=!

2

with "b a background contribution taken to be "b = 6:9 [116] and !p the bulk plasmon frequency
of gold.

Figure 3.6: Flasks containing nanoshells with di¤erent characteristics.

3.4 Some related structures

We have chosen to study SiO2-Au nanoshells because of their interesting (in vivo) biomedical
applications, but there exist also other interesting structures of which the constituting materials
or shape are such that the particles are most suited for a speci�c application. Not only the
functionality (absorption or scattering, sharp edges for enhanced local �elds or �hot spots�, ...)
can be altered by considering di¤erent kinds of structures, also the resonance frequency di¤ers
among those structures, as is shown in �gure 3.7. We mention some structures here to indicate
that the �eld of LSPR o¤ers many possibilities and it would be interesting to apply our new
method also to these structures.
First of all, nanoshells themselves can be made of other materials than SiO2 and gold. The

�rst nanoshell that was fabricated had a Au2S core and a golden shell [7]. Another metal that
is used because it seems more appropriate for some applications, is silver. One can use other
metals like e.g. copper which also has a resonance frequency close to the visible region of the
spectrum [65]. Furthermore, combinations with semiconductors are possible [53].
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Figure 3.7: Region of possible resonance energies for a variety of particle morphologies (�gure
taken from Ref. [65]).

Advances in nanoparticle synthesis made it possible to fabricate other shapes of solid nanopar-
ticles than spheres, like triangles, prisms, rods and cubes [65], and also nanorice, a prolate
spheroidal particle invented at... Rice University [128].
As for core-shell nanoparticles, one can make multi-layered structures with alternating dielec-
tric and conducting layers, called nanomatryushka after the Russian dolls. Another core-shell
particle is a nanoegg: this is a nanoshell with an o¤set core [129].
Other interesting features emerge if nanoshells interact in e.g. dimers, trimers or quadrumers [129],
or in monolayers [56]. For some applications the interaction of nanoparticles with a �at surface,
e.g. a metallic �lm or an n-p junction, is of importance.
Because of their interesting features, also particles with a non-complete shell are studied, like
nano-half-shells, nanocups, nanocaps and nanocrescents [135].

3.5 Existing methods to calculate nanoshell properties

Below in this thesis, also in the chapter on applications, we will refer to some existing methods
to describe nanoshells theoretically. In this section, we will explain the basics of these methods
and compare their results. The �rst two methods were used in the research on �nanoshells as
high-pressure gauge�(see section 3.6.6), the third one is related to the orbital-based calculations
in part II of this thesis.

3.5.1 Mie theory

Mie theory is used to solve the macroscopic Maxwell equations in systems with spherical sym-
metry. It was worked out for a homogeneous and isotropic sphere by Mie [79], an explanation
with more modern notation is found in Ref. [121]. A nanoshell can be modeled as two concen-
tric spheres. For this case the results originally derived by Mie for a single spherical interface
were extended by Aden and Kerker [2]. Mie theory allows the calculation of the absorption,
scattering and extinction cross section for an incident beam of radiation as a function of fre-
quency. These quantities, of dimension (length)2, are de�ned as the ratio of the total scat-
tered/absorbed/extincted energy per second to the energy �ux of the incident wave. From the
resulting cross section pro�le, the resonance frequencies can be determined numerically as the
frequencies at which the cross section shows a maximum. For this method the input parameters
are the sizes and permittivities of the particle layers.
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The macroscopic Maxwell equations are

r �D (r; t) = 4��ext (r; t)

r �B (r; t) = 0

r� E (r; t) = �1
c

@B (r; t)

@t

r�H (r; t) =
1

c

@D (r; t)

@t
+
4�

c
Jext (r; t)

with c the speed of light and the following quantities that depend on position r and time t:
the electric and magnetic �elds E (r; t) and H (r; t), the displacement vector D (r; t), the
magnetic induction B (r; t), the external charge density �ext (r; t) and the external current
density Jext (r; t). In the derivations, the following assumptions are used:
1. the relevant quantities can be factorized in a position dependent and time dependent part,
and the time dependent part f (t) has the form f (t) = e�i!t with frequency !;
2. space (in each medium) is homogeneous and isotropic;
3. the relation between the magnetic induction B (r; t) and the magnetic �eld H (r; t) is given
by B (r; t) = � (r; t)H (r; t) with � the magnetic permeability considered independent of time
and identical in each medium: � (r; t) = �;
4. the relation between the displacement vector D (r; t) and the electric �eld E (r; t) is given
by D (r; t) = " (r; t)E (r; t) with " (r; t) the dielectric function in a given medium, dependent
on time (or equivalently, frequency !) in metals and independent of time in dielectrics;
5. Ohm�s law: Jext (r; t) = � (r; t)E (r; t) with � (r; t) the conductivity of the medium;
6. there are no external charges: �ext (r; t) = 0.
The boundary conditions that are used, are
1. the tangential component of the electric �eld is continuous;
2. the tangential component of the magnetic �eld is continuous.
With the above mentioned assumptions, one can derive from the Maxwell equations a vector

wave equation for the electric and magnetic �elds E (r; t) and H (r; t). From these wave equa-
tions follows that for the carthesian components Cj of the �elds (so Cj equals Ex; Ey; Ez; Hx; Hy

or Hz) a scalar Helmholtz equation holds:

r2Cj + k2Cj = 0 (3.1)

with k2 = !2=c2 in vacuum and k2 = (!2=c2) (�"+ i4���=!) in a medium. One does not �nd a
scalar Helmholtz equation in spherical coordinates, and that is why in Mie theory one uses basis
functions de�ned from a scalar function 	(r; t) that does satisfy the Helmholtz equation (3.1).
Factorized in a spatial and time-dependent part, these basis functions can be written as

L (r; t) = r	(r; t) = l (r) e�i!t

M (r; t) = r�	(r; t) a =m (r) e�i!t

N (r; t) =
1

k
r�M (r; t) = n (r) e�i!t

in which a is a vector in the radial direction. These functions are called vector spherical
harmonics. The functionsM and N are divergenceless, and the function L is irrotational. One
then expands the vector potential A (r; t) in those vector spherical harmonics:

A (r; t) =
i

!

X
p

(apMp + bpNp + cpLp) :
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From the relation B (r; t) =r�A (r; t) and the fourth law of Maxwell, one then �nds that in
the used assumptions the �elds can be written as

H (r; t) = � k

i!�

X
p

(apNp + bpMp)

E (r; t) = �
X
p

(apMp + bpNp) : (3.2)

Using the fact that 	(r; t) satis�es the Helmholtz equation (3.1), and assuming that an incident
plane wave with amplitude E0 travels in the z-direction and is polarized in the x-direction, one
then �nds the following expressions for the �elds:
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In these expressions, ` is the angular quantum number, z` (x) is a (modi�ed) spherical Bessel
function (or a linear combination of those functions), Pm

` (cos (�)) is a Legendre polynomial
and er; e� and e' are the unit vectors in the r, � and ' direction. Which functions are to be
used for z` (x) depends on the radial boundary conditions in a given part of the system.
In a core-shell system there are the following �elds in each part of space:

1. in the environment: incident (i) and scattered (s) �elds, so that
Eenvironment (r; t) = Ei (r; t) + Es (r; t), and analogous for the magnetic �eld.
2. in the shell: �shell transmitted�(st) and �shell scattered�(ss) - from the core - �elds, so
Eshell (r; t) = Est (r; t) + Ess (r; t), and analogous for the magnetic �eld.
3. in the core: a �core transmitted�(ct) �eld, so Ecore (r; t) = Ect (r; t), and analogous for the
magnetic �eld.
From the requirement that the �elds satisfy the appropriate boundary conditions, one can
derive a set of equations from which one can �nd expressions for the coe¢ cients a(s)` , b

(s)
` , a

(st)
` ,

b
(st)
` , a(ss)` , b(ss)` , a(ct)` and b(ct)` .
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The coe¢ cients a(s)` and b
(s)
` can then be used to calculate the scattering cross section

Qscatt (!), absorption cross section Qabs (!) or extinction/total cross section Qext (!) which
will show peaks as a function of ! at the resonance frequencies [121]:

Qscatt (!) =
2�

k2E (!)

1X
`=1

(2`+ 1)

����a(s)` (!)
���2 + ���b(s)` (!)

���2�
Qabs (!) = � 2�

k2E (!)

1X
`=1

(2`+ 1)

����a(s)` (!)
���2 + ���b(s)` (!)

���2 +Re�a(s)` (!) + b
(s)
` (!)

��
(3.4)

Qext (!) = Qscatt (!) +Qabs (!) = �
2�

k2E (!)

1X
`=1

(2`+ 1)Re
�
a
(s)
` (!) + b

(s)
` (!)

�
:

The term corresponding to ` = 1 is called the dipole term, the term corresponding to
` = 2 the quadrupole term, ... The �rst three multipole contributions to the extinction cross
sectionQext (!) are shown in �gure 3.8 as a function of wavelength �. For each `-value there is an
optically more active peak at higher wavelengths and a less intense peak at lower wavelengths.
The higher the order of the multipole contribution, the narrower the resonance peaks. This has
consequences both for numerical calculations as for experimental determination. For a correct
representation of the maximum of the quadrupole (` = 2) and hexapole (` = 3) term, a value
for Qext (!) had to be calculated every 0:1 nm, whereas a correct representation of the dipole
contribution required only a value of Qext (!) every 5 nm. If one scans the entire region where
resonances might occur, the dipole peaks can be found with a wider mesh and thus more quickly
and easily. Moreover only the lower-order contributions are relevant for experiment because
the higher-order contributions do not contain enough spectral weight to be observed. In this
way it is justi�ed to calculate only the values of Q (!) necessary to represent the �rst-order
contributions well and to only take the �rst few terms of expressions (3.4) into account, the
contributions that can be represented with the used mesh. The calculated spectrum does not
change if terms are added for which the resonances cannot be shown with the used mesh.

Figure 3.8: First three multipole contributions to the relative extinction cross sec-
tion Qext (�) = (�R2S) of a SiO2-Au nanoshell with core radius RC = 60 nm and total radius
RS = 75 nm. The parameters used in the Mie calculations are: "C = 2:0449 [111], "E = 1 and
for the frequency dependent dielectric function of the shell the Drude form " (!) = "b � !2p=!

2

with "b a background contribution taken to be "b = 6:9 [116] and !p the bulk plasmon frequency
of gold.
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Some side remarks

In the expansion (3.2) of the electric �eld in vector spherical harmonics, no longitudinal term
has been incorporated: it is assumed that only transverse modes of the spherical particle exist.
For a homogeneous sphere, Mie theory was extended by Ruppin to include the excitation
of longitudinal polarization waves [114, 115]. Inclusion of the longitudinal component shifts
the resonance peak of the transverse modes to somewhat higher frequencies (blue shift) and
introduces some additional oscillations at higher frequencies. In [115] it is mentioned that for
sodium particles of less than 50 �A radius the shift of the main resonance was indeed detected
and that the additional oscillations appeared, not as individual oscillations but as a band due
to size distribution.
In calculations based on Mie theory, a number of approximations are made. The crucial

assumptions are the following. The �elds are purely transverse. The relations
B (r; t) = � (r; t)H (r; t), Jext (r; t) = � (r; t)E (r; t) and D (r; t) = " (r; t)E (r; t) hold. For the
dielectric function of a metallic layer one usually uses experimental bulk values or the Drude
form

" (!) = "b �
!2p

!2 + i
!

in which !p is the bulk plasmon frequency, and in which the in�uence of the background "b is
often set equal to "b = 1 and the damping coe¢ cient 
 is often set equal to 
 = 0; Ruppin used
the separate forms of the dielectric function for longitudinal and transverse response derived
by Lindhard [71]. Sometimes size-corrections are added to the Drude dielectric function if the
dimensions of the metal become smaller than the mean-free path `0 of the conduction electrons.
For gold this mean-free path is of the order of2 40 nm. The model used for the dielectric function
of the metallic shell is a determining factor for the width and the amplitude of the calculated
resonance peaks.
If no assumptions are made the permittivity, permeability and conductivity will no longer be
scalar functions, but complex tensors relating a �eld in one point to the values of other �elds
in di¤erent parts of space. Only if one assumes a certain degree of homogeneity, isotropy and
locality will it be possible to de�ne a quantity like the dielectric function. The mentioned
assumptions might not be appropriate in the nanoregime, a rapid developing research area.
The question of applicability of the macroscopic Maxwell equations to nanostructures will be
addressed in a Ph.D. thesis in our group by N. Van den Broeck.

3.5.2 Hybridization theory

Hybridization theory, developed by Prodan and Nordlander [107,108], o¤ers a fast-to evaluate
analytical form for the resonance frequencies of a multi-layer spherical particle. The advantage
of hybridization theory over Mie theory is that the resonance frequencies are easily calculated
from an analytical form, whereas in Mie theory one �rst has to calculate a spectrum and then
determine numerically the location of the maxima. The drawbacks of hybridization theory
are that the resonance frequencies only coincide with those of Mie theory for relatively small
particles, smaller than ca. a tenth of the wavelength, and that it gives no information on the
width of the resonance peaks.
Hybridization theory is a mesoscale electromagnetic analogue of the molecular-orbital theory

used to predict how atomic orbitals interact to form molecular orbitals. In the theory, complex
nanoparticle geometries are separated in simpler constituent parts. Then it is calculated how the
plasmon resonances of the elementary parts interact with each other to generate the hybridized

2In Ref. [4], the expression `0 = r2s=�� � 92 �A is given with
�
��
�
Au
= 2:04 �
; with (rs)Au = 3 we thus �nd

that (`0)Au ' 40:5 nm:
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plasmon modes of the composite nanostructure. For a nanoshell it means that one combines
two systems: a solid sphere with resonance frequency !S and a spherical cavity with resonance
frequency !C . The interaction between the resonant modes of both constituent particles results
in two �hybridized�modes: an anti-symmetric mode with a resonance frequency !+ and a
symmetric mode with a resonance frequency !� (see �gure 3.9). The resonance frequency of
the anti-symmetric mode is higher than the resonance frequencies of the sphere and cavity,
the resonance frequency of the symmetric mode is lower. The thinner the shell, the stronger
the coupling and the larger the di¤erence between the hybridized modes. Because the dipole
moment of the symmetric plasmon mode is much larger than that of the anti-symmetric mode,
the former couples much stronger to light than the latter.

Figure 3.9: Two energy diagrams illustrating the plasmon hybridization in a metallic nanoshell.
The energy levels marked with !C and !S represent the cavity and the sphere plasmon
resonances. The energy levels marked with !� represent the symmetric, respectively, anti-
symmetric plasmon modes of the metallic nanoshell. Panel (a) shows the diagram for a
nanoshell with (RC ; RS) = (20; 40) nm and panel (b) shows a diagram for a nanoshell with
(RC ; RS) = (28; 32) nm; in both cases "C = "S = "E = 1 (�gure taken from Ref. [108]).

The derivation of the analytical expression for the resonance frequencies is based on the
incompressible �uid model. In this model the conduction electrons of metallic layers are modeled
as an incompressible, irrotational charged �uid with charge density � (r) on top of a uniform
positive background charge distribution n0 representing the metal ion cores. The positive
background charge extends only over the shell and the entire system is charge neutral. When
the system is excited by an electromagnetic wave, the incompressible �uid will locally spill out
an amount n (r) � n0 in the core or the environment. The basic equations that describe the
incompressible, irrotational �uid are

@� (r; t)

@t
+r � j (r; t) = 0

r� j (r; t) = 0

j (r; t) = � (r; t)v (r; t) :
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The �rst equation is the continuity equation in which j (r; t) is the current density. The second
equation states that there are no vortices present. The third equation is the de�nition of
the current density in terms of the �uid velocity v (r; t). Since v (r; t) / j (r; t) it follows
from the irrotationality condition that the velocity can be written as a gradient of a scalar
function3 � (r; t), so v (r; t) = r� (r; t), which satis�es the Laplace equation r2� (r; t) = 0.
From this equation one can �nd an expression for � (r; t) in each layer of the nanoparticle.
These expressions in combination with the boundary conditions lead to expressions for the
velocity and surface charge � = lim�S!0

1
�S

R
�V
(�� �0) dV with S the surface. These quantities

determine the Lagrangian L of the system:

L =
1

2

Z
n0mev

2 dV � 1
2

Z Z
� (r; t)� (r0; t)

jr� r0j dSrdSr0 :

If for the dielectric function of the metal shell the Drude form

"S (!) = "b �
!2p
!2
; (3.5)

is used, the equations of motion derived from the Lagrangian L with the correct solution for
� (r; t) lead to the resonance frequencies

!2`;� =
!2p
�

�
(`+ 1)2 "E + 2` (`+ 1) "b + `2"C
+` (`+ 1) ("E � 2"b + "C)x

2`+1 (3.6)

�
n�
`2"C � (`+ 1)2 "E + ` (`+ 1) ("E � "C)x

2`+1
�2

+4` (`+ 1) [(`+ 1) "E + `"C ]
2 x2`+1

	1=2�
with x = RC=RS and

� = 2
�
[(`+ 1) "b + `"C ] [(`+ 1) "E + `"b] + ` (`+ 1) ("b � "C) ("E � "b)x

2`+1
	
:

The hybridization model has not only been applied to a nanoshell, but also to e.g. nanoma-
tryushkas [108] and the system of a nanoshell near a metallic �lm [69].

3.5.3 (Time-dependent) Kohn-Sham calculations

Prodan and Nordlander performed (time-dependent) Kohn-Sham calculations for nanoshells
in the Local Density Approximation within the jellium model [101, 102, 103, 104, 87, 106]. The
aim was to calculate the optical absorption of manufacturable-size nanoshells and to compare
the results with experiments. They managed to calculate the properties of a nanoshell with
(RC ; RS) = (16; 19) nm [87], containing about 7 � 105 conduction electrons for which about
3000 orbitals have to be calculated in each iteration [106]. The algorithm they developed
allowed for time-dependent calculations [105, 87, 106] of which the results could be compared
with absorption spectra snap shots at (RC ; RS) = (4:1; 5:1) nm, (RC ; RS) = (8:6; 9:9) nm,
(RC ; RS) = (13:1; 14:8) nm recorded during the growth of an Au2S-Au nanoshell in aqueous
solution [7]. At the stage the snapshots were taken, the nanoshells were not fully completed
and had a rough surface. The shells were modeled as perfect shells and the �ideal� sizes
were determined by comparing the spectra with results of Mie theory. In this way the Kohn-
Sham calculations could be compared with experimental data, although complete shells of the
mentioned (computable) sizes have not yet been fabricated experimentally.

3With � (r) a scalar function, the identity r� [r� (r)] = 0 holds.
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The implementation of the Kohn-Sham equations for the mentioned large number of elec-
trons is an enormous task, as indicated in the conclusion of the Ph.D. thesis of Prodan [106] :
�The simulations presented in this thesis prove that the ab initio calculations can be pushed
to a limit where real size metallic nanoparticles can be investigated�. To be able to do so, one
needs an e¢ cient algorithm. Before we discuss the basics of the algorithm developed by Prodan
and Nordlander, we brie�y mention some preliminary studies that they made to check whether
the demanding calculations would make sense... something that was also of our interest when
we wanted to perform orbital-based calculations as reported in this thesis.

Preliminary investigations

Before starting elaborate Kohn-Sham calculations, Prodan and Nordlander investigated the
many-body e¤ects in metallic nanoshells by comparing Hartree, Hartree-Fock and LDA cal-
culations [100]. The results showed that the di¤erences between the three approximations
are similar to the di¤erences for bulk metals for which the Hartree-Fock approximation over-
estimates the bandwidths and screening lengths. The di¤erences appear even for very small
nanoshells. From this study, Prodan en Nordlander concluded that correlation terms are impor-
tant in nanoshells and that LDA is the most appropriate approach among the three investigated
approximations.
Another topic that Prodan and Nordlander investigated, was the existence, uniqueness and

the thermodynamic limit for the Kohn-Sham equations [99]. They remarked that for an exact
exchange-correlation potential uXC (r) the equations are expected to have a unique solution
far from a phase transition, but that this uniqueness is not obvious for the approximations to
uXC (r) used in practical calculations. For �nite temperatures, the LDA approximation does not
cause any problems. But at zero temperature the Kohn-Sham equations do not have a unique
solution in general. This occurs when the highest-energy level is not completely occupied. For
an unperturbed electron system, each energy level is at least doubly degenerate because of spin.
If there is only one electron that has an energy equal to the Fermi energy, its spin is unde�ned
(in case of a spherically symmetric system also the values of the magnetic quantum number m
are unde�ned). To overcome this problem, Prodan and Nordlander used the �nite-temperature
extension of DFT [77]. At �nite temperature T , the electron density can be calculated from
the single-particle wave functions  fqgk (r) as [60]

n (r) =
X
k

��� fqgk (r)���2
1 + e�(�fqgk��)

with � = 1= (kBT ), kB Boltzmann�s constant, � the chemical potential and the summation
running over all possible single-particles states. In this way, degenerate states have all a non-
unity probability to occur. The chemical potential has to be adjusted so that the number of
electrons N remains �xed:

N =
X
k

1

1 + e�(�fqgk��)
:

In principle, the �nite temperature formalism involves an in�nite set of orbitals to determine
the density. Because in practice only states with an energy less than approximately � + kBT
contribute substantially and because metals have a relatively large ionization potential, Prodan
and Nordlander only included all the bound states and neglected the continuum states.
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Orbital calculation

Prodan and Nordlander used the spherical symmetry and set the single-particle wave functions
equal to4

 n;`;m (r) =
un;` (r)

r
Y`;m (�; ') ;

with Y`;m (�; ') the spherical harmonics with angular quantum ` and magnetic quantum numberm.
They then considered the radial di¤erential equations�

�1
2

d2

dr2
+
` (`+ 1)

2r2
+ ueff (r)

�
un;` (r) = �n;`un;` (r) : (3.7)

The e¤ective potential energy ueff (r) was calculated as ueff (r) = Uext (r) + uH (r) + uXC (r) :
In this expression the external potential energy Uext (r) was taken to be

Uext (r) =

8<:
0:02 a.u. r < RC

�0:16 a.u. RC < r < RS

0 a.u. RS < r
(3.8)

in order that the ionization potential was approximately equal to 5:4 eV, appropriate for gold.
The Hartree, or direct Coulomb, part uH (r) of the e¤ective energy was calculated from the
Poisson equation. The Wigner-Seitz radius rs in the jellium model was taken to be rs = 3 as for
bulk gold. For the exchange and correlation potential energy uXC (r), the LDA form proposed
in Ref. [90] was used. The electron concentration n (r) was calculated as

n (r) =
2

r2

X
n;`

2`+ 1

1 + e�(�n;`��)
jun;` (r)j2 :

The global procedure to �nd the energy levels was as follows. For each value of `, the value
of the energy � was swept from the bottom of the e¤ective potential ueff (r) up to zero. For
each couple f`; �g the di¤erential equation (3.7) was numerically integrated using 4-th order
Runge-Kutta, a numerical �nite-di¤erence integration method (see e.g. Ref. [98]). This method
was used to solve two initial boundary problems that started from the opposite sides of the
considered radial domain. This resulted in two solutions of the di¤erential equation (3.7):
u
(1)
n;` (r) and u

(2)
n;` (r). Solution u

(1)
n;` (r) had the boundary conditions

u
(1)
n;` (r) � r`+1,

du
(1)
n;` (r)

dr
� (`+ 1) r` for r ! 0;

and for u(2)n;` (r) the initial values were given at the other side of the integration interval:

u
(2)
n;` (r) � e

�
q
2j�n;`jr,

du
(2)
n;` (r)

dr
� �

q
2 j�n;`je�

q
2j�n;`jr for r !1:

For the numerical implementation of the initial condition for u(2)n;` (r), a �nite spherical volume
with radiusR� RS was used withR considered to be large enough to implement this condition.

4To have a consistent notation in the thesis, we used in this section for some of the quantities a di¤erent
notation than in the work of Prodan and Nordlander. For example, we make use of a quantum number n instead
of subscripts k or E. The quantum number n is de�ned as follows: n = 1 is used for the lowest state that can
be occupied for a given value of `, n = 2 for the second lowest state that can be occupied for a given `-value, ...
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A trial energy �n;` was accepted as an eigenvalue if the two solutions u
(1)
n;` (r) and u

(2)
n;` (r) became

linear dependent, i.e. when the Wronskian W
n
u
(1)
n;` (r) ; u

(2)
n;` (r)

o
cancelled out:

W
n
u
(1)
n;` (r) ; u

(2)
n;` (r)

o
=

"
u
(1)
n;` (r)

du
(2)
n;` (r)

dr
�
du

(1)
n;` (r)

dr
u
(2)
n;` (r)

#
= 0:

The cancellation of the Wronskian for a certain energy value � should be valid for each value
of r. To test whether the Wronskian is equal to zero, one should make sure that the r-value r0
for which this condition is tested, is not a node of the two solutions. Therefore r0 was taken
to be located at a local minimum or maximum of u(1)n;` (r), which was constructed in the direct
integration.
To get an accuracy of at least four digits on the eigenvalues, 33000 grid points had to be used

for the considered nanoshells of dimensions (RC ; RS) = (4:1; 5:1) nm, (RC ; RS) = (8:6; 9:9) nm
and (RC ; RS) = (13:1; 15:1) nm which contained around 1:6� 104 up to 3� 105 electrons.
Determining the energy levels, the most time-consuming step of the calculations, could be

somewhat simpli�ed using the observation that for two consecutive angular quantum numbers,
` and `+ 1, the corresponding energies �n;` and �n;`+1 are very close to each other with respect
to the size of the e¤ective potential well and are related as �n;` < �n;`+1. This means that the
energy � had to be swept over a large interval only for ` = 0 and the values of �n;`>0 could be
found in the vicinity of �n;`�1.
Performing a lot of calculations, Prodan and Nordlander observed that the larger the

nanoshell, the more di¢ cult it is to make the iterative process converge. To overcome this
convergence issue, a screened Coulomb potential was used for which the screening length � was
increased when convergence was reached for a certain value of �, until increasing of � did not
have any e¤ect on the �rst four digits of the eigenvalues (the ones that matter).

Static perturbation

Orbitals derived as outlined in the previous section were used to calculate the independent-
electron polarization function �0 (r; r0) of Lindhard

�0 (r; r
0) = 2

X
i;j

 �i (r) j (r)
fFD (�i)� fFD

�
�j
�

�i � �j + i�
 i (r

0) �j (r
0)

in which �i = �i � � and fFD (�i) is the Fermi-Dirac distribution function. This polarization
function was used to calculate the screening charge

�n (r) = �
Z
�(r; r0)

Z

jr0 � r0j
dr0

due to an impurity of charge Z at position r0 = 0, both in the independent-electron picture and
in the Random Phase Approximation for which �RPA (r; r0) = �0 (r; r0) = (1� V�0 (r; r

0)) with
V equal to the sum of the Coulomb interaction and �uXC (r0) = [duXC (n (r)) =dn] � (r� r0).

Time-dependent perturbation

The same orbital calculations were used to calculate the frequency-dependent polarization func-
tion �0 (r; r0;!) in the independent-particle picture which again was used to calculate the po-
larization in the Random Phase Approximation. With this polarization, the photoabsorption
cross section �abs (!) was calculated as

�abs (!) =
2�

c
! Im [� (!)] = �8�

2

3c
! Im

�Z Z
r3�(r; r0;!) r03 drdr0

�
:
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3.5.4 Comparison of results

Mie theory versus experiment

In Ref. [83] nanoshell scattering spectra calculated with Mie theory are compared with exper-
imental spectra of single nanoshells. In the calculations the dielectric function "S (!) of the
golden shell was modeled by a function of the form

"S (!) = "interband (!) +

�
1�

!2p
!2 + i!
bulk

�
(3.9)

with !p the bulk plasmon frequency of gold. To obtain values for "interband (!) and the bulk
damping factor 
bulk; the function (3.9) was �tted to the measured values of the bulk dielectric
function obtained in Ref. [52].
Figure 3.10 shows the results for three single nanoshells in water (refractive index n taken

to be n = 1:33). For all three nanoshells the calculated position of the resonance peak coincides
with the measured resonance energy. For the nanoshell with (RC ; RS) = (60; 80) nm the
width of the measured resonance peak is rather well reproduced by the calculations. The
smaller the nanoshell, the more the theoretical and experimental peak width di¤er. This is an
indication that the bulk description of the dielectric function and/or the Maxwell equations is
not appropriate for nanoshells smaller than a critical size. For the nanoshells of the considered
sizes, the description can however be used to determine the resonance energy.

Figure 3.10: Scattering cross section versus energy for three di¤erent SiO2-Au nanoshells in
water: a) (RC ; RS) = (60; 80) nm, b) (RC ; RS) = (57; 77) nm, c) (RC ; RS) = (55; 75) nm.
The circles represent the experimental data and the solid line was calculated using Mie theory.
The measured and calculated spectra are normalized to have a peak value of 1 (�gures taken
from Ref. [83]).

Hybridization theory versus Mie Theory

As already mentioned in section 3.5.2, hybridization theory has advantages and disadvantages
in comparison with Mie theory. The advantage is that the resonance frequencies are easily
calculated from an analytical formula, whereas in Mie theory one �rst has to calculate a spec-
trum and then determine the location of the maxima numerically. On the other hand, only
for relatively small particles the resonance frequencies coincide with those of Mie theory (and
thus with the results of extinction experiments, see previous section). This is illustrated in
�gure 3.11. Another drawback is that hybridization theory gives no information on the width
of the resonance peaks.
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Figure 3.11: Resonance wave length ��;1 of the optical active dipole peak of SiO2-Au nanoshells
as a function of total radius for nanoshells with RC = 60 nm calculated with Mie theory
(blue circles) and with hybridization theory (red squares). The permittivities of the core and
environment were taken to be "C = 2:0449 [111] and "E = 1: For the dielectric function of the
shell a Drude-type function was used: "S (!) = "b � !2p=!2 with "b = 6:9 [116] and !p the bulk
plasmon frequency of gold calculated as !p =

p
ne2= (me"0) with e the electron charge, me the

electron mass, "0 permittivity of free space and n = 5:9� 1022 cm�3 [58].

Time-dependent Kohn-Sham calculations versus experiment and Mie theory

In Ref. [105] results of time-dependent Kohn-Sham calculations were compared with absorption
spectra snap shots recorded during the growth of an Au2S-Au nanoshell in aqueous solution [7].
At the stage the snapshots were taken, the nanoshells were not fully completed and had a
rough surface. The shells were modeled as perfect shells and the �ideal�sizes were determined
by comparing the spectra with results of Mie theory. In this way the Kohn-Sham calculations
could be compared with experimental data, although complete shells of the mentioned sizes
(treatable with Kohn-Sham calculations) have not yet been fabricated experimentally.
The experimental spectra showed two distinct peaks: one at the resonance wave length of
nanoshells with the supposed size, and one at the resonance wave length of solid gold spheres
that were also present in the solution. The resonance wave length calculated with the Kohn-
Sham equations coincides with the resonance wave length of the nanoshells. The calculated and
experimental width di¤er however substantially, with the experimental width much larger than
the calculated width. This is attributed to an inhomogeneous size distribution in the experi-
mental sample: at each moment during growth, nanoshells with di¤erent sizes are present in the
solution. Introducing a size-inhomogeneity in the calculations can reproduce the experimental
width. Since completed nanoshells with sizes treatable with Kohn-Sham calculations cannot be
fabricated at the moment, the calculated results cannot be compared with experimental results
of a single nanoshell as was done for Mie theory.

Results from Kohn-Sham calculations for a single nanoshell can be compared with results
from Mie theory. This was done in Ref. [87] for nanoshells with the same size and di¤erent
permittivities for the core and the environment, and for nanoshells of the same material but
with di¤erent sizes. In the Mie calculations, the dielectric function of the shell was modeled by a
pure Drude dielectric function, i.e. " (!) = 1�!2p=!2. The results are shown in �gure 3.12. The
two calculation methods agree very well on the position of the resonance peak. No comparison
was made regarding the width of the peaks.
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Figure 3.12: Optical active (!�) and optical inactive (!+) dipole resonance position calculated
with time-dependent Kohn-Sham calculations (open circles) and with Mie theory (solid lines)
in which the dielectric function of the shell was modeled as "S (!) = 1� !2p=!

2.
Panel a: plasmon energy for nanoshells with (RC ; RS) = (60; 90) a.u.' (3:16; 4:76) nm and
di¤erent permittivities in the core and the environment, as indicated in the �gure. Panel b:
plasmon wave lengths for nanoshells with "C = "E = 1 and d = RS � RC = 17 a.u.' 0:9 nm
for di¤erent aspect ratios, where the aspect ratio is de�ned as RC=RS. (Figures taken from
Ref. [87])

3.6 Applications

The resonance frequency of SiO2-Au nanoshells can easily be positioned in the near infrared
(800 nm � 1300 nm) where absorption by biomatter is low [42]. Furthermore, gold is highly
biocompatible because it is resistant to corrosion, has a very low toxicity level5, has inert chem-
ical properties [42] and is resistant to ionizing radiation and high temperatures (in comparison
to semiconductor structures) [120]. These properties make golden nanoshells quali�ed not only
for in vitro applications, but also for in vivo applications. We give some more explanation on
a couple of interesting examples of both types of applications.

3.6.1 Biosensor

As already mentioned, the response of nanoshells depends on the environment. This property
can be used to create biosensors. As is illustrated in �gure 3.13, antibodies can be attached
to a nanoshell. Such an antibody is a chemical compound to which only one other speci�c
compound, the analyte, can be bounded; the antibody can be viewed as a keyhole and the
analyte as the �tting key. If one wants to determine whether and how much of a speci�c
analyte is present in a solution, one attaches the right antibody to the nanoshell. From the
change in response, one can determine the amount of analyte present.
There have already been developed quite some types of nanoshell biosensors, commercial and

non-commercial, for e.g. streptadivine, antibiotine concanavaline, biomarkers for Alzheimer [137],
biomolecular interactions in blood [130], detection of DNA, detection of food poisoning, screen-
ing of cancer markers (e.g. the Transmission Plasmon Biosensor of IMEC) [46], Escherichia
coli [54], stanozolol [63], casein in milk [41], ...

5 it is even eatable
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Figure 3.13: The response of a nanoshell changes when an analyte binds to an antibody that
is �xed to the nanoshell. The change in optical response of nanoshells when the environment
is changed is the reason why these nanoparticles can be used as biosensors (�gure taken from
Ref. [15]).

With this kind of biosensors, whole-blood immunoassays can be performed much faster
than with more traditional methods like the Enzyme Linked Immunosorbant Assay (ELISA)
which needs a time-consuming puri�cation process, can be applied for in vitro use only and
depends upon factors as temperature and pH. The assay based on antibody conjugated near
infrared resonant nanoshells provides results within several minutes with sensitivity similar to
an ELISA (see Ref. [42] and Refs. therein). Except for the shorter assay time, the nanoshell-
based biosensors have the advantages that less reagens is used than for conventional biosensors,
no carcinogenic substances are used, manufacturing and implementing the biosensors is rather
easy and the nanoshells can easily be multiplied on a grid [46].

The possible enormous �eld enhancement due to surface plasmons can also lead to single-
molecule sensitivity in surface-enhanced Raman spectroscopy [8,11].

As already mentioned in section 3.3, there is an e¤ect at bulk surfaces or �lms that is
analogous to Localized Surface Plasmon Resonance and which is called Surface Plasmon Reso-
nance (SPR). Biacore was the �rst company that used this principle to manufacture commercial
biosensors and since then the e¤ect has been used for e.g. medical diagnostics, environmental
monitoring and screening of food safety [122]. There are some advantages of using Localized
Surface Plasmon Resonance instead of Surface Plasmon Resonance. First of all, the simplicity
of the geometry and the measurement technique of nanoparticle-based biosensors can lead to
a higher portability than the relative large Surface Plamson Resonance machine, making it
possible to perform environmental or food measurements �in the �eld�. A related advantage is
that nanoshells can be used in vivo where they can penetrate membranes and reach cells, or-
gans and tissue that are unattainable for larger structures. Furthermore, there is an advantage
with respect to the solvents that can be used [118]. Devices based on (�at) Surface Plasmon
Resonance use micro�uid channels that are not resistant to organic solvents which are often
used to concentrate and extract elements from e.g. food. Therefore the samples have to be
diluted. This problem is not present if one uses nanoshells, so that lower concentrations can
be detected. Use of nanoshells can also lead to a smaller signal of non-speci�c bindings present
in Surface Plasmon Resonance devices because the size of the particles can be tuned so that
only the target binding molecule will attach [137]. Some other advantages can be found in a
comparative table in Ref. [37].
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3.6.2 Cancer treatment

With the aid of nanoshells, one cannot only trace diseases based on the optical response, one
can also attempt treatment. A very interesting application is the destruction of cancer cells by
a process called �photothermal ablation� [14, 10]. This process is based on the fact that the
nanoshells heat up when intense laser light is shone on them for a su¢ ciently long time. This
is due to the many collisions of the conduction electrons with ion cores and impurities when
they are �shaken around�by the light of an appropriate wavelength. In this way the cancer
cells and the blood vessels supplying them are �cooked� locally with minimal damage to the
adjacent tissue. This procedure is much less invasive to the rest of the body as compared to
e.g. chemotherapy. In 2004, the �rst animal tests proved that this kind of cancer treatment was
e¤ective [14]. At the moment, the patent-holding company Nanospectra Biosciences Inc. is con-
ducting a pilot study in patients with refractory head and neck cancer, and plans to commence
additional clinical studies in other cancers in the near future [82]. Because it is a combination
of gold nanoshells and lasers, the commercial name of the method is �Aurolase

R

Therapy�.

The nanoparticles are delivered intravenously. Cancer vasculature grows very fast and is
thus not very well formed. Unlike healthy blood vessels, it can have gaps as large as 2 microns.
It is at the leaky vasculature that nanoshells can get out of the blood vessels and into tumors.
This e¤ect is called �enhanced permeability and retention e¤ect� (EPR). After having done
their job, nanoshells accumulate in the spleen and kidney from where they will be excreted.

3.6.3 Photothermal drug delivery

The phenomenon of heating is also used in photothermal drug delivery [38]. In this application,
nanoshells are placed in a hydrogel together with the drug. A hydrogel is a kind of bag that
collapses when being heated above a certain temperature. In this case this leads to the expulsion
of the drug, which now can be delivered inside the body at a desired place. The collapse is
reversible so that the action can be repeated at later times.

3.6.4 Enhancement of the e¢ ciency of semiconductor devices

The light ampli�cation properties of nanoshells open the way for enhancing the e¢ ciency of
existing devices. With nanoshells one would e.g. be able to enhance the emission of quantum
dots and quantum wells, leading to a higher e¢ ciency and brightness of solid-state LED�s [5].
A device called SPASER (Surface Plasmon Ampli�cation of Stimulated Emission of Radiation)
could possibly detect very small objects like small quantities of chemicals or viruses [5].
Also the enhancement of the e¢ ciency of solar cells is a topic in which nanoshells could play

a role. It is shown experimentally that incoupling of light into thin-�lm solar cells by scattering
from solid plasmonic nanoparticles increases the photocurrent (see e.g. Refs. in Ref. [6]). These
experimental observations inspired theoretical research in the TQC group on the e¤ect of
nanoshells on the e¢ ciency of silicon solar cells. The results of this research are reported in a
master thesis [124] and a bachelor thesis [21]. The e¤ect that was investigated in these theses
was that nanoshells on top of a Si n-p junction e¢ ciently scatter the light that would otherwise
impinge perpendicular to the surface, leading to a longer path of the light in the depletion
layer as shown in �gure 3.14. If the light travels a longer distance in the depletion layer, more
charge carriers can be created that contribute to the photovoltaic current. For the calculations,
the following descriptions were used. In the solar cell, the absorption of light was described
by the law of Lambert-Beer and for the di¤usion of charge carriers transport equations were
used [84]. The response of the nanoshell was calculated with Mie theory in which the complex
permittivity of the metallic shell was calculated from interpolation of experimental bulk results
and only the �far-�eld�limit was considered.
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In the master thesis [124] the following parameters were investigated in the search for an optimal
con�guration: the radii of the nanoshell, the density of nanoshells on the surface (for densities
justifying a noninteracting nanoshell picture) and the material of the shell. The theoretical
results were not decisive, because some important e¤ects could not be incorporated in the
limited framework of a master thesis. These e¤ects include the refraction of the light at the
surface of the solar cell, the angular dependence of the scattered light and near-�eld e¤ects.
The topic of the bachelor thesis [21] was to derive the angular dependence of the scattered light
and the refraction of this light at the surface of the solar cell. The results showed that more
charge carriers are generated in the depletion layer than was found based on the calculations
in which the e¤ects were not incorporated.
Up to now, the e¤ect of the near �eld has not been studied although it is expected to be
important. Along with the near �eld, other con�gurations could also improve the results,
e.g. placing nanoshells in or at the bottom of the solar cell, embed the nanoshells in a �cladding
layer�with scatters the backscattered light from the nanoshell towards the solar cell again, ...
The work of the theses is thus a �rst step towards more thorough study.

Figure 3.14: E¤ect of a nanoshell on a n-p Si solar cell as considered in Refs. [124, 21]: the
nanoshell bends a big part of the incoming light so that the path of the light in the depletion
layer is longer, leading to a higher probability to create charge carriers which contribute to the
photovoltaic current.

3.6.5 Plasmonics

�Plasmonics� is a contraction of the words �plasmon�and �electronics�. The importance of
this kind of electronics is visualized in �gure 3.15. At the moment, we can send information
around the globe quite fast and we can work on a computer that is somewhere else on the
world performing di¢ cult calculations in a reasonable amount of time. This is possible because
of the existence of photonics and electronics. But as is seen in the �gure and is experienced
in daily life, those technologies have still a limitation on either the speed or the size that can
be reached. Plasmonics can be seen as the bridge between optical �bre technology, which is
limited by the di¤raction limit, and electronics, which has a smaller capacity. In plasmonics,
light is coupled to electrons. In this way, data can be transferred at the speed of light and this
is possible in small devices because the wavelength of electrons is smaller than that of light.
For this purpose one could use �photonic band gap materials�which consist of ordered rows or
grids with nanoparticles. It was shown that in this kind of structures electromagnetic energy
can be transported via short-�eld interactions between the particles [11]. This leads to the
possibility of making optical networks on the nanoscale.
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Figure 3.15: Operating speeds and critical dimensions of various chip-scale device technologies,
highlighting the strengths of the di¤erent technologies (�gure taken from Ref. [138]).

3.6.6 Gauge for high-pressure measurements

Together with N. Van den Broeck, J. Tempere and I. F. Silvera, I investigated the usefulness
of nanoshells in the �eld of high-pressure physics [125], and more precisely Diamond Anvil
Cell (DAC) pressure measurements [50]. The main idea behind the use of nanoshells as a
pressure gauge is that the size of the nanoshell and the permittivity of the SiO2 core and the
environment will change under pressure, resulting in a shift of the resonance frequencies. The
goal of the research was to calculate the optical response as a function of wavelength for a
spatial distribution of non-interacting monodisperse nanoshells.

We performed the calculations for a nanoshell with parameters that are commercially avai-
lable from Nanospectra Biosciences, Inc:

RC = 60 nm

RS = 75 nm

"C = "SiO2
"S = "Au:

The �rst theoretical calculations for this spherically symmetric SiO2-gold nanoshell under
pressure (up to 200 GPa) are presented, indicating clear measurable absorption peaks. There
are however some problems when the nanoshells are placed in a DAC pressurization medium
instead of in vacuum. It is shown below that these problems can be overcome by coating the
nanoshell with an additional dielectric layer.

Except for the introduction on the diamond anvil cell, this section is largely based on
N. Van den Broeck, K. Putteneers, J. Tempere, I. F. Silvera, Nanoshells as a high-pressure
gauge analyzed to 200 GPa, J. Appl. Phys. 110, 114318 (2011). The collaboration with exper-
imentalists was facilitated by a work visit to the Silvera group (High-pressure measurements)
in Harvard University, Boston, USA (January 30 - February 2, 2011).
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The Diamond Anvil Cell (DAC)

A DAC is a device that can be used to perform high-pressure measurements with pressures
up to 350 GPa, the pressure in the center of the earth. The device is used to recreate the
pressure existing deep inside planets, creating materials and phases not observed under standard
atmospheric conditions. In this way, the structure below the surface of planets can be studied
without going �in the �eld�...
A sketch of the functional part of a DAC is shown in �gure 3.16. The sample is placed

between the tips of two diamonds that are cut in a �brilliant�shape. Via an external mechanism,
force is applied to the table of the diamonds. This force is transferred to the tips of the
diamonds. Because the pressure P on a surface A is related to the force F on the surface as

P =
F

A
; (3.10)

one can create a very high pressure on the sample between the tips. The sample is placed
in a metal gasket which o¤ers the opportunity to put the sample in a �uid or a gas (the
pressurization medium) to perform the experiment. Such pressurization medium is used to
transform the uniaxial pressure generated by the diamond tips to a uniform hydrostatic pressure
in the gasket. This results in an equally distributed pressure on the sample. The technique
is quite demanding for the materials used, and both the gasket and diamonds have to be
replaced regularly. Indeed, even one of the hardest materials on earth can be destroyed in such
experiments. The advantage of diamond is of course that is does not break as easily as most
materials, and that it will not deform under the high pressures. Another advantage of diamond
is that it is transparent, not only in the visible spectrum, but also in the X-ray part of the
spectrum. In this way, measurement techniques based on electromagnetic radiation are most of
the time not hindered by the set-up itself. The measurement of the pressure is based on such
techniques because the calculation of the pressure by the relation (3.10) is not very accurate.
As indicated in the �gure, a way to determine the pressure is to use ruby (Al2O3) crystals,
which do not react with most samples. The shift in the �uorescence spectrum of those crystals
is linearly dependent on pressure up to about 30 GPa [75,95].

Figure 3.16: Sketch of the functional part of a Diamond Anvil Cell (�gure taken from Ref. [49]).
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Established measurement techniques

At present there are several pressure gauges used in high-pressure physics.
The prime pressure gauge is the shift of the peak of the ruby �uorescence spectrum with

pressure [75,95], excited by laser pumping. In this case, micron sized ruby grains are embedded
in the pressurization medium. Several problems can arise above a certain pressure [19,117]:
- At pressures above 100 GPa diamond �uorescence can become intense and mask the ruby
line.
- Ruby grains can be blown away during loading or masked during pressurization.
- Above a few hundred GPa the standard method of pumping the ruby with a green or blue
laser line becomes ine¤ective as the laser light is absorbed by the diamond anvil.
Although some of these problems can be overcome [18,30], the ruby method becomes challenging
to use at very high pressure.
For cases where the ruby is lost or cannot be observed researchers have used the phonon

Raman spectrum of the diamond from the high pressure culet or stressed region of the diamond.
This is less precise and has some dependence on the diamond geometry [9].
Another method is to embed a grain of diamond in the pressurization medium, but this also

has challenges and limitations [27].
An important gauge is the X-ray spectrum of metal �markers� embedded in the pressur-

ization medium, but this is only useful at synchrotrons (and those devices are not commonly
available).
Finally we mention that many of the pressure gauges have problems at high temperatures.

Advantages of nanoshells as high-pressure gauge

The advantages of nanoshells are the following:

� They can be painted onto the diamond culet in a thin invisible (to the eye) layer so they
will not blow out, and they cover the entire culet �atly so they cannot easily be masked.

� They can maintain their sensitivity to the highest pressures.

� Optical spectroscopy is easy to implement with a large signal-to-noise ratio compared to
�uorescence or Raman scattering.

� The spectroscopy will not be masked by �uorescence from the diamonds.

� We believe that nanoshells will maintain their sensitivity at high temperatures, but this
requires further study.

Calculations

Applying a pressure P to a nanoshell will lead to a change of the volume of the core VC (P ) and
the shell VS (P ). These changes can be calculated using the Vinet equation of state (EOS) [126]:

P = 3K0

1�
�
V
V0

�1=3
�
V
V0

�2=3 exp

(
3

2
(K1 � 1)

"
1�

�
V

V0

�1=3#)
; (3.11)

which gives the relation between the pressure P and the relative volume change V=V0 with
respect to a reference volume V0 of a material at a certain temperature. Here K0 and K1 are
material constants for which the values used in this thesis are presented in table 3.1. Using
the Vinet EOS one can calculate the size change of the nanoshell under pressure where V0 has
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Material K0 (GPa) K1 "

Amorphous SiO2 329 [26] 4:1 [26] 2:0449 [111]

Au 167 [136] 5:94 [136] 6:9 [116]

Table 3.1: The material properties used in the pressure calculations of the nanoshell. Para-
meters K0 and K1 are valid up to 580 GPa for gold and up to 150 GPa for amorphous silicon
according to Ref. [136] and Ref. [26] respectively. The last column indicates the relative permit-
tivity at ambient pressure. The permittivity indicated for gold is the background permittivity
"b as de�ned in equation (3.5).

been taken as the original volume at zero pressure. This is done by considering the function
f (V=V0) = P � (r.h.s. of Eq. (3.11)). The zero of this function for a certain pressure is the
relative volume at that pressure. Under pressure, the nanoshell will be compressed resulting
in a di¤erent core and shell radius and a di¤erent bulk plasma frequency. For the pressure
dependence of the core radius RC we �nd, with VC the core volume,

VC =
4�

3
R3C =) RC (P ) = RC (0)

�
VC (P )

VC (0)

�1=3
: (3.12)

For the shell radius RS we get, with VS the shell volume,

VS =
4�

3

�
R3S �R3C

� (3:12)
=) RS (P ) =

�
R3S (0) +R3C (0)

�
VC (P )

VC (0)
� VS (P )

VS (0)

��1=3
:

For the bulk plasmon frequency the pressure dependence can be calculated from

!2p (P ) =
n (P ) e2

"0m
=

�
VS (0)

VS (P )

�
!2p (0) ; (3.13)

where n is the bulk electron concentration de�ned as the number of electrons N per volume V
(n = N=V ), e is the electron charge, "0 is the permittivity of vacuum and m is the electron
mass. The pressure dependency of the radii is shown in �gure 3.17. When the nanoshell is
compressed, the electron density will increase and so will the bulk plasma frequency (3.13).
This will also in�uence the permittivity of the metal since the plasma frequency is an essential
part of the Drude dielectric function "S (!) = "b � !2p=!

2 which is used to model the dielectric
function of the metallic shell.
The pressure and frequency dependency of the permittivity of SiO2 in the megabar regime

remains, to the best of our knowledge, unknown. However it is possible to estimate the pressure
dependency from the Vinet EOS using the Clausius-Mossotti relation [58]:

" (!; P )� 1
" (!; P ) + 2

=
4�

3
n (P )�; (3.14)

where � is the average atomic polarizability, assumed independent of pressure. This relation
links the permittivity to the volume of a material. Dividing this expression with the same
expression at zero pressure allows us to estimate

"(!; P ) =
2 "(!;0)�1
"(!;0)+2

+ VC(P )
VC(0)

VC(P )
VC(0)

� "(!;0)�1
"(!;0)+2

; (3.15)

where V (P ) =V (0) can be calculated from the Vinet EOS (3.11) and " (!; 0) represents the
relative permittivity at zero pressure.
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Figure 3.17: The behavior of the sizes of the nanoshell under pressure. The top panel presents
the radii of the core and shell as a function of pressure. Notice that the golden shell will be
compressed more strongly than the core until about 150 GPa where the core/shell ratio reaches
a maximum. The bottom panel shows this ratio RC=RS, which is an important parameter
for the optical response. The radii of the nanoshells in this research correspond to the size of
commercially available nanoshells.

The pressure dependency of the permittivity of SiO2 and of some possible pressurization media
is given in table 3.2 and shown in �gure 3.18. Notice that there is no phase change in the
SiO2 curve. In nature SiO2 is in a crystalline phase at zero pressure and will switch to the
amorphous phase at about 90 GPa. However, it has been reported [53] that the fabrication
method of the SiO2 particles results in cores that are in the amorphous state also at zero
pressure.

Material Refractive index n P range (GPa)

He (�uid) [22] n = 0:8034 + 0:20256 (1 + P )0:12763 0:08� 11:5
He (solid) [22] n = �0:1033 + (1 + P )0:052 11:7� 20:2

H2 [31]
n = �0:687343 + 0:00407826P
+1:86605 (0:29605 + P )0:0646222

0� 100

Ne (�uid) [22] n = 0:668 + 0:33 (1 + 4:3P )0:076 0:7� 4:7
Ne (solid) [22] n = 0:9860 + 0:08597P 0:1953 5� 27

Table 3.2: The refractive index of materials used as pressurization medium in a DAC as reported
by Refs. [22] and [31]. The last column presents the pressure range of the data on which these
�ts are based. The dielectric function " can be calculated by squaring the refractive index.
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Figure 3.18: The pressure dependent permittivity of di¤erent materials. The permittivity of
SiO2 was calculated from the Vinet EOS and the Clausius-Mossotti relation. The other permit-
tivites are given by the dependencies indicated in table 3.2 which were derived in Refs. [22,31].

Results for an uncoated nanoshell

Figure 3.19 shows the relative cross section of the considered nanoshell placed in vacuum as
calculated with Mie theory. The relative cross section is the total optical cross section Qext (!)
divided by �R2S, the area of the projection of the nanoshell on a plane perpendicular to the
incoming radiation. From this �gure one can clearly see a substantial blue shift when 200 GPa
pressure is applied. Another important observation concerns the width of the peak. This is
important for increasing the precision in an experimental measurement since sharper peaks allow
for a more accurate determination of the peak position. However, sharp resonance lines may
elude experimental detection if they do not carry enough spectral weight. In Figure 3.19 one
can see that the dipole peak (the rightmost peak) is a broad, clear and rather symmetric peak,
while the quadrupole peak is much sharper and a good candidate for this type of experiments.
Numerically however it is easier to track the broad dipole peak, thus all results presented here
will be with regard to the dipole peak. It is seen that although the quantitative results di¤er
for all peaks, the qualitative results presented here hold true for all resonance peaks.
In �gure 3.20 the position of the dipole resonance peak is shown as a function of pressure

for a nanoshell in a medium with constant permittivity equal to " = 1. The black squares are
calculated using Mie theory and a subsequent numerical determination of the peak maximum.
Results from the hybridization theory are presented by the red circles. It is clear that the two
theories do not agree on the exact position of the resonance peak for the considered nanoshell.
The di¤erence between the results of both theories at zero pressure thus remains at non-zero
pressure. Still the hybridization model can prove to be useful because both theories agree well
on the amount the peak shifts, as is shown in the inset of �gure 3.20. The two theories diverge
from each other only at higher pressures.
The results show that the nanoshell could be used to measure the pressure by determining the
amount the resonance peak shifts. The inset is also an indication of the resolution that could
be achieved. For this example nanoshell the dipole resonance peak shifts over 80 nm when
200 GPa pressure is applied (for rubies this would be 51:1 nm [19,117]).
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Figure 3.19: Relative cross section as function of wavelength for di¤erent pressures for a nano-
shell with parameters as mentioned in the �gure. Notice the pressure-induced blue shift of the
dipole peak from 611 nm at 0 GPa to 531 nm at 200 GPa as indicated by the two black lines.

Figure 3.20: The position of the dipole resonance peak as a function of pressure for a nanoshell
with parameters as mentioned on the �gure. The two horizontal black lines correspond to the
two black lines on �gure 3.19. The blueshift from 611 nm at 0 GPa to 531 nm at 200 GPa as
predicted by Mie theory is clearly visible. The red circles were calculated with hybridization
theory and also indicate a blue shift, but predict a di¤erent peak position. The inset shows the
peak shift as a function of pressure compared to the original position �0 at zero pressure.
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The nanoshell�s optical response depends on the dielectric function of the surrounding
medium, and as such both the position of the resonance peaks and their pressure-induced
shift will di¤er for di¤erent pressurization media. To determine the usefulness of nanoshells as
a pressure gauge, calibration would thus be needed for every pressurization medium separately.
The pressure dependency of the resonance peaks in di¤erent pressurization media was calcu-
lated using the pressure dependency of the refractive index of the media as given in table 3.2
and shown in �gure 3.18. In Figure 3.21 one can see the pressure dependency of the position
of the dipole resonance peak for di¤erent pressure media: helium, hydrogen and neon. The
behavior of the medium under pressure clearly has a large in�uence on the optical response
of the nanoshell. For these media, the blue shift that occurs in vacuum has turned into a red
shift as pressure is increased. For neon and helium there is almost no shift of the resonance
peak above a certain pressure, rendering the nanoshells ine¤ective as pressure gauges in that
region. Although it is possible to calculate the optical response of nanoshells for much higher
pressures, the results are not presented here because they are based on extrapolation of data
from a limited pressure region and as such are considered unreliable.

Figure 3.21: The position of the dipole peak as calculated with Mie theory for various pressure
media: helium (red circles), hydrogen (blue diamonds) and neon (green triangles). In all �gures
the vacuum position is indicated in black for reference and the phase transition from liquid to
solid in neon and helium is indicated. The plots only show the pressures for which experimental
data are available.
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Results for a coated nanoshell

As was seen in the previous section, the simple nanoshell geometry is not ideal for high-pressure
experiments. Two draw-backs are apparent from �gure 3.21:
1. The peak shift is a¤ected by the pressurization medium, so calibration will be necessary for
each nanoshell and medium.
2. For helium and, especially, for neon from a certain pressure on there will be almost no shift
of the resonance peak, rendering the nanoshells ine¤ectual as pressure gauges in that region.
A possible solution would be to shield the nanoparticle from the e¤ects of the medium,

therefore allowing the shift of the resonance peak to be in�uenced only by the compression of
the nanoparticle. The absence of the second problem when the nanoshell is placed in vacuum
indicates that shielding the particle could indeed result in a pressure gauge that can be used in
the entire pressure regime.
Shielding the nanoparticle from the environment means creating a barrier between the

golden shell and the dielectric medium. This barrier should also be a dielectric. If not, another
set of surface plasmons polaritons would arise on the interface between the outer layer and the
environment, counteracting the intent of the extra layer. In the performed research the extra
coating is achieved by adding an extra SiO2 layer to the model. Henceforth we shall indicate
this type of nanomatryushka [110] as �coated nanoshell�. The main questions to be answered
are whether the coating has the desired e¤ect and how thick this coating should be to e¤ectively
shield the nanoshell from the pressure e¤ects on the dielectric function of the environment.
For the calculations we used Mie theory. Extending Mie theory to three concentric spheres,

although not available in literature, does not provide any new problems in comparison with
the two concentric sphere case solved by Aden and Kerker [2]. The �nal expressions for the
electromagnetic �elds in and around the coated nanoshell, as well as the optical cross section,
are given in the appendix of Ref. [125]. Although the expression for the resonance frequency
for multiple layered nanoshells derived with hybridization theory is available in literature [108],
it is not considered here due to the expected deviations from the experimental values since the
diameters of the coated nanoshell particles are two or three times larger than the nanoshell
particles.
For reasons of comparison the core and the thickness of the golden shell are kept the same as

for the nanoshell discussed before. Furthermore we have only studied the coated nanoshell in a
helium environment since this is a commonly used quasi-hydrostatic pressure medium in DAC
experiments. In neon the results will be almost the same because the dielectric functions of
helium and neon are similar as was shown in �gure 3.18. For hydrogen the counteracting e¤ect
is not present; therefore the results with nanoshells are adequate and no further improvements
are necessary.
Figure 3.22 presents the dipole peak position for several coating thicknesses of the coated

nanoshell as calculated by Mie theory. It can be seen that for the thinnest coatings the red
shift due to the e¤ect of the medium is still visible. At a certain pressure the peak position
will reach a maximum and from there on the peak will undergo a blue shift which is due to the
compression of the nanoshell similar to the results in vacuum (�gure 3.20). This maximum is
indicated by the black crosses and can be used as a measure for the pressure up to which the
medium a¤ects the optical response of the nanoparticle. It is clear that for thicker coatings
the maximum shifts to lower pressures, suggesting that the in�uence of the medium indeed
diminishes and thus that the coating e¤ectively shields the nanoparticle. Unfortunately the red
shift never disappears completely, meaning that the in�uence of the medium cannot be fully
shielded by the dielectric layer. However, it is possible to position the maximum into a pressure
region where it can do no harm for the pressure measurements.
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Figure 3.22: The dipole peak position as a function of pressure for the coated nanoshell with
a 60 nm SiO2 core, a 15 nm thick golden shell and for di¤erent thicknesses of the outer SiO2
coating. For small coatings the red shift due to the in�uence of the pressurization medium is
still clearly visible, while for thick coatings this e¤ect seems to disappear. The black crosses
indicate the pressure at which the wavelength peak position is maximal and where the red shift
turns into a blue shift.

Apart from the position of the resonances, we observed that the optical response of the
uncoated and the coated nanoshells also di¤ered in the height of the relative cross section,
i.e. the total optical cross section Qext (!) divided by �R2tot with Rtot the total radius of the
considered particle. The maximum of the relative cross section of the coated nanoshell is lower
than that of the uncoated nanoshell shown in �gure 3.19. However, since the coated nanoshells
are larger than the uncoated shell, their absolute optical cross section is larger. This means that
less coated nanoshells than uncoated nanoshells are needed to obtain the same intensity. The
nanoparticle density in the DAC can thus be kept low enough to avoid nanoparticle interaction
and clustering.
The derivative of the curves in �gure 3.22 gives a direct indication of the sensitivity achiev-

able with the coated nanoshell structures. On average the sensitivity for the coated nanoshell
with a 110 nm thick coating (upper curve on Figure 3.22) is approximately 0:90 nm=GPa. The
resolution for ruby grains in the same pressure regime (0 GPa to 20 GPa) is approximately
0:36 nm=GPa [117] and for a nanoshell in vacuum, as was shown in �gure 3.20 this would
be 0:94 nm=GPa. From this we can conclude that the theory predicts a better resolution for
(coated) nanoshells than for rubies in the pressure regime under consideration.
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Discussion and Conclusions

We have carried out a theoretical analysis of nanoshells which can be designed so that they have
absorption peaks in the IR-visible part of the optical spectrum due to scattering or absorption by
localized surface plasmon polaritons. Calculations indicate that for nanoshells in vacuum these
peaks have a substantial shift with pressure making them suitable as a pressure gauge for high-
pressure research. A useful pressure gauge should have a calibration (peak wavelength versus
pressure) independent of the pressurization medium. We found that for a simple nanoshell
consisting of a SiO2 core and a gold shell, the calibration di¤ered with the pressurization
medium; moreover it was double-valued and had a region of zero slope. The latter problem was
resolved by coating the nanoshell with a SiO2 cladding, resulting in a robust sensitive pressure
gauge.
A possible implementation of the coated nanoshell would be to distribute them inside the

DAC cell together with the ruby on the diamond culet. For low pressures both gauges can
be used and the coated nanoshell can be calibrated by using the extensive knowledge of the
behavior of ruby under pressure [117]. A possible challenge is the application of nanoshells
to the surface of a diamond culet. A droplet can be placed on the culet and allowed to
evaporate to produce a coverage bonded to the surface by van der Waals forces. Preliminary
measurements show that to avoid clustering and segregation, it may prove useful to functionalize
the diamond surface with a �lm of poly-4-vinylpyridine (pvp) which has dense sites that localize
the nanoparticles [74]. For high pressures the ruby measurement would be di¢ cult or no longer
be possible. The spectra of the coated nanoshells however will still be measurable since these
measurements are based on absorption and transmission. In this way nanoshells could be easily
used and e¤ectively extend pressure measurements to ultra high pressures.
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Chapter 4

Conventions and approximations

First some word usage so that often used terminology is well-de�ned. With the term potential
well, we refer to a well-shaped form of the potential energy (for a negative charge). If we
talk about a background charge, we mean a positive unit charge (from an ion in the shell).
Although no physical meaning can be attributed to the Lagrange multipliers � in self-consistent
calculations, we sometimes talk about the (e¤ective) single-particle energies. We consider a
spherically symmetric system, but we will not always put �radial� in front of the word wave
function: the radial part of the wave function is the only part of interest in the calculations.
In the used methods, we do not have to consider the boundary condition for in�nite

radius at the �nite radius of an �auxiliary sphere�as is done in the Kohn-Sham calculations in
Refs. [101,102,103,104,87,106]. Although the boundary condition will be satis�ed rather close
to the nanoshell, determining such a radius is arti�cial and could give densities di¤erent from
the correct density. If the radius is chosen too close to the particle, the electrons are forced into
a region that is smaller than the one in which they would be in reality. If the radius is chosen
too large, electrons will have a larger density in a region where they would not be in reality.
The calculations are performed in the jellium model which was explained in section 1 and

which was used in the Kohn-Sham calculations of Refs. [101, 102, 103, 104, 87, 106]. Calcula-
tions in Ref. [68] for a �at gold surface show that inclusion of a rather simple pseudopotential
describing the periodic background potential, leads to an increase of the work function of 0%
up to about 11% depending on the crystal face. This indicates that incorporating an e¤ect of
the spatial variations of the background will not appreciably alter the magnitude of the work
function. The background charge density �b (r) is spherically symmetric, �b (r) = �b (r), and
has the form

�b (r) =

8<:
0 r < RC

n0 =
N

Vshell
= 3

4�
N

R3S�R3C
RC � r � RS

0 RS < r

:

To calculate the work function, we consider no external potential well con�ning the
conduction electrons in the shell. There is no external potential prohibiting the electrons to leave
the metal; the only di¤erence between the region inside and outside of the shell is that inside
the shell there is a neutralizing background and outside of the shell there is not. If the electrons
leave the metal, the shell will become positively charged. A positively charged shell will attract
the electrons outside the metal. A mechanism arises that leads to an equilibrium situation
in which the electrostatic interaction between the conduction electrons and the background
and between the conduction electrons mutually causes a potential well by which the electrons
mostly stay in the shell.
The in�uence of the dielectric core on the electrons is taken into account via a dielectric

constant screening all electron interactions (Hartree, exchange, correlation).
Near-to-zero temperatures are assumed. In this context, no phonons are considered.
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Part II

Aspects of orbital-based calculations
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This part is a report on a feasibility study of performing orbital-based calculations for
nanoshells with manufacturable sizes. Previously, Prodan and Nordlander succeeded to perform
orbital-based calculations for small nanoshells (see section 3.5.3). In that work the solution
method for the e¤ective single-particle Schrödinger equations required 33000 grid points to get
a su¢ cient accuracy for the eigenenergies of a nanoshell with (RC ; RS) = (13:1; 15:1) nm. For
the smallest manufacturable SiO2-Au nanoshell of (RC ; RS) = (40; 55) nm, the number of grid
points would be unmanageably high. This is why we considered another method to determine
the orbitals, namely the Transfer Matrix Method.
The part is divided in two chapters. In chapter 5, we explain how we determined the

orbitals of the N conduction electrons of a nanoshell. We start with two sections on the general
treatment of the degenerate orbitals of a spherically symmetric system. Then we explain
the Transfer Matrix Method and how it is used to solve the e¤ective single-particle radial
Schrödinger equations. Chapter 6 contains a study of an ideal Fermi gas con�ned to a spherically
symmetric in�nite and �nite potential well uwell (r) between the radii RC and RS. These
models of non-interacting fermions in a spherically symmetric potential well can be viewed as
the simplest models for a nanoshell and show similarities and di¤erences with the (in)�nite
square well discussed in chapter 1 on basic concepts. The problems can be solved exactly and
provide a test for the Transfer Matrix Method which can be used in problems that are not
exactly solvable. Although the Transfer Matrix Method appears to have advantages over �nite
di¤erence integration in determining the orbitals, it will become clear that also with the Transfer
Matrix Method an orbital-based treatment of nanoshells with manufacturable dimensions is not
practicable.

Portions of the work discussed in this part were presented in three posters:

� �Nanoshells: calculation of the work function using non-standard methods�at Nanometa
2011, Seefeld, Austria (03-06/01/2011)

� �Electrons in a nanoshell ready to get excited�at Two days of theoretical and mathema-
tical physics (Flanders), Koksijde (28-29/05/2010) and at �Fysica 2010� - Dutch and
Belgian Physical Society, Utrecht, Nederland (23/04/2010)

� �Non-interacting electrons in a nanoshell�at the Joint general scienti�c meeting - Belgian
Physical Society and Belgian Biophysical Society, Hasselt (01/04/2009)
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Chapter 5

Bookkeeping and determination of the
spherically symmetric orbitals

5.1 Radial di¤erential equation, wave functions and den-
sity

In general the three-dimensional static e¤ective Schrödinger equation for a particle with wave
function  (r) in a potential energy ueff (r) is given by

�1
2
� (r) + ueff (r) (r) = � (r)

with � an energy eigenvalue. In the case of a nanoshell the potential energy is spherically
symmetric, ueff (r) = ueff (r), and it is convenient to formulate the Schrödinger equation in
the spherical coordinates r 2 [0;1[ ; � 2 [0; �[ ; ' 2 [0; 2�[. With the usual product ansatz
 (r; �; �) = R(r)�(�)�(�) one �nds that the angular part can be written with the spherical
harmonics Y`;m (�; ') ; so that

 (r; �; �) = R(r)Y`;m (�; ') ; (5.1)

and that the radial part R(r) of the wave function satis�es the di¤erential equation

1
r2

d
dr

�
r2 d

dr

�
R(r) +

h
2��

�
2ueff (r) +

`(`+1)
r2

�i
R(r) = 0: (5.2)

The single-particle energies and the form of the radial wave functions depend in general on
three quantum numbers:

1. the angular quantum number ` = 0; 1; 2; :::

2. the radial or principal quantum number denoted by n = 1; 2; 3; ::: (n = 1 for the lowest
state that can be occupied for a given value of `, n = 2 for the second lowest state that
can be occupied for a given `-value, ...). We use this quantum number in analogy with the
hydrogen atom but we will see below that the boundary conditions in the radial direction
do not result in an analytical expression for the energy values as a function of n, as it was
the case for the hydrogen-like atom. In all problems we will discuss, the electrons will be
con�ned in a kind of potential well. The physical meaning of the quantum number n is
then the same as that of the quantum number in e.g. the (in)�nite square well: a wave
function with quantum number n has n� 1 nodes in the well.
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3. the spin quantum number � = �1=2. In problems without spin polarization, like the
problem under study, the radial wave function and energy for given ` and n is the same
for both values of the spin component.

Note that in contrast to the case of the hydrogen-like atom where the values of ` are
bounded by ` < n, there is in general no restriction on the value of ` with respect to n. This
restriction in the case of the hydrogen-like atom followed from the boundary conditions imposed
on the analytical solution of the radial Schrödinger equation with ueff (r) / �1=r in the entire
considered region. Also in contrast to the hydrogen-like atom for which � = �n / �1=n2, the
energy levels of a nanoshell are dependent on both n and `. Based on the mentioned quantum
number dependency, we denote the radial wave functions as Rn;` (r) and the single-particle
energies as �n;`.
For simplicity we consider zero temperature and assume that the highest energy level is

completely occupied. For an unperturbed system with many electrons, there will be a negligible
in�uence on the density whether the states of the highest energy level are completely or partially
occupied. In this feasibility study on orbital-based calculations, no self-consistent calculations
are performed. In this way the assumption of completely �lled highest energy level also does not
lead to problems of charge non-neutrality that would occur when using the resulting electrostatic
potential energy for a next iteration. Using the product ansatz (5.1), the electron particle
density n (r) = n (r; �; ') can then be written as

n (r; �; ') =
X
n;`;m;�

�� n;`;m;� (r; �; ')��2 = 2X
n;l

jRn;` (r)j2
X̀
m=�`

jY`;m (�; ')j2 :

With the aid of the theorem of Unsöld,

X̀
m=�`

Y �
`;m (�; ')Y`;m (�; ') =

2`+ 1

4�
;

we �nd that the electron density is spherically symmetric and can be calculated from the radial
wave functions Rn;` (r) as:

n (r; �; ') = n (r) = 1
4�

nmaxX
n=1

`max(n)X
`=0

2 (2`+ 1) jRn;` (r)j2

with nmax and `max (n) de�ned such that all the considered particles are taken into account.
The single-particle energies are 2 (2`+ 1) times degenerate.

5.2 Orbital bookkeeping

This section is devoted to the bookkeeping burden that arises when doing orbital-based calcu-
lations with degenerate energy levels.
We will use that at zero temperature all single-particle energy levels below an energy �max

are �lled and all energy levels above �max are empty. The highest occupied energy level �max
is often called the chemical potential �, and in the case of non-interacting particles it is also
called the Fermi-energy �F . To check whether enough orbitals are included, we use that the
number of particles can be calculated in two di¤erent ways: as the mean density of particles �n
times the volume V ,

N = NnV = �n� V;
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and as the sum of the lowest-energy states,

N = Nstates =
nmaxX
n=1

`max(n)X
`=0

2 (2`+ 1) :

We can thus use the following function

f (n0; `0 (n)) = NnV � 2
n0X
n=1

`0(n)X
`=0

(2`+ 1) : (5.3)

that will become zero if all electrons with an energy up to �max are included.
In cases were the energy is dependent on one integer quantum number k and �k�1 < �k,

as in the case for e.g. the one-dimensional (in)�nite potential well or the hydrogen-like atom,
one just has to calculate the orbitals subsequently for k = 1; k = 2; ::: until there are enough
orbitals calculated to represent all the N particles present in the considered system.
As we have seen in the previous section, the energy levels of a general spherically symmetric

system depend on two quantum numbers: the angular quantum number ` and a quantum
number that we denote by n. There is no analytical relation between the energy and an
integer n 2 N0. We de�ne n = 1 for the lowest state that can be occupied for a given `-value,
n = 2 for the second lowest state that can be occupied for a given value of `, ... With the
de�nition of n it is obvious that

�n;` < �n0>n;`: (5.4)

We will see later on that for a spherically symmetric potential well also the following relation
holds for energy levels with di¤erent `-values:

�n;` < �n;`0>`: (5.5)

But in advance the relative magnitude of energy levels with di¤erent n and ` is undetermined:

�n;`
?

Q �n0 6=n;`0 6=`: (5.6)

To answer this question we have to solve the corresponding Schrödinger equations.
Because of the question (5.6) we cannot easily calculate subsequent energy levels for a system
which depends on more than one quantum number. In theory we could of course calculate
millions of orbitals and then just keep the ones with the lowest energy. But this would take,
gently stated, a lot of time.
We will discuss two ways of avoiding to calculate too many orbitals. For that purpose we use a
�ctitious energy spectrum as shown in �gure 5.1. Real energy spectra can look very di¤erent,
but we use this energy spectrum to sketch the bookkeeping ideas.
Knowing relations (5.4) and (5.5) one starts of course by solving the problem for the state

with fn; `g = f1; 0g because this state has the lowest energy. This results in the wave function
and energy of 2 (2� 0 + 1) = 2 electrons. There are then in theory two possibilities for which
the energy level can be the next higher one: fn; `g = f2; 0g or fn; `g = f1; 1g. Not knowing
the energy spectrum in advance, one has to solve the Schrödinger equation for these two cases.
If the energy spectrum is like in �gure 5.1, then one will �nd that �1;1 < �2;0. One includes
the state f1; 1g so one has found the wave function and energy of 2 (2� 1 + 1) = 6 additional
electrons. Now one does not know in advance whether the state f2; 0g will also be included
later on. Because solving the Schrödinger equation takes some time, one would want to store
the resulting energy and wave function.
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Figure 5.1: Fictitious energy spectrum to explain the bookkeeping of orbitals.

5.2.1 Smallest amount of orbital calculations, much bookkeeping

One way to proceed is like this: one stores the results of the retained states f1; 0g and f1; 1g
and one stores the result for fn; `g = f2; 0g separately. Then one calculates the possible next
higher energy �1;2, and compares it with the stored value �2;0. In our �ctitious case we would
�nd �1;2 < �2;0 and accept the state f1; 2g, leaving the state f2; 0g stored. Another possible
next higher energy would now be �1;3 so one solves the Schrödinger equation for fn; `g = f1; 3g.
Now �1;3 > �2;0 so one accepts the state f2; 0g and stores the state f1; 3g in place. Now
besides the calculated case fn; `g = f1; 3g, there are two new possible cases with higher energy:
fn; `g = f2; 1g and fn; `g = f3; 0g. So the Schrödinger equation for these two cases has to
be solved and the energies �1;3, �2;1 and �3;0 have to be compared. The state with the lowest
energy, f1; 3g ; is retained and the other two states are stored. Except for these two states,
there is another possible case with next higher energy, fn; `g = f1; 4g, so there is one additional
Schrödinger equation to be solved and the energies �1;4, �2;1 and �3;0 have to be compared. In
general, if n is the highest n-value that is in the running in the next-highest-energy competition,
then n� 1 states have to be stored for possible future use and each time n energies have to be
compared.
To keep track of which orbitals have to be calculated, one can use an array that contains

for each n-value up to which `-value the orbitals are calculated. The procedure then looks like
this for the �rst steps (�1 is the starting value for the `-column if no orbitals are calculated
yet):

n ` done to do
1 0 f1; 1g
2 �1 f2; 0g
3 �1
::: :::

!

` done to do
1 f1; 2g
0
�1
:::

!

` done to do
2 f1; 3g
0
�1
:::

!

` done to do
3 f2; 1g
0 f3; 0g
�1
:::

! :::

So in every step, one Schrödinger equation has to be solved (for the fn; `+ 1g-state), except
when a state with ` = 0 is accepted. In that case, two Schrödinger equations have to be solved:
for fn; 1g and for fn+ 1; 0g. This is one part of the bookkeeping.
Another part of the bookkeeping concerns the energy comparison. A way to deal with this,

is to have an array in which the energies from not-yet accepted states are sorted, lowest energy
in the �rst place, and to which the corresponding quantum numbers and wave function are
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linked. For step three we would have, before the acceptance of state f2; 0g:

�2;0  f2; 0g ;R2;0 (r)
�1;3  f1; 3g ;R1;3 (r)

:

With the orbitals sorted such that the lowest-energy orbital is in the �rst place, it is obvious
that �2;0 is the lowest energy and the state f2; 0g has to be accepted. After one has solved the
Schrödinger equation for states f2; 1g and f3; 0g and sorted the energies, one would get this
situation:

�1;3  f1; 3g ;R1;3 (r)
�2;1  f2; 1g ;R2;1 (r)
�3;0  f3; 0g ;R3;0 (r)

and after acceptance of the state f1; 3g:

�2;1  f2; 1g ;R2;1 (r)
�3;0  f3; 0g ;R3;0 (r)

in which then the state f1; 4g has to be inserted on the right place.
In the procedure explained above, the results have to be sorted according to the energy each

time new orbitals have been calculated. If the calculations proceed, more and more energies
have to be sorted in each step. Now sorting is also a time-consuming task and very many times
it is useless because the states will be included later on anyway. That is why we have used a
more straightforward way with somewhat less bookkeeping and much less sorting.

5.2.2 More e¢ cient bookkeeping

In this section we explain the procedure we have used. We �rst give a concrete exposition
using the �ctitious energy spectrum shown in �gure 5.1. Afterwards we set out the formal
generalization which is visualized in the �owchart of �gure 5.2.
We performed subsequent steps p in which we considered �trial chemical potentials�� (p).

In each step, the orbitals with energies up to � (p) were calculated. For the �ctitious energy
spectrum of �gure 5.1, the procedure would be as follows if we take � (p) = �p;0. The ��rst
trial chemical potential�is � (1) = �1;0. We check whether the function (5.3) changes sign if we
would include the state f1; 0g. Denote the value of the function (5.3) after subtraction of the
�rst states as f (1), so

f (1) � NnV �
"
2
X
n;`

�
2`�n;`��(1) + 1

�#
= NnV � 2

�
2� `�1;0 + 1

�
= NnV � 2:

If the system contains more than 2 electrons, there would be no sign change: f (1) > 0. In a
second step we consider �2;0 as second �trial chemical potential�, � (2) = �2;0. We then calculate
the orbitals f2; 0g, f1; 1g ; f1; 2g and f1; 3g, stopping with f1; 3g because �1;3 > �2;0. We then
subtract from f (1) the number of orbitals corresponding to the states for which �n;` � � (2),
so f1; 1g, f1; 2g and f2; 0g. In this way we obtain the value of the function (5.3) for which all
electrons with �n;` � � (2) are included: f (2) = f (1) � 2

�
2
�
`�2;0 + `�1;1 + `�1;2

�
+ 3
�
= NnV � 20.

If the system contains more than 20 electrons, then we consider � (3) = �3;0 as the new trial
chemical potential, solve the Schrödinger equation for1 f3; 0g, f2; 1g ; f2; 2g and f1; 4g, and
calculate f (3) = f (2) � 2

�
2
�
`�3;0 + `�1;3 + `�2;1

�
+ 3
�
= NnV � 42. If there are more than 42

electrons in the system, we continue this procedure.

1remember that the state f1; 3g has already been calculated
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Now suppose the system contains 34 electrons, so NnV = 34. Then the function (5.3) has
changed sign in the third step. We have now a rough estimate of the correct chemical potential �,
namely � (2) < � < � (3). We also have a rough estimate of how many orbitals have to be
included. Now it is time for re�nement. Therefore we have to perform the only sorting task in
the procedure: sorting the orbitals with energies between � (2) and � (3). After having sorted
these energies, we start to add to f (3) the number of electrons of the highest energy levels, so
we calculate �rst f (3;1) = f (3) + 2

�
2`�3;0 + 1

�
= NnV � 40 and then, because still f (3;1) < 0,

calculate f (3;2) = f (3;1) + 2
�
2`�2;1 + 1

�
= NnV � 34 = 0.

The procedure, which has been explained based on a speci�c �ctitious energy spectrum, can
be formalized as indicated in the �owchart of �gure 5.2.

Figure 5.2: Visualization of the orbital bookkeeping for a spherically symmetric system. For
such a system the single-particle energies � depend on two quantum numbers: n and `. In
iteration p a trial chemical potential � (p) is considered (� (0) = 0). If all electrons are included
then f = f (n0; `0 (n)), expression (5.3), has the value f = 0. NnV is the number of electrons
calculated from the average electron density n and the volume V , `max is the highest `-value
for which states have been calculated in iteration p and n` (p) is the total number of n-values
that was treated for a given `-value up to iteration p.

We perform iterations in which for the p-th iteration we consider a trial chemical potential
� (p) and a value of the function (5.3) denoted as f (p) so that f (p) = NnV�2

P
n;`

�
2`�n;`��(p) + 1

�
.

If f (p) < 0, we sort the states with � (p� 1) < �n;` � � (p) according to energy and add energies
�n;` > � (p� 1) to f (p), starting from the highest one, until the function (5.3) is equal to zero
or changes sign again (the latter case occurs if the upper energy level is not completely �lled).
In an iteration we do not calculate all states for which �n;` � � (p) because the states with
�n;` � � (p� 1) were already calculated in previous iterations. Keeping track of which orbitals
have already been calculated requires some bookkeeping. Therefore we store for each `-value
the number of n-values that have been calculated up to iteration p, denoted as n` (p). Then with
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`max the maximum `-value for which orbitals have been calculated, the value of the function (5.3)
in iteration p is calculated as

f (p) = f (p�1) � 2
`maxX
`=0

[n` (p)� n` (p� 1)] (2`+ 1) :

To sort the states according to energy we have used an index array so that the states do
not have to be moved themselves. To order the index array we used the routine quicksort (see
e.g. Ref. [98]) because this routine is fast in comparison with some other methods. Moreover
there exists an algorithm reported in Ref. [97] based on this method in which one additional
array (in this case with Rn;` (r)) is rearranged correspondingly to another array that is sorted
(in this case the array with the energies �n;`).

5.3 Orbital calculation: Transfer Matrix Method

We applied the Transfer Matrix Method to a nanoshell because it was already successfully
applied to other con�ned systems, e.g. to calculate the charge distribution and leakage currents
in ultrathin metal-insulator-semiconductor capacitors [72].
In this section, we �rst explain the basics of the method. Then we sketch how the transfer

matrix and the boundary conditions look like in general for a spherically symmetric system.
After that, we derive the piecewise wave functions. We then explain how the number of nodes
of a single-particle wave function can be calculated. The section is ended with a list of some
advantages of the Transfer Matrix Method as compared to �nite di¤erence implementations.

5.3.1 Basics

In the Transfer Matrix Method the considered domain is divided into intervals in which the
potential energy can be approximated by a simpler function so that the Schrödinger equation in
the intervals can be solved analytically. This results in piecewise wave functions. The solution
of the entire problem is then obtained by requiring continuity of the wave functions and its
derivative at the interval boundaries and by taking into account the boundary conditions of the
problem which follow from the condition that the wave function should be integrable.
In one dimension we get in each interval j a piecewise Schrödinger equation

�1
2
� j (x) + ueff;j (x) j (x) = � j (x)

which results in a piecewise wave function

 j (�; x) = aj (�)u1 (j; �; x) + bj (�)u2 (j; �; x)

with analytical basis functions u1 (j; �; x) and u2 (j; �; x) and coe¢ cients aj (�) and bj (�). Im-
posing continuity of the wave function and its derivative between the intervals j and j + 1,

 j (�; xj+1) =  j+1 (�; xj+1)

 0j (�; xj+1) =  0j+1 (�; xj+1) ;

leads to a relation between the coe¢ cients of neighboring intervals of the form�
aj (�)
bj (�)

�
=

�
Aj (�) Bj (�)
Cj (�) Dj (�)

��
aj+1 (�)
bj+1 (�)

�
: (5.7)
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The matrix
�
Aj (�) Bj (�)
Cj (�) Dj (�)

�
is called the transfer matrix. The matrix elements depend on �

and contain the functions u1 (j; �; x) ; u2 (j; �; x) ; u1 (j + 1; �; x) and u2 (j + 1; �; x) and their
derivatives evaluated in x = xj+1.
To �nd the eigenvalues � which lead to a ful�llment of the boundary conditions of the problem,
one �xes the boundary condition at one side, solves relation (5.7) recursively for each interval
and checks whether the boundary condition at the other side of the system is ful�lled. This last
boundary condition can be rewritten as a function of � of which the zeros are the eigenvalues �
corresponding to the wave functions with the correct boundary conditions.
As a result, the unnormalized wave function  unnorm (x) is obtained which is related to the nor-
malized wave function  norm (x) by a normalization factor Cnorm as  norm (x) = Cnorm unnorm (x).
The normalization factor Cnorm can be calculated from the M piecewise unnormalized wave
functions  j (x) as

Cnorm =
1vuuut MX

j=1

xj+1Z
xj

�� j (x)��2 dx
:

The problem of the �nite square well mentioned in chapter 1, is actually solved with this
method. In that case the potential energy is a di¤erent constant in three regions. The solution
of the complete Schrödinger equation is found by solving the piecewise Schrödinger equation in
the three regions and applying the boundary conditions at the well boundaries and at x! �1.

5.3.2 Application to spherically symmetric system

In this and the next section we explain how a form for the unnormalized wave function R(r) can
be derived by solving the radial Schrödinger equation (5.2) with the Transfer Matrix Method.
In section 5.3.3 we also explain how the contributions to the normalization integral can be
calculated in order to determine the normalized wave function R (r) from R(r).

The general form of the piecewise radial wave function Rj (�; r) in interval j is

Rj (�; r) = aju1 (j; �; r) + bju2 (j; �; r) : (5.8)

The condition that the wave function and its derivative should be continuous between subse-
quent intervals can be written as

u1 (j � 1; �; rj) aj�1 + u2 (j � 1; �; rj) bj�1 = u1 (j; �; rj) aj + u2 (j; �; rj) bj
u01 (j � 1; �; rj) aj�1 + u02 (j � 1; �; rj) bj�1 = u01 (j; �; rj) aj + u02 (j; �; rj) bj

with f
0
(rj) de�ned as

f 0 (rj) =
df (r)

dr

����
r=rj

:

From these conditions, we can derive a transfer matrix which can be used to go from one end
of the domain to the other by using forward or backward recurrence.
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Transfer matrix

Expressing aj and bj as a function of aj�1 and bj�1 gives an expression that can be used for
forward recurrence:

aj =
u1 (j � 1; �; rj)u02 (j; �; rj)� u01 (j � 1; �; rj)u2 (j; �; rj)

u1 (j; �; rj)u02 (j; �; rj)� u01 (j; �; rj)u2 (j; �; rj)
aj�1

+
u2 (j � 1; �; rj)u02 (j; �; rj)� u02 (j � 1; �; rj)u2 (j; �; rj)

u1 (j; �; rj)u02 (j; �; rj)� u01 (j; �; rj)u2 (j; �; rj)
bj�1

bj =
u01 (j � 1; �; rj)u1 (j; �; rj)� u1 (j � 1; �; rj)u01 (j; �; rj)

u1 (j; �; rj)u02 (j; �; rj)� u01 (j; �; rj)u2 (j; �; rj)
aj�1

+
u02 (j � 1; �; rj)u1 (j; �; rj)� u2 (j � 1; �; rj)u01 (j; �; rj)

u1 (j; �; rj)u02 (j; �; rj)� u01 (j; �; rj)u2 (j; �; rj)
bj�1:

With the following function de�nitions

C
(
;�)
�;� (�; j) = u(
)� (j; �; rj+1)u

(�)
� (j + 1; �; rj+1)� u(�)� (j; �; rj+1)u

(
)
� (j + 1; �; rj+1)

f (0) (rj) = f (rj) ; f
(1) (rj) = f 0 (rj) (5.9)

D (j; �; rj) = u1 (j; �; rj)u
0
2 (j; �; rj)� u01 (j; �; rj)u2 (j; �; rj) :

we can write the relation between the coe¢ cients of subsequent intervals in compact form as�
aj
bj

�
=

1

D (j; �; rj)

 
C
(0;1)
1;2 (�; j � 1) C

(0;1)
2;2 (�; j � 1)

C
(1;0)
1;1 (�; j � 1) C

(1;0)
2;1 (�; j � 1)

!�
aj�1
bj�1

�
: (5.10)

Expressing aj�1 and bj�1 as a function of aj and bj and then setting j � 1 = j gives an
expression that can be used for backward recurrence:�

aj
bj

�
=

1

D (j; �; rj+1)

 
C
(1;0)
2;1 (�; j) �C(0;1)2;2 (�; j)

�C(1;0)1;1 (�; j) C
(0;1)
1;2 (�; j)

!�
aj+1
bj+1

�
(5.11)

with the elements of the transfer matrix given by the expressions (5.9) and where we have used
that C(�;
)�;� (�; j) = �C(
;�)�;� (�; j).
Note that for all matrix elements of the transfer matrix, the denominators are proportional

to the Wronskian of the linearly independent basic functions; they are thus di¤erent from zero.
During recurrence, under�ow (of both coe¢ cients) or over�ow can be avoided by timely

rescaling the coe¢ cients aj and bj.

Boundary conditions

The boundary conditions for the radial wave function R (r) of a spherically symmetric system
are such that it is quadratically integrable, i.e.

R1
0
jR (r)j2 r2 dr < 1. In the regions that

contain the limiting values r = 0 and r ! 1, there is one solution of the (piecewise) radial
Schrödinger equation that is not quadratically integrable in the considered limit. We denote
this solution as the basis function u2 (j; �; r). The fact that this basis function gives rise to
a non-integrable wave function means that the coe¢ cient bj of the intervals should be zero.
Assigning the region which contains the origin the subscript �O00 and the region which contains
r ! 1 the index �100, then bO = 0 and b1 = 0 leads to special cases of relation (5.10) and
relation (5.11):

ajO+1 =
C
(0;1)
1;2 (�; jO)

D (jO + 1; �; rO)
aO ; bjO+1 =

C
(1;0)
1;1 (�; jO)

D (jO + 1; �; rO)
aO (5.12)

aj1�1 =
C
(1;0)
2;1 (�; j1 � 1)

D (j1 � 1; �; r1)
a1 ; bj1�1 = �

C
(1;0)
1;1 (�; j1 � 1)

D (j1 � 1; �; r1)
a1; (5.13)
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with jO the index of the last interval of the region that contains the origin, rO the boundary
of the region that contains the origin, j1 the �rst index of the region that contains the value
r !1 and r1 the boundary of the region that contains r !1. Notice that the proportionality
factors between the coe¢ cients do not contain u2 (j; �; r) in the limiting values for r.
In solving the di¤erential equation (5.2) we �nd a function that still has to be normalized.

This means that we can choose one of the coe¢ cients: this will de�ne the scaling factor of the
solution but it does not have an in�uence on the physics. Suppose we �x aO. Then by forward
recurrence we can determine all coe¢ cients aj>jO and bj>jO . To check whether the boundary
condition for r ! 1 is satis�ed we can construct a function that is zero if the boundary
condition is ful�lled. This can be done as follows. If we eliminate a1 from the equations (5.13),
then we �nd that the boundary condition for r !1 is ful�lled if the function

f1 (�) =
C
(1;0)
1;1 (�; j1 � 1)

C
(1;0)
2;1 (�; j1 � 1)

aj1�1 + bj1�1 (5.14)

=
u01 (j1 � 1; �; r1)� u1 (j1 � 1; �; r1) u

0
1(j1;�;r1)
u1(j1;v;r1)

u02 (j1 � 1; �; r1)� u2 (j1 � 1; �; r1) u
0
1(j1;�;r1)
u1(j1;�;r1)

aj1�1 + bj1�1

is equal to zero2.
If we �x a1, then by backward recurrence we can calculate all coe¢ cients aj<j1 and bj<j1

and determine whether the boundary condition for r = 0 is satis�ed by checking whether the
function

fO (�) =

u01(jO;�;rO)
u1(jO;�;rO)

u1 (jO + 1; �; rO)� u01 (jO + 1; �; rO)

u02 (jO + 1; �; rO)�
u01(jO;�;rO)
u1(jO;�;rO)

u2 (jO + 1; �; rO)
ajO+1 � bjO+1 (5.15)

is equal to zero.
To �nd a zero of a function we used the routine �zbrent�of Ref. [97].

5.3.3 Expressions for the piecewise radial solutions

We want to use the Transfer Matrix Method to solve the radial di¤erential equation

1

r2
d

dr

�
r2
d

dr

�
R (r) +

�
2��

�
2ueff (r) +

` (`+ 1)

r2

��
R (r) = 0: (5.16)

In this section we derive the piecewise wave functions that are of use in di¤erent models for
a nanoshell. The form of these wave functions will depend on the approximation that can be
made for the e¤ective potential energy ueff (r) and for the centrifugal term ` (`+ 1) =r2.
In the model of an ideal Fermi gas in an in�nite potential well between RC and RS, the

e¤ective potential in the well equals zero: ueff (RC < r < RS) = 0. If we divide this region in
su¢ ciently small intervals j, the centrifugal term can be approximated by a constant so that
we can set ` (`+ 1) =(2r2) = ` (`+ 1) = (2rjrj+1) with rj the lower bound on interval j. This is
shown in �gure 5.3.
In the model of non-interacting fermions in a �nite potential well between RC and RS, there

are three regions de�ned by a constant potential energy:

ueff (r) =

8<:
uC 0 � r � RC

0 RC < r < RS

uE RS � r <1
2We have written this zero function in a convenient form for later use.
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Figure 5.3: �Physical�characteristics of a nanoshell in the model of non-interacting fermions in
an in�nite potential well (red, above axis) and possible approximation to the potential energy
in a su¢ ciently small interval j in the shell (blue, below axis).

with 0 � uC < 1 and 0 � uE < 1. Also in this case the shell region can be divided in su¢ -
ciently small intervals so that we can set ueff (r)+` (`+ 1) =(2r2) = ueff (j)+` (`+ 1) = (2rjrj+1).
In the region that contains the origin, the centrifugal term cannot be approximated by a con-
stant. To implement the boundary condition for r ! 1, it is also better not to use this
approximation in the region r > RS. The regions of the �nite well and the possible approxi-
mation are shown in �gure 5.4.

Figure 5.4: �Physical�characteristics of a nanoshell in the model of non-interacting fermions
in a �nite potential well (red, above axis) and possible approximation to the potential energy
in a su¢ ciently small interval j in the shell (blue, below axis).

The most realistic model with interacting electrons also consists of three regions, as shown
in �gure 5.5.

Figure 5.5: Physical regions of a nanoshells (red, above axis) and regions in which a certain
approximation can be made (blue, below axis).

Like in the case of the �nite well, there is a region near the origin where the centrifugal
term cannot be approximated and where the potential energy is a constant. We denote the
upper bound for this region as rO and we will attach to every parameter in this region the
subscript �O�. For r > rO intervals can be constructed so that the e¤ective potential and
the centrifugal potential can be approximated by a constant. The third region that can be
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considered, is the region outside the nanoshell where the excess charge density is negligible,
�exc (r) � 0. In this region, which we will call the �free-of-charge�region, the e¤ective potential
energy has a �1=r dependence and the piecewise Schrödinger equation can be solved without
approximation for ueff (r) and the centrifugal term. We call the lower bound for this region rF
and we will attach to every parameter in this region the subscript �F�.
In the rest of this section we derive the piecewise basis functions in the di¤erent approxima-

tions for the e¤ective and centrifugal potential. Where possible, we give an analytical expression
for the contribution to the normalization integral. In appendix A.2 some details are given on
the implementation of the basis functions and their derivatives to be used in the recurrence
relations and boundary conditions as explained in section 5.3.2.

Approximation 1: ueff (r) = constant = ueff (j)

With this approximation, the di¤erential equation (5.16) reduces to the di¤erential equation of
the (modi�ed) spherical Bessel functions:

r2
d2R (r)
dr2

+ 2r
dR (r)
dr

+
�
�jr

2 � ` (`+ 1)
�
R (r) = 0

with �j = 2 [�� ueff (j)]. Basis functions of this di¤erential equation are

� � ueff (j) � < ueff (j)

u1 (j; �; r) = j` (�jr) i` (�jr)

u2 (j; �; r) = y` (�jr) k` (�jr)

with �j =
p
j�jj =

p
2 j�� ueff (j)j; j` (x) (i` (x)) the (modi�ed) spherical Bessel function of

the �rst kind and y` (x) (k` (x)) the (modi�ed) spherical Bessel function of the second (third)
kind.
The contribution to the normalization constant can be calculated by using the relation

between the (modi�ed) spherical Bessel functions zl (x) and the corresponding �non-spherical�
(modi�ed) Bessel functions Z` (x) [1,36,86,109]:

z` (x) =

r
�

2x
Z`+ 1

2
(x) : (5.17)

The function i` (�jr) will only be used in the interval that contains the origin and k` (�jr) will
only be used in the interval that contains r ! 1 (for the �nite potential well). Because of
relation (5.17) we then can make use of the equalities [1,36,86,109]

xZ
0

xI2� (�x)dx =
x2

2

��
1 +

�2

�2x2

�
I2� (�x)� I 02� (�x)

�
(5.18)

Z
xG� (ax)F�(ax)dx =

1

2
x2
��
1� �2

a2x2

�
G2�(ax) +G02� (ax)

�
(5.19)

1Z
x

xK2
� (�x)dx =

x2

2

�
K 02
� (�x)�

�
1 +

�2

�2x2

�
K2
� (�x)

�
(5.20)

with

G� (x) = aJ� (x) + bY� (x) (5.21)

f 0 (x) =
df (x)

dx
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to calculate the contribution to the normalization integral. Using

Z 0
`+ 1

2
(x) =

r
2x

�

�
z` (x)

2x
+ z0` (x)

�
(5.22)

and introducing
g`(�jr) = ajj` (�jr) + bjy` (�jr) ; (5.23)

equations (5.17)-(5.23) lead to the following contributions to the normalization integral:

rOZ
0

jRO (r)j2 r2 dr = a2O
r3O
2

24 �
1 + `(`+1)

(�OrO)
2

�
i2` (�OrO)

�
�
i0` (�OrO) +

i`(�OrO)
�OrO

�
i0` (�OrO)

35 (5.24)

264 rj+1Z
rj

jRj (r)j2 r2dr

375
j�jO
j<jRS

=

8<:r32
24 �

1� `(`+1)

(�jr)
2

�
g2` (�jr)

+
�
g0` (�jr) +

g`(�jr)

�jr

�
g0` (�jr)

359=;
rj+1

rj

(5.25)

1Z
RS

jRE (r)j2 r2 dr = b2E
R3S
2

24 �k0` (�ERS) +
k`(�ERS)
�ERS

�
k0` (�ERS)

�
�
1 + `(`+1)

(�ERS)
2

�
k2` (�ERS)

35 (5.26)

with �E =
p
2 j�� uEj and rO = RC in the case of the �nite potential well.

Approximation 2: ueff (r) + ` (`+ 1) =(2r2) = ueff (j) + ` (`+ 1) = (2rjrj+1)

In this approximation, only to be used in the shell and its close vicinity, the general di¤erential
equation (5.16) reduces to

d2Rj (r)

dr2
+
2

r

dRj (r)

dr
+WjRj(r) = 0

with

Wj = 2��
�
2ueff (j) +

`(`+ 1)

rjrj+1

�
: (5.27)

The basis functions for the solutions of this di¤erential equation are3

Wj � 0 Wj < 0

u1 (j; �; r) =
sin[wj(r�rj)]

wjr

sinh[wj(r�rj)]
wjr

u2 (j; �; r) =
cos[wj(r�rj)]

r

cosh[wj(r�rj)]
r

with

wj =
q
jWjj =

s����2�� �2ueff (j) + `(`+ 1)

rjrj+1

�����:
3Remark 1: We have chosen the arguments of the goniometric and hyperbolic functions to be wj (r � rj)

and not wj (r) for numerical reasons.
Remark 2: Although sin [wj (r � rj)] =r and sinh [wj (r � rj)] =r are solutions of the di¤erential equation, the

pairs of solutions fsin [wj (r � rj)] =r; cos [wj (r � rj)] =rg and fsinh [wj (r � rj)] =r; cosh [wj (r � rj)] =rg do not
contain linearly independent basis functions because the Wronskian is equal to zero if wj = 0. That is why
u1 (j; "; r) and u2 (j; "; r) were chosen as mentioned.
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The basis functions in a mesh point are given by

u1 (j; �; rj) = 0

u2 (j; �; rj) =
1

rj

from which it follows that the unnormalized radial wave function in a mesh point is simply
equal to

Rj (rj) =
bj
rj
:

The contribution to the normalization integral can be calculated as

rj+1Z
rj

jRj (r)j2 r2dr =
1

2

�
sWj

a2j
w2j
+ b2j

�
hj +

"
1
2

�
�sWj

a2j
w2j
+ b2j

�
u2 (j; �; rj+1)

+ajbju1 (j; �; rj+1)

#
u1 (j; �; rj+1) r

2
j+1

with sWj
the sign of Wj (expression (5.27)). The radial derivatives u01 (j; �; r) and u

0
2 (j; �; r) for

the transfer matrix can be simply calculated as

u01 (j; �; r) =
du1 (j; �; r)

dr
= �u1 (j; �; r)

r
+ u2 (j; �; r)

u02 (j; �; r) =
du2 (j; �; r)

dr
= �swjw2ju1 (j; �; r)�

u2 (j; �; r)

r
:

The forward recurrence relations (5.10) then take the compact form

�
aj
bj

�
= rj

�
u2 (j � 1; �; rj) �swj�1w2j�1u1 (j � 1; �; rj)
u1 (j � 1; �; rj) u2 (j � 1; �; rj)

��
aj�1
bj�1

�
:

Approximation 3: ueff (r) = �Q0=r

In the free-of-charge region, the e¤ective potential energy is equal to ueff (r) = �Q0=r with
Q0 = Qtot="E in which Qtot denotes the total charge in the system and "E the permittivity
of the environment. With ueff (r) = �Q0=r we get from the di¤erential equation (5.16) the
piecewise di¤erential equation

d2RF (r)

dr2
+
2

r

dRF (r)

dr
+

�
�F + 2

Q0

r
� ` (`+ 1)

r2

�
RF (r) = 0

with �F = 2�. Because we are looking for bound states, for which � < 0; we will only have
to consider the case �F < 0. Then with �F =

p
2 j�j =

p
�2� the di¤erential equation in the

approximation considered here is given by

d2RF (r)

dr2
+
2

r

dRF (r)

dr
+

�
��2F + 2

Q0

r
� ` (`+ 1)

r2

�
RF (r) = 0:
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It has the following solutions depending on whetherQ0=�F is an integer or not (for the derivation
of these basis functions, see appendix A.1):

u1 (j; �; r) =

8>>><>>>:
W Q0

�F
;`+ 1

2

(2�F r)

�
r if Q0

�F
=2 N

e�
Q0
p
rr`L

(2`+1)
p�`�1

�
2Q

0

p
r
�
if Q0

�F
= p 2 N

(5.28)

u2 (j; �; r) =

8>>>>>>>>><>>>>>>>>>:

M Q0
�F

;`+ 1
2

(2�F r)

�
r if Q0

�F
=2 N

0@ rZ
0

e2
Q0
p
r

�h
r`+1L

(2`+1)
p�`�1

�
2Q

0

p
r
�i2

dr + C

1A
�e�

Q0
p
rr`L

(2`+1)
p�`�1

�
2Q

0

p
r
� if Q0

�F
= p 2 N

(5.29)

with W�;� (x) and M�;� (x) Whittaker functions, L
(�)
p (x) an associated Laguerre polynomial

and C a constant.
There are no analytic expressions for the contribution to the normalization integral. We

thus have to rely on numerical integration. This is not a big problem because the contribution
of this type of solution to the total integral is relatively small.

5.3.4 Counting nodes - bracketing

From section 5.2 on the orbital bookkeeping, it is clear that it is important for the process of
�nding eigenenergies that the quantum numbers n and ` can be �xed. As for the `-value, this
is simple because it is an input parameter for the piecewise basis functions. Because there is
no analytical relation between the quantum number n and the wave function and energy of a
state, this quantum number cannot be �xed easily. As mentioned in section 5.1, the principal
quantum number n is linked to the number of nodes of the wave function. Because in the
Transfer Matrix Method the piecewise wave functions are given by an analytical function in
the intervals, determining the number of nodes is relatively easy.

Number of nodes in an interval

We restrict the discussion of the determination of the number of nodes to the approximation
ueff (r) + ` (`+ 1) = (2r2) = ueff (j) + ` (`+ 1) = (2rjrj+1) because the wave functions will only
have nodes in the region where this approximation can be used. There is a distinction between
the cases Wj = 2�� [2ueff (j) + ` (`+ 1) = (2rjrj+1)] � 0 and Wj < 0.
If Wj � 0 the wave function has nodes in the interval j where

tan [wj (r � rj)] = �
bjwj
aj

:

The function tan (cx) has a period T equal to T = �=c: So in the interval there will be at least

(nj)min = int
�
hj
T

�
= int

�
wjhj
�

�
nodes and at most one more. So the number of nodes nj in interval j lies between

(nj)min � nj � (nj)min + 1:
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Whether nj is even or odd can easily be determined from the values of the wave function at
the interval boundaries (which were calculated and stored during the recurrence procedure): if
R(rj) �R(rj+1) > 0 then nj is even and if R(rj) �R(rj+1) < 0 then nj is odd.
If Wj < 0 the piecewise wave function can have at most one node: if R(rj) �R(rj+1) < 0.
One has to pay attention to double counting if the wave function is zero in a mesh point.

Bracketing

Every routine for �nding a zero x0 of a function f (x) needs a lower and an upper bound xlower
and xupper for the argument in between which the zero has to be found. These bounding values
xlower and xupper are called brackets. Determining good brackets is crucial for the process of
�nding a zero, but usually it is not easy. The brackets have to enclose the zero as tightly as
possible and it is not allowed that the bracket interval contains more than one zero. Checking
whether the interval [xlower; xupper] contains an even or odd number of zeros can easily be done
by calculating the product A = f (xlower) � f (xupper). If A is positive, the interval contains
an even number of nodes and the brackets have to be modi�ed for sure. If A is negative, the
interval contains an odd number of nodes, but one cannot tell whether it is just one or maybe
three or �ve or ...
So in using the function (5.14) or (5.15) for �nding the correct eigenvalue �n;`, we need to

supply the routine with values �lower and �upper in between which the eigenvalue �n;` is situated.
There corresponds an �energy� �lower to a trial wave function R�lower (r) that has n � 1 nodes
and ful�lls the boundary condition at one end but not at the other end. Another trial wave
function R�upper (r) that has n nodes and ful�lls the boundary condition at one end but not
at the other end, has an �energy� �upper. This is visualized in �gure 5.6 for the case where a
wave function with n = 1 is sought with as boundary conditions that the wave function is zero
at r = rO and at r = r1.
It is an important advantage of the Transfer Matrix Method that the number of nodes of a
function can easily and (almost certainly) correctly be determined. In this way we can �nd
good brackets for the search of an energy level �n;`. We just have to �nd two �trial wave
functions�with as input the correct `-value and which satisfy only one boundary condition.
One of those functions should have n � 1 nodes, with corresponding energy �lower; and one
should have n nodes, with corresponding energy �upper.

Figure 5.6: Visualization of the case where a wave function with n = 1 is sought with as
boundary conditions that the wave function is zero at r = RO and at r = R1. The black solid
curve represents the correct wave function with energy �n;`, the red dashed curve represents a
trial wave function with �energy��lower and the blue dash-dotted curve represents a trial wave
function with �energy��upper.
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5.3.5 Advantages over some other methods

In some methods, like in the �nite elements or the �nite di¤erence method, the values of the wave
function are only known in the mesh points. In the Transfer Matrix Method also information
of the wave function in between mesh points is known because of the use of piecewise analytical
wave functions. This has advantages for

1. bracketing: because in �mesh-only methods�there is no information on the behavior of
the wave function in between the mesh points, one cannot be sure that all nodes of the
wave function are detectable: one has to rely on changes in sign of wave function values
in subsequent mesh points. As seen in section 5.3.4, the Transfer Matrix Method allows
for a quite certain determination of the number of nodes. This advantage is of course
most important for highly oscillating wave functions.

2. the number of mesh points: because more information is known about the wave function
in between mesh points, less mesh points are needed to determine the energies.

3. calculation of the normalization integral: in �mesh-only methods� one has to rely on
numerical integration, e.g. linear interpolation, to calculate interval contributions to the
normalization integral. This leads to a loss in accuracy. By using piecewise analytical wave
functions, the contribution of an interval to the normalization integral can be calculated
quickly and much more accurately.

4. implementing the boundary condition for r !1: because an analytical solution can be
derived for the region outside the nanoshell where no charge is present, the boundary
condition for r !1 does not have to be implemented in a �nite mesh point.
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Chapter 6

Ideal Fermi gas in a spherically
symmetric potential well

The purpose of this chapter is to investigate whether with the Transfer Matrix Method orbital-
based calculations can be performed for SiO2-Au nanoshells of manufacturable sizes. For this
purpose, we study two exactly solvable systems that can be considered as �rst approximations to
the real nanoshell system: an in�nite and a �nite spherically symmetric potential well between
RC and RS that con�ne non-interacting fermions. The results dicussed in this chapter represent
original, unpublished work derived in the framework of the current Ph.D. thesis.
The chapter consists of three sections. In the �rst section, the details of the calculations are

given for the in�nite as well as for the �nite potential well, both in the exact approach and with
the Transfer Matrix Method. The results of the calculations are shown in the second section,
where we compare both approaches and both systems. We also comment on the size-dependency
of the Fermi energy of the in�nite well. The last section contains a conclusion.

6.1 Calculation details

The radial di¤erential equation for the non-interacting electrons in a spherically symmetric well
described by the potential energy uwell (r) is given by

1

r2
@

@r

�
r2
@

@r

�
Rn;` (r) +

�
2��

�
2uwell (r) +

` (`+ 1)

r2

��
Rn;` (r) = 0: (6.1)

6.1.1 In�nite well

The in�nite potential well is described by

u1well(r) =

�
0 for RC < r < RS

1 elsewhere
:

No approximation

The potential energy is zero inside the entire shell. Because �n;` > 0 the wave function has the
form (see section 5.3.3)

Rn;`(r) =
�
aj`(�n;`r) + by`(�n;`r) for RC < r < RS

0 elsewhere

with j` (x) and y` (x) spherical Bessel functions and �n;` =
p
2�n;`. The boundary conditions on

the wave function are Rn;`(RC) = 0 and Rn;`(RS) = 0. Using the boundary condition at r = RC
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and the expression (5.25) for the de�nite integral of the piecewise wave function, we get the
following analytical expression for the normalized wave function:

Rn;`(r) =

s
2

R3Sz
02
` (�n;`RS)�R3Cz

02
` (�n;`RC)

z` (�n;`r) (6.2)

with

z` (�n;`r) = j`(�n;`r)�
j`(�n;`RC)

y`(�n;`RC)
y`(�n;`r) (6.3)

z0` (X) =
dz` (x)

dx

����
x=X

:

From expressions (6.2), (6.3) and the boundary condition at r = RS, the two boundary condi-
tions can be summarized in one function

f1well (�) = j`

�
RC

p
2�
�
y`

�
RS

p
2�
�
� j`

�
RS

p
2�
�
y`

�
RC

p
2�
�

(6.4)

which is equal to zero if the boundary conditions are ful�lled. This function f1well (�) is shown
in �gure 6.1 for three di¤erent values of ` for the �rst three zeros, and in �gure 6.2 for one value
of ` but for a wider range of �-values. From �gure 6.1 it is clear that

�n;` < �n;`0>`

�n;` < �n0>n;` (6.5)

��n;�`=1 � ���n=1;`:

From �gure 6.2 we see that for a given `-value the spacing between zeros increases with increas-
ing n-value:

�n+1;` � �n;` < �(n+i)+1;` � �(n+i);` with i 2 N0: (6.6)

The energy levels for ` = 0 can be calculated analytically: since j0 (x) = sin (x) =x and
y0 (x) = � cos (x) =x [1,86], a zero value of f1well (�n;`) is found for sin

�
(RS �RC)

p
2�n;0

�
= 0.

Hence the zeros for ` = 0 are given by

�n;0 =
1

2

�
�

RS �RC

�2
n2 with n 2 N0:

To �nd the single-particle energies for arbitrary `-value numerically, we considered the dimen-
sionless argument x = RC

p
2�. Successive zeros of f1well (xn;`) for the same `-value turn out

to be approximately equally spaced. We then used the following brackets to �nd xn;`:

xlower =

8>><>>:
�
xn;`�1 � x1;0

2
n = 1

xn�1;` +
x1;0
100

n > 1
to start the p�th iteration

xhigher;n�1;` +
�xbrac
2

during an iteration
xhigher = xlower + isufficient�xbrac

with

�xbrac =

8<:
x1;0
10

n � 2

xn�1;`�xn�2;`
10

n > 2
:

By �the p�th iteration�is meant the iteration for which the p�th trial chemical potential � (p)
is considered, as explained in section 5.2. The value of isufficient was obtained by successively
adding �xbrac to xlower until f1well (xlower)� f1well (xhigher) < 0. For the orbital bookkeeping
we need estimates for � (1) and � (p). Because the chemical potential of a nanoshell is expected
to be of the order of magnitude of the bulk Fermi energy �F;bulk, but somewhat higher because
of the con�nement, we have used � (1) = �F;bulk and � (p) = � (p� 1) + �F;bulk=100.
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Figure 6.1: The function f1well (�), expression (6.4), for di¤erent `-values - ` = 0 (black solid
line), ` = 1 (red dashed line) and ` = 2 (green dash-dotted line) - for a spherically symmetric
in�nite potential well with inner radius RC = 40 nm and outer radius RS = 55 nm in the
energy range 0 � � � 5� 10�5 a.u.

Figure 6.2: The function f1well (�), expression (6.4), for ` = 0 for a spherically symmetric
in�nite potential well with inner radius RC = 40 nm and outer radius RS = 55 nm in the
energy range 0 � � � 25� 10�5 a.u.
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Approximation [` (`+ 1) =r2]j = ` (`+ 1) = (rjrj+1)

From section 5.3.3 on orbital calculation, we �nd that for ueff (r) = 0 and if the approximation
[` (`+ 1) =r2]j = ` (`+ 1) = (rjrj+1) is used, the piecewise basis functions in the intervals are go-
niometric or hyperbolic functions depending on whether � is smaller or larger than the piecewise
centrifugal term. The Transfer Matrix Method has the advantage that the number of nodes of
a trial wave function can be calculated fast and accurately (see section 5.3.4), so in addition to
using the knowledge of the approximate distance between successive energies we could check
whether the guessed brackets were indeed good brackets and adjust them if necessary.
In the calculations we used forward recurrence with the coe¢ cients ajO+1 = 1 and bjO+1 = 0

at r = RC . The function that has to be zero for the correct boundary condition at r = RS was
taken to be f (�) = Rn;`(RS) = bjRS (�) =RS.

6.1.2 Finite well

When considering a �nite potential well, values for the potential energies outside the well are
needed. To determine a value for the potential energies in the core and the environment, we
used the de�nition of the work functionW . The work function is de�ned as the smallest amount
of energy that is necessary to pull one electron out of a material. The electrons that are most
easily pulled out, are the electrons at the Fermi surface. So the work function can be viewed as
an energy barrier that electrons at the Fermi level should overcome to escape from the material.
With this in mind, we used a �nite potential well with the following characteristics:

ufinwell(r) =

8<:
uC = �F +WAu!SiO2 if 0 � r � RC

uS = 0 if RC < r < RS

uE = �F +WAu!vacuum if RS � r
:

Because up to now only bulk values of the involved energy quantities are known, we rely on
these values:

value ( eV) Ref.
�F;bulk 5:53 [58]

WAu!SiO2;bulk 3:8 [35]
WAu!vacuum;bulk 5:38 mean of values given in Ref. [40]

:

No approximation

We are looking for bound states, so �n;` < uC and �n;` < uE. Then the normalized piecewise wave
functions in the core (C), shell (S) and environment (E) which ful�ll the boundary condition
that the wave function is integrable, can be straightforwardly calculated as (see section 5.3.3):
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with the newly introduced functions de�ned as
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From the requirement that the wave function and its derivative should be continuous at the
shell boundaries, we can again derive an analytical expression for a function which is equal to
zero if and only if the boundary conditions are satis�ed:

ffinwell(�) =
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In this expression,
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The function (6.7) has globally the same behavior as the function (6.4) of the in�nite well,
with zeros for the same `-value shifted to lower energy by a very small amount with respect
to the distance between the zeros. We therefore used the same procedure to determine the
relevant orbitals as in the case of the in�nite well.
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Approximation [` (`+ 1) =r2]j = ` (`+ 1) = (rjrj+1) in the well

In the region that contains the origin, the modi�ed spherical Bessel functions of the third
kind is excluded by the boundary conditions so bO = 0. The recurrence can thus be initiated
by determining ajO+1 and bjO+1 from expression (5.12) and (5.9) with the appropriate basis
functions and starting coe¢ cient aO. The recurrence can be ended in r = RS where the
function (5.14) can be applied with a modi�ed spherical Bessel function of the third kind,
k` (�ERS), for u1 (j1; �; R1).

6.2 Results

We determined the occupied bounded states as explained in sections 5.2 and 5.3. For the
in�nite and �nite well with RC = 40 nm and RS = 55 nm approximately 26 � 103 di¤erent
radial orbitals had to be determined with nmax ' 57 and `max (n = 0) ' 648:

6.2.1 Comparison of used approaches

We quantitatively compared the energy levels of the in�nite well obtained by the calcula-
tions without approximation and by the calculations with the Transfer Matrix Method (TMM)
with 1, 10, 20 and 100 mesh points per nm. We looked at the relative error �rel de�ned
as �rel =

�����(exact)n;` � �
(TMM)
n;`

�
=�
(exact)
n;`

���. The mean relative error h�reli and maximum relative

error (�rel)max are given in the table below.

h�reli (�rel)max

1 point per nm 4:5� 10�4 4:3� 10�2

10 points per nm 8:2� 10�6 9:1� 10�4

20 points per nm 2:7� 10�6 4:1� 10�4

100 points per nm 1:8� 10�7 1:6� 10�6

Already for 1 mesh point per nm (i.e. 15 mesh points in the shell), the mean relative error
on the energy levels is as low as 4:5 � 10�4. For a similar accuracy, 33000 grid points were
needed when using �nite element integration for nanoshells with an overall size smaller than
16 nm (the shell thickness we considered) and a shell thickness not larger than 2 nm [106]. The
smaller number of mesh points is a big advantage of the Transfer Matrix Method since more
mesh points lead to more round-o¤ errors and more data to be stored.
Another advantage of the Transfer Matrix Method is that one does not need more �recur-

rence points�(points used for the recurrence to �nd the eigenenergies) if one wants to calculate
or visualize the wave functions or density in more mesh points. For each �recurrence interval�,
the basis functions and the values of their coe¢ cients are known. This allows to calculate more
values of the wave functions in the interval between the �recurrence points�.
We show in the table below the time needed for the calculation without approximation in

which the wave functions and density are calculated in 20 mesh points, and with the Transfer
Matrix Method (TMM) for di¤erent numbers of mesh points in the in�nite potential well. In
this table, t� denotes the time needed to calculate the energy levels and tR;n the time needed
to calculate the wave functions and the density of the ideal Fermi gas. The calculation time
for an ideal Fermi gas will be approximately equal to the calculation time of one iteration in
a Kohn-Sham calculation. The calculations were performed on a 64 bit desktop (AMD Dual
Core 3:0 GHz).
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t� (s) tR;n (s)

exact, 20 points per nm 8 247

TMM, 1 point per nm 3 1

TMM, 10 points per nm 47 3

TMM, 20 points per nm 127 3

The calculation time is of course an increasing function of the number of mesh points. The
calculation of the energy levels takes less time in the exact approach, except if only 1mesh point
per nm is considered in the Transfer Matrix Method. The calculation of the wave functions
takes much more time in the exact approach for the considered numbers of mesh points. The
analysis of the relative error on the energy levels showed that when using the Transfer Matrix
Method, 20 mesh points per nm gives a su¢ cient high accuracy. With this number of mesh
points the calculations for the benchmark nanoshell take a reasonable amount of time.

6.2.2 In�nite versus �nite well

In �gure 6.3 we show the single-particle density jRn;` (r)j2 in the in�nite well for di¤erent values
of n and `. From this �gure it is clear that the quantum number n is indeed related to the
number of nodes in the potential well. The single-particle density is not symmetric with respect
to the center of the well as is the case for a one-dimensional square well (cfr. �gure 1.1). There
are two terms in the radial di¤erential equation,

@2Rn;` (r)
@r2

+
2

r

@Rn;` (r)
@r

+

�
2��

�
2uwell (r) +

` (`+ 1)

r2

��
Rn;` (r) = 0;

that cause an opposite asymmetry of the single-particle density with respect to the center of
the well. The term 2

r

@Rn;`(r)
@r

results in more weight of the density in the inner half of the shell
because of the 1=r factor which lowers the change @Rn;` (r) =@r in the wave function more with
increasing r. This e¤ect is clearly seen from the plot in �gure 6.3 of the single-particle density
of a state with ` = 0. The centrifugal term ` (`+ 1) =r2 on the other hand leads to more
weight in the outer half of the shell because it results in a lower e¤ective potential energy at
larger r-values. This term can lead to a very asymmetric single-particle density as is shown in
�gure 6.3 for two states with ` = 628.
Although the highly asymmetric states with large `-value each have a larger contribution to the
density than a state with low `-value, n (r) = 1

4�

XX
2 (2`+ 1) jRn;` (r)j2, the total density is

rather symmetric with respect to the center of the well, see �gure 6.4. At the well boundaries the
density shows strong oscillations around the homogeneous density. These are a consequence
of the Gibbs phenomenon. This phenomenon occurs if in an eigenfunction expansion of a
function at a discontinuity, only a �nite set of eigenfunctions is taken into account. The density
shown in �gure 6.4 is constructed from a �nite number of orbitals and as such displays the
oscillatory behaviour of the radial wave functions. The amplitude of the oscillations decreases
if more eigenfunctions are taken into account. This is clear from �gure 6.5 in which the density
is shown for two nanoshells that di¤er considerably in size and therefore also in number of
orbitals. In the �gure also an asymmetry with respect to the center of the well is observed.
This asymmetry also decreases with the number of eigenfunctions taken into account.
Figure 6.4 shows that the density of the �nite well is very similar to that of the in�nite well
and shows a small spill-out.
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Figure 6.3: Single-particle density jRn;` (r)j2 in a spherically symmetric in�nite potential well
with RC = 40 nm and RS = 55 nm for (n; `) = (1; 0) (black solid line), (n; `) = (2; 0) (red
dashed line), (n; `) = (1; 628) (blue dashed-dotted line) and (n; `) = (2; 628) (magenta short-
dashed line).

Figure 6.4: Density of non-interacting electrons in a spherically symmetric in�nite (black line)
and �nite (red line) potential well with RC = 40 nm and RS = 55 nm.
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Figure 6.5: Part of the density of non-interacting fermions in a spherically symmetric �nite
potential well to illustrate the Gibbs phenomenon and asymmetry in a well with
(RC ; RS) = (40; 55) nm (black solid line) and with (RC ; RS) = (3; 5) nm (red dashed line).

As for the energy spectrum, there is also a small di¤erence between the in�nite and the
�nite potential well, as shown in �gure 6.6. The energy levels of the �nite well are somewhat
lower than those of the in�nite well. One way to understand this is by looking at the analytical
expression for the energy levels �n;0 of the in�nite potential well:

�n;0 =
1

2

�
�

RS �RC

�2
n2: (6.8)

From this expression it is clear that if the well gets wider, the energy lowers. A wider well
means that the electrons can spread out over a wider region. For a �nite well, due to spill-out,
the electrons also have a wider reach than in the in�nite potential well with the same size.
It also follows from expression (6.8) that the wider the well, the closer the energy levels. In the
limit of an in�nitely wide well there will thus be a continuous spectrum as expected for a bulk
jellium system.



88 Ideal Fermi gas in a spherically symmetric potential well

Figure 6.6: Part of the energy spectrum of the in�nite (black circles) and �nite (red squares)
spherically symmetric potential wells with RC = 40 nm and RS = 55 nm.

6.2.3 Fermi energy as function of shell thickness

We calculated the Fermi energy for in�nite wells with RC = 40 nm and di¤erent RS-values, of
55 nm and higher.
With the exact calculations we were able to reach RS = 90 nm. From that radius on, the
Fermi energy started to rise until at RS = 115 nm it reached the maximum value allowed in
the program, �F = 2�F;bulk. This unphysical behavior is probably caused by skipping energy
levels. If energy levels are skipped, then energy levels will be taken into account to calculate
the Fermi energy that are higher than the ones that are contributing in reality. This is possible
because the calculation for a certain RS is ended depending on the value of the function (5.3)
in which no energy levels enter but only the `-values of the calculated orbitals. It thus seems
advisable also in this approach to check the number of nodes of the wave functions and to
adjust the brackets if necessary. This means that a su¢ cient number of mesh points has to
be considered, especially for higher energies. From this result it is again clear, as mentioned
earlier, that an e¢ cient bracketing procedure is crucial.
In the case with the approximation [` (`+ 1) =r2]j = ` (`+ 1) = (rjrj+1) in the shell, we calcu-
lated the Fermi energy for RS = (55; 56; :::; 90) nm, and for RS = 100 nm, RS = 115 nm, and
RS = 130 nm. In these calculations we considered 20 mesh points per nm. From the values of
the Fermi energy of the wells with RS > 90 nm, shown in �gure 6.7, it is clear that the Fermi
energy indeed does not rise if RS increases. The calculations for RS = 100 nm took about 24
hours and the calculations for RS = 130 nm about 48 hours on a 64 bit desktop (AMD Dual
Core 3:0 GHz). In the case RS = 130 nm, 277093 states were calculated with nmax = 345 and
`max (n = 0) = 1543.
Up to the outer radius that was reached in both approaches, the results are approximately

the same, as shown in �gure 6.7. The con�nement of the electrons leads to a higher Fermi
energy than the bulk value for gold and the Fermi energy lowers with increasing shell thickness.
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Figure 6.7: Fermi energy of a spherically symmetric in�nite potential well with RC = 40 nm as
a function of RS calculated without approximation (black circles) and with the Transfer Matrix
Method with 20 mesh points per nm (red crosses).

To see from which overall radius on the di¤erence with the bulk Fermi energy becomes
negligible, we used Mathematica

R

to �t the calculated values to functions of the form

�0F (RS) = �0F;p (1)+C 0p=R
p
S and �F (d) = �F;p (1)+Cp=dp with d = RS�RC and p 2 N0. These

classes of functions have the correct behavior: descending as a function of RS and tending to a
�nite value as RS !1. The �2-values of �ts with p = 1; :::; 5 are:

p �2 for �0F (RS) �2 for �F (d)

1 2:59� 10�4 4:80� 10�6

2 9:60� 10�5 1:31� 10�4

3 2:25� 10�5 4:13� 10�4

4 1:26� 10�5 7:33� 10�4

5 4:54� 10�5 1:04� 10�3

The class of functions �F (d) results in the best �t. This indicates that the quantity that
determines the nanoshell properties is the shell thickness d and not the overall radius which
seems to determine the properties of solid spheres like e.g. the work function [131]. Since p = 1
leads to the best �t, the Fermi energy of a nanoshell can then be written as a function of the
shell thickness d as

�F (d) = �F (1) +
C

d
with C a constant. With the Fermi energy expressed in eV and the shell thickness in nm,
we �nd for RC = 40 nm that the �tting parameters are equal to �F (1) = 5:52091 eV and
C = 0:71875 nm eV. The data points together with the best �t and �F (1) are shown in
�gure 6.8. The relative di¤erence [�F (d)� �F (1)] =�F (1) is shown in �gure 6.9 for the case
RC = 40 nm. This �gure indicates that con�nement e¤ects are not negligible for nanoshells.



90 Ideal Fermi gas in a spherically symmetric potential well

Figure 6.8: Calculated values of the Fermi energy of spherically symmetric in�nite wells with
RC = 40 nm and di¤erent values of RS (black dots), best �t of �F (d) = �F (1) + C=d (blue
solid line) and �F;p (1) of the best �t (red dashed line).

Figure 6.9: Relative di¤erence between the Fermi energy �F (d) of a spherically symmetric in�-
nite potential well and the bulk limit Fermi energy �F (1) as a function of the shell thickness d.
The inner radius is equal to RC = 40 nm. A log-log plot is used to indicate the orders of
magnitude.
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6.3 Conclusion

Comparison with analytical results of an ideal Fermi gas in a spherically symmetric potential
well indicates that the Transfer Matrix Method is appropriate to calculate the orbitals of a
nanoshell. It o¤ers a way to solve the single-particle Schrödinger equations with a number of
grid points that is about thousand times smaller than the number of grid points needed in
the Kohn-Sham calculations for small nanoshells based on Runge-Kutta integration [106]. The
method is also relatively fast and allows for secure bracketing of the eigenenergies.
Performing the calculations it became however clear that also an orbital-based treatment us-

ing the Transfer Matrix Method is very demanding for manufacturable-size SiO2-Au nanoshells.
We managed to treat this model for the benchmark nanoshell with (RC ; RS) = (40; 50) nm in
a reasonable amount of time, but the calculation time rapidly increases with increasing shell
thickness. Furthermore, memory problems arise because information on the orbitals has to be
stored until the Fermi level is found and the density has been calculated.
To calculate the ground-state properties of nanoshells with dimensions that can be fabricated

at present, we thus have to rely on methods without orbital calculations (which have the
additional advantage that no orbital bookkeeping is involved). The next part of this thesis is
dedicated to such a method.
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In the previous part of this thesis it became clear that it is very demanding to perform
orbital-based calculations for SiO2-Au nanoshells for which at the moment the smallest manu-
facturable sizes are (RC ; RS) = (40; 55) nm. If the size of the nanoshells increases, an orbital-
based treatment quickly becomes impossible. For nanoshells of these dimensions we thus have
to rely on orbital-free methods. Because of the disadvantages of existing orbital-free methods
mentioned in section 2.4, we developed a new orbital-free method called �density-functional
Monte Carlo�(abbreviated as DFMC). Basically it is a direct numerical minimization of the
energy functional by a Monte Carlo algorithm without the detour over the Euler equation (2.22)
on which existing orbital-free implementations are based. In the DFMC method, the density is
guaranteed to be non-negative in the entire domain and the number of particles is kept constant
by construction. The algorithm is not based on solving a non-trivial di¤erential, integral or
integro-di¤erential equation, but on the calculation of an integral, which is computationally
easier.
This third part of the thesis contains four chapters. In chapter 7 some basic background

is sketched concerning the Monte Carlo part of the method. That chapter is followed by an
outline of the general procedure of the DFMC method. In chapter 9 we explain how we
applied DFMC to nanoshells and what are the results. Chapter 10 contains a conclusion of
the performed calculations. The part is ended with a positioning and outlook of DFMC.

The basics of the DFMC method and its application to the benchmark nanoshell are pub-
lished as K. Putteneers, F. Brosens, Monte Carlo implementation of density-functional theory,
Phys. Rev. B 86, 085115 (2012).
Some of the material was also presented as a poster �Density-functional Monte Carlo for cal-
culating properties of nanosystems�, resulting in the second prize of the European Physical
Journal Best Poster Contest at the General Scienti�c Meeting of the Belgian Physical Society
in Namur on May 25, 2011. This prize led to the invited publication K. Putteneers, Density-
functional Monte Carlo for calculating properties of nanosystems, B�, Belgian Physical Society
Magazine, nr. 3 (2011).
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Chapter 7

Useful background

In this chapter some useful background is sketched for the newly developed density-functional
Monte Carlo method. In the �rst section we explain how random numbers can be sampled
according to a given distribution. This section is followed by an exposition of the minimization
of a multidimensional function based on simulated annealing. The �nal section of this chapter
outlines how free di¤usion can be generated by using random numbers.

7.1 Sampling random variates according to a given dis-
tribution

For the method we propose, we need a way to generate random numbers according to a given
probability distribution. Such a probability distribution is described by a function p (x) of
variables x = fx1; :::; xMg on a domain 
 that has the properties

8x 2 
 : p (x) � 0 (7.1)Z



p (x) dx = 1: (7.2)

We thus want to generate random numbers with more numbers in the region where p (x) has
higher values, and less in the region where p (x) has lower values. Such randomly drawn values
of a variable are called variates or deviates.
In this section, we discuss three methods to generate such random numbers. In all methods,

use is made of numbers that are uniformly distributed in the interval [0; 1], which means that
all numbers generated have an equal probability to occur in this interval. The probability of
generating such a number between x and x+ dx, is then given by

p (x) dx =

�
dx 0 < x < 1
0 otherwise

: (7.3)

This uniform distribution is denoted by U (0; 1). There exist numerous ready-to-use algorithms
for drawing numbers according to this distribution. Below, we denote variates drawn according
to this distribution by �, and variates that are drawn according to another distribution by �.
We discuss three ways to generate random numbers according to a distribution that dif-

fers from U (0; 1). The �rst two are classi�ed as �transformation method�. The third one is
called �rejection method�. We have only used the last method in our calculations, but the
other methods can also be of use for DFMC calculations. More information can be found in
e.g. Ref. [98].
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7.1.1 Transformation method

Based on the Jacobian

The following rule can be used to generate random numbers according to a wanted distribution
~p (y) starting from a distribution p (x).
Suppose that we generate a deviate �1 according to a one-dimensional probability distri-

bution function p (x) and take some prescribed function of it, y (�1). Then the probability
distribution of y, denoted as ~p (y) dy, is determined by the fundamental transformation law of
probabilities, which is

j~p (y) dyj = jp (x) dxj
or

~p (y) =

����dxdy
���� p (x) : (7.4)

In M dimensions this rule becomes

~p (y1; :::; yM) = J (x;y) p (x1; :::; xM)

in which the Jacobian J (x;y) is given by the determinant

J (x;y) =

������
@x1
@y1

::: @x1
@yM

::: ::: :::
@xM
@y1

::: @xM
@yM

������ :
As an illustration, suppose one wants to draw random numbers that are exponentially

distributed, e.g. for simulating radioactive decay of nuclei. If we draw random numbers �
according to U (0; 1), then the numbers � = y (�) = � ln (�) are distributed as exp (�y).
Indeed:

~p (y) =

����dxdy
���� p (x)

y = � ln (x)
Eq. (7:3)

=

����d (e�y)dy

���� = e�y:

A famous transformation that makes use of the multi-dimensional version of this method
is the Box-Muller transformation to generate normal (Gaussian) distributed random numbers
based on uniformly distributed random numbers.

Based on the cumulative distribution function

This method can only be applied for one-dimensional distribution functions ~p (y). Deriving
variates according to ~p (y) from uniformly distributed variates is, according to equation (7.4)
and de�nition (7.3), equivalent to solving the di¤erential equation

dx

dy
= ~p (y) :

But the solution of this di¤erential equation is just x = F (y) ; with F (y) =
R y
�1 ~p (y

0) dy0 the
integral of ~p (y) called the cumulative distribution function. This is a function that monoton-
ically increases from F (�1) = 0 to F (+1) = 1. The desired transformation that takes a
uniform deviate � into a deviate � that is distributed as ~p (y), is therefore

� = F�1 (�)

with F�1 the inverse function of F . This is graphically visualized in �gure 7.1.
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Figure 7.1: Visualization of the transformation method based on the use of the cumulative
distribution function (�gure taken from Ref. [98]).

Whether this method is feasible depends on whether the inverse function of the integral of
~p (y) can be computed. If it is not possible to calculate this function analytically, a numerical
version of the method might o¤er a solution. Therefore one constructs a grid with J grid points
characterized by indices j and y-values yj. One calculates the values of ~p (y) on the grid, call
these ~pj. The value of the cumulative distribution function Fj in grid point j is then given by

Fj =

jX
j0=1

~pj0 ;

or a more sophisticated numerical calculation of the integral. The procedure is then to generate
a variate � 2 U (0; 1) and to check for which interval j this � ful�lls the condition Fj � � < Fj+1.
The variate according to ~p (y) is then equal to yj.

7.1.2 Rejection method

The rejection method is a general technique for generating random variates whose distribution
function ~p (y) is known and computable. The method does not require a computable cumulative
distribution function, nor its inverse. It can be applied for multi-dimensional distribution
functions, but the e¢ ciency quickly decreases with increasing number of dimensions.
We will explain the principle based on the geometrical picture of a one-dimensional distri-

bution, see �gure 7.2. Draw a graph of the probability distribution ~p (y) according to which
one wants to generate deviates. The area under this curve in any range of y corresponds to
the desired probability of generating a deviate � in that range. Now if we could generate (two-
dimensional) random points (y; z) with uniform probability under the curve, then the y-values
of those random points would have the desired distribution. Generating such uniform random
points under the area can be done as follows. On the same graph, draw another curve f (y) that
has a �nite area, lies everywhere above the probability function ~p (y) and according to which
one knows how to draw a random number. Now generate such a random number � according
to f (y). Then pick a random number � which is uniformly distributed between 0 and f (�)
(this can be done as � = f (�) � with � 2 U (0; 1)). If � � ~p (�), then accept �, else reject the
variate.
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Figure 7.2: Geometrical picture of the rejection method in one dimension.

A well-known example in which the rejection method is used, is the calculation of � with
random numbers. In this method one wants to generate points which are randomly distributed
in a circle, say the unit circle. One does this by generating points (x; y) which are uniform
randomly distributed in a square with side 1 (x 2 U (0; 1) and y 2 U (0; 1)) and then only
accept the points for which r =

p
x2 + y2 � 1.

7.2 Optimization inspired by simulated annealing

The idea behind density-functional Monte Carlo is to perform a direct numerical minimization
of the energy functional. Numerically, the density is given by Nx �Ny �Nz values nx;y;z if N�

is the number of grid points in direction �. The energy then in fact depends on Nx �Ny �Nz

variables, the values of the density nx;y;z in the mesh points. Such a function that depends
on many variables and that one wants to optimize, is called a cost function or objective
function. The problem of minimizing a cost function is called multivariate or combinatorial
optimization. In 1983 Kirkpatrick et al. [57] noticed that this di¢ cult kind of problem can be
solved with the aid of statistical mechanics if the size of such an optimization problem is large
enough. The original idea, �simulated annealing�, is quite well-known and often used. We will
explain it below, followed by two other methods that are derived from the basic idea. Although
we have only used the third method in the DFMC calculations, the two other methods can
equally well be used.
Before explaining the methods, we �rst brie�y mention some related ways that can be used to
perform a multivariate optimization, and how Kirkpatrick and co-workers came up with the
idea that one could make a link with statistical mechanics.
Before the work of Kirkpatrick et al., there existed two solution types for the problem of

multivariate optimization: �exact�methods, of which the computer e¤ort scales exponentially
with the number of variablesM , and �heuristic�methods, of which the computational require-
ments are proportional to small powers of M . Of the last type there were two basic strategies.
The �rst one is the divide-and-conquer method in which the problem is divided in subprob-
lems that are solved separately and in the end patched back together. The second one is called
iterative improvement. In this method, an initial con�guration is rearranged until a con�g-
uration is found that improves the objective function. Then the procedure continues from this
con�guration. This process is carried on until no further improvements of the cost function can
be found. Because only con�gurations are accepted that improve the objective function, the
procedure usually gets stuck in a local minimum, and the sought global minimum is not found.
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Therefore it was customary to repeat the process several times starting from di¤erent initial
con�gurations, and to retain the best result.
Analysis of the results of the above mentioned methods were mainly focussed on �worst

case situations�where the procedures do not perform well. Kirkpatrick et al. argued in their
work [57] that as the size of the optimization problem increases, the worst-case analysis becomes
less important, and the average performance of the algorithms dominates the analysis. This
observation led them to make the link to statistical mechanics, the domain of the large number
limit.

7.2.1 Simulated annealing - Metropolis acceptance

Kirkpatrick and co-workers remarked that the search in statistical mechanics for the ground
state of systems with a large number of atoms can be used to solve optimization problems. In
this search it was found that, although at low temperature ground states and con�gurations
close to them dominate the collection of possible con�gurations, in practical contexts low tem-
perature is not a su¢ cient condition for �nding the ground state of a system. It appeared that
the procedure to reach this state is of non-negligible importance. That is why in experiments
to �nd the low-temperature state of a material, a process called �annealing�is used. In this
process the substance is �rst melted. Then the temperature is lowered slowly and a long time
is spent at temperatures in the vicinity of the freezing point. If one does not apply this careful
melting-freezing procedure, then e.g. growing a single crystal from a melt can lead to a crys-
tal with many defects or a glass with only metastable, locally optimal structures. This is for
example the case in extremely rapid quenching from high temperatures to zero temperature,
which can be viewed as the physical analogue of iterative improvement.
The importance of the careful annealing process can be understood using statistical me-

chanics of the canonical ensemble, an ensemble in which the number of particles is conserved
but that can exchange energy with its environment. A possible con�guration of particles in
such an ensemble is de�ned by the set of particle positions frig. In a canonical ensemble in
thermal equilibrium at a given temperature T , each possible con�guration of particles has a
Boltzmann probability P (frig) to occur which is given by

P (frig) =
1

Z exp
�
�E (frig)

kBT

�
(7.5)

with E (frig) the energy of the con�guration, kB Boltzmann�s constant and Z the canonical
partition function. With this probability the ground state is the dominant state as temperature
goes to zero. At high temperature also con�gurations with a high energy have nonzero prob-
ability to occur, although the con�gurations with a lower energy still have a somewhat higher
probability.
What happens in (simulated) annealing is the following. At each temperature higher than
T = 0, the atoms can rearrange themselves, and every con�guration has a non-zero probability
to occur. This is important because starting from a given con�guration with E = E(1), it is
possible that a small rearrangement leads to a con�guration with a higher energy E(2) > E(1),
but nevertheless this �intermediate�con�guration is necessary to get to a con�guration with a
lower energy E(3) < E(1). If one does not allow the con�guration with higher energy to occur,
but cools rapidly, one will never �nd the con�guration with E = E(3) < E(1). This is shown
simpli�ed for a one-dimensional function in �gure 7.3, from which also the di¤erence between
iterative improvement and annealing is clear.
With the annealing process it is more likely to �nd a global minimum than with rapid cool-

ing. Understanding this, one is left with the question how to numerically simulate a canonical
ensemble with the con�guration distribution (7.5) at a given temperature T . This question was
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Figure 7.3: Simpli�ed picture of the di¤erence between iterative improvement and simulated
annealing for a one-dimensional function. The arrows show the possible processes. Starting
from an initial value of the variable, an iterative improvement algorithm can go only �downhill�.
In simulated annealing the process has a probability to go uphill to look whether there is a
deeper valley, a lower minimum, when going through a con�guration with higher energy.

already answered by Metropolis et al. [78]. These researchers showed that a con�guration could
be chosen with probability P (frig) at a given temperature T as in (7.5) in the following way.
Starting from an initial con�guration, one gives an atom a small random displacement and the
resulting change in energy�E is calculated. If �E < 0, i.e., if the move would bring the system
to a state of lower energy, then the move is accepted and the con�guration with the displaced
atom is used as the starting point of the next step. If �E > 0, the move is not always rejected
as in iterative improvement: it is allowed with a probability P (�E) = exp [��E= (kBT )]. This
can be done in practice by generating a uniform random number � 2 U (0; 1). If � � P (�E),
then the move is accepted. If � > P (�E) ; the original con�guration is used to start the next
step. By repeating this basic step many times, one simulates the thermal motion of atoms in
contact with a heat bath at temperature T . The choice of P (�E) has the consequence that
the system evolves into a Boltzmann distribution.
The Metropolis procedure can be summarized as follows. Let fSg be a set of variables of the
problem. Then the probability P (fS 0g) of accepting new values fS 0g of these variables is given
by

PMetropolis (fS 0g) =
(

1 if �E � 0
exp

�
� �E
kBT

�
if �E > 0

(7.6)

with �E the di¤erence in energy with the previous values.
In the above mentioned process geometrical ergodicity is assumed: after a su¢ ciently long

time the system will have taken on all possible con�gurations and the result does not depend
on the initial con�guration.
In simulated annealing the physical annealing process is simulated by starting at a high

temperature and gradually lowering the temperature, at each temperature performing the
Metropolis procedure with a su¢ cient number of moves so that the system can reach a steady
state at that temperature.
There is one practical problem when one wants to apply simulated annealing to a multi-

variate optimization problem: there is no obvious equivalent of temperature in such problem.
Therefore an �e¤ective temperature�has to be de�ned, this means a starting temperature as
well as a way in which to change this temperature and a time after which this temperature is
changed. Therefore one �rst has to know the energy scale of the problem. One can derive this



7.3 Generating free di¤usion with random numbers 103

scale by letting the variables change for some time and calculate the occurring energy di¤er-
ences �E. Based on this analysis, one can start at an e¤ective temperature in which moves
leading to higher energy are on average accepted with a user-de�ned probability.

7.2.2 Threshold acceptance

Some years after the work of Kirkpatrick et al., Moscato and Fontanari [81], and Dueck and
Scheuer [28], proposed to use the following acceptance probability at temperature T :

Pthreshold (fS 0g) =
�
1 if �E � T
0 if �E > T

(7.7)

instead of the Metropolis probability (7.6). This deterministic update rule is called �threshold
acceptance�. The authors claimed that the stochasticity of the updating rule is not essential
to the good performance of simulated annealing and that threshold acceptance yields better
results than simulated annealing. They showed with a number of examples in which threshold
acceptance is compared with simulated annealing, that threshold acceptance indeed leads to
good results. The advantage of the method is the gain in speed because no random numbers
have to be calculated to decide on the acceptance and no exponential functions have to be
calculated. The method still needs an �e¤ective temperature�to be determined for the system
under consideration.

7.2.3 Temperature-independent acceptance

Yet another minimization scheme that is based on the idea of simulated annealing, is a proce-
dure for which no e¤ective temperature has to be de�ned. The acceptance probability in this
�temperature-independent acceptance�is given by

PT -independent (fS 0g) =
�
1 if �E � 0
pk if �E > 0

;

in which the probability pk < 1 is relatively high at the beginning of the procedure and is
gradually lowered during the minimization procedure. This is a probabilistic method like the
Metropolis method, but which has the advantage that one does not have to determine a system-
dependent e¤ective temperature (in the Metropolis method, pk = exp [��E= (kBT )]). Unlike
in the other schemes, at each stage in the process large positive energy di¤erences have an equal
probability to be accepted as small positive energy di¤erences. On the one hand, this can slow
down convergence. On the other hand, it allows the system also at a later stage in the process
to reach lower minima by going via con�gurations with much higher energies.

7.3 Generating free di¤usion with random numbers

In this section we explain two ways in which free di¤usion, also called Brownian motion, can be
simulated by using random numbers: by di¤usion Monte Carlo or by a Bernoulli walk. Both
methods can be used in density-functional Monte Carlo. We used the Bernoulli walk in our
calculations because of the easy bookkeeping of the corresponding density changes.
In a free di¤usion process with constant di¤usion coe¢ cientD, the density of particles n (r; t)

in a certain point r at time t is given by the equation

@n (r; t)

@t
= Dr2n (r; t) : (7.8)
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With the initial distribution
n (r; 0) = � (R) ;

the solution of equation (7.8) is given by the normal (Gaussian) distribution

nR (r; t) =
1

p
4�Dt

3 exp

 
�(r�R)

2

4Dt

!
:

The three-dimensional solution is a product of one-dimensional line-density solutions,

nR (r; t) =

"
1p
4�Dt

exp

 
�(x�X)2

4Dt

!#"
1p
4�Dt

exp

 
�(y � Y )2

4Dt

!#

�
"

1p
4�Dt

exp

 
�(z � Z)2

4Dt

!#
= nX (x; t) nY (y; t) nZ (z; t) ;

for which e.g.
@n (x; t)

@t
= D

@2n (x; t)

@x2
:

Therefore it is su¢ cient to explain how one-dimensional di¤usion can be simulated with random
numbers.
Both methods explained below have advantages and disadvantages. A big advantage of the

Bernoulli walk is that it is easy to implement and the position that a particle reaches, is easy
to track. An advantage of di¤usion Monte Carlo is that the position changes are not restricted
to a grid; for visualization or for further calculations however, the results are often binned.

7.3.1 Di¤usion Monte Carlo

One method to implement the free di¤usion time-evolution is by di¤usion Monte Carlo (DMC).
In this method, normally distributed random numbers are used (generated from uniformly
distributed random numbers by e.g. the Box-Muller method). Say one wants to describe the
di¤usion of N particles with D = 1=2. Then one makes an array with length equal to the
number of particles N . This array contains the positions x� of the particles. Then in every
time step k, the new position x(k)� of particle � is derived from the old one, x(k�1)� , by generating
a normally distributed random number with variance �2 = �t and mean � equal to the old
position, � = x

(k�1)
� . If one has a random number generator that generates random numbers �1;0

according to the standard normal distributionN (0; 1) with mean � = 0 and standard deviation
�2 = 1, then a normal random number with di¤erent values for the mean � and standard
deviation �2 can be calculated from ��;� =

p
�2�1;0 + �.

The distribution of the particles can be visualized by constructingNbin equidistant bins with
width �x and plotting the number of particles with a position in the corresponding interval.
To obtain a normalized distribution, every particle is attributed a weight w� = 1= (N ��x).
Figure 7.4 shows a couple of time steps for the di¤usion of particles that were originally situated
in the origin. For comparison the analytical solution n0 (x; t) = exp (�x2= (2k�t)) =

p
2�k�t is

also plotted.
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Figure 7.4: Three time steps in the di¤usion process for which the particles were initially
situated in the origin, calculated with di¤usion Monte Carlo (DMC; thin, light lines) and from
the analytical solution (thick, dark lines).

7.3.2 Bernoulli walk

Another way to implement the time evolution is to use a Bernoulli walk. In this method,
Brownian motion is simulated by walkers on an equidistant grid with interval width �x. In
subsequent iterations (not to be confused with the time step �t of di¤usion Monte Carlo) the
walkers make a step to an adjacent interval. To determine the direction of the move of a walker,
one generates a random number � 2 U (0; 1). In the case � < q = 1=2, the considered walker
moves �to the left�, otherwise it moves �to the right�.
That such a process leads to a normal distribution can be understood if one calculates the

probability p (�j;Nstep) that a walker reaches position x (j) = j�x on time t (Nstep) = Nstep�t
after (a large number of) Nstep time steps �t when he started on time t = 0 in the position
x (jstart) with �j = j � jstart. This position was reached by going � steps to the right and �
steps to the left. Then

j � jstart = �j = �� �

�+ � = Nstep:

Now there are
�
Nstep
�

�
possibilities to perform �j steps to the right. Then p (�j;Nstep) is given

by

p (�j;Nstep) =

( �
Nstep
�

�
qNstep =

Nstep!�
Nstep+�j

2

�
!
�
Nstep��j

2

�
!

�
1
2

�Nstep if Nstep ��j even

0 if Nstep ��j odd
:

Because Nstep is large, we can make use of Stirling�s formula

s!
s large'

p
2�ss+1=2e�s
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so that p (�j;Nstep) can be rewritten as

p (�j;Nstep) =

r
2

�

vuut 1

Nstep

�
1� (�j)2

N2
step

�  1

1 + �j
Nstep

!Nstep
2
 

1

1� �j
Nstep

!Nstep
2
 
1� �j

Nstep

1 + �j
Nstep

!�j
2

:

Now because also Nstep � �j, we can perform a Taylor expansion. Making use of the equality
exp (x) = lims!1 (1 + x=s)

s we �nally �nd that

p (�j;Nstep) '
s

2

�Nstep

exp

 
(�j)2

2Nstep

!

'
r
2�t
�t

exp

 
� �t

(�x)2
[x (j)� x (jstart)]

2

2t

!
:

From this probability, the walker line density n (x; t) per x-interval is found to be

n (x; t) =
p (�j;Nstep)

2�x
=

s
2

�Nstep

exp

 
(�j)2

2Nstep

!

=

s
�t

(�x)2
1

2�t
exp

 
� �t

(�x)2
(x�X)2

2t

!

where the factor 2 in the denominator originates from the fact that n (�j;N) = 0 if N ��j is
odd. To get a continuous expression for this density, we take the limits �x ! 0 and �t ! 0
where x and t are kept �nite. Of course also the density n (x; t) has to be �nite and this can
only be accomplished by keeping �t=�x �nite. The constant ratio

D =
(�x)2

2�t

serves as a di¤usion constant and one can write

n (x; t) =

r
1

4�Dt
exp

 
�(x�X)2

4Dt

!
:



Chapter 8

Density-functional Monte Carlo
(DFMC)

In this section some more explanation is given on the four basic steps of DFMC:

1. Construct a trial density distribution.

2. Change the density distribution.

3. Accept or reject the new distribution depending on the energy di¤erence with the previous
distribution.

4. Repeat steps 2 and 3 until a minimum value of the energy is found.

The entire process in which a minimum is found is called a run.
The procedure contains a number of parameters that have to be determined for each problem

separately. In the section following the explanation of the basic steps we give a guideline of
how appropriate run parameters can be derived. In the last section of this chapter we explain
how the work function can be calculated in the framework of DFMC.

8.1 Basic procedure

8.1.1 Construction of a trial density distribution

In DFMC calculations, the density distribution of a system is simulated by walkers on a
mesh that can for example be an equidistant grid. Let an interval be characterized by the
indices fj�; j� + 1g in each direction � and denote the volume of such interval by Vj. The
number of walkers in the interval is given by (Nw)j. Let there be N particles in the system
represented by a total of Nw walkers. There is a one-to-one correspondence between the particle
density nj and (Nw)j which is given by the relation

nj =
N

Nw

(Nw)j
Vj

: (8.1)

The procedure is initiated by generating an initial walker distribution, drawn according to
a trial distribution pro�le Nw;trial (r) based on a trial density pro�le ntrial (r) of the particles
by use of e.g. the rejection method or the transformation method.
Finding a good trial density pro�le can be done in di¤erent ways. Usually when studying

a system, one has a certain clue about the general behavior of the density. If this is not the
case, one can for example solve an approximate version of the Thomas-Fermi-Hohenberg-Kohn
equation (2.22) or one can calculate the energy functional of di¤erent pro�les and take the
density with the lowest value of the energy as the trial density.
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8.1.2 Modi�cation of the distribution

The density pro�le is changed by letting the walkers di¤use over the mesh: in a step s, a walker
is moved to an adjacent interval with equal probability in each direction. This can be done
by drawing for each direction � a random number �� 2 U (0; 1), and letting the walker move
from fj�; j� + 1g to the direction fj� � 1; j�g if �� < 0:5 and to the direction fj� + 1; j� + 2g
if �� � 0:5.
We have chosen to describe this di¤usion process by Bernoulli walks rather than by di¤usion

Monte Carlo because of the easy bookkeeping of the corresponding density changes.
Unlike in solving the Thomas-Fermi-Hohenberg-Kohn equation (2.22), the condition

n (r) � 0 is automatically satis�ed since no walker is moved from an interval with zero concen-
tration.

8.1.3 Acceptance/rejection of the new distribution

After each step s, the energy di¤erence

�E(s) = E(s)
�
n(s) (r)

�
� E(s�1)

�
n(s�1) (r)

�
(8.2)

between the energy of the new density pro�le n(s) (r) and that of the previous one, n(s�1) (r),
is calculated. Whether or not the new distribution is accepted depends on the sign of �E(s):

� if �E(s) � 0, the new density pro�le n(s) (r) is accepted.

� if �E(s) > 0, the new density pro�le is accepted with probability Pa < 1; which gives
the possibility of escaping from local minima. This acceptance probability can be con-
structed as a threshold acceptance, by Metropolis acceptance, ... The system con�gura-
tion is allowed to stabilize by gradually lowering the acceptance probability Pa each ilower
iterations.

A note for people who are familiar with Quantum Monte Carlo: in order to ful�ll the con-
dition of the second Hohenberg-Kohn theorem that the number of particles has to be constant,
no branching or killing accelerators are applied.

8.1.4 Stopping criterion

A minimization run is stopped if the acceptance probability Pa has reached a su¢ ciently low
value Pmin and if since then the minimum energy found so far has not changed for a number
istop of iterations.
Despite the introduction of a probability Pa for accepting moves with increasing energy, the

possibility of ending up in a local minimum cannot be avoided. Therefore several minimization
runs have to be performed. If the run parameters ilower; istop and the way in which Pa is
changed are properly chosen, only a small part of the runs end up in a local minimum. A value
can be considered to be a local minimum if it di¤ers more with the lowest minimum of the runs
than can be expected from numerical accuracy deviations. If more than half of the runs end in
a local minimum, this can be an indication that the run parameters are not appropriate and
as such the global minimum is actually not reached. It is then a good idea to change the run
parameters.
In theory the ground-state energy is the lowest energy that can be found. In practice there

are two problems to �nd the �theoretical�ground state.
First of all, it is impossible to simulate all possible walker pro�les.
Furthermore, calculations are subject to truncation and round-o¤ errors. To get an idea of the
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error on the results one can average over the run results, but one wants of course to exclude
the local minima. If with the chosen run parameters the share of local minima is lower than
half of the performed runs, one can exclude these minima by only retaining the results which
are equal to or lower than the median Emed of the minimum energies. One thus only retains the
energies Ep for which

Ep � Emed:

In this way at least half of the run results are used for averaging to obtain a �nal result. One can
thus decide in advance on the minimum number of data points that are used in the statistical
processing of the DFMC results and perform as many runs as wanted.

8.2 Determination of appropriate run parameters

Some of the above mentioned parameters can be chosen independent of the system under
investigation. These are:

1. the initial acceptance probability P (0)a : a good rule of thumb appears to take P (0)a = 0:5.

2. the way in which to change the acceptance probability: Metropolis acceptance, threshold
acceptance or the temperature-independent acceptance.

3. the lowest value Pmin of the acceptance probability from which one starts to count the
number of iterations for which the minimum energy has not changed.

We are then left with the following parameters that have to be determined for each system
separately:

1. the mesh spacing �x� in each direction �.

2. the total number of walkers Nw:

3. the number of iterations after which Pa is lowered, ilower.

4. howmuch the acceptance probability is lowered (or howmuch the temperature is lowered).

5. the su¢ cient number of iterations in which the minimum has not changed and after which
the run is ended, istop:

An appropriate value for these parameters can be derived as follows. Call an iteration
a sweep over the entire mesh with a possible move of one walker in each mesh point. If one
performs a test run with a �xed acceptance probability Pa = 0:5, then the minimum energy
found in a number of iterations will typically �rst decrease some orders of magnitude until it
does not change (much) in a larger number of iterations. How adequate run parameters can be
derived from such a test run is explained in the next subsections.

8.2.1 Step one: �x� and Nw

Based on the minimum that is found in several test runs, one can decide on the number of
mesh points and the number of walkers to be used in the calculations. Most of the time one
has a clue about the spatial variation of the density, so one can start with a number of mesh
points that seems appropriate. Then one performs test runs with di¤erent numbers of walkers.
Because of the possibility that the calculation ends up in a local minimum, it is best to perform
several runs and to consider for each value of Nw the run that ends in the lowest energy.
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Typically one will notice the following behavior:
- the higher the number of walkers, the closer the minima for subsequent numbers of walkers.
- if the number of walkers increases, the number of iterations before a minimum is reached also
increases.
The convergence of the minima if the number of walkers increases indicates that with a reason-
able number of walkers an acceptable accuracy can be reached.
Based on which accuracy one �nds su¢ cient, one can now decide on the number of walkers

to be used. Say one tolerates a relative error of 0:001 for the minimum energy. Suppose that
�ve test runs with N1 < ::: < N5 resulted in relative errors �relEi =

����E(i)min � E
(i+1)
min

�
=E

(i)
min

���
equal to �relE1 = 0:01, �relE2 = 0:005, �relE3 = 0:001 and �relE4 = 0:0005. Then the
appropriate number of walkers would be N3 because runs with a lower number of walkers do
not meet the accuracy criterion and runs with a higher number of walkers take more time than
necessary.

8.2.2 Step two: the other parameters

With the number of mesh points and the number of walkers being chosen, a test run can
determine the other necessary parameters.
The parameter ilower can be set approximately equal to the number of iterations that was

needed for the minimum energy to somewhat stabilize. The stabilization is an indication that
the number of iterations over which the minimum energy has changed substantially is su¢ cient
for the walkers to scout the entire domain in looking for a con�guration with a lower energy.
The amount of lowering the acceptance probability or temperature depends on the details

of the test runs.
The last parameter, istop, is best taken of the same order of magnitude as ilower because this

parameter is an indication of how long it takes to scan the domain for �nding a con�guration
with a lower energy.

8.3 Determination of the work function

The work function is de�ned as the minimum energy required for removing one electron from
a solid at temperature zero. We explain in this section two ways in which this quantity can be
calculated in the framework of DFMC.

8.3.1 Based on ionization energies

One way in which we have determined the work function is with the following procedure:

1. Calculate the energy di¤erences due to subsequent removal of walkers (the �walker ion-
ization energies�). If �Nw walkers are removed from the system, the energy di¤erence
between the system with Nw � �Nw walkers and the system with Nw walkers is the
(�Nw �N=Nw)�th �electron ionization energy�:

Eionization (�Nw) = Eionization

�
�N = �Nw

N

Nw

�
:

2. Fit these data to a function Eionization (�N) with as argument the number of removed
electrons �N:

3. Evaluate the �tted function in �N = 1, so Wionization = Eionization (�N = 1) :
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8.3.2 Based on the expression of Lang and Kohn

Lang and Kohn [68] derived an expression to calculate the work function at a metal surface in
the framework of DFT. It reads:

W = ��� �� = [� (1)� h� (r)i]�
�
�G [n]

�n (r)

�
with �� the rise in mean electrostatic potential across the metal surface, �� the bulk chemical
potential of the electrons relative to the mean electrostatic potential in the metal interior, G [n]
the universal functional (2.9) and with the averages hi taken over the metal.
In the jellium model, the electron density in the metal interior has a constant value �n. In this
case �� takes on the form

�� =
1

2
k2F + �xc (�n) =

1

2

�
3�2�n

�2=3
+

�
d (n�xc (n))

dn

�
n=�n

with kF the size of the Fermi wavevector and �xc (n) the exchange and correlation energy per
particle of the uniform electron gas.
Now d (n�xc (n)) =dn is just the e¤ective single-particle exchange-correlation energy uxc (r).

Furthermore, if the zero point of the energy is set at r !1, the potential at in�nity is equal
to zero: � (1) = 0. We thus implemented the result of Lang and Kohn as

WLK = uH(R)�
�
1

2

�
3�2�n

�2=3
+ uX (�n) + uC (�n)

�
(8.3)

with uH (r) the single-particle Hartree energy, R a value of r close to the outer surface and �n
calculated as �n = 3= (4�r3s) with rs the bulk Wigner-Seitz radius. The expressions for uX (n)
and uC (n) that we used in the calculations are given in the next chapter on the application of
DFMC to a nanoshell.
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Chapter 9

DFMC for nanoshells

9.1 Considered model and nanoshells

We consider the jellium model in the shell, without any external potential.
For comparison with Kohn-Sham calculations we derived the properties of a nanoshell with

(RC ; RS) = (55; 95) a.u. ' (2:9; 5:0) nm and ("C ; "S; "E) = (1; 1; 1) which contains about
2:56� 104 conduction electrons.
The in�uence of the permittivities was investigated based on three nanoshells with the same size,
(RC ; RS) = (40; 55) nm; and with permittivities ("C ; "S; "E) = (1; 1; 1), ("C ; "S; "E) = (4; 1; 1)
and ("C ; "S; "E) = (1; 1; 4). The permittivity of SiO2 is approximately equal to "SiO2 ' 4.
To test the in�uence of the nanoshell size on the work function, we have considered nanoshells
with permittivities ("C ; "S; "E) = (1; 1; 1), core radius RC = 40 nm and overall radii RS ranging
fromRS = 55 nm up toRS = 70 nm. Nanoshells of these sizes contain 2:56�107 up to 6:97�107
conduction electrons.
The relative sizes of the nanoshell considered for comparison with Kohn-Sham calculations, the
benchmark nanoshell and the largest considered nanoshell are visualized in �gure 9.1.

Figure 9.1: Relative sizes of the nanoshell considered for comparison with Kohn-Sham calcula-
tions, the benchmark nanoshell and the largest considered nanoshell.
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9.2 Expressions for the energy contributions

We used the ansatz (2.10) for the universal functional G [n] made by Kohn and Sham and we
adopted the often used separation of the exchange-correlation energy in an exchange and a
correlation part. In this way the energy functional of the nanoshell consists of four parts:

E [n (r)] = Ts [n (r)] + EX [n (r)] + EC [n (r)] + EH [n (r)]

with Ts [n (r)] the kinetic energy of non-interacting electrons with density n, EX [n (r)] the ex-
change energy, EC [n (r)] the correlation energy and EH [n (r)] the total Hartree energy due to
the classical Coulomb interaction between conduction electrons mutually, between the back-
ground charges mutually and between the conduction electrons and the background charges.
We limited the calculations to the local-density approximation. The energy functional E [n (r)]
can then be written as the integral over an �energy density�E (r):

E [n (r)] =

Z
E (r) dr =

Z
fTs (r) + EX (r) + EC (r) + EH (r)g dr: (9.1)

For the calculation of the work function as in expression (8.3) we not only need the energy
density of the Hartree-, exchange- and correlation contributions, but also the corresponding
�single-particle�potential energies uH (r) ; uX (r) and uC (r). These contributions are equal to

uH;X;C (r) =
�EH;X;C [n (r)]

�n (r)
: (9.2)

To be able to compare the results with the results of Kohn-Sham calculations and with
results of calculations for a �at metallic surface, we used the same expression for the exchange
and correlation energy as was used in Refs. [101,102,103,104,87,106] and in Ref. [91].

9.2.1 Kinetic energy

For the kinetic energy per volume of the non-interacting electrons, Ts (r), we considered the
Thomas-Fermi expression:

Ts (r) = (3=10)
�
3�2
�2=3

[n (r)]5=3 : (9.3)

9.2.2 Exchange energy

The exchange energy density was taken to be the Hartree-Fock result introduced in the Thomas-
Fermi equation by Dirac [24], but screened by a layer-dependent permittivity "k:

EX (r) = �
3

4

�
3

�

�1=3
[n (r)]4=3

"k
: (9.4)

De�nition (9.2) results in the following expression for the single-particle exchange energy:

uX (r) = �
�
3

�

�1=3
[n (r)]1=3

"k
: (9.5)
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9.2.3 Correlation energy

For the correlation contribution we used the following combination that was proposed in
Ref. [90] and used in Refs. [101, 102, 103, 104, 87, 106] and Ref. [91] without inclusion of the
permittivity:

EC (r) =
n (r)

"k

�
A ln (rs) +B + Crs ln (rs) +Drs if rs (r) < 1


=
�
1 + �1

p
rs + �2rs

�
if rs (r) � 1

(9.6)

with rs (r) = f3= [4�n (r)]g1=3 the local Wigner-Seitz radius. The following constants were used
for the high-density limit rs (r) < 1 [34]

A = 0:0311; B = �0:048; C = 0:0020; D = �0:0116

whereas for lower densities the following values of the constants were implemented [16,17]


 = �0:1423; �1 = 1:0529; �2 = 0:3334 :

For the implementation and for the derivation of the single-particle correlation energy it is
useful to rewrite expression (9.6) entirely as a function of the density:

EC (r) =
1

"k

8>>>><>>>>:

n4=3 (r) =

�
n1=3 (r) + �1;En

1=6 (r) + �2;E
�

if n (r) � 3
4�24 �A+ CE

1
n1=3(r)

�
ln

��
3

4�n(r)

�1=3�
+B +DE

1
n1=3(r)

35n (r) if n (r) > 3
4�

(9.7)

with the newly introduced constants de�ned by the relations �1;E =
�
3
4�

�1=6
�1; �2;E =

�
3
4�

�1=3
�2;

CE =
�
3
4�

�1=3
C and DE =

�
3
4�

�1=3
D:

Applying de�nition (9.2) to expression (9.7) for the correlation energy density, we �nd that
the single-particle correlation energy uC (r) can be calculated as

uC (r) =
1

"k

8>>>>><>>>>>:



n1=3(r)+�1;un

1=6(r)+�2;u

(n1=3(r)+�1;En1=6(r)+�2;E)
2n1=3 (r) if n (r) � 3

4�24 DC +BAn
1=3 (r)

+(Cu + An1=3 (r)) ln

��
3

4�n(r)

�1=3� 35,n1=3 (r) if n (r) > 3
4�

(9.8)

with the newly de�ned constants given by the expressions �1;u = 7�1;E=6; �2;u = 4�2;E=3;
DC = (2DE � CE) =3, BA = B � A=3 and Cu = 2CE=3.

9.2.4 Hartree-energy

The Hartree contribution to the energy density can be calculated from

EH (r) =

Z
1

" (r0)

�
��b (r0)n (r)
jr� r0j +

1

2

�b (r
0) �b (r) + n (r0)n (r)

jr� r0j

�
dr0

=
1

2

Z
�exc (r

0) �exc (r)

" (r0) jr� r0j dr0 = �1
2
�exc (r)uH (r)

in which �exc (r) is the excess charge density which is equal to the sum of the background charge
density �b (r) and the electron charge density �n (r), so �exc (r) = �b (r)� n (r).
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We derived two expressions for the Hartree energy uH (r) due to a spherically symmetric
excess charge distribution �exc (r) (see appendix B.1 for the derivation). For calculating the
uH (r)-pro�le itself, it is for accuracy reasons best to implement the double integral

uH (r) = �4�
+1Z
r

1

" (r00)

1

r002

0@ r00Z
0

�exc (r
0) r02 dr0

1A dr00: (9.9)

In this case, one has to pay attention to the implementation for systems that are not charge-
neutral because the potential energy is calculated on a �nite mesh.
For the calculation of the direct energy di¤erence in Hartree energy, �EH , it is useful to write
uH (r) as a sum of two single integrals instead of a double integral. With k the index of a
material layer - so in the case of a single nanoshell kmax = 3, f"1; "2; "3g = f"C ; "S; "Eg and
fR1; R2; R3g = fRC ; RS;+1g - the Hartree energy in layer k can be written as follows1:

u
(k)
H (r) = �4�

8>>>>>>>>>><>>>>>>>>>>:

1
"k

"
1
r

rR
0

�exc (r
0) r02 dr0 +

RkR
r

�exc (r
0) r0 dr0

#

+
Pkmax�1

k0=k

26664
�

1
"k0+1

� 1
"k0

�
1
Rk0

Rk0R
0

�exc (r
0) r02 dr0

+ 1
"k0+1

Rk0+1R
Rk0

�exc (r
0) r0 dr0

37775

9>>>>>>>>>>=>>>>>>>>>>;
: (9.10)

9.2.5 Energy functional

To calculate the integral over the energy density E (r), the (charge) density was considered to
be constant in the mesh intervals and for the potential energy linear interpolation was used. In
this way the integrand is a linear combination of polynomials. Performing the integrals leads
to terms containing the di¤erence rpj+1� r

p
j with rj and rj+1 the lower and upper boundaries of

interval j and p an integer. We did not implement this di¤erence as is because of the possible
large round-o¤ errors in subtracting numbers of comparable magnitude. We used the equality
rj+1 = rj + hj with hj the interval width so that r

p
j+1 � rpj can be written as a polynomial in

hj, i.e. r
p
j+1 � rpj = f (hj) =

Pp
i=1 ai (hj)

i. We then implemented this polynomial in Horner
form f (hj) = hj (a1 + hj (a2 + :::+ hj (ap�1 + aphj) :::)) because this form of a polynomial is
computationally more e¢ cient and accurate than the form f (hj) =

Pp
i=1 ai (hj)

i.
For the universal part G [n] = TS [n] + EXC [n] we �rst calculated the energy density and
then performed the integral in order to avoid as much as possible subtraction of numbers of
comparable magnitude.

1In Ref. [105] another transparent form is given which can be generalized as

u
(k)
H (r) =

1

"k
~uH (r) +

kmaxX
k0=k

"k0 � "k0+1
"k0"k0+1

~uH (Rk0)

with ~uH (r) the Hartree-energy if all permittivities are equal to " = 1.
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9.3 Calculation details

9.3.1 Mesh characteristics

We used a radial mesh with intervals characterized by an index j, a lower bound rj, an upper
bound rj+1 and a length hj = rj+1 � rj. An interval represents a three-dimensional volume
Vj = 4�

�
r3j+1 � r3j

�
=3. We considered 20 mesh points per nm, so about one mesh point per

Bohr radius.

9.3.2 Construction of a trial distribution

We started with an almost homogeneous electron concentration in the shell. This initial density
pro�le resembles the results obtained by the previously performed self-consistent wave-function-
based calculations for a �at metallic surface [67, 68, 91] and for small nanoshells [101, 102, 87]
which show an almost homogeneous electron distribution in the metal with a small spill-out
outside the metal.
The distribution was constructed by �rst using the relation (8.1) between the electron

concentration and the number of walkers in an interval to calculate an approximate walker
distribution as

(Nw)j = floor

�
Vj

Vshell
Nw

�
:

We then placed the rest Nrest = Nw �
P

j (Nw)j of the walkers in the mesh by using the
rejection method in which a uniform random point fx; y; zg in a cube with side RS is generated
and a walker is put in the correct interval if RC �

p
x2 + y2 + z2 � RS.

9.3.3 Modi�cation of the distribution

To modify the density we used a Bernoulli walk. The walkers were moved to an adjacent
interval based on the value of a random number � 2 U (0; 1). If

� � < 0:5, the walker was moved from interval [j; j + 1[ to interval [j � 1; j[

� � � 0:5, the walker was moved from interval [j; j + 1[ to interval [j + 1; j + 2[ :

9.3.4 Acceptance/rejection of the new distribution

We used a temperature-independent acceptance probability of which the details are given in
section 9.3.6.
The energy di¤erence �E [n (r)] due to a walker move could be calculated directly for all

energy contributions. With J the lowest index of the interval in which the density was changed,
the di¤erence in energy Elocal for the local contributions (kinetic, exchange and correlation
contribution) was calculated as

�Elocal [n (r)] = [Elocal (n
0
J)� Elocal (nJ)] +

�
Elocal

�
n0J+1

�
� Elocal (nJ+1)

�
with n0J the actual density and nJ the density before the walker step.
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Because of the use of Bernoulli walkers, we were able to derive an expression for calculating
the di¤erence in Hartree energy directly (see appendix B for the derivation):

�EH [n (r)] = sgn� CH

26664(�U)J SJ +
0BBB@
[��JuJ + �0J (�U)J ] � I

(1)
J

+
�
��JuJ+1 + �0J (�U)J+1

�
� I(2)J

+
�
�J+1uJ+1 + �0J+1 (�U)J+1

�
� I(1)J+1

+�J+1uJ+2 � I
(2)
J+1

1CCCA
37775

with

sgn =

�
�1 if move to left
+1 if move to right

CH = ��
6

Sj =

j�1X
j1=0

�j1

�
I
(1)
j1
+ I

(2)
j1

�
�j =

N

Nw

1

Vj
=
3

4�

N

Nw

1

r3j+1 � r3j
(9.11)
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�
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�
:

The direct calculation of the energy di¤erence,

�E [n (r)] = �Elocal [n (r)] + �EH [n (r)] ;

instead of subtracting energy functionals has two advantages. First of all it is more accurate to
calculate the energy di¤erence directly than to derive it from subtraction of two numbers that
are many orders of magnitude larger. Secondly, it is much faster than calculating the entire
energy functional: for the local contribution only four terms are involved and the calculation of
the change in Hartree energy is an O (Ninterval) process, whereas the calculation of the Hartree
energy itself would require O (N2

interval) calculations.
Because it is much faster, we also used this direct energy di¤erence to calculate the total

di¤erence �E(tot)min with the last found minimum energy to check whether the actual distribution
resembles the ground-state density better. At the beginning of the calculations �E(tot)min = 0
because the energy of the trial distribution is the lowest energy calculated so far. Then each
time a distribution is accepted, the addition �E(tot)min = �E

(tot)
min + �E [n (r)] is performed.

Now if �E(tot)min < 0, then the actual energy is lower than the minimum found so far. If
this situation occurs, the trial ground-state distribution ntrial (r) is set equal to the actual
distribution nactual (r), �E

(tot)
min is set equal to �E(tot)min = 0, and adding starts again.

The above procedure leads to a fast program, but although calculating the direct di¤erence
is accurate for one move, adding up many little di¤erences leads to an accumulation of round-
o¤ errors with a resulting error that can become much larger than the error of calculating and
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subtracting energy functionals of two distributions. Therefore it is important that from time
to time the total energy di¤erence is determined by the di¤erence of the two energy functionals
that are calculated from the involved density distributions. The number of iterations after
which such an update is necessary, irecalc, depends on the system under consideration and on
the other run parameters. It is to be determined after the other run parameters have been �xed.
This can be done by performing a test run in which the calculations are based on the direct
energy di¤erence but for which the plotted minimum energy is calculated from the supposingly
�best�walker distribution: the number of iterations after which the plotted �minimum energy
found so far�increases gives an indication of the number of iterations after which an update is
needed.

9.3.5 Determination of run parameters for benchmark nanoshell

To make the explanation concerning the determination of the run parameters more concrete,
we now apply it to the nanoshell with (RC ; RS) = (40; 55) nm and ("C ; "S; "E) = (1; 1; 1).
We have performed a similar analysis for most of the nanoshells considered and the resulting
parameters are summarized in section 9.3.6.

Pre-determined parameters (for all nanoshells)

We took 20 mesh points per nm, �xed the initial acceptance probability at P (0)a = 0:5, used
the temperature-independent acceptance probability and set Pmin = 0:001.

Basic system-dependent run parameters

First we have to determine the basic system-dependent run parameters: the total number of
walkers Nw, the number of iterations ilower after which Pa is lowered, how much the acceptance
probablity is lowered and the su¢ cient number of iterations istop in which the minimum has
not changed and after which the run is ended. In determining these parameters, acceptance or
rejection was based on the directly calculated energy di¤erence but after acceptance the entire
energy functional was calculated and compared with the minimum energy found so far, in order
to avoid cumulative round-o¤ errors.
In �gure 9.2 we show for di¤erent numbers of walkers the minimum energy found in a

number of iterations. For each number of walkers we performed three runs of which the run
that ended in the lowest minimum was used for the �gure. Based on such runs one can decide
on the number of walkers to use in the calculations. If one �nds it su¢ cient that the accuracy
on the energy is of the order of 104 eV, one can use 100000 walkers: more walkers give a change
in the energy of that order. If one wants a better accuracy of about 103 eV, one at least needs
200000 walkers.
As already mentioned, using more walkers implies a longer run time. From �gure 9.2 we

can derive that appropriate choices for ilower would be for example

Nw = 100000 �! ilower = 2000

Nw = 200000 �! ilower = 3000

Nw = 300000 �! ilower = 8000:

We decided to take 100000 walkers, to lower the acceptance probability each ilower = 2000
iterations by a power 1=0:6, so

P (new)a =
�
P (old)a

�1=0:6
which corresponds to �ctively lowering a temperature by a factor 0:6, and we have taken
istop = 1000.
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Figure 9.2: Minimum energy found in the indicated number of iterations calculated from test
runs to determine an appropriate number of walkers for the benchmark nanoshell. Runs with
di¤erent numbers of walkers: Nw = 50000 (black solid line), Nw = 100000 (red dashed line),
Nw = 200000 (blue dotted line) and Nw = 300000 (green dash-dotted line).

Parameter due to use of direct energy di¤erence

As already mentioned, there are two ways by which one can check whether a density distribution
resembles the ground-state density better than the best distribution found so far. The �rst way
is to calculate the energy from the distributions and to check which energy is the lowest. The
second way is to sum directly calculated energy di¤erences, as explained in section 9.3.4. The
latter procedure is faster than the �rst one, but it su¤ers from accumulation of round-o¤ errors.
Therefore each irecalc number of iterations a calculation of the energy from the distributions
should be performed.
We derived a value for irecalc in the following way. We performed test runs in which acception

of a distribution as the best so far was based on the summation of energy di¤erences. In each
iteration we also calculated the energy from the supposingly best distribution. These energies
are plotted in �gure 9.3 for the benchmark nanoshell with 100000 walkers. Sometimes �the
minimum energy found so far�increases. This is a sign that the cumulative error becomes too
large: the procedure of summing energy di¤erences does not lead to a distribution with a lower
energy, but to one with a higher energy.
Because the solid red curve in �gure 9.3 increases around the thousandth iteration, we

decided to take irecalc = 1000.

Check of parameters for given Nw and �x�

Before considering whether run results can be used to determine a speci�c result, one has to
check whether the runs indeed most of the time lead to a global minimum (within acceptable
accuracy). For this purpose, a plot of the minimum energies of the runs can be useful. Such a
plot is given in �gure 9.4 for the parameters mentioned above. Figure 9.5 shows the minima
of this plot that are equal to or lower than the median. These minima do not di¤er more than
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Figure 9.3: Minimum energy found in the indicated number of iterations for three test runs
with 100000 walkers for the benchmark nanoshell to determine after how many iterations one
has to perform an energy calculation from the walker distributions.

in the seventh digit with the lowest minimum found in all the runs. Because the calculations
are performed in single precision, because there is a form of discreteness in the density and the
mesh and because the energy functional is calculated with trapezoidal quadrature, the deviation
from the lowest minimum can be explained by the numerical accuracy of the calculations. This
is a con�rmation that adequate run parameters were chosen.
One might comment that it would be better to use Metropolis acceptance so that it would

not be necessary to check on the behavior of the run minima and one could use the program
as a �blind user�. First of all, although this is almost never explicitely mentioned, also with
Metropolis acceptance it is not sure that the algorithm �nds a global minimum, so performing
more than one run is also advisible if one uses this acceptance prescription. Furthermore, if
one uses Metropolis acceptance (or threshold acceptance), one �rst has to de�ne an e¤ective
temperature. One cannot do this blindfolded. Thirdly, a �gure is illustrative but one can
(�blindfolded�) also just let the program check whether the minimum and maximum included
in the averaging do not di¤er more than a certain desired accuracy. Finally, numerical errors
are always present; so it is a good idea anyway to have some more runs from which an average
can be calculated.

Calculation time

With the mentioned parameters, one minimization run written in Fortran took about one
minute on a 64 bit desktop (AMD Dual Core 3:0 GHz). With self-consistent Kohn-Sham
calculations hundreds or even thousands of iterations would be required, each one taking more
than two minutes.
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Figure 9.4: Minimum energies found in 150 DFMC runs for the benchmark nanoshell with

the following parameters: 20 mesh points per nm, 100000 walkers, P (new)a =
�
P
(old)
a

�1=0:6
,

ilow = 2000, istop = 1000 and irecalc = 1000:

Figure 9.5: Minima of �gure 9.4 that are equal to or lower than the median of all the minimum
energies found in 150 runs.
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9.3.6 Overview of the run parameters for all systems

For all considered nanoshells, we used some common parameters as described in the previous
section:
1. 20 mesh points per nm
2. an initial acceptance probability P (0)a = 0:5.

3. the temperature-independent acceptance probability with P (new)a =
�
P
(old)
a

�1=0:6
.

4. Pmin = 0:001:
The other parameters were derived as in the previous section following the procedure de-

scribed in section 8.2 and in the last paragraph of section 9.3.4.
For the nanoshell with (RC ; RS) = (55; 95) a.u. that we used for comparison with Kohn-Sham
calculations, we took Nw = 20000, ilower = 3000, istop = 1000 and irecalc = 50.
For all larger nanoshells we used ilower = 2000, istop = 1000 and irecalc = 1000. To be able
to compare the results for di¤erent sizes, we chose the number of walkers for the considered
nanoshells such that the error on the energy was approximately the same as for the benchmark
nanoshell (about 400 eV as shown in �gure 9.2). We used the following number of walkers for
each nanoshell:

(RC ; RS) nm (40; 55) (40; 56) (40; 57) (40; 58) (40; 59) (40; 60) (40; 61) (40; 62)
Nw 100000 110000 120000 130000 140000 150000 150000 170000

(RC ; RS) nm (40; 63) (40; 64) (40; 65) (40; 66) (40; 67) (40; 68) (40; 69) (40; 70)
Nw 180000 190000 200000 220000 230000 245000 260000 275000

.

9.3.7 Work function based on ionization energies

For each run, we calculated the ionization energies due to removal of one up to six walkers. We
removed the walkers one by one from the same interval J and let the system relax after each
removal by performing a minimization.

Direct energy di¤erence due to walker removal

The energy di¤erence between the system with Nw walkers and the system with Nw � �Nw

walkers before relaxation, can be directly calculated with the formulas (see appendix B for the
derivation of the Hartree contribution)

�Elocal = Elocal

�
n
0
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�
� Elocal (nJ)

�EH = CH
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with k the layer in which interval j is located.
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It should be emphasized that relaxation after removal of a walker leads to almost negligible
energy changes. The largest part of the energy di¤erence between systems with a di¤erent
number of walkers comes from the instant removal of a walker. Therefore it is important that
this di¤erence is calculated as accurately as possible.

Work function as �rst ionization energy

Plotting the ionization energies, we observed a quadratic dependence as a function of the
number of removed electrons �N . This is shown in �gure 9.6 for the benchmark nanoshell.
Taking into account that Eionization (�N = 0) = 0, we �tted these six calculated points to the
quadratic function

Eionization (�N) = b� (�N) + c� (�N)2

with the least square method (routine �svd�t.f90� of Ref. [97]). In this method, one deter-
mines the values for the parameters that are most likely the correct values given the data, by
minimizing the chi�square value �2 which is in this case given by

�2 =
6X
i=1

 
E
(i)
ionization � Eionization ((�N)i ; b; c)

�i

!
:

In this expression, E(i)ionization is one of the six calculated �walker� ionization energies from
averaging over run results, �i is the standard deviation on these values and (�N)i is the
number of electrons corresponding to removal of the �rst i walkers.

Figure 9.6: Ionization energies of the benchmark nanoshell as a function of the number of
removed electrons �N calculated with the DFMC method (black dots) and �tting function of
the form f (�N) = b � (�N) + c � (�N)2 (red line). The error bars are not visible in the
�gure.
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The work function was then calculated as Wionization = Eionization (�N = 1) and its stan-
dard deviation with error propagation as �W =

p
�2b + �2c + 2cov (b; c) with �2b and �2c the

variances on the parameter b and c respectively and cov (b; c) the covariance between the pa-
rameters b and c.
To check whether Eionization (�N) is indeed quadratic, we calculated the �2-probability

Q-value which gives an indication of the �goodness-of-�t�of the model (see e.g. Ref. [98]). This
Q-value gives, under the assumption that the measurement errors are normally distributed,
the probability that in another experiment or set of runs, one will �nd a higher value of �2 by
chance. It is de�ned as

Q
�
�2j�

�
= Q

�
�

2
;
�2

2

�
=
�
�
�
2
; �

2

2

�
�
�
�
2

�
with � (a; x) =

R1
x
e�tta�1 dt the incomplete gamma function and � (a) = � (a; 0) the gamma

function. The parameter � is the number of degrees of freedom which is de�ned as from the
number of data points Ndata and the number of parameters Nparam as � = Ndata �Nparam; so in
this case � = 6� 2 = 4. In general, a model is accepted if Q lies between 0:001 and 1.

9.4 Results

9.4.1 Benchmark nanoshell

Based on the median of the minimum energies of 150 runs, 77 results were retained for averaging.
For the work function we found a value of Wionization = (2:364� 0:017) eV with a Q-value

of Q = 0:39, and WLK = 2:368 eV. Both ways of calculating the work function thus result in
values that are of the same order of magnitude. Given the relatively large dimensions of the
nanoshell, its work function can be expected to be of the order of the bulk work function of gold,
for which measured values are in the range [5:31� 5:47] eV depending on the crystal face being
measured [40]. The calculated work function of several eV thus has indeed the correct order of
magnitude. The di¤erence with the experimental value can be attributed entirely to the used
model for the background and the approximate forms of the kinetic energy functional and the
exchange-correlation energy. This can be seen from the results of Ref. [91] concerning a �at
metallic surface. The calculations reported in this paper were based on the uniform background
model and the same expression for the exchange and correlation energy as used in this thesis.
For rs = 3, Kohn-Sham calculations resulted in a work function W = 3:35 eV, which is also
a few eV lower than the experimental bulk value. Furthermore, orbital-free calculations in
which the kinetic energy was treated in the Thomas-Fermi framework led to a work function
value of W = 2:11 eV. Expecting a somewhat higher work function for the nanoshell because
of con�nement, we consider the DFMC value for the work function to be consistent with the
calculations performed for a �at surface. The di¤erence of several eV with experiment is thus
not due to the used method but due to the used approximations.
Note that the work function Wionization, a quantity of the order of a few eV, is obtained from
the total energy of a system, a quantity with a magnitude of several 107 eV. This shows that
the Monte Carlo calculations reach an acceptable level of accuracy for the energy.
The resulting density is shown in �gure 9.7. The global behavior is as can be expected:

approximately homogeneous in the shell with a small spill-out into the core and the environment.
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Figure 9.7: Calculated ground-state density of the benchmark nanoshell from averaging over
77 retained DFMC run results corresponding to the global minimum. The relative error is of
the order 10�4 � 10�3 which results in error bars that are not visible in the �gure.

9.4.2 Comparison with Kohn-Sham calculations

We have performed calculations for a nanoshell with (RC ; RS) = (55; 95) a.u. ' (2:9; 5:0) nm
and ("C ; "S; "E) = (1; 1; 1) for which previously Kohn-Sham calculations were performed [101]
with the same approximations for the background and for the exchange and correlation energy
as used in this thesis. The resulting density from averaging over 95 run results is given in
�gure 9.8 together with the data of the Kohn-Sham calculations [64]. Comparison of both
curves shows that the resulting density pro�le is globally the same: almost homogeneous inside
the shell with a spill-out into the core and the environment; the spill-out is of comparable
accuracy in both treatments. The observable di¤erences can be entirely attributed to the
di¤erent treatment of the kinetic energy in both approaches. We found a value for the work
function equal to Wionization = (2:518� 0:002) eV from a �t of Eionization (N) with a Q-value
of Q ' 0:999, and WLK = 2:385 eV from the Lang-Kohn formalism.

9.4.3 In�uence of the permittivities

We performed calculations for nanoshells of size (RC ; RS) = (40; 55) nm with either the core
permittivity or the environment permittivity equal to " = 4. This permittivity is of the order
of the permittivity of SiO2 and was also considered in Kohn-Sham calculations for nanoshells
of size (RC ; RS) = (40; 80) a.u. containing 16592 electrons [102]. The results for the e¤ective
potential energy ueff (r) are given in �gure 9.9. Our results are qualitatively similar to the
results shown in �gure 1 of Ref. [102]. In the core the e¤ective potential energy of the shell
with "E = 4 is higher than that of the benchmark nanoshell, and the e¤ective potential energy of
the nanoshell with "C = 4 is lower. In the shell the e¤ective potential energies of the benchmark
nanoshell and the nanoshell with "C = 4 coincide and the potential well of the nanoshell with
"E = 4 is less shallow. This static result already indicates that nanoshells can be used as
biosensor: the charge and potential pro�le depend on the permittivity of the environment.
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Figure 9.8: Ground-state density of a nanoshell with (RC ; RS) = (55; 95) a.u. ' (2:9; 5:0) nm
and ("C ; "S; "E) = (1; 1; 1) calculated with DFMC (black solid line) and with Kohn-Sham
calculations [64] (blue dashed line). Error bars are not visible in the �gure.

Figure 9.9: E¤ective potential energy ueff (r) as a function of r for nanoshells with size
(RC ; RS) = (40; 55) nm and di¤erent permittivities: ("C ; "S; "E) = (1; 1; 1) (black solid line),
("C ; "S; "E) = (4; 1; 1) (blue dotted line), ("C ; "S; "E) = (1; 1; 4) (red dashed line). In the calcu-
lations the Hartree energy and the exchange-correlation energy were screened.
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Quantitatively there are di¤erences between the e¤ective potential energies from our calcu-
lations and those from the Kohn-Sham calculations. A �rst remark that can be made is that
the potential energy resulting from both methods is shifted even for the curve in absence of
screening. The explanation of this behavior is that in the Kohn-Sham calculations an external
potential Uext (r) was considered, given by expression (3.8), and in the DFMC calculations no
external potential was introduced. A second feature is that the di¤erence between the potential
energies corresponding to di¤erent permittivities is larger in our results than in the Kohn-Sham
results. To check whether the di¤erence between the results of the two methods is attributed
to the size di¤erence between the considered nanoshells, we performed also calculations for the
nanoshells with (RC ; RS) = (40; 80) a.u. We found nearly the same potential energies in the
core and the shell as for the nanoshell with (RC ; RS) = (40; 55) nm, so the di¤erences between
the results of Ref. [102] and of the DFMC calculations cannot to be attributed to the size
di¤erence. The calculations also show that the di¤erence in e¤ective potential energy between
nanoshells with di¤erent permittivities is almost not size-dependent. The reason for the di¤er-
ent in�uence of the permittivities resulting from the Kohn-Sham and DFMC calculations seems
to be that in the DFMC calculations the exchange-correlation potential was screened, whereas
in the Kohn-Sham calculations it was not: if in the DFMC calculations we omit the screening
of this contribution, we �nd the same order of magnitude of the di¤erence between the e¤ective
potential energies corresponding to di¤erent permittivities, as is seen in �gure 9.10. There is
thus quite a large e¤ect from the screening of the exchange-correlation energy. Comparison be-
tween �gures 9.9, 9.10 and 9.11 shows that the largest screening e¤ect stems from the exchange
energy and that the e¤ect of screening the correlation energy is negligible.

Figure 9.10: E¤ective potential energy ueff (r) as a function of r for nanoshells with size
(RC ; RS) = (40; 55) nm and di¤erent permittivities: ("C ; "S; "E) = (1; 1; 1) (black solid line),
("C ; "S; "E) = (4; 1; 1) (blue dotted line), ("C ; "S; "E) = (1; 1; 4) (red dashed line). In the
calculations only the Hartree energy was screened, not the exchange-correlation energy.
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Figure 9.11: E¤ective potential energy ueff (r) as a function of r for nanoshells with size
(RC ; RS) = (40; 55) nm and di¤erent permittivities: ("C ; "S; "E) = (1; 1; 1) (black solid line),
("C ; "S; "E) = (4; 1; 1) (blue dotted line), ("C ; "S; "E) = (1; 1; 4) (red dashed line). In the
calculations the Hartree and exchange energy were screened, not the correlation energy.

The resulting work functions are given in table 9.1. The in�uence on the work function is low
when the permittivity of the core is changed, and high when the permittivity of the environment
is changed. The calculated work functions with "E = 1 and "E = 4 are somewhat less than
half of the experimental bulk value, which is for gold to vacuum about WAu!vac � 5:3 eV [40]
and for gold to SiO2 about WAu!SiO2 � 3:8 eV [35]. The same behavior is also present when
the screening of the exchange and/or correlation contribution is not included. In both cases
the work function is about WLK ' 2:368 eV and Wionization ' 2:365 eV if "C = 4 and "E = 1.
The results for the case "C = 1 and "E = 4 re�ect again that the screening of the exchange
contribution has the largest e¤ect: if only the Hartree term is screened then WLK ' 2:153 eV
and Wionization ' 2:128 eV, and if the Hartree and exchange contribution are screened then
WLK ' 1:154 eV and Wionization ' 1:173 eV.

("C ; "S; "E) WLK ( eV) Wionization ( eV) �W ( eV) Q Naverage

(1; 1; 1) 2:368 2:364 0:017 0:39 77

(4; 1; 1) 2:368 2:361 0:016 0:30 90

(1; 1; 4) 1:154 1:173 0:012 0:10 103

Table 9.1: Work function values WLK and Wionization and statistical error �W on the work
function Wionization for nanoshells with (RC ; RS) = (40; 55) nm and with the mentioned per-
mittivities, together with the Q-value of the �t for Eionization(N) and the number of run results
of which the averages are taken, Naverage
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9.4.4 Investigation of the in�uence of the size

In �gure 9.12 we show for nanoshells with ("C ; "S; "E) = (1; 1; 1), RC = 40 nm and di¤erent
values of RS the work function valuesWLK andWionization and the standard deviation �W on the
work function Wionization, together with the number of run results of which the averages were
taken, Naverage. The table below shows the corresponding Q-values of the �t for Eionization (N).

RS ( nm) 55 56 57 58 59 60 61 62
Q 0:39 0:87 0:83 0:68 0:73 0:90 0:98 0:58

RS ( nm) 63 64 65 66 67 68 69 70
Q 0:66 0:59 0:88 0:60 0:091 0:62 0:021 0:059

Figure 9.12: Work function as a function of RS for a nanoshell with ("C ; "S; "E) = (1; 1; 1) and
RC = 40 nm calculated based on a �t of the �walker ionization energies�(black squares) and
calculated from the expression (8.3) of Lang and Kohn (red circles).

All work function values are higher thanW = 2:11 eV, the calculated value at a �at metallic
surface [91]. This e¤ect is due to the con�nement of the electrons.
The absolute value of the relative di¤erence, j(WLK �Wionization) =WLKj ; ranges from 0:0041

(for RS = 55 nm) up to 0:086 (for RS = 67 nm). The results thus con�rm the conclusion
stated for the benchmark nanoshell: both ways of calculating the work function result in values
of the same order of magnitude. Thus for the purpose of determining an estimate of the work
function, the two methods can be used.
The di¤erence WLK � Wionization is however not constant: the sign and magnitude of it

depend on the value of RS. It is not obvious whether one method is better than the other.
For Wionization �tting was used to calculate Eionization (�N = 1) � 1 eV from values of
Eionization (�N) with �N ranging from �N � 102 up to �N � 103 and Eionization rang-
ing from Eionization � 104 eV up to Eionization � 105 eV. This procedure requires a very
high accuracy of the calculated values. To attain a su¢ ciently high accuracy with a stochastic
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method is actually not evident. It is already very satisfactory to �nd a value that has the
correct order of magnitude.
The calculation of WLK is based on an expression derived from the Euler equation (2.22) [68].
As already mentioned in section 2.4 it is not entirely clear whether the use of this equation is
justi�ed if approximate energy functionals are used.
That both WLK and Wionization have a realistic order of magnitude is actually a con�rmation
that both procedures to calculate the work function are acceptable.
In neitherWLK (RS) norWionization (RS) a simple pattern is observed. One would expect the

work function to be globally decreasing as a function of RS, like in the case of the Fermi energy
of a spherically symmetric in�nite potential well (shown in �gure 6.7) or the work function of
small metallic spheres [29]. The most likely reason why such e¤ect is not observed is that the
size of the e¤ect is too small to detect with the accuracy of the performed calculations. For the
Fermi energy of the potential well, the con�nement e¤ect for a nanoshell with RS = 55 nm is
only about �F (d = 15 nm)� �F (1) ' 0:05 eV. The largest di¤erence in work function value
for the Na spheres studied in Ref. [29] is approximately equal to [W (R)�W (1)]max ' 2 eV,
but this di¤erence occurs at a particle radius of only R ' 8 a.u. ' 0:4 nm. Figure 1 of
Ref. [29] shows pronounced oscillatory behavior in W (R) for the Na spheres in the considered
interval R 2 [5; 20] a.u.: in this interval of about 1 nm the work function resulting from the
orbital-based calculations is at a maximum whenever an orbital is completely �lled and drops an
amount when a new orbital starts to �ll up. The di¤erence between the attained maxima and
the bulk work function decreases rapidly as a function of R, from �W (R ' 0:4 nm) ' 2 eV
to �W (R ' 1 nm) ' 1 eV. The oscillatory behavior decreases correspondingly.
It is not likely that the oscillating-type behavior of the work function seen in �gure 9.12 is

attributed to shell e¤ects. Theoretical and experimental results for the work function of small
metallic spheres [29, 132] suggest that the work function is globally decreasing as the outer
radius increases and that for metallic shells of the considered sizes (RC = 40 nm, RS > 55 nm)
oscillations due to shell e¤ects would be negligible as compared to this global trend. The
behavior of the Fermi energy as a function of shell thickness (�gure 6.7) supports this idea.
Therefore we expect that the oscillating behavior indicates that the real behavior is out of reach
of the accuracy of the performed calculations and that the real error on the work function is
several times larger than the standard deviation indicated in �gure 9.12. As explained in
section 9.3.7, this statistical error was determined based on a �t through six ionization energies
which each were calculated as the mean of a number of run results. All performed statistical
calculations contained the implicit assumption that the errors on the data points are normally
distributed. The invalidity of this assumption leads to an underestimation of the real error.
We showed in �gure 9.5 that the minimum energies of the retained results for the benchmark

nanoshell di¤er in the seventh digit. This is the highest accuracy that can be reached with the
single-precision calculations we used. One might be tempted to just perform the calculations in
double precision, but this is of not much use if no re�nements are made regarding the integration
method, the grid spacing and the ratio of the number of electrons per walker. Other factors
that can lead to an incorrect behavior are the used model for the background and the kinetic,
exchange en correlation contribution to the energy functional.
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Chapter 10

Conclusion

We conclude that density-functional Monte Carlo is a relatively simple method for calculating
the ground-state properties of rather large many-particle systems. The method, which consists
of a direct numerical minimization of the energy functional by use of a Monte Carlo algorithm, is
a pure implementation of density-functional theory because the particle density for N particles
is the basic ingredient and no mathematically introduced Lagrange multiplier is required to
incorporate particle conservation.
We showed that DFMC allows to treat nanoshells with manufacturable dimensions, which

are hardly accessible to orbital-based DFT methods. The results are comparable to results of
other calculation methods. The DFMC density in small nanoshells is globally the same as the
density resulting from Kohn-Sham calculations, with a di¤erence that can be entirely attributed
to the di¤erent treatment of the kinetic energy in both approaches. The work function values
are slightly higher than the value found from calculations for a �at surface, as can be expected
for con�ned systems. The in�uence of the permittivity of the core and the environment on
the behavior of the e¤ective potential energy is essentially the same in the DFMC and the
Kohn-Sham calculations. Screening of the exchange energy has the largest e¤ect, the e¤ect of
screening the correlation energy is negligible.
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Chapter 11

Positioning and outlook

In this thesis we have performed a Monte Carlo implementation of the basic Hohenberg-Kohn
theorems of DFT to calculate ground-state properties of a nanoshell without making use of
orbitals. The Hohenberg-Kohn theorems were proven for a non-degenerate ground state, but
Kohn demonstrated that the requirement of nondegeneracy can be lifted [61].
The original paper of Hohenberg and Kohn was not only followed by generalizations con-

cerning the electronic ground state of a system. Two of the other generalizations were already
mentioned in the exposition of the existing Kohn-Sham calculations for nanoshells: �nite-
temperature DFT [77] and time-dependent DFT [94, 113, 133, 23]. Other examples can be
found in e.g. Refs. [89,25,62]1. Like the original Hohenberg-Kohn theorems, the generalizations
are most often practically worked out with orbital-based Kohn-Sham calculations. Because of
the limited number of orbitals that can be determined in practice, research is also performed
in order to implement the generalizations orbital-free; see e.g. Ref. [55] for the extension to
�nite temperature and Ref. [85] for time-dependent orbital-free DFT which opens the way to
the orbital-free calculation of response properties that are of interest for applications. Like the
research for an adequate exchange and correlation energy for both orbital-based and orbital-
free DFT [92, 93] and a static kinetic energy functional and pseudopotential for orbital-free
DFT [127, 43, 45], the research to develop orbital-free implementations for the extensions of
the Hohenberg-Kohn theorems is still ongoing. It is however possible to implement the exist-
ing results in DFMC to �nd approximate results, like was done in this thesis to calculate the
ground-state properties of a nanoshell with local energy-density functionals and assuming a
Jellium background in the shell.
As already mentioned in the introduction, DFMC is the �rst direct numerical minimization

of the energy functional and removes some draw-backs from existing orbital-free implementa-
tions since the number of particles is kept constant by construction, no negative or complex
density can occur in the minimization process and no non-trivial di¤erential, integral or integro-
di¤erential equation has to be solved. Because of the conceptual simplicity, the DFMC method
can even be used as a tool to check the validity of newly derived expressions for orbital-free
kinetic energy functionals and pseudopotentials.

An approximation to the ground-state properties in the framework used in this thesis can
relatively easily be obtained for other systems than nanoshells to which DFMC can be applied,
e.g. atoms, molecules, graphene, nanowires, quantum dots and other con�ned systems.
Two further topics have to be addressed for each system separately: the construction of a

mesh with an adequate description of possible material boundaries and the simulation of an
initial walker density on the mesh. If the system is not (e¤ectively) one-dimensional, solving

1The Hohenberg-Kohn theorems are generally accepted, but in applying generalizations one should be careful.
See e.g. Refs. [133,23] for a discussion of the often cited time-dependent generalization proposed in Ref. [113].
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the Poisson equation and integrating the energy density will have to be done di¤erently than
was described in this thesis. A solution of the Poisson equation can for example be obtained
by using a relaxation method like the Jacobi method or the Gauss-Seidel method, possibly
with successive overrelaxation (see e.g. Ref. [98] section 19.5). For multidimensional integration
several approaches have been worked out (see e.g. Ref. [98] section 4.6) and the most appropriate
approach depends on the behavior of the integrand and the desired accuracy, which can be
increased at the end of a run to re�ne a rough approximation.
Some parameters of DFMC can be altered to obtain a better numerical accuracy: the use

of single or double precision, the integration method, the mesh spacing (which can be non-
uniform) and the number of walkers. Although adjusting these numerical parameters can lead
to a higher numerical accuracy, the largest improvement of the results will probably be obtained
by using a better description of the energy functional and the background.

As long as no appropriate functionals and pseudopotentials exist, more accurate results for
systems with a moderate size might be obtained by �rst determining an approximate result
from DFMC and afterwards performing one or a few orbital-based iterations. If adequate
descriptions for the kinetic energy and background potential are found, accurate results might
be obtained directly with DFMC not only for relatively large systems, but also for systems that
can be described by orbital-based DFT. Then the research on very small systems would also
pro�t from the bene�ts of an orbital-free treatment.



Summary and general conclusion

The objective of this thesis was to calculate the ground-state density and work function of
SiO2-Au nanoshells with sizes that are manufacturable at this moment, i.e. with a core radius
of at least 40 nm and a minimum shell thickness of 15 nm.

We �rst investigated whether this goal can be achieved by performing orbital-based self-
consistent Kohn-Sham calculations. Previously, Prodan and Nordlander developed an e¢ cient
Kohn-Sham algorithm in which the single-particle Schrödinger equations were solved by �nite
di¤erence numerical integration [101]. However with this method it was only possible to de-
scribe nanoshells with an overall radius of about 20 nm and a shell thickness of a few nm.
We examined whether nanoshells of manufacturable sizes can be treated orbital-based if the
single-particle Schrödinger equations are solved by using the Transfer Matrix Method. In this
method the entire domain is divided into su¢ ciently small intervals such that the potential
energy can be piecewise approximated as a constant. In each interval the piecewise Schrödinger
equation can then be solved analytically. Applying the correct boundary conditions results in
the single-particle energies and the wave functions in the entire region. Calculations for an ideal
Fermi gas in a spherically symmetric potential well show that the Transfer Matrix Method is an
appropriate method to calculate orbitals and has some advantages in comparison with numer-
ical integration. However, manufacturable nanoshells seem also out of reach for this method:
orbital-based calculations for nanoshells of these dimensions su¤er from long calculations times
and memory issues.
Because of the limitations of orbital-based calculations, we devised another method to

achieve our goal. Therefore we went back to the basics of density-functional theory. This theory
is based on two theorems concerning the ground state of a system of interacting particles in
an external potential v (r). From the �rst theorem it follows that the particle density n (r)
can be used as a basic variable in quantum-mechanical ground-state calculations, so there is
no need for a wave function description. In the second theorem it is stated that the energy
functional Ev [n] of a system reaches its minimum value at the correct ground-state density
if the number of particles of the system is kept constant. Based on these two theorems, we
developed a method in which the energy functional Ev [n] is minimized numerically by use of a
Monte Carlo algorithm: density-functional Monte Carlo (DFMC). In this method, the density
distribution is simulated by a distribution of Bernoulli walkers on a mesh. The method con-
tains the following basic steps. First a trial distribution is constructed. Then the distribution is
changed by letting subsequently for each interval a walker move to an adjacent interval. After
each walker move, the energy functional is compared with the value of the previous distribution
and the new distribution is accepted or rejected based on the energy di¤erence. The second
and third step are repeated until in a su¢ cient number of iterations no lower energy is found.
Using the DFMC method, we calculated the ground-state density and work function of nano-
shells with di¤erent permittivities in the core and the environment and with di¤erent sizes.
For this purpose, we used a model without external potential in which the interaction between
the conduction electrons of the shell with a homogeneous neutralizing background and with
each other leads to a self-consistent potential con�ning the electrons mainly to the shell. The
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calculated electron density and e¤ective potential energy in small nanoshells are in rather good
agreement with the results of Kohn-Sham calculations. The work function values from the
DFMC calculations for nanoshells are somewhat higher than the value resulting from orbital-
free calculations for a �at golden surface, as can be expected for con�ned systems. Calculations
with di¤erent permittivities in the core and the environment show that the largest e¤ect of
screening stems from the exchange contribution and that the e¤ect of screening the correlation
contribution is negligible. To investigate the e¤ect of the shell size on the work function, some
re�nements would have to be made in order to attain a higher accuracy than that obtained in
the presented calculations.

This thesis has two conclusions concerning the calculation of ground-state properties of
SiO2-Au nanoshells with sizes that are manufacturable at present. The �rst conclusion is that
it is not feasible to use orbital-based calculations to achieve that goal. The second conclusion
is that the newly developed density-functional Monte Carlo method opens better perspectives
for doing so.



Samenvatting en algemeen besluit

Het doel van deze thesis was om de grondtoestandsdichtheid en werkfunctie te berekenen van
SiO2-Au nanoschillen die op dit ogenblik kunnen gefabriceerd worden, met een kernstraal van
ten minste 40 nm en een minimum schildikte van 15 nm.

We hebben eerst onderzocht of dit doel kan bereikt worden met orbitaalgebaseerde zelfconsis-
tente Kohn-Sham berekeningen. Eerder ontwikkelden Prodan en Nordlander een e¢ ciënt Kohn-
Sham algoritme waarin de ééndeeltjes-Schrödingervergelijkingen opgelost werden met numerieke
integratie via de methode van de eindige verschillen [101]. Met deze aanpak was het echter
enkel mogelijk om nanoschillen te beschrijven met een totale straal van ongeveer 20 nm en een
schildikte van een aantal nm. We hebben nagegaan of nanoschillen met fabriceerbare grootte or-
bitaalgebaseerd kunnen behandeld worden als de ééndeeltjes-Schrödingervergelijkingen opgelost
worden met de Transfermatrixmethode. In deze methode wordt het beschouwde gebied opge-
deeld in voldoende kleine intervallen zodat de potentiële energie stuksgewijs als constant kan
benaderd worden. Dan kan in elk interval de stuksgewijze Schrödingervergelijking analytisch
opgelost worden. Toepassen van de correcte randvoorwaarden resulteert in de ééndeeltjesener-
gieën en de gol¤uncties in het hele gebied. Berekeningen voor een ideaal Fermigas in een sferisch
symmetrische potentiaalput tonen aan dat de Transfermatrix Methode een geschikte manier is
om orbitalen te berekenen en een aantal voordelen heeft in vergelijking met numerieke inte-
gratie. Fabriceerbare nanoschillen kunnen echter ook met deze methode niet behandeld worden:
orbitaalgebaseerde berekeningen voor nanoschillen met deze afmetingen vergen lange bereke-
ningstijden en leiden tot geheugenproblemen.
Vanwege de beperkingen van orbitaalgebaseerde berekeningen bedachten we een andere

manier om het doel van deze thesis te bereiken. Daarvoor gingen we terug naar de basis van
dichtheidsfunctionaaltheorie. Deze theorie is gebaseerd op twee theorema�s in verband met de
grondtoestand van een systeem van interagerende deeltjes in een externe potentiaal v (r). Uit
het eerste theorema volgt dat de deeltjesdichtheid n (r) kan beschouwd worden als basisvari-
abele in kwantummechanische grondtoestandsberekeningen; er is hiervoor dus geen gol¤unc-
tiegebaseerde beschrijving nodig. In het tweede theorema wordt gesteld dat, indien het aantal
deeltjes behouden blijft, de energiefunctionaal Ev [n] van een systeem minimaal is bij evaluatie
in de correcte grondtoestandsdichtheid. Gebaseerd op deze twee theorema�s ontwikkelden we
een methode waarin de energiefunctionaal numeriek geminimaliseerd wordt met behulp van een
Monte Carlo algoritme: dichtheidsfunctionaal Monte Carlo (DFMC). In deze methode wordt de
dichtheidsverdeling gesimuleerd door een verdeling van Bernoulli wandelaars op een maze. De
methode bestaat uit de volgende basisstappen. Eerst wordt een probeerverdeling geconstrueerd.
Daarna wordt de verdeling gewijzigd door achtereenvolgens uit elk interval een wandelaar te
verplaatsen naar een aanliggend interval. Na elke wandelaarsverplaatsing wordt de energiefunc-
tionaal Ev [n] vergeleken met de waarde van de vorige verdeling en de nieuwe verdeling wordt
aanvaard of verworpen afhankelijk van het energieverschil. De tweede en derde stap worden
herhaald totdat in een voldoende aantal iteraties geen lagere energie gevonden wordt.
Met deze DFMC methode berekenden we de grondtoestandsdichtheid en werkfunctie van nano-
schillen met verschillende permittiviteiten in de kern en de omgeving en met verschillende
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afmetingen. Hiervoor gebruikten we een model zonder externe potentiaal, waarin de interac-
tie tussen de geleidingselektronen in de schil met een homogeen neutralizerende achtergrond
en met elkaar leidt tot een zelf-consistente potentiaal waardoor de elektronen voornamelijk in
de schil voorkomen. De berekende elektrondichtheid en e¤ectieve potentiële energie in kleine
nanoschillen vertonen goede overeenkomst met de resultaten van Kohn-Sham berekeningen.
De waarden voor de werkfunctie van nanoschillen berekend met DFMC zijn iets hoger dan
de waarden resulterend uit orbitaalvrije berekeningen aan een vlak gouden oppervlak, zoals
te verwachten is voor ingeperkte systemen. De resultaten voor nanoschillen met verschillende
permittiviteiten in de kern en de omgeving tonen aan dat het grootste e¤ect van afscherming
voortkomt van de uitwisselingsbijdrage en dat het e¤ect van het afschermen van de corre-
latiebijdrage verwaarloosbaar is. Om het e¤ect van de schildikte op de werkfunctie te kun-
nen onderzoeken zouden een aantal ver�jningen moeten doorgevoerd worden om een hogere
nauwkeurigheid te verkrijgen dan diegene die bereikt werd in de getoonde berekeningen.

Deze thesis levert twee besluiten betre¤ende het berekenen van de grondtoestandseigen-
schappen van SiO2-Au nanoschillen met afmetingen die op dit ogenblik fabriceerbaar zijn. Het
eerste besluit is dat het praktisch niet haalbaar is om dit doel te bereiken met orbitaalge-
baseerde berekeningen. Het tweede besluit is dat de nieuw ontwikkelde dichtheidsfunctionaal
Monte Carlo methode betere perspectieven biedt om dit te doen.
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Appendix A

Regarding part II - Orbital-based
calculations

A.1 Radial wave function in the free-of-charge region

A.1.1 Introduction

In the free-of-charge region (i.e., outside the nanoshell at distances where the electron density
is negligible) the piecewise radial Schrödinger equation has the form

d2f (r)

dr2
+
2

r

df (r)

dr
+

�
�A+ B

r
� ` (`+ 1)

r2

�
f (r) = 0 (A.1)

with ` the angular quantum number which has integer values. The parameters A and B are
related to physical quantities of the problem as

A = �2F = 2 j�j

B = 2Q0 = 2
Qtot
"E

with � the single-electron energy, Qtot the total charge in the system and "E the permittivity
of the environment.
We looked into the derivation of solutions of equation (A.1) to check the conditions for the

continued fractions that we used to implement the Whittaker function.
In the following sections we �rst discuss the solutions of this di¤erential equation because

we did not �nd much information in the literature and we face the special case that ` is an
integer. We also discuss the limiting behavior of the solutions as r ! 1 in order to decide
which solution can be used to represent the piecewise radial wave function in the free-of-charge
region.

A.1.2 Solutions of the radial di¤erential equation

Derivation

For the second order di¤erential equation (A.1) we have to �nd two linearly independent solu-
tions, regardless the value of �: the value of the energy will be determined by imposing boundary
conditions. We now look for two solutions of this di¤erential equation that are linearly inde-
pendent for all values of A and B.
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The direct series solution in which we set

f (�; r) = r�
1X
k=0

ckr
k with c0 6= 0

leads to the solutions

f (r) =

8>>>>>><>>>>>>:
r`

1X
k=0

ckr
k with ck =

�Bck�1+A2ck�2
(2`+1+k)k

r�`�1
1X
k=0

ckr
k with ck =

�Bck�1+A2ck�2
k(�2`�1+k)

:

The second solution is in general not bounded for ` a positive integer because the denominator
of c2`+1 is equal to zero. Finding a solution that is linearly independent of the �rst one is not
that easy if the three-term recurrence relation is used.
A two-term recurrence relation can be obtained if we factorize out the behavior of the

solution near the essential singularity r ! 1 (see e.g. Ref. [76] p. 19). The two resulting
solutions are

f1 (r) = e�Arr`
1X
k=0

�
`� B

2A
+ 1
�
k

k! (2`+ 2)k
(2Ar)k

= e�Arr`M

�
`� B

2A
+ 1; 2`+ 2; 2Ar

�
(A.2)

=
1

(2A)`+1

M B
2A
;`+ 1

2
(2Ar)

r

f2, second attempt (r) = e�Arr�`�1
1X
k=0

�
� B
2A
� `
�
k

k! (�2`)k
(2Ar)k

= e�Arr�`�1M

�
� B

2A
� `;�2`; 2Ar

�
=

1

(2A)`

M B
2A
;�`� 1

2
(2Ar)

r

with (b)k the Pochhammer symbol de�ned as (b)k = b (b+ 1) ::: (b+ k � 1) = � (b+ k) =� (k),
M (a; c;x) a Kummer function and M�;� (x) a Whittaker function. The second solution is
again not bounded in general. We thus still have to look for a second solution that is linearly
independent of f1 (r).
Two rather straightforward ways that are sometimes used to derive a second solution, cannot

be applied. First of all, a transformation to a function with variable x for which r = 1=x, does
not lead to a convergent series because x = 0 is an irregular singular point, except at r = 1
(Ref. [80] p. 554). Furthermore, multiplying the series of f2, second attempt (r) with the divergent
factor, (�2`)2`+1 = 1=� (�2`), leads to a solution that is linearly dependent on f1 (r). We thus
have to �nd another way.
A solution that is linearly independent of f1 (r) can be derived by combining f1 (r) and

f2, second attempt (r) and using the rule of l�Hôpital. The derivation is based on that of the Bessel
function of the second kind Yn (x) with integer order n as given in Ref. [3] on p. 694 ¤.
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The linear combination

w

�
`� B

2A
+ 1; c; 2Ar

�
e�Arr` =

26664
M(`� B

2A
+1;c;2Ar)

�(`� B
2A
+2�c)�(c)

� (2Ar)�2`�1M(`� B
2A
+2�c;2�c;2Ar)

�(`� B
2A
+1)�(2�c)

37775 e�Arr`
is just a linear combination of solutions if c 6= 2` + 2. But in f1 (r) and f2, second attempt (r) the
parameter c is equal to c = 2` + 2. In this case it seems that w (`�B= (2A) + 1; c; 2Ar) is
equal to zero but this appears not to be the case. We rewrite w (`�B= (2A) + 1; c; 2Ar) with
use of the relations [86]

� (x+ 1) = x� (x)

� (x) � (1� x) =
�

sin (�x)

as

w

�
`� B

2A
+ 1; c; 2Ar

�
=
sin (c�)

�

8>><>>:
�
�
`� B

2A
+ 1
�
� (2� c)M

�
`� B

2A
+ 1; c; 2Ar

�
�
�
�
�
`� B

2A
+ 2� c

�
� (c) (2Ar)�2`�1

�M
�
`� B

2A
+ 2� c; 2� c; 2Ar

� �
9>>=>>;

(1� c) �
�
`� B

2A
+ 2� c

�
�
�
`� B

2A
+ 1
� :

Then in the limit c! 2`+ 2, the numerator and denominator of

w
�
`� B

2A
+ 1; c; 2Ar

�
sin(c�)
�

=

�

�
M(`� B

2A
+1;c;2Ar)

�(`� B
2A
+2�c)�(c)

� (2Ar)�2`�1M(`� B
2A
+2�c;2�c;2Ar)

�(`� B
2A
+1)�(2�c)

�
sin (c�)

tend to zero. We can then determine the limit of this ratio using the rule of l�Hôpital:

lim
c!2`+2

�w
�
`� B

2A
+ 1; c; 2Ar

�
sin (c�)

= � lim
c!2`+2

d
dc
w
�
`� B

2A
+ 1; c; 2Ar

�
d
dc
sin (c�)

:

It can be identi�ed with the Kummer function U (a; c;x) that is found in literature [1,20,76,86]:

U

�
`� B

2A
+ 1; c; 2Ar

�
=

�

sin (c�)

26664
M(`� B

2A
+1;c;2Ar)

�(`� B
2A
+2�c)�(c)

� (2Ar)�2`�1M(`� B
2A
+2�c;2�c;2Ar)

�(`� B
2A
+1)�(2�c)

37775
=

� (1� c)

�
�
`� B

2A
+ 2� c

�M �
`� B

2A
+ 1; c; 2Ar

�
+

�
(2Ar)�2`�1 � (c� 1) =�

�
`� B

2A
+ 1
�

�M
�
`� B

2A
+ 2� c; 2� c; 2Ar

� �
:

Executing the rule of l�Hôpital if c = n1 + 1 with n1 2 N leads to expressions (13.2.9) and
(13.2.10) of [86]. The second solution f2 (r) of the di¤erential equation (A.1) can thus be
written as (with W�;� (x) another Whittaker function) [86]

f2 (r) = e�Arr`U

�
`� B

2A
+ 1; 2`+ 2; 2Ar

�
=
W B

2A
;`+ 1

2
(2Ar)

r
: (A.3)



148 Regarding part II - Orbital-based calculations

The solutions f1 (r) and f2 (r) are linearly independent if Q0=�E 6= n 2 N. If Q0=�E = n,
they are linearly dependent and proportional to f (r) = e�Q

0r=nr`L
(2`+1)
n�`�1 (2Q

0r=n) with L(�)p (x)
an associated laguerre polynomial. A linearly independent solution f3 (r) can in this case be
found by applying the method of the reduced order (see e.g. Ref. [76] p. 11-12). This results in
the expression

f3 (r) =

264C3 rZ
0

e2
Q0
n
rh

r`+1L
(2`+1)
n�`�1

�
2Q

0

n
r
�i2 dr + C4

375 f1 (n; Q0; r) (A.4)

with C3 and C4 constants.

Conclusion

We have found for all values of the involved parameters two linearly independent solutions of
the Schrödinger equation in the free-of-charge region that are bounded.
If Q0=�E 6= n, the functions, denoted as f1 (�F ; Q0; r) and f2 (�F ; Q0; r), can be expressed as a

series, with Kummer functionsM (a; c;x) or U (a; c;x), and with Whittaker functionsM�;� (x)

or W�;� (x). With ` the angular quantum number, �F =
p
2 j�j with � a single-particle energy

and Q0 = Qtot="E with Qtot the total charge in the nanoshell and "E the permittivity of the
environment, we have

f1 (�F ; Q
0; r) f2 (�F ; Q

0; r)

e��F rr`
1X
k=0

�
`� Q0

�F
+1
�
k

k!(2`+2)k
(2�F r)

k =

e��F rr`M
�
`� Q0

�F
+ 1; 2`+ 2; 2�F r

�
e��F rr`U

�
`� Q0

�F
+ 1; 2`+ 2; 2�F r

�
M Q0

�F
;`+1

2

(2�F r)

r

W Q0
�F

;`+1
2

(2�F r)

r

:

If Q0=�E = n, the linearly independent functions are given by

f1 (�F ; Q
0; r) / f2 (�F ; Q

0; r) f3 (�F ; Q
0; r)

e�
Q0
n
rr`L

(2`+1)
n�`�1

�
2Q

0

n
r
� 24C3 rZ

0

e2
Q0
n rh

r`+1L
(2`+1)
n�`�1

�
2Q

0
n
r
�i2 dr + C4

35 f1 (�F ; Q0; r) :

A.1.3 Limiting behavior as r !1
Solution f1 (�E; Q

0; r)

If Q0=�E 6= n the solution f1 (�E; Q0; r) is not quadratically integrable if r !1. If Q0=�E = n,
the solution is �nite in this limit and f1 (�E; Q0; r) / f2 (�E; Q

0; r). The solution (A.4) that is
linearly independent of this solution diverges as r !1.
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Solution f2 (�E; Q
0; r)

This solution is �nite if r !1 for all values of the parameters [86]:

lim
r!1

f2 (�E; Q
0; r) = lim

r!1

W Q0
�E

;`+ 1
2

(2�Er)

r
/ r

Q0
�E
�1
e��Er

r!1�! 0:

Conclusion

The only solution of di¤erential equation (A.1) that is quadratically integrable as r ! 1 for
all values of the parameters is f2 (r) =W B

2A
;`+ 1

2
(2Ar) =r:

A.2 Implementation of the basis functions and their deri-
vatives

In orbital-based calculations for a nanoshell the radial single-particle Schrödinger equation

1

r2
d

dr

�
r2
d

dr

�
R (r) +

�
2��

�
2ueff (r) +

` (`+ 1)

r2

��
R (r) = 0

has to be solved. In this equation, R(r) is the (unnormalized) single-particle wave function, �
the single-particle energy, ueff (r) the e¤ective potential energy (consisting of a Hartree, an ex-
change and a correlation contribution) and ` the angular quantum number. In section 5.3.3 we
described the Transfer Matrix Method to derive piecewise wave functions for di¤erent regions in
some models that we considered for a nanoshell: an ideal Fermi gas in a spherically symmetric
(in)�nite potential well and interacting electrons moving in the �eld of a uniform background
in the shell. In this appendix we explain how we have performed the implementation of some
of the basis functions and of their derivative with respect to r which is needed in the recur-
rence relations and boundary conditions as explained in section 5.3.2. The basis functions we
will discuss are the spherical Bessel functions j` (x) and y` (x), the modi�ed spherical Bessel
functions i` (x) and k` (x), and the Whittaker function W�;� (x).
We �rst brie�y repeat in which context these functions occur.

The spherical Bessel functions j` (x) and y` (x) are used inside the in�nite and �nite spherically
symmetric potential well if the centrifugal term is not approximated.
The modi�ed spherical Bessel function of the �rst kind i` (x) occurs in the model of non-
interacting fermions in a �nite potential well and in the model of interacting electrons. It is used
in the region [0; rO] in which the potential energy is constant and the centrifugal term cannot
be approximated. In the case of the �nite well rO = RC . The energy-dependent parameter in
this region is �O =

p
2 j�� uC j with uC the constant potential in the interval [0; rO].

The modi�ed spherical Bessel function of the third kind k` (x) is only used in the model of
the �nite potential well where it describes the wave function in the region [RS;1[ in which
the potential energy is a constant equal to ueff (r) = uE. This region is characterized by
�E =

p
2 j�� uEj.

The Whittaker function W�;� (x) is only used in the model of interacting electrons where it
describes the wave function in the �free-of-charge� region denoted as [rF ;1[. The energy-
dependent parameter in this region is �F =

p
2 j�j.
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A.2.1 (Modi�ed) spherical Bessel functions

Spherical Bessel functions

For the calculation of the spherical Bessel functions j` (x) and y` (x) and their derivatives we
used the routine �sphbes�of Ref. [97].

Modi�ed spherical Bessel functions

In the region of interest (small x-values for i` (x) and large x-values for k` (x)) the standard
routine for the modi�ed Bessel functions quickly leads to under�ow. Because it is not per se
true that the normalized wave function in those x-values is equal to zero, it is better not to
calculate the modi�ed Bessel functions directly. We now discuss how this problem can be solved.
The explanation is worked out for the case of forward recurrence, but it is analogous for the
case of backward recurrence. In the recurrence relations �rescaled derivatives�, i0` (X) =i` (X)
and k0` (X) =k` (X) ; and �rescaled modi�ed Bessel functions�, i` (x) =i` (X) and k` (x) =k` (X)
appear. How these are implemented is explained after the basic exposition.
The (unnormalized) wave function has the following form in the region that contains the

origin:
RO (r) = aOu1 (0; �; r) = aOi` (�Or) :

We set as initial value of aO for the forard recurrence:

aO =
1

i` (�OrO)

so that RO (rO) = 1 and the values of the wave function in the core are calculated relative to
the value at the shell boundary:

RO (0 < r � rO) =
i` (�Or)

i` (�OrO)

RO (r = 0) =

� 1
i0(�OrO)

` = 0

0 ` > 0
:

It follows that the coe¢ cients ajO+1 and bjO+1 in the interval with as lower bound rO can be
determined by using equations (5.9) and (5.12) as

ajO+1 =
u02 (jO + 1; �; rO)� �O

i0`(�OrO)

i`(�OrO)
u2 (jO + 1; �; rO)

D (jO + 1; �; rO)

bjO+1 =
�O

i0`(�OrO)

i`(�OrO)
u1 (jO + 1; �; rjO+1)� u01 (jO + 1; �; rjO+1)

D (jO + 1; �; rO)

and the contribution to the normalization integral can be calculated from equation (5.24) as

rOZ
0

jRO (r)j2 r2 dr =
r3O
2

��
1 +

` (`+ 1)

�2Or
2
O

�
�
�
i0` (�OrO)

i` (�OrO)
+

1

�OrO

�
i0` (�OrO)

i` (�OrO)

�
:

In these expressions i0` (x) denotes the derivative with respect to the argument, i
0
` (x) = di` (x) =dx.

We will discuss below how the �rescaled derivative� i0` (X) =i` (X) and the �rescaled modi�ed
Bessel function�i` (x) =i` (X) are implemented.
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For the boundary condition with the region which contains r !1, we again only need the
�rescaled derivative� of the basis function (equation (5.14)) which for u1 (jS; �; r) = k` (�Er)
becomes:

fE (�) =
u01 (jS � 1; �; RS)� u1 (jS � 1; �; RS)�E

k0`(�ERS)

k`(�ERS)

u02 (jS � 1; �; RS)� u2 (jS � 1; �; RS)�E
k0`(�ERS)

k`(�ERS)

ajS�1 + bjS�1

with jS the index of the region outside the nanoshell. For the calculations of the piecewise wave
function RE (r) and the normalization constant, it is useful to write the unnormalized wave
function in the form

RE (r) = bE
k` (�Er)

k` (�ERS)
:

The constant bE can be de�ned from the continuity of the wave function at r = RS as
bE = RE (RS) = ajS�1u1 (jS � 1; �; RS) + bjS�1u2 (jS � 1; �; RS). The contribution to the
normalization integral can then be written as

1Z
RS

jRE (r)j2 r2 dr = b2E
R3S
2

��
k0` (�ERS)

k` (�ERS)
+

1

�ERS

�
k0` (�ERS)

k` (�ERS)
�
�
1 +

` (`+ 1)

�2ER
2
S

��
:

The implementation of the �rescaled derivative�k0` (�ERS) =k` (�ERS) and the �rescaled mod-
i�ed Bessel function�k` (�Er) =k` (�ERS) are explained in the following paragraphs.

Calculation of the �rescaled derivatives� We wrote routines to calculate the �rescaled
derivatives� i0` (X) =i` (X) and k0` (X) =k` (X) based on the routine �bessik� of Ref. [97] in
which the modi�ed Bessel function I� (x) and K� (x) and their derivatives I 0� (x) and K

0
� (x) are

calculated.
With the use of the relation between the modi�ed spherical Bessel functions z` (x) and their
�non-spherical�counterparts Z` (x):

z` (x) =

r
�

2x
Z`+ 1

2
(x) (A.5)

z0` (x) =

r
�

2x
Z 0
`+ 1

2
(x)� z` (x)

2x
;

the rescaled derivatives of the basis functions can be written as

i0` (X)

i` (X)
=

I 0
`+ 1

2

(X)

I`+ 1
2
(X)

� 1

2X

k0` (X)

k` (X)
=

K 0
`+ 1

2

(X)

K`+ 1
2
(X)

� 1

2X
:

To calculate the ratios I 0
`+ 1

2

(X) =I`+ 1
2
(X) and K 0

`+ 1
2

(X) =K`+ 1
2
(X) we have made use of in-

termediate steps in the routine �bessik� [97]. One of the intermediate steps provides directly
what we need [98]:

f� (X) �
I 0� (X)

I� (X)
:

So for calculating I 0
`+ 1

2

(X) =I`+ 1
2
(X) we used the code of �bessik� upto the calculation of

f� (X).
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Another intermediate step in the routine �bessik�gives the ratio K�+1 (X) =K� (X). We used
this piece of code to calculate K�+1 (X) =K� (X) and extended it to derive K 0

� (X) =K� (X)
which is equal to

K 0
� (X)

K� (X)
=

�

X
� K�+1 (X)

K� (X)
:

This identity can be found by setting Z� (X) = ei��K� (X) in the recurrence relation [1,86]

Z 0� (X) = Z�+1 (X) +
�

X
Z� (X)

from which
K 0
�(X) = �K�+1(X) +

�

X
K�(X):

Calculation of the �rescaled modi�ed Bessel functions� To calculate the �rescaled
modi�ed Bessel function�we have made use of relation (A.5) and the logarithm:

z` (x)

z` (X)
=

r
X

x
exp

"
ln

 
Z`+ 1

2
(x)

Z`+ 1
2
(X)

!#

=

r
X

x
exp

h
ln
�
Z`+ 1

2
(x)
�
� ln

�
Z`+ 1

2
(X)

�i
:

The function ln (Z� (x)) was calculated by modifying the routine �bessik�of Ref. [97] so that
it returned the logarithm of Z� (x) instead of Z� (x) itself. Therefore we extensively used the
following identities:

a = sae
la with

sa = signum (a)
la = log jaj if sa 6= 0; arbitrary, say 1; otherwise.

c = ab! c = sce
lc with

sc = sasb
lc = la + lb

c = a+ b! c = sce
lc with

8>>>>>><>>>>>>:

sc = sa; lc = la if sb = 0
sc = sb; lc = lb if sa = 0
sc = 0; lc = arbitrary if sa = �sb & la = lb
sc = sM ; lc = lM + log (1 + sasb exp (lm � lM))

with
M = a;m = b if lb < la
M = b;m = a if la < lb

:

A.2.2 Whittaker function W�;� (x)

Because of the boundary conditions only basis function u1 (j; �; r) is of interest in the free-of-
charge region. This function is given by

u1 (j; �; r) =

8>>><>>>:
W Q0

�F
;`+1

2

(2�F r)

r
if Q0

�F
=2 N

e�
Q0
p
rr`L

(2`+1)
p�`�1

�
2Q

0

p
r
�
if Q0

�F
= p 2 N

with Q0 = Qtot="E with Qtot the total charge in the system and "E the permittivity of the
environment. The expression with the Laguerre polynomial is a special case of the expression
with the Whittaker function so we only discuss the latter. Just like in the case of the modi�ed
spherical Bessel functions, a routine for the Whittaker function would lead to under�ow for
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values of the argument in which the normalized wave function is still substantial. In this
section we explain how we have solved this problem for forward recurrence.
If the boundary condition in the smallest radius rF of the free-of-charge region is written in

the form as was given by equation (5.14), only the �rescaled derivative�has to be calculated:

fF (�) =
u01 (jF � 1; �; rF )� u1 (jF � 1; �; rF ) u

0
1(jF ;�;rF )

u1(jF ;�;rF )

u02 (jF � 1; �; rF )� u2 (jF � 1; �; rF ) u
0
1(jF ;�;rF )

u1(jF ;�;rF )

ajF�1 + bjF�1

with

u01 (jF ; �; rF )

u1 (jF ; �; rF )
= 2�F

W 0
Q0
�F

;`+ 1
2

(2�F r)

W Q0
�F

;`+ 1
2

(2�F r)
� 1
r
:

How we implemented the �rescaled derivative�of the Whittaker function will be explained after
the exposition on how we calculated the unnormalized wave function.
To calculate the unnormalized wave function in the free-of-charge region we applied the

following trick. Because of the continuity in the smallest radius rF of the free-of-charge region,
the unnormalized wave function in rF can be written with the use of the basis functions in the
last interval before the free-of-charge region:

RF (rF ) = ajFu1 (jF ; �; rF ) = ajF�1u1 (jF � 1; �; rF ) + bjF�1u2 (jF � 1; �; rF ) :

With a good scaling of the coe¢ cients aj and bj, the value RF (rF ) has a size appropriate to
the problem. Now we will derive an expression of the form

RF (rj) / RF (rj�1) (A.6)

so that the wave function RF (rj) in radius rj > rF can be calculated from the wave func-
tion RF (rj�1) in radius rj�1, with RF (rj) <RF (rj�1). This is somewhat more straightforward
than using logarithms as we did for the modi�ed spherical Bessel functions, see section A.2.1,
and applying the logarithm would be of no use because for the Whittaker function there does
not exist an analytical expression for the contribution to the normalization integral. To derive
a relation like relation (A.6), we make use of the equalities

f 0 (x)

f (x)
=

d

dx
ln f (x)

+

f (x) = f (X) exp

�Z x

X

f 0 (y)

f (y)
dy

�
:

The radial wave function in a point rj > rF can thus be calculated from

RF (rj > rF ) = aF

W Q0
�F

;`+ 1
2

(2�F rj)

rj

= aF

W Q0
�F

;`+ 1
2

(2�F rj�1)

rj
exp

0@Z 2�F rj

2�F rj�1

W 0
Q0
�F

;`+ 1
2

(x)

W Q0
�F

;`+ 1
2

(x)
dx

1A
+

RF (rj > rF ) = RF (rj�1)
rj�1
rj

exp

0@Z 2�F rj

2�F rj�1

W 0
Q0
�F

;`+ 1
2

(x)

W Q0
�F

;`+ 1
2

(x)
dx

1A :
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To calculate the integral in the exponent we used linear interpolation for the integrand. For
the contribution to the normalization integral we used linear interpolation for the unnormalized
wave function.

In the rest of this section we will deal with the most di¢ cult problem of the determination
of the piecewise radial wave function in the free-of-charge region and the only topic we have
not discussed yet: the calculation of the �rescaled derivative�W 0

�;� (x) =W�;� (x). For the
calculation of this term we will make use of continued fractions (as is used in the routine
�bessik� of Ref. [98] to calculate the ratio I 0� (x) =I� (x)). A continued fraction has the
form [20,86]

C = b0 +
a1

b1 +
a2

b2+
a3

b3+:::

= b0 +
a1
b1+

a2
b2+

::: = b0 +
1
K
j=1

�
aj
bj

�
(A.7)

with aj and bj complex numbers and the condition

8j : aj 6= 0: (A.8)

The approximation of the continued fraction by only taking into account the �rst q terms,

C(q) = b0 +
q

K
j=1

�
aj
bj

�
=
Aq
Bq

;

is called the q�th approximant or the q�t convergent for C.
In what follows we derive two di¤erent continued fractions for the rescaled derivative, we
compare the calculation ofW 0

�;� (x) =W�;� (x) based on these two continued fractions and �nally
we mention which one is to be preferred.

First continued fraction

Using expressions [86]

dn

dxn

�
e�

1
2
xx���

1
2W�;� (x)

�
= (�1)n e� 1

2
xx���

1
2
n� 1

2W�+ 1
2
n;�+ 1

2
n (x)

W�;� (x)p
xW�� 1

2
;�� 1

2
(x)

= 1 +
v1=x

1+

v2=x

1+
� � � with

�
v2i+1 =

1
2
+ �� �+ i;

v2i =
1
2
� �� �+ i

with i 2 N, we can derive the following continued fraction for the rescaled derivative:

W 0
�;� (x)

W�;� (x)
= C1 = �

1

2
+
�+ 1

2

x
� t1=x

1+

t2=x

1+
� � � with

�
t2i+1 = ��+ �+ 1

2
+ i;

t2i = ��� �� 1
2
+ i

: (A.9)

The coe¢ cients of the continued fraction as de�ned in (A.7) are in this case given by

b0 = �1
2
+
�+ 1

2

x
bj>0 = 1

a1 = �
��+ �+ 1

2

x
(A.10)

aj=2i =
��� �� 1

2
+ i

x

aj=2i+1 =
��+ �+ 1

2
+ i

x
:
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This continued fraction can also be derived from
1) the relation between the Whittaker function W�;� (x) and the con�uent hypergeometric
function U (a; c;x) given by [86] W�;� (x) = exp (�x=2)x�+1=2U (�� �+ 1=2; 1 + 2�; x),
2) formula (13.4.25) of Ref. [1] from which the following equality can be written down:
U 0 (a; c;x) =U (a; c;x) = 1� U (a; c+ 1; x) =U (a; c;x), and
3) the continued fraction (13.5.3-4) of Ref. [86] for U (a; c;x) =U (a; c� 1;x).
The condition (A.8) for existence of the continued fraction with � = `+1=2 is from expres-

sions (A.10)
�+ `+ 1 6= i j even
�� (`+ 1) 6= i j odd

:

This condition is always ful�lled if � 6= p 2 N. In the rare case that � = p 2 N; the condition is
only ful�lled for a certain number of approximants. The condition for j even is always satis�ed
for the �rst 2 (p+ l) approximants (for which p + ` + 1 < i). The ful�llment of the condition
for j odd can lead to a quicker breakdown. We distinguish the following two cases:
1. p = � < ` + 1: the condition for j odd is always ful�lled because i � 0. The continued
fraction can be calculated up to the 2 (p+ `)�th approximant.
2. p � `+1: the condition for j odd is ful�lled up to the [2 (p� `)� 1]�th approximant (for which
p� `� 1 < i). Because the number of approximants that can be calculated for j even is bigger
than the number of approximants that can be calculated for j odd, 2 (p+ `) > 2 (p� `) � 1,
the condition for j odd is the most restrictive. The continued fraction can be calculated up to
the [2 (p� `)� 1]�th approximant.
Note that if p � ` + 1, the series in U (a; c;x) cuts down to a Laguerre polynomial, as in the
case of the hydrogen atom. Then the ratio W 0

�;� (x) =W�;� (x) is a ratio of polynomials where
the polynomial in the numerator is of one order less than the polynomial in the denominator.

Second continued fraction

The second continued fraction can be derived by using the relations [1,20,86]

W�;� (x) = e�
x
2x�+

1
2U

�
�� �+

1

2
; 2�+ 1; x

�
U (a� 1; c;x) = (a� c+ x)U (a; c;x)� xU 0 (a; c;x)

U (a; c;x)

U (a+ 1; c;x)
= 2a� c+ 2 + z �

1
K
j=1

�
(a+ j) (c� a� j � 1)

c� 2a� 2j � x

�
: (A.11)

We then �nd the following continued fraction for the rescaled derivative:

W 0
�;� (x)

W�;� (x)
= C2 = �

1

2
+
1

x

"
�+

1
K
j=1

 
�2 �

�
�+ 1

2
� j
�2

2 (�� j)� x

!#
(A.12)

with the expressions for the coe¢ cients aj and bj of the general form (A.7) of the continued
fraction given by:

b0 = �1
2
+
�

x

a1 =
�2 �

�
�� 1

2

�2
x

(A.13)

bj>0 = 2 (�� j)� x

aj = �2 �
�
�+

1

2
� j

�2
:

The same continued fraction was derived in a di¤erent way in Ref. [20].
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The condition (A.8) for existence of the continued fraction with � = `+ 1=2 is now

�� ` 6= j

�+ `+ 1 6= j:

This condition is again always ful�lled if � 6= p 2 N. In the rare case that � = p 2 N the
condition is again only ful�lled for a certain number of approximants, but now the situation is
di¤erent than for the �rst continued fraction. The number of approximants is again determined
by the relative magnitude of p and `, but in this case we have the following possibilities:
1. p = � < ` + 1: because j � 1 the second condition is the most restrictive. The �rst p + `
approximants can be calculated.
2. p � `+ 1: the �rst p� `� 1 approximants can be calculated.
About half of the number of approximants can be calculated as compared to the �rst

continued fraction.

Remark

Although the construction of the solution of the di¤erential equation in the approximation
ueff (r) = �Q0=r makes use of the rule of l�Hôpital to evaluate the Whittaker function (see
section A.1), it appears to be possible to �ll in integer values for � directly into the continued
fractions.

Implementation and comparison

For the implementation of the rescaled derivative W 0
�;� (x) =W�;� (x) based on the continued

fractions, we used the modi�ed Lentz�s method (see e.g. Ref. [98] section 5.2 for an explanation
of the method and a sketch of the algorithm). The algorithm is stopped if for a certain j = J
one has C(J)=C(J�1) ' 1. The result is thus the J-th approximant C(J) of the continued fraction.
The relations between the parameters f�; �; xg of the Whittaker functions and the physical

parameters of the problem (the total charge Qtot; the permittivity of the environment "E,
the single-electron energy �, the angular quantum number ` and the smallest radius of the
free-of-charge region rF ) are:

� = `+
1

2
; � =

Qtot

"E
p
2 j�j

; x = 2
p
2 j�jrF :

The test values of �; � and x were constructed as follows:

� value for Qtot and "E: for simplicity we have taken Qtot = 1 and "E = 1 (these variables
will have an order of magnitude equal to 1 in the considered problem);

� values for `: we have taken the testing values ` = 0; :::; 20;

� values for rF : the value for rF is approximately equal to the value for RS. Because RS

varies approximately between 40 nm en 120 nm, these values were also used for rF . In
atomic units this means that rF ' 700; :::; 2300;

� values for �: the energy values were taken to be j�j = 1=rF .

This analysis led to the use of the following Whittaker parameters for testing:

� '
r
rF
2
2 [19; 34]

� = `+
1

2
= 0:5; 1:5; :::; 20:5

x ' 2
p
2rF 2 [75; 135] :
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First, tests for � =2 N were performed. The results of the continued fractions only di¤ered in
the sixth to eighth digit with each other and with results from Mathematica

R

. The calculations

with C1 needed about two times more iterations than those with C2 before the stopping criterion
C(J)=C(J�1) ' 1 was met and so the calculations with C2 are much faster than those with C1.
The case � 2 N could cause problems because the continued fraction can only be calculated

up to a certain approximant. That is why this case was tested separately to check whether in
practice
- the continued fraction reaches convergence before it breaks down because for the j�th approxi-
mant the condition aj 6= 0 is not ful�lled.
- a possible break down leads to erroneous results.
The results were compared with results of Mathematica

R

in which the basis function was

calculated as exp (�Q0r=p) r`L(2`+1)p�`�1 (2Q
0r=p). The results only di¤ered in the sixth to ninth

digit. We conclude that a possible break down of the continued fraction does not lead to
erroneous results so the continued fraction implementation can also be used for � 2 N .

Choice of continued fraction

Because both continued fractions lead to comparable results and the calculations based on C2
are faster than those based on C1, the implementation with C2 is to be preferred. The parameters
of this continued fraction for W 0

�;� (x) =W�;� (x) are

b0 = �1
2
+
�

x

a1 =
�2 �

�
�� 1

2

�2
x

bj>0 = 2 (�� j)� x

aj>1 = �2 �
�
�+

1

2
� j

�2
:
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Appendix B

Regarding part III - Orbital-free
calculations

B.1 Hartree energy for spherically symmetric systems

To derive an expression for the Hartree energy uH (r) due to a spherically symmetric excess
charge distribution �exc (r), we used the following key relations:

uH (r) = ��H (r)
r�H (r) = �E (r)

�
=) ruH (r) = E (r) (B.1)

Ek (r) =
D (r)

"k
(B.2)

r �D (r) = 4��exc (r) Gauss�s law (B.3)

with �H (r) the Hartree (electrostatic) potential, E (r) the electric �eld, k the index of a layer
of a given material of a spherically symmetric system, Ek (r) and Dk (r) the electric �eld and
displacement vector in layer k, "k the permittivity of the material of layer k and D (r) the
displacement vector.

B.1.1 Expression for uH (r) as a double integral

We will �rst derive an expression for the displacement vector D (r) and the electric �eld E (r) in
a spherically symmetric system using relations (B.3) and (B.2) and the appropriate boundary
conditions. Afterwards we will derive an expression for the Hartree single-particle energy uH (r)
from the derived expression for E (r) using relation (B.1).
For a spherically symmetric system, Gauss�s law (B.3) can be written as

1

r2
@ [r2D (r)]

@r
= 4��exc (r)

from which the following expression for the displacement vector can be found:

D (r) = 4�
1

r2

rZ
0

r02�exc (r
0) dr0 +

c

r2
(B.4)

with c a constant. From relation (B.2),the electric �eld in layer k (so k = 1 for the core, k = 2
for the shell and k = 3 for the environment) is then given by

Ek (r) =
4�

"k

1

r2

rZ
0

r02�exc (r
0) dr0 +

c

"kr2
:



160 Regarding part III - Orbital-free calculations

The boundary conditions are the following:

E (r = 0) = 0 (B.5)

for a spherically symmetric system and [48]

DS (RC)�DC (RC) = 0 (B.6)

DE (RS)�DS (RS) = 0 (B.7)

for boundaries with external surface charge density �ext equal to zero, like for the interfaces of
an unperturbed nanoshell. From the boundary condition (B.5) on the electric �eld in the origin
it follows that c = 0 and so the electric �eld in the core is given by

EC (r) =
4�

"C

1

r2

rZ
0

r02�exc (r
0) dr0:

From the boundary conditons (B.6) and (B.7) we �nd eventually that the electric �eld in layer k
is given by

Ek (r) =
4�

"k

1

r2

rZ
0

r02�exc (r
0) dr0: (B.8)

Combining relation (B.1) with expression (B.8) gives

@uH (r)

@r
= E (r)) uH (r) =

rZ
0

E (r00) dr00 + C =

rZ
0

4�

" (r00)

1

r002

r00Z
0

�exc (r
0) r02 dr00dr0 + C

with C a constant. We now choose the zero point energy at r !1 which leads to the following
expression for the Hartree single-particle energy as a double integral:

uH (r) = �4�
+1Z
r

1

" (r00)

1

r002

0@ r00Z
0

�exc (r
0) r02 dr0

1A dr00: (B.9)

The Hartree potential energy uH (r) is calculated in two steps: �rst the electric �eld E (r)
is calculated and then uH (r) is calculated as the integral over the electric �eld:

Ek (r) =
4�

"k

1

r2

rZ
0

�exc (r
0) r02 dr0 =) uH (r) =

rZ
+1

E (r0) dr0:

The zero point of the potential energy was chosen such that uH (r !1) = 0. Now the
calculations are performed on a �nite mesh with maximum radius Rmax. In the case of a charge
neutral system we can set uH (Rmax) = 0 to start the �backward� integration

R r
+1 E (r

0) dr0.
However, if the system is not charge neutral, then uH (Rmax) 6= 0. Because the radius Rmax is
chosen such that �exc (r > Rmax) = 0, the value for the electric �eld for r � Rmax is equal to

E (r � Rmax) =
4�

"E

1

r2

RmaxZ
0

�exc (r
0) r02 dr0 =

1

"E

Qtot
r2

with Qtot the total charge in the system. We thus �nd that the Hartree potential energy in the
last mesh point Rmax is in general given by

uH (Rmax) =
Qtot
"E

RmaxZ
+1

1

r02
dr0 = �Qtot

"E

1

Rmax
:
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B.1.2 Expression for uH (r) as a sum of two single integrals

Expression (B.9) can be rewritten as a sum of two single integrals. This can be done by �rst
interchanging the integration sequence, which leads to the expression

uH (r) = �4�

26666664

rZ
0

�exc (r
0) r02

0@ +1Z
r

1
"(r00)

1
r002dr

00

1A dr0

+

1Z
r

�exc (r
0) r02

0@ +1Z
r0

1
"(r00)

1
r002dr

00

1A dr0

37777775 :

This sum of double integrals can be converted to a sum of single integrals by using the fact
that in each layer the permittivity is a constant. Elementary algebra then yields the following
expressions for uH (r):

� in the environment:

u
(E)
H (r) = �4�

"E

0@1
r

rZ
0

�exc (r
0) r02 dr0 +

+1Z
r

�exc (r
0) r0 dr0

1A
� in the shell:

u
(S)
H (r) = �4�

8>>><>>>:
1
"S

 
1
r

rR
0

�exc (r
0) r02 dr0 +

RSR
r

�exc (r
0) r0 dr0

!
+
�
1
"E
� 1

"S

�
1
RS

RSR
0

�exc (r
0) r02 dr0 + 1

"E

+1R
RS

�exc (r
0) r0 dr0

9>>>=>>>;
� in the core:

u
(C)
H (r) = �4�

8>>>>>>>><>>>>>>>>:

1
"C

"
1
r

rR
0

�exc (r
0) r02 dr0 +

RCR
r

�exc (r
0) r0 dr0

#
+
�
1
"S
� 1

"C

�
1
RC

RCR
0

�exc (r
0) r02 dr0 + 1

"S

RSR
Rc

�exc (r
0) r0 dr0

+
�
1
"E
� 1

"S

�
1
RS

RSR
0

�exc (r
0) r02 dr0 + 1

"E

+1R
RS

�exc (r
0) r0 dr0

9>>>>>>>>=>>>>>>>>;
:

The expressions can easily be generalized to multiple-shell structures. With k the index of
a material layer - so in the case of a single nanoshell kmax = 3; f"1; "2; "3g = f"C ; "S; "Eg and
fR1; R2; R3g = fRC ; RS;+1g - we can write the Hartree energy in layer k as:

u
(k)
H (r) = �4�

8>>>>>>>><>>>>>>>>:

1
"k

"
1
r

rR
0

�exc (r
0) r02 dr0 +

RkR
r

�exc (r
0) r0 dr0

#

+
kmax�1X
k0=k

26664
�

1
"k0+1

� 1
"k0

�
1
Rk0

Rk0R
0

�exc (r
0) r02 dr0

+ 1
"k0+1

Rk0+1R
Rk0

�exc (r
0) r0 dr0

37775

9>>>>>>>>=>>>>>>>>;
: (B.10)



162 Regarding part III - Orbital-free calculations

B.2 Di¤erence in Hartree energy �EH

In section 9.3.4 we mentioned an expression for the di¤erence �EH in Hartree energy due to
the move of a walker to an adjacent interval. An expression for the di¤erence �EH in Hartree
energy due to the removal of a walker from the system was given in section 9.3.7. In this
appendix the derivation of these expressions is provided.

B.2.1 Key formulas

The derivation of an expression for �EH is quite straightforward if the following key formulas
are collected.
We can make use of the speci�c implementation of the di¤usion process with Bernoulli

walkers. Denoting by J the lowest index of the interval in which the density has changed,
we get for the new number of walkers (Nw)

0
j in interval j due to (re)moving of a number of

walkers �Nw:

(Nw)
0
J = (Nw)J ��Nw = (Nw)J � sgn��Nw (B.11)

(Nw)
0
J+1 = (Nw)J+1 ��Nw = (Nw)J+1 + sgn��Nw (B.12)

(Nw)
0
j 6=J;J+1 = (Nw)j 6=J;J+1 (B.13)

with

sgn �
�
�1 if move to left
+1 if move to right

:

Now we know from expression (8.1) that

nj =
N

Nw

(Nw)j
Vj

: (B.14)

Combining expressions (B.11), (B.12), (B.13) and (B.14) and using the uniform background
approximation, we get the following useful identities for the change in excess charge density��j
in interval j:

��J = ��nJ = �sgn�
3

4�

N

Nw

�Nw

r3J+1 � r3J
= �sgn � �J�Nw (B.15)

��J+1 = ��nJ+1 = sgn�
3

4�

N

Nw

�Nw

r3J+2 � r3J+1
= sgn � �J+1�Nw (B.16)

��j 6=J;J+1 = 0: (B.17)

The often encountered combination A (��)J +B (��)J+1 can then easily be written out as

A (��)J +B (��)J+1 = �sgn�
3

4�

N

Nw

�Nw

�
A

r3J+1 � r3J
� B

r3J+2 � r3J+1

�
: (B.18)

For the integration over the energy density, in each interval the excess charge density �exc (r)
is considered to be constant and for the Hartree potential energy uH (r) linear interpolation is
used. Then the Hartree part of the energy functional takes on the following discretized form:

EH [n (r)] = CH

jmax�1X
j=0

�j

�
ujI

(1)
j + uj+1I

(2)
j

�
(B.19)
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with �j the value of �exc (r) in the j-th interval, uj the value of the single-particle Hartree
energy uH (r) in mesh point j and

CH = ��
6

I
(1)
j =

�
r2j+1 + 2rjrj+1 + 3r

2
j

�
hj

I
(2)
j =

�
3r2j+1 + 2rjrj+1 + r2j

�
hj:

In calculating the di¤erence �EH , the di¤erence �uj in Hartree single-particle energy in
mesh point j will appear. It is for the derivation of �uj that the formula (9.10), or (B.10),
for uH (r) as a sum of single integrals comes into play. It is useful for the derivation that this
expression is rewritten with obvious distinction between integral parts of the di¤erent layers.
After reordering and discretizing we get for the Hartree energy in mesh point j (with square
brackets [ ] around multiple lines referring to the same layer):

u
(E)
j = �4�

8>>>>>>>><>>>>>>>>:

1
3rj

1
"E

PjRC�1
j1=0

�j1
�
r3j1+1 � r3j1

�
+ 1
3rj

1
"E

PjRS�1
j1=jRC

�j1
�
r3j1+1 � r3j1

�
+

"
1
3rj

1
"E

Pj�1
j1=jRS

�j1
�
r3j1+1 � r3j1

�
+1
2
1
"E

Pjmax�1
j1=j

�j1
�
r2j1+1 � r2j1

� #

9>>>>>>>>=>>>>>>>>;
(B.20)

u
(S)
j = �4�

8>>>>>>>>>>><>>>>>>>>>>>:
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1
rj

1
"S
+
�
1
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� 1

"S

�
1
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�j1
�
r3j1+1 � r3j1
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2664
1
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1
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Pj1=jRS�1
j1=j

�j1
�
r2j1+1 � r2j1
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1
3RS
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r3j1+1 � r3j1

�
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+ 1
2"E
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j1=jRS

�j1
�
r2j1+1 � r2j1

�

9>>>>>>>>>>>=>>>>>>>>>>>;
(B.21)

u
(C)
j = �4�

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
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1
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1
3RS

Pj1=jRs�1
j1=jRC

�j1
�
r3j1+1 � r3j1

� #

+ 1
2"E

Pj1=jmax�1
j1=jRS

�j1
�
r2j1+1 � r2j1

�
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: (B.22)
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B.2.2 Di¤erence �EH due to walker movement

In this section we calculate �uj and �EH due to the move of one walker between the intervals
J and J + 1.

Single-particle Hartree energy

The derivation of �uj due to the movement of one walker, �Nw = 1, to a neighboring mesh
point is straightforward with the use of expressions (B.17), (B.18), (B.20), (B.21) and (B.22).
We show the derivation for j in one particular material layer and one particular value of J .
The derivation for other values is completely analogous.
Let J = jRS � 1, so J is the index of the last interval in the shell and J + 1 is the index of

the �rst interval in the environment, and let us have a look at the di¤erence in Hartree energy
in a mesh point in the shell. Using the relations (B.17) and (B.18) we then easily �nd from
expression (B.21) that

�u
(S)
j;J=jRS�1

= �4�

8><>:
"

1
2"S

�
r2J+1 � r2J

�
+
�
1
"E
� 1

"S

�
1
3RS

�
r3J+1 � r3J

� #��J
+ 1
2"E

�
r2J+2 � r2J+1

�
��J+1

9>=>;
= sgn� 3Ne

Nw

24 �
1
"E
� 1

"S

�
1
3RS

+1
2

�
1
"S

r2J+1�r2J
r3J+1�r3J

� 1
"E

r2J+2�r2J+1
r3J+2�r3J+1

� 35 :
Proceeding this way for all kinds of combinations for j and J , we �nd eventually the general

expressions

(�u)j�J = sgn� (�U)J

= sgn� 3 N
Nw

24 1
3

�
1

"J+1
� 1

"J

�
1

rJ+1

+1
2

�
1
"J

r2J+1�r2J
r3J+1�r3J

� 1
"J+1

r2J+2�r2J+1
r3J+2�r3J+1

� 35 (B.23)

(�u)J+1 = sgn� (�U)J+1 = sgn� 3
N

Nw

1

"J+1

�
1

3rJ+1
� 1
2

r2J+2 � r2J+1
r3J+2 � r3J+1

�
(�u)j>J+1 = 0:

Hartree energy functional

Because the density changes only in interval J and J + 1, we have from expression (B.19)

1

CH
�EH [n (r)] =

J�1X
j=0

�j

�
(�u)j I

(1)
j + (�u)j+1 I

(2)
j

�
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�
� �0J

�
u0JI

(1)
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(2)
J

�
+

24 �J+1

�
uJ+1I

(1)
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�
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� 35
+

jmax�1X
j=J+2

�j

�
(�u)j I

(1)
j + (�u)j+1 I

(2)
j

�
:

With use of the expressions (B.23) for the di¤erence in Hartree single-particle energy and

u0j = uj � (�u)j ;
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we �nd after some rearranging that

1

CH
�EH [n (r)] = sgn� (�U)J

J�1X
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�j
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j + I

(2)
j
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If we now use the expressions (B.15) and (B.16), we �nally get

�EH [n (r)] = sgn� CH

26664(�U)J SJ +
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with Sj de�ned as

Sj =

j�1X
j1=0

�j1

�
I
(1)
j1
+ I

(2)
j1

�
: (B.24)

Values of Sj and the single-particle Hartree potential energy uj can be quickly updated after
acceptance of a move by

S 0J+1 = SJ+1 + sgn� �J

�
I
(1)
J + I

(2)
J

�
S 0j>J+1 = Sj>J+1 + sgn� �J

�
I
(1)
J + I

(2)
J

�
� sgn� �J+1

�
I
(1)
J+1 + I

(2)
J+1

�

u0j�J = uJ � sgn� (�U)J
u0J+1 = uJ+1 � sgn� (�U)J+1 :

B.2.3 Di¤erence �EH due to walker removal

In this section we calculate �uj and �EH due to the removal of �Nw walkers from interval J .
The derivation is analogous as the derivation of the di¤erence due to moving of a walker.

Single-particle Hartree energy

The solution for the three di¤erent possibilities for the location of J ,

� J in environment

�u
(E)
j>J =

1

rj

1

"E

N

Nw

�Nw

�uj�J =
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2"E

N
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r3J+1 � r3J

�Nw;
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� J in shell
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can be summarized and generalized as

�u
(k)
j =

N

Nw

�Nw

"
kmax�1X
k0=k

�
1

"k0+1
� 1

"k0

�
1

Rk0
+

(
3
2"k

r2J+1�r2J
r3J+1�r3J

j � J
1
"k

1
rj

j > J

#
(B.25)

if j is located in layer k; for a single nanoshell we still have f"1; "2; "3g = f"C ; "S; "Eg,
fR1; R2; R3g = fRC ; RS;+1g and kmax = 3.

Hartree energy functional

The removal of �Nw walkers from interval J leads to a change ��J in the excess charge density
in the interval J only, but it leads to a change �uj in Hartree energy in all intervals as can be
seen from expression (B.25). We then have

1

CH
�EH =

J�1X
j=0

�j

�
I
(1)
j �uj + I

(2)
j �uj+1

�
+
h
�0J

�
I
(1)
J u0J + I

(2)
J u0J+1

�
� �J

�
I
(1)
J uJ + I

(2)
J uJ+1

�i
+

jmax�1X
j=J+1

�j

�
I
(1)
j �uj>J + I

(2)
j �uj+1>J

�
:

By using the fact that �uj�J = �uJ , the relation (B.15) between ��J and �Nw, the de�ni-
tion (B.24) of Sj and with some rearranging of terms, we can rewrite this expression as

�EH = CH
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375 :
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