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Preface

New insights in physics have been revealed each time a new research area
became available. For example, better microscopes and particle accelerators
allowed physicists to explore the nature of things on the smallest length
scales, which resulted in Schrödinger’s ‘Quantum mechanical’ description of the
microscopic world. On top of that, the acquired accessibility to new domains
allows to check experimentally different pioneering theoretical predictions. For
example, new telescopes allowed researchers to explore physics on cosmic length
scales, confirming Albert Einstein’s ‘Theory of relativity’. A new research
area, low temperature physics, became available in 1911 when H. Kamerlingh
Onnes successfully liquefied Helium in Leiden. Onnes wanted to test the
validity of the Drude theory at the lowest temperature possible, a theory
describing the resistive behavior of a metal. However, when he turned his
attention to Mercury, he observed that all signs of resistance appeared to vanish
suddenly below ∼4K. A new remarkable state of condensed matter was found,
superconductivity. Superconductivity, a macroscopic quantum effect, allows
dissipationless transport of electrical current and envisions a way out in a world
where energy dissipation has become a universal and top priority problem. The
zero resistance, the hallmark of superconductors, makes them very attractive
candidates for a variety of technological applications. These applications range
from high power transmission lines, high speed 500 km/h levitating trains to
the production of large volume, stable, high magnetic fields essential in human
health monitoring and diagnosis such as MRI scanners.

Regretfully, it is a well established fact that all technologically useful
superconductors (type-II superconductors), subjected to the flow of an
electrical current, give rise to energy losses as a consequence of the motion of
quantum units of flux and thus threatening their utility. This is why for decades
scientists and engineers have strived to understand, improve and optimize the
mechanisms to control and prevent the motion of these so called fluxons or
vortices.

With the advent of modern lithographic techniques, it became possible to
nano-pattern the superconductors at length-scales comparable to the size of
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vi PREFACE

a fluxon (<1µm) and to systematically investigate the effect of different well
characterized pinning centers (antidots, blind holes, etc.) and their distribution
(periodic, quasiperiodic, random) on the vortex properties. These pinning
centers provide a competing force for the repulsive vortex-vortex interaction
favoring triangular order in conventional superconductors and the driving
Lorentz force exerted by an induced or applied transport current. The control
over the interplay between these different competing forces allows to tune,
improve and optimize the critical currents and fields of a superconductor, which
is of fundamental importance for applications.

A new different kind of competition is observed in high quality single crystals
of MgB2. In this prototypical two-gap superconductor, the presence of two
coupled coexisting condensates, having different characteristic length scales,
has profound consequences for the superconducting properties. Due to these
extra degrees of freedom, two-gap superconductors offer new possibilities
interesting for both fundamental research and applications. In particular, the
response to an applied magnetic field can result in completely new physics as
compared to single-gap superconductors. In one extreme case, one condensate
will promote the formation of normal metal-superconductor(NS) boundaries
resulting in a vortex state, while the other component will try to minimize the
NS surface favoring the Meissner state. This results in a non-montonic vortex-
vortex interaction and a vortex distribution having vortex clusters immersed
in domains of the Meissner state.

Most of the research tools to investigate the vortex properties probe the
response of the whole superconducting volume and include the reaction of
millions of vortices (transport-and magnetization measurements, susceptibility
measurements, etc.) upon changing external variables (current, magnetic field,
temperature, etc.). Here the relation between the measured dependencies of
the macroscopic response and the microscopic vortex properties is indirect
and adequate theories have to be used to connect both worlds. As such a
continuous drive exists within the superconductivity community to develop
techniques which reveal directly the microscopic vortex properties. Different
tools are used to reveal single fluxons by probing their normal metallic core
(scanning tunneling microscopy) or the magnetic field attached to them (Bitter
decoration, magnetic force microscopy, scanning Hall probe microscopy, etc.),
each technique having its range of applicability.

In this thesis, under the idiom, ‘seeing is believing’, vortex matter
is studied at the single ‘particle’ scale. The ‘camera’ to visualize a
single fluxon makes use of a submicron (<10−6m) Hall probe which
is moved in close proximity over the sample surface and allows to
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detect a single quantum unit of flux carried by a vortex. This
technique, scanning Hall probe microscopy(SHPM) and a lock-in
variant, are used in this thesis to study the competition between the
pinning forces exerted by natural defects or nano-structuring, the
vortex-vortex interaction and an external driving force in a variety
of single-gap and two-gap superconductors. With these techniques
the observation of the single fluxon world becomes accessible, in this
way pioneering models used to explain the macroscopic response
can be checked. In the end, a direct experimental observation
provides irrefutable evidence. Moreover, just as K. Onnes discovered
superconductivity by checking Drudes theory of resistivity at the
lowest temperatures, it is hoped to find new and remarkable
properties at this scale.

This dissertation comprises a series of chapters, each exemplifying a specific
aspect of the above described interplay determining the extraordinary super-
conducting properties.

Chapter 1. In this chapter an introduction to some theoretical aspects of
superconductivity is presented. These concepts are necessary to understand
and interpret the results presented in other chapters. However, where needed,
additional theoretical background is provided in each of the following chapters
and references therein.

Chapter 2. Since the work in this thesis is mostly of experimental nature,
this chapter gives a brief description of some selected experimental techniques.
The focus is on the description of the technique central in this work, SHPM.
The sample fabrication method is also described.

Chapter 3. In this chapter the pinning properties of flux lines in a quasi-
periodically nano-structured superconductor are investigated at the single
vortex scale by SHPM. The competition between the vortex-vortex interaction
favoring triangular order and the extraordinary properties of the quasi-periodic
modulated pinning landscape has profound consequences for the resulting
vortex distributions and their dynamical properties. The obtained flux
distributions not only show the anticipated vortex configurations for specific
matching fields, as suggested from macroscopic transport measurements, but
unveil new and so far unpredicted local vortex distributions.

Chapter 4. In general, a type-II superconductor is flooded with vortices above
a critical entry field. The magnetic response of a type-II superconductor is
radically different, depending on whether the superconductor is in the Meissner
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state, characterized by a reversible magnetic response, or in the mixed state,
where vortices appear. As such, the determination of this field is of fundamental
importance, although it is never investigated at the single vortex level. In
this chapter, we study in detail the microscopic process of the first vortex
penetration in a carefully designed sample which captures the first entered
vortex in close neighbourhood of the sample border, making the observation
possible by scanning Hall probe microscopy.

Chapter 5. While in the two preceding chapters the visualisation of a static
vortex distribution by SHPM is used to infer information about the vortex
properties. In this chapter we present a novel local imaging technique with
unprecedented resolution, termed scanning ac-susceptibility microscopy (SSM),
which allows us, for the first time, to directly visualize the microscopic dynamics
of a single flux quantum. This new tool permits to check different models
describing the dynamical properties of vortex matter at the relevant length
scale and provides new insights concerning their dissipative behavior.

Chapter 6. In this chapter, we focus on vortex patterns in clean MgB2 single
crystals by SHPM. Whereas, in previous chapters the competition between the
vortex-vortex interaction, the pinning force and the driving Lorentz force were
investigated, here due to the two-gap nature of MgB2 an intrinsic competition
arises, resulting in a non-monotonic vortex-vortex interaction accompanied
by the appearance of unconventional vortex patterns. We have been able to
observe the progressive formation of vortex stripes in MgB2 and investigated
their stability.

Finally, we will conclude and present an outlook for the future.
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CHAPTER1
Theoretical introduction

This introductory chapter gives a brief overview limited to the scope of this PhD
research of the most important physical concepts necessary to understand and
interpret the main results of this work. It introduces the macroscopic quantum
effect of superconductivity, being one of the most fascinating phenomena in
condensed matter physics. A more detailed discussion of these concepts can be
found in several excellent books, to list a few:

• Introduction to superconductivity, Tinkham, M. [1]

• Superconductivity of metals and alloys, De Gennes, P.G. [2]

• Superconductivity, superfluids and condensates, Annett, J.F. [3]

1.1 Historical background

Every journey begins with a first step. The first step in the long quest of
superconductivity(SC) was set by H. Kamerlingh Onnes[4] in 1911 in Leiden.
He was the first to liquefy Helium resulting in the birth of a new vigorous
research area, low temperature physics. The phenomenon of superconductivity
was a complete surprise when it was first observed by Onnes in 1911. He
wanted to test the validity of the Drude theory by measuring the resistivity at
the lowest temperature possible. But, when he turned his attention to Mercury,
he observed that all signs of resistance appeared to vanish suddenly below 4K,
see Fig.1.1(a). This first key characteristic, infinite conductivity below a critical
temperature, Tc, introduced a new state of matter: superconductivity.

A second remarkable feature of superconductivity is the observation that in the
superconducting state, an external magnetic field is completely expelled. This

1



2 THEORETICAL INTRODUCTION

a) b)

Figure 1.1: (a) Experimental observation by H. Kamerlingh Onnes of the
superconducting transition, which shows the resistance (unit:Ohm) versus
temperature (unit:Kelvin) for Mercury. This historical experiment reveals
the superconducting transition at 4.2K, the resistance drops from 0.1 Ohm
to zero (< 10−6Ohm) within a narrow temperature range of 10mK[5]. (b)
H. Kamerlingh Onnes (Groningen, 21 September 1853- Leiden, 21 February
1926)[Picture taken from Wikipedia]

effect, perfect diamagnetism, discovered in 1933 by Meissner and Ochsenfeld[6],
22 years later than the first key characteristic, is called the Meissner-Ochsenfeld
effect. Combining perfect conductivity and Faraday’s law of induction cannot
explain this effect. Indeed, Meissner and Ochsenfeld not only observed that
a magnetic field is excluded from entering a superconductor, as might be
explained by perfect conductivity, but also that a field in an originally normal
sample is expelled as it is cooled through the superconducting transition. The
latter can certainly not be explained by perfect conductivity as it would trap
the flux in.

These two key properties of a superconductor exist only within a certain
thermodynamical phase space, meaning below a certain critical magnetic
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field, temperature and current. If we exceed one of the critical values, the
superconductor is in the normal phase.

a) b)

Figure 1.2: (a) Illustration of the effective interaction mechanism proposed by
H. Frölich. At t = t0, an electron is travelling through the ion lattice, with
velocity v1 ≈ vF resulting in a positive polarization cloud behind it due to
the retarded ionic response. At t = t1 a second electron is attracted by the
polarization left behind by the first electron which is long gone. (b) Herbert
Fröhlich (Rexingen, 9 December 1905- Liverpool, 23 January 1991)[Picture
taken from Wikipedia]

The microscopic mechanism of superconductivity was described by Bardeen,
Cooper and Schrieffer (BCS) in 1957[7]. After some crucial experiments1, one
could argue that superconductivity arises when electrons couple into pairs
which behave as bosons. Theoretically this was an interesting challenge,
since this behavior demands the existence of an attractive interaction between
electrons. However, in the simple electron gas model for a metal, the only
interactions are repulsive Coulomb interactions which do not favor pairing.
Fröhlich proposed in 1950, in accordance with the isotope-experiment, that the
interaction between electrons and ionic lattice vibrations, or phonons, could
lead to an effective attractive interaction between the electrons themselves.
Fröhlich pictured an electron travelling trough the lattice, typically moving
at the Fermi velocity, vF = ~kF /m

∗ = 106m/s, with kF the Fermi wave-
vector and m∗ an effective electron band mass[13]. During this trip, the
electron will deform or polarize the lattice a bit as the ions are positively

1(i) Ac conductivity[8] and specific heat capacity measurements[9] indicated the existence
of a band gap, a kind of bonding energy which has to be delivered to make excitations. (ii)
The critical temperature, Tc is isotope dependent[10, 11], TcMa = cte with M the mass of the
isotope and a = 0.5 for the majority of superconductors, indicating an influence of phonons.
(iii) Flux-quantization in units of h/2e, which indicates that electrons move in pairs[12].
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charged, see Fig.1.2(a). Due to the retarded response of the much heavier
ions (vI < 0.01vF ), the electron is long gone by the time the ions polarize
themselves. It will look like the electron drags a positively charged cloud behind
itself like a comet. A second electron, feels a net attractive force due to the
positively charged polarization left behind by the first electron resulting in a net
effective attraction between both electrons at much larger distances than the
lattice constant. The effective interaction, consisting of a (screened) repulsive
Coulomb-interaction and the above described interaction due to coupling with
the ionic lattice (electron-phonon coupling), turns out to be:

Veff (k,k′,q) = VCoulomb + Vphonon−exchange

= e2

ϵ(q)q2 + |g(q)|2~ωq

(εk+q − εk)2 − (~ωq)2

(1.1)

which depends on the momenta of both electrons2, ~k and ~k′, corresponding
with energies εk and εk′ , respectively and on the momentum of the exchanged
phonon, ~q = ~(k − k′), with corresponding energy ~ωq. The coupling
constant, |g(q)|, describes the interaction strength between the electrons and
the phonons, while ϵ is the dielectric constant reducing the strength of the
bare coulomb interaction due to screening by the other electrons[14]. The
frequency dependence of the second term reflects the retarded nature of the
phonon-exchange interaction. The important aspect of Eq.1.1 is that the
interaction part describing phonon-exchange is negative, meaning attractive,
when |εk+q − εk| < ~ωq. Superconductivity arises when the net force, the
balance between the phonon-induced attraction and the Coulomb repulsion
is overall attractive. Note, that a strong electron-phonon coupling favors
superconductivity, this is why somehow counterintuitive, good conductors are
poor superconductors.

The basic idea that even a weak effective attractive interaction can bind pairs
of electrons in a bound state, a so called ‘Cooper pair’, was presented in 1956 by
L. Cooper [15]. He showed that the Fermi sea of electrons is unstable against at
least one bound pair, so long as there is an attractive interaction present. This
was a first step towards a microscopic description of superconductivity. Having
seen that the Fermi sea is unstable against the formation of a bound Cooper
pair when the net interaction is attractive, then, clearly we must expect pairs
to condense until an equilibrium point is reached and the ground state energy
is lowered.

However, the main problem of Cooper’s calculation is that it singles out two
particular electrons. In the theory of Bardeen, Cooper and Schrieffer (BCS) one
treats all electrons on the same footing within a simplified model where only

2In this thesis we use boldface font to denote a vector.
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those pairs of electrons which interact most strongly are taken into account3.
This is why BCS proposed the following effective hamiltonian:

ĤBCS =
∑
k,σ

(~k)2

2m∗ ĉ
†
kσ ĉkσ + ĤBCS

int

ĤBCS
int = −Ṽ

∑
k∈D

∑
k′∈D

ĉ†
−k′,↓ĉ

†
k′,↑ĉk,↑ĉ−k,↓

(1.2)

Composed of a kinetic energy term and an interaction term, where ĉ†
k,σ

and ĉk,σ are the creation and annihilation operators for an electron of
momentum ~k and spin σ =↑, ↓, respectively. The interaction term describes
an interaction scattering the pair (−k, ↓),(k, ↑) into the states (k′, ↑),(−k′, ↓).
The effective force between all pairs of electrons, is modeled by a constant
attractive interaction of strength, Ṽ , between electrons with opposing spin and
momentum within momentum space D. Where D is a set of states in a shell
surrounding the Fermi-level of thickness, ~ωD, the Debye phonon energy. The
proposed hamiltonian is treated with an elegant variational principle, with a
smart choice for the variational wave-function:

|ψBCS⟩ =
∏

k

(u∗
k + vkĉ

†
k,↑ĉ

†
−k,↓)|0⟩ (1.3)

In this wave-function, |0⟩ is the electron-vacuum and uk and vk are some
variational parameters. This choice of variational wave-function has a nice
interpretation, it describes a state where a pair, (k, ↑)(−k, ↓), is occupied with
electrons (vk = 1, uk = 0) or unoccupied (vk = 0, uk = 1). A good choice of
the variational parameters reproduces again the Fermi-sphere:

uk = 0 and vk = 1 for |k| < kF (1.4)

uk = 1 and vk = 0 for |k| > kF (1.5)

But BCS found that another choice of the variational parameters exist,
describing the superconducting ground state, which results in a lower energy

3(i) The majority of the electrons cannot participate in SC because they sit to deep
into the Fermi sphere (ϵF ≈ 1eV ), as such they cannot exchange a typical phonon-energy
(~ωD ≈ 10−3ϵF ). Only electrons in a shell of thickness ~ωD can participate. (ii) From Eq.1.1
we know | εk − εk′ |≪ ~ωD has to be small, and it is best to minimize the total impulse to
have a total momentum of zero for the Cooper pair, this can be obtained by taking k′ = −k.
(iii) The exchange interaction will decrease the interaction strength between electrons with
the same spin. Electrons with opposite spin will interact more strongly, they provide the
strongest ‘glue’.
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c)

a) b)

Figure 1.3: (a) The BCS wave-function parameters near the Fermi surface.
Well below and above kF they approach the parameters of the normal metallic
state. Whereas near kF pairing arises. (b) Dispersion relation of the elementary
excitation spectrum, showing the energy eigenvalues around the Fermi wave-
vector kF . The dashed lines show the excitation spectrum of the normal
metallic state relative to the Fermi-energy, ϵF , which are just the electron and-
hole energy levels ϵk − ϵF and −ϵk + ϵF , respectively. In the superconducting
state they become hybridized, resulting in the BCS excitation spectrum ±Ek =
±

√
(ϵk − ϵF )2 + ∆2. One can see that there are no single quasiparticle states

with energy less than ∆ near the Fermi energy. (c) From left to right the names
behind the three-letter acronym BCS: John Bardeen Madison (Wisconsin, 23
May 1908 -Boston, 30 January 1991), Leon N Cooper (New York, 28 February
1930), John Robert Schrieffer (Illinois, 31 May 1931)[Pictures taken from
Wikipedia]

than the filled Fermi sphere, see Fig.1.3(a). It is clear in Fig.1.3(a) that in the
neighbourhood of the Fermi surface the values for (vk, uk) deviate from Eq.1.4
and are smeared out. In contrast to the Fermi sphere there is a region where
vkuk ̸= 0. The BCS ground-state at T=0K is no longer the filled Fermi-sphere
but contains electrons with an energy EF − ~ωD, which do not participate in
the conduction process and a set of Cooper pairs. The Cooper pairs behave as
bosons, will Bose-condensate and participate in the conductivity process. At
zero temperature the energy difference between the filled Fermi sphere and the
BCS ground state is EBCS − EN ≈ − 1

2N(0)∆2, where N(0) is the density of
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states at the Fermi-level and ∆ = 2~ωDe
−1/Ṽ N(0) plays the role of an energy

gap or excitation energy4. By calculating the elementary excitation spectrum,
as shown in Fig.1.3(b), BCS were able to show that 2∆ can be interpreted as
the minimum excitation energy, or energy gap to create a broken pair state. In
a normal metal an electron with energy E > EF will lose a small amount of
energy during each collision. In a SC it is impossible to lose a small amount of
energy in subsequent collisions. It will cost at least a finite amount of energy,
2∆ = 3.52kBTc to create an excitation which corresponds with the energy
necessary to break up a Cooper-pair. This explains the origin of the zero
resistivity property5.

The BCS-theory is a very successful theory and was able to explain a whole set
of experimental features. Before 1987, it was expected and accepted from
BCS-theory that superconductivity was a phenomenon occurring in metals
and alloys and that the critical temperature could not surpass 30K. However,
in 1987, J.G. Bednorz and K.A Müller discovered a layered material which
became superconducting around 40K[17] and later on Chu with co-authors
found superconductivity in a Y-Ba-Cu-O compound with Tc ≈ 90K[18]. From
that moment on, superconductivity could be investigated and commercially
used at temperatures above the boiling temperature of liquid nitrogen (77K).
However, the unique properties and the microscopic pairing mechanism of
these so called high-Tc superconductors can not be explained within the BCS-
theory. In 2001, the scientific community was taken by surprise again as MgB2
showed a superconducting transition at 39K, much higher than any other binary
compound[19]. This high critical temperature results from the existence of two
coupled condensates in the electronic bands of MgB2. Moreover, the interplay
between these two condensates results in exotic magnetic behavior such as Type-
1.5 superconductivity[20], non-composite-and fractional vortices[21], etc. Even
more recently, yet another new class of layer superconductors was discovered,
the ferropnictides, with critical temperatures ranging up to 56K[22]. The
observation of a superconducting transition in these compounds containing the
element Iron was a big surprise as it was long thought that magnetic elements
have disastrous effects on the nucleation of superconductivity. It is clear that
even after more than 100 years since the discovery, superconductivity is still
a very dynamic research area where the hunt for a microscopic theory, that

4We assumed for the expression of ∆ that N(0)Ṽ << 1. From the expression for ∆ one
can see that the typical energy scale for superconductivity, ∆(0) ≈ 1K, is very much less
than the Debye energy ~ωD ≈ 100 − 300K. This is why the critical temperature is typically
low for conventional superconductors which can be described within the BCS theory.

5The existence of a condensate is not a sufficient condition for superfluidity to occur.
Whether a system having a condensate is also superfluid depends on the nature of the excited
states. This particular point is summarized by an elegant criterium for superfluidity proposed
by Landau in 1941[16].
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explains the mechanism for SC in these unconventional superconductors and a
first room-temperature superconductor, is still open.

In the next sections we will describe two phenomenological theories historically
preceding the BCS theory of superconductivity, the Ginzburg-Landau theory
(1950)[23] and the London theory (1935)[24]. Although these two theories do
not explain the microscopic mechanism of superconductivity, they do have the
ability, within restricted limits, to predict different superconducting equilibrium
properties in a simpler framework than the BCS theory. The Ginzburg-
Landau theory embodies the macroscopic quantum mechanical nature of the
superconducting state, where the overall free energy is important instead of
the detailed spectrum of excitations. It is crucial for understanding the unique
electrodynamic properties of a superconductor and deals elegantly with any
spatial inhomogeneity of the density of superconducting electrons, ns, where
the fully microscopic theory becomes difficult. The Ginzburg-Landau theory is
reduced to the London theory when ns equals the equilibrium constant value
everywhere, which is an interesting limit in many cases. In a last section we
will turn our attention to the non-equilibrium properties of superconductors.

1.2 The Ginzburg-Landau theory

The superconducting state and the normal metallic state are two separate
thermodynamic phases of matter just the same way gas, liquid and solid
are different phases. Similarly, the normal Bose gas and Bose-Einstein
Condensate(BEC), or normal He4 and superfluid He-II are separated by a
thermodynamic phase transition. This suggests that the phenomenon of super-
conductivity can be examined from the point of view of the thermodynamics
of phase transitions.

The theory of superconductivity introduced by Ginzburg and Landau in 1950
describes the superconducting phase transition from this thermodynamic point
of view[23]. It was originally introduced as a phenomenological theory, but later
Gor’kov showed that it can be derived from the microscopic BCS theory close
to the critical temperature[25]. Landau had noticed that typically second-order
phase transitions, involve some discontinuous change in the symmetry of the
system at the transition, meaning it is a phase transition of the type ‘disorder-
order’[26]. The low-temperature phase is the one of reduced symmetry, i.e.,
more ordered. In Landau’s theory such phase transitions are characterized by
an order parameter which is zero in the disordered state above Tc, but becomes
nonzero below Tc. For example, a magnet above the Curie temperature, Tc, has
no magnetic moment. But below Tc neighbouring spins align and a spontaneous
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magnetic moment develops. In the case of a magnet the magnetization vector,
M(r), is a suitable order parameter.

For superconductivity Ginzburg an Landau(GL) postulated the existence of
a complex spatially varying order parameter denoted by ψ(r), thinking of it
as a macroscopic wave function for the superconductor. In fact, we can even
identify:

|ψ(r)|2 = nS(r)
2

, (1.6)

as the density of ‘Cooper pairs’ present in the sample, with ns the density
of electrons belonging to these Cooper pairs. This complex order parameter
characterizes the superconducting state completely, in the same way as the
magnetization vector does in a ferromagnetic material.

a) b)fs(T)-fn(T)

T>Tc

T<Tc

�0

�

Figure 1.4: (a) Free energy difference between the normal and superconducting
states (per unit volume) as a function of the order parameter. For T < Tc the
free energy has a minimum at |ψ0| ̸= 0 , while for T > Tc the only minimum
is at |ψ| = 0. (b) (Left) Lev Davidovich Landau (Baku, January 22, 1908-
Moscow, April 1, 1968 (Right) Vitali Lazarevitsj Ginzburg (Moscow, October
4, 1916 - Aldaar, November 8, 2009)[Pictures taken from Wikipedia]

Ginzburg and Landau derived two coupled partial differential equations which
describe the macroscopic behavior of superconductors. These two GL equations
are obtained by minimizing an expression for the total free energy, proposed
by Ginzburg and Landau, with respect to the order parameter and the vector-
potential. They argued that close to Tc and in absence of an external magnetic
field or an applied current, the order parameter is small and the free energy
can be expanded in powers of the order parameter as[1, 2]:

fs(T ) =fn(T ) + α|ψ|2 + β

2
|ψ|4 + . . . (1.7)
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fs(T ) and fn(T ) are the superconducting state and normal state free energy
densities, respectively and α(T ) and β(T ) are phenomenological parameters,
characteristic for the material and in general smooth functions of temperature.
We must assume that β(T ) is positive, otherwise the free energy would not have
a minimum which is nonphysical. When we evaluate fs(T )−fn(T ) versus ψ, it is
easy to see that there are two possible curves, depending on the sign of α(T ), see
Fig.1.4(a). Note that when α(T ) > 0, the curve has a minimum at ψ = 0 and we
obtain the normal state free energy density fs = fn. However, when α(T ) < 0,
there are minima wherever |ψ|2 = −α(T )/β(T ) ≡ |ψ0|2, corresponding with
the superconducting state and a lower free energy density compared to the
normal state:

(fs(T ) − fn(T ))H=0 = −α(T )2

2β(T )
= −µ0

H2
c

2
(1.8)

This free energy difference (per unit volume) between the superconducting and
normal phase at temperature T in zero external magnetic field, is equal to
the so called condensation energy of the superconductor and defines the bulk
thermodynamical critical field Hc. The bulk thermodynamical field, is the field
where the gain in condensation energy per unit volume is equal to the loss in
energy for expelling the magnetic field. Ginzburg assumed that above Tc, α(T )
is positive, meaning we are in the normal state, and that α(T ) changes sign
at T = Tc corresponding with the normal to superconducting state transition.
Near Tc, one can Taylor expand the expansion coefficients α(T ) and β(T ):

α(T ) ≈ dα

dT
× (T − Tc) + . . .

β(T ) ≈ b+ . . .

(1.9)

The complete GL theory also allows for spatial variations in the order parameter
and takes into account the effect of an applied magnetic field. The new free
energy functional reads:

Fs(T ) =Fn(T ) +
∫

( ~2

2m∗ |(∇r − iq

~
A(r))ψ(r)|2 + α|ψ(r)|2 + β

2
|ψ(r)|4)d3r

+
∫ B2(r)

2µ0
d3r,

(1.10)

The first integral is carried out over points r inside the sample, while the second
is performed over all space. Here Fs(T ) and Fn(T ) are the superconducting
state and normal state free energies, respectively. Further, m∗ and q are the
effective mass and charge of the Cooper pairs, respectively. With q = −2e,
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and e > 0 the charge of one electron, ~ the reduced Planck’s constant, µ0 the
magnetic permeability and A the magnetic vector-potential. The first term
in the first integral, represents a combination of the kinetic energy density of
the superconducting electrons and an extra term depending on the gradient of
ψ(r) and is basically the same term showing up in the Schrödinger equation
for a charged particle in a magnetic field. The last integral includes an
additional term, corresponding to the energy of the magnetic field. We find
after minimizing the free energy with respect to ψ(r) and A, the two GL
equations:

− ~2

2m∗ (∇r − iq

~
A(r))2ψ(r) + β | ψ(r) |2 ψ(r) = −αψ(r), (1.11)

js = q~i
2m∗ (ψ(r)∗∇rψ(r) − ψ(r)∇rψ(r)∗) − q2

m∗ |ψ(r)|2A(r), (1.12)

Finally the vector potential must be obtained from the magnetic field arising
from both the super-currents and any other currents, such as the external
currents, jext,

∇r × B = ∇r × (∇r × A(r)) = µ0(js + jext), (1.13)

as given by Maxwell’s equations.

The first GL equation, Eq.1.11, has the form similar to that of a Schrödinger
equation, for a particle with mass m∗, charge q and energy −α, apart from
the nonlinear term which acts as a repulsive potential of ψ on itself, favoring
wave-functions which are spread out as uniformly as possible in space. As such
α can be interpreted as the binding-energy of a Cooper-pair and the first GL
equation represents an effective Schrödinger equation for the condensate wave-
function. We can rewrite the second GL equation, by introducing the phase
ϑ(r) of the order parameter ψ(r) =| ψ(r) | exp iϑ(r), as:

js = − q~
m∗ |ψ(r)|2∇rϑ(r) − q2

m∗ |ψ(r)|2A(r), (1.14)

= −q|ψ(r)|2vs, (1.15)

with vs = 1
m∗ (~∇rϑ(r) + qA(r)). The superfluid velocity, vs, has two

contributions. The first contribution is due to the gradient of the phase, if the
order parameter has a ‘twist’, it corresponds to a supercurrent. The second
contribution is due to electromagnetic expulsion, and shows a proportionality
between the supercurrent density and the vectorpotential. This is the so called
phenomenological London equation, which explains the Meissner effect and to
which the GL equations reduce if one considers no spatial variations in the
density of Cooper pairs and |ψ|2 = −α(T )/β(T ) ≡ |ψ0|2.
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Superconductor Normal metal

Figure 1.5: Illustration of the boundary condition proposed by de Gennes,
showing the spatial variation of the order parameter at a superconducting
interface. The value b is dependent on the nature of the material at x > 0 and
equal to the distance between the boundary and the point where ψ(r) = 0 if
A·n = 0, where n is the unit vector normal to the surface of the superconductor.
For magnetic materials, b → 0 and for insulators, b → ∞. For a superconductor-
metal interface, b has an intermediate finite value.

As the GL equations are a set of coupled non-linear differential equations, one
should provide them with the appropriate boundary conditions. In general,
de Gennes derived from the microscopic theory that the appropriate boundary
condition at the interface of a superconductor is given by[2]:

n · (−i~∇r + qA(r))ψ(r) = i~
b
ψ(r), (1.16)

where n is the unit vector normal to the surface of the superconductor and the
value b is material dependent and equal to the distance between the boundary
and the point where ψ(r) = 0 if A · n = 0, as illustrated in Fig.1.5. For
magnetic materials, b → 0 and for insulators, b → ∞. For a superconductor-
metal interface, b has an intermediate finite value, accounting for the proximity
effect6. For insulators this boundary condition expresses that no suppercurrent
crosses the superconductor-insulator interface.

6For a superconducting-normal metal interface, the Cooper pairs can penetrate from the
superconductor into the metal and ‘live’ there for some time, however this penetration results
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1.3 The characteristic length scales

The GL equations have to be solved in most cases numerically, but for certain
easy cases, analytical solutions exist. We will consider an easy system of a
superconductor occupying the x>0 half space and a normal metal occupying
the x<0 half space and introduce in a natural way the fundamental length
scales characterizing this superconducting-normal metal interface.

First consider the case where no external field is applied, in this case the
GL equations decouple. On the normal side of the interface x<0, the
superconducting order parameter should be zero within a distance b from the
interface, Eq.1.16. We assume the order parameter is continuous across the
interface and the first GL equations, reduces to:

− ~2

2m∗
∂2ψ(x)
∂x2 + αψ(x) + βψ3(x) = 0, (1.17)

which we have to solve in the region x>0 with the boundary condition ψ(0) =
C < ψ0. It turns out one can solve this equation analytically:

ψ(x) = ψ0 tanh( x+x0√
2ξ(T ) ), with ξ(T ) =

√
~2

2m∗|α(T )| , (1.18)

and x0 is chosen so that,

ψ(0) = C = ψ0 tanh( x0√
2ξ(T ) ) (1.19)

The length scale ξ(T ), the coherence length or healing length of the condensate,
represents the smallest distance over which we can bend the condensate. Or
the length scale over which the condensate heals from a disturbance like an
interface, see Fig.1.6(top). If we keep in mind that the GL parameter α
corresponds with the binding-energy of the Cooper pairs, we see7 that the
coherence length ξ at T = 0 is a typical length scale for the Cooper pairs. The
temperature dependence of ξ(T ) is related to the microscopic BCS coherence

in a reduced Cooper pair density in the superconductor near the interface. This phenomenon
is called the proximity effect.

7You can see this easily because Eq.1.18. is nothing else than an expression for the energy
of a particle in a box of size ξ at T= 0.
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length ξ0, as:

ξ(T ) = 0.74 ξ0√
1 − T/Tc0

(ξ0 ≪ ℓ, clean limit),

ξ(T ) = 0.855

√
ξ0ℓ

1 − T/Tc0
, (ξ0 ≫ ℓ, dirty limit)

(1.20)

and depends on the degree of purity, determined by the ratio of the mean
free path ℓ and the coherence length. In Eq.1.20, Tc0 denotes the critical
temperature at zero field. We see that only in the limit of T → 0, the coherence
length coincides more or less with the BCS coherence length which is a measure
of the spatial extend of a Cooper pair. And that if T → Tc0, the coherence
length goes to infinity, which means we can bend the condensate over much
larger distances if the temperature increases towards Tc0, or in other words the
condensate will heal much slower.

Next, we consider the case where a homogeneous external magnetic field, B0, is
present in the z-direction, parallel to the surface of a superconductor occupying
the half-space x > 0. Let us assume the field is sufficiently small, meaning we
neglect in the first approximation any depletion of the condensate due to a
kinetic suppression of the density of states to calculate the field variation. As
such, the second GL equation reduces to the so called London equation, where
we assume the density of Cooper pairs is constant, and is equal to the bulk
equilibrium value, ψ =

√
|ψ0|2 = −α(T )/β(T ). The second GL equations

becomes, together with Ampères law:

∇ × (∇ × B) = − 1
λ2

L

B, with λL(T ) =

√
m∗

µ0|ψ0|2q2 , (1.21)

where λL denotes the so called London penetration depth. The meaning of λL

becomes clear if we look at the solution of Eq.1.21,

B(x) = B0e
−x/λL , (1.22)

as illustrated in Fig.1.6(top). We see that the magnetic field can penetrate
the SC only over a characteristic distance corresponding with the London
penetration depth. This explains effectively the Meissner-Ochsenfeld effect.
As we assumed to have no depletion of the condensate due to the induced
screening currents, the value of λL for the characteristic decay of a magnetic
field is an underestimate. The first GL equation which describes conservation
of energy, takes into account this effect of current induced suppression of the
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density of states resulting in a less efficient screening. As such within the GL
theory the penetration depth is defined as,

λ(T ) =

√
m∗

µ0|ψ|2q2 (1.23)

which exceeds the London penetration depth by the factor (|ψ0|2/|ψ|2)1/2. The
penetration depth shows the same temperature dependence as the coherence
length and again depends on the degree of purity, characterized by the mean
free path. An expression for the temperature dependence of λ related to the
microscopic BCS theory is:

λ(T ) = 0.71 λL(0)√
1 − T/Tc0

(ξ0 ≪ ℓ, clean limit),

λ(T ) = 0.64λL(0)

√
ξ0

ℓ(1 − T/Tc0)
(ξ0 ≫ ℓ, dirty limit),

(1.24)

1.4 Type-I and type-II superconductors

Let’s look now at a situation where the external field is equal to the
thermodynamical critical field, defined as in Eq.1.8, and inquire how the field
penetrates the SC?

To answer this question we have to calculate the energy cost to make a normal-
superconducting(NS) interface. The total energy you have to invest to make
an interface per unit area, is roughly8:

γ ≈ (ξ − λ) × (µH
2
c

2
), (1.25)

as illustrated in Fig.1.6. From this estimate we can make a distinction between
two types of superconductors.

• When ξ ≫ λ, the domain wall energy, γ, is positive and energy is
furnished to make a NS interface. When we apply a small magnetic field

8The magnetic field will penetrate in a volume of λA, with A the surface area, resulting
in a reduction in the energy to expel the magnetic field of roughly λA × µ0H2

c
2 . The surface,

however, destroys superconductivity in the volume ξA, as such you lose some condensation
energy of roughly ξA × (fs − fn) = ξA × µ0H2

c
2 .
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Figure 1.6: (Top) Schematic illustration of the spatial variation of the order
parameter (black) and the magnetic field (red) at a normal metal(x<0)-
superconductor(x>0) interface located at x=0 if an external field, B0 = µ0Hc,
is applied. The variations are shown for a type-I (left) and a type-II (right)
superconductor. (Bottom) The corresponding spatial variation of the magnetic
field exclusion energy (red, light grey), ϵB and the condensation energy (dark
gray), ϵC together with their difference (blue) in the neighbourhood of a
superconducting-insulator interface for both types of superconductors. The
red (light grey) shaded area indicates the gain in magnetic field energy at an
interface, whereas the dark grey shaded area indicates the lost condensation
energy at an interface.

in this case9, the SC doesn’t favor magnetic flux penetration and the SC
is in the Meissner state. When the field exceeds the thermodynamical
critical field, Hc, the slab will become normal as a whole. This behavior
characterizes a type-I superconductor.

• When ξ ≪ λ, the domain wall energy is negative. The Meissner state will
only be stable in this case for fields below the so called lower critical field,
H < Hc1. When an external field is applied between the first and second
critical field Hc1 < H < Hc2, the superconductor favors the formation of
NS interfaces, flux will penetrate in small areas and the SC will try to

9Remark: This is only valid for a infinite cylinder. As due to demagnetization effects a
different geometry can result in local differences in field at the surface or a strong enhancement
of the field at the surface. The first resulting in to the so called intermediate state, the latter
can result in a vanishing small critical field value (e.g. thin film geometry).
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maximize the surface of these interfaces. The smallest scale these areas
can have is limited by the coherence length, because we cannot ‘bend’
the superconducting condensate over a smaller length scale. Flux will
penetrate in the form of so called ‘flux tubes’ or ‘vortices’ as shown in
Fig.1.9. This behavior is the hallmark of type-II superconductors in the
mixed state.

a) b)

Type-I Type-II

Meissner 

state

Normal 

state

T T

HH

Meissner 

state

mixed 

stateHc(T)

Hc2(T)

Hc1(T)

Figure 1.7: The H-T phase diagram for (a) a type-I, and (b) a type-II
superconductor.

It is not surprising from the previous considerations, we can make a distinction
between these two types of superconductors by using as a criterium the
temperature independent ratio, κ = λ(T )/ξ(T ), defining the GL-parameter.
It turns out that a material is type-I if κ < 1/

√
2 and type-II if κ > 1/

√
2. An

overview is given in Fig.1.7.

The various critical fields of a type-I and type-II superconductor can be
expressed in terms of the characteristic length scales discussed in Sec.1.3. For
a bulk superconductor, the thermodynamical critical field is given by:

µ0Hc(T ) = ϕ0

2
√

2πµ0λ(T )ξ(T )
, (1.26)

whereas the first and second critical fields of a type-II bulk superconductor can
be written as:

µ0Hc1(T ) = ln(κ)ϕ0

4πλ2(T )
= ln(κ)√

2κ
µ0Hc(T ), (1.27)

and
µ0Hc2(T ) = ϕ0

2πξ2(T )
=

√
2κµ0Hc(T ), (1.28)
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1.5 The London equations

In this section we consider an interesting limit of the GL equations, historically
already proposed in 1935 by F. and H. London[24] as a first attempt to describe
the electrodynamic properties of superconductors. The so called ‘London limit’
arises when we neglect any spatial variations of the density of condensed pairs
and any possible kinetic induced reduction of the density of states as described
by the first GL equation. This is a good approximation when the suppercurrent
density Js and the magnetic field B are slow varying functions in space, κ >>
1 and the currents are insufficient to cause depairing. For latter purposes,
we derive the London equation, Eq.1.21, again by minimizing a free energy
functional as in the GL theory. However, contrary to the quantum description
used in the GL theory, we start here from a classical picture. If we assume that
the supercurrent, js = nsevs, flows without dissipation in a superconductor,
where ns is the density of superconducting electrons and vs is their velocity.
One could argue that this current, being non-dissipative, contributes only to
the kinetic energy of the superconducting electrons. The total free energy is
given by:

F =
∫
Fsd

3r +
∫ [

nsm
∗vs

2

2
+ B2

2µ0

]
d3r =

∫ [
m∗js

2

2nse2 + B2

2µ0

]
d3r, (1.29)

Where the first term, FS , is the energy of the electrons in the condensed
state at rest and the second integrand contains the sum of both the kinetic
energy density and the magnetic field energy density. The integrals being
extended over the sample volume. Using Maxwell equations, the total free
energy functional is given by:

F [B] =
∫
Fsd

3r +
∫ [

λ2
L(∇ × B)2

2µ0
+ B2

2µ0

]
d3r, (1.30)

In equilibrium, the free energy is minimal with respect to the magnetic field
distribution. This condition leads to the London equation which describes the
spatial variation of the local magnetic induction:

B(r) + λ2
L∇ × (∇ × B(r)) = 0, (1.31)

and explains the Meissner-Ochsenfeld effect, see Sec.1.3.
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1.6 The structure of a single vortex and the vortex
lattice

The accent in this work lies on the study of the dynamic properties of the
flux lines in the mixed state or vortex state of type-II superconductors. In
this section and the next we will discuss the structure of these vortices, and
their dynamic properties. A single vortex consists of a core region of diameter
∼ 2ξ(T ), where the density of superconducting electrons is strongly suppressed
and |ψ|2 = 0 exactly in the center. Around this core a rotating condensate
of paired electrons is flowing in an area of the order λ(T ) > ξ(T ). The local
magnetic field, |B(r)|, is maximum at the center of the vortex and decays over
the typical length scale λ(T ) > ξ(T ). The radial distribution of the local field
B(r), the absolute value of the supercurrent density j(r) and the density of
Cooper pairs |ψ(r)|2 are schematically shown in Fig.1.8 .

a) b)

0

Figure 1.8: The structure of a vortex. (a) Schematics of the current
distribution j(r) inside a vortex. (b) The distribution of the order parameter
|ψ(r)|2 and the local field B(r) inside a vortex.[27]

In the case of a strong type-II superconductor, κ >> 1/
√

2, we can make a
convenient approximation. Since the density of pairs quickly returns to its
maximum value over a distance ξ(T ), we can treat all except the core region
as if having a constant Cooper pair density. This is exactly the prerequisite
to use the London theory, for describing the magnetic fields and currents in
a superconductor. In order to deal with the normal core, one generalizes the
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London equation to:

B(r) + λ2
L∇ × ∇ × B(r) = ϕ′δ2(r)ev (1.32)

with ev the unit vector along the direction of the applied field and the small
core is represented by a two-dimensional delta-function. The spatial field
distribution and the current distribution of a vortex can be found analytically
by solving Eq.1.32 and combining it with Maxwell equations:

Bz(r) = ϕ′

2πλ2K0( r
λ

) (1.33)

with K0(x) the zeroth-order second-kind modified Bessel function. Up to now
ϕ′ is introduced as a constant which signifies the singularity at the vortex center.
Therefore, the origin of ϕ′ has to be discussed. Integrating Eq.1.32 over the
interior surface of a circle of radius r and using Stokes’s theorem, we have∮

B(r) · dS + λ2
L

∮
∇ × B(r) · dl = ϕ′ (1.34)

If we take a circle with r >> λL, the second term can be neglected and it is
clear ϕ′ represents the total magnetic flux carried by the vortex. The fact that
a superconducting state is a macroscopic quantum effect, characterized by a
macroscopic complex wave-function ψ(r), has some interesting consequences
for the total flux carried by a vortex. As ψ(r) =| ψ(r) | exp iϑ(r) has to be
single-valued, the value of the phase has to return upon itself when encircling
a closed contour. When we integrate the superfluid velocity, Eq.1.14, along a
closed path, ∮

m∗vs · dl = ~
∮

∇ϑ(r) · dl − q

∮
A(r)) · dl (1.35)

we obtain, using ∆ϑ = 2πn, n ∈ Z,

−nh
q

= nϕ0 = ϕ− 1
q

∮
m∗vs · dl (1.36)

with q=−2e, the elemental flux quantum is given by

ϕ0 = h

2e
= 2.067mTµm2 (1.37)

As such if a contour is chosen sufficiently far away from the vortex core, so
|vs|=0, the second term in Eq.1.36 vanishes and the total flux carried by the
vortex is an integer multiple of the flux quantum, ϕ′=nϕ0.

Let us discuss further Eq.1.33, the divergence at r = 0 is not physical, and is
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cut off by the finite coherence length of the superconductor ξ. The asymptotic
expressions are:

Bz(r) = ϕ′

2πλ2 ln( λ
r ) ξ < r ≪ λ (1.38)

Bz(r) = ϕ′

2πλ2

√
πλ
2r exp(− r

λ ) r ≫ λ (1.39)

From this radial dependence of the local field one can calculate the current
distribution of a single vortex:

j(r) = ϕ′

2πµ0λ2K1( r
λ

) (1.40)

where K1(x) is the first-order modified Bessel function. The asymptotic
expressions are:

j(r) = ϕ′

2πµ0λ2r ξ < r ≪ λ (1.41)

j(r) = ϕ′

2πµ0λ2

√
πλ
2r exp(− r

λ ) r ≫ λ (1.42)

It is instructive to calculate the energy of a vortex per unit length, which is a
combination of the magnetic field energy and the kinetic energy of the rotating
super-currents. If one substitutes for the field distribution, Eq.1.33, in the
London expression for the free energy, Eq.1.30 , one obtains:

εv = ϕ′2

4πµ0λ2 ln(λ
ξ

+ ϵ) (1.43)

where ϵ ≈ 0.12 is an extra numerical constant introduced to describe a
small contribution due to the loss of condensation energy in the normal core
The line energy of a vortex εv is a quadratic function of ϕ′, therefore it
is energetically unfavorable in homogeneous superconductors to form multi-
quanta vortices carrying more than one flux quantum. However, we ignored in
this consideration the vortex-vortex interaction. Although the total line energy
of a lattice consisting of nϕ0-vortices is higher than a lattice of single ϕ0-vortices,
εv(nϕ0) > nεv(ϕ0), the vortex-vortex (VV) interaction energy will be reduced
if nϕ0 vortices are formed since the distance between them increases. As such
under the good conditions, for example in samples with antidots, multi-quanta
vortex lattices can have a lower energy than a single quantum vortex lattice.

Now that we described the structure of an isolated vortex let’s discuss their
mutual interaction. The interaction energy per unit length between two parallel
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a) b)

Figure 1.9: (a) Artwork of the mixed state or the Abrikosov vortex state in
a type-II superconductor[27]. (b) Alexei Alexeyevich Abrikosov[Picture taken
from Wikipedia]

single quantized vortices at position ri and rj, is given by:

Uij(|rij|) = ϕ2
0

2πµ0λ2K0( |rij|
λ

) (1.44)

where |rij| = |ri − rj| is the mutual distance between vortex ‘i’ and ‘j’. The
interaction energy per unit length in bulk is repulsive since it decreases with
increasing VV-distance, |rij| and is very weak when the vortices are far apart.
The forces between vortices in bulk are short-range with the penetration depth,
a measure of the range. As such they must be sufficiently close together,
compared to λ, for their interaction to be appreciable. The asymptotic
expressions are:

Uij(|rij|) = ϕ2
0

2πµ0λ2 ln( λ
|rij| ) ξ < |rij| ≪ λ (1.45)

Uij(|rij|) = ϕ2
0

2πµ0λ2

√
πλ

2|rij| exp(− |rij|
λ ) |rij| ≫ λ (1.46)

This repulsive interaction between flux lines of the same polarity gives rise
to a regular arrangement of vortices and the formation of a flux line lattice,
the so called ‘Abrikosov vortex lattice’, see Fig.1.9(a). Taking into account
the repulsion of the vortices, it is reasonable that the vortex configuration
maximizing the nearest neighbour distance will be favored. It has indeed
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been shown that a triangular array is the energetically most favorable vortex
configuration, with the nearest neighbour distance, av given by:

av =

√
2ϕ0√
3B

(1.47)

However the energy difference with a square flux line lattice is small. We
considered here the ideal case of a perfect homogeneous superconductor.
As we will see in Sec.1.8 defects in the material, whether intrinsically
present or deliberately introduced by nano-structuring, may introduce sufficient
inhomogeneity to destroy the regular vortex arrangement entirely. Certainly at
low vortex densities where the VV-interaction energy favoring triangular order
is small, these defects or so called pinning centers can destroy or modify the
lattice arrangement dramatically.

1.7 Superconducting thin films in a perpendicular
magnetic field.

Thin superconducting film geometries, meaning d ≪ λ(T ), play an important
role in a variety of applications and are of fundamental interest. The ease
to produce and structure high quality thin films with standard lithographic
techniques at the nanometer scale and the behavior of the vortices as
essentially 2D objects makes these films interesting systems to isolate and
study superconducting properties. The small film thickness has important
consequences on the superconducting properties[28, 29], to list a few:

• The screening current density is essentially uniform over the thickness of
the film. Vortices can not bend and the vortex lattice can be considered
as two dimensional.

• As the superconducting screening currents are limited by the thickness
of the film. This results in a larger effective penetration depth,

Λ(T ) ≈ λ(T )2/d, (1.48)

In this work we deal mostly with type-II superconductors, as often a thin
film geometry is used, resulting in a higher effective penetration depth,
and part due to the high level of impurities.

• As such, the field around a single vortex in a thin film is less effectively
screened at large distances. Instead of the exponential screening at large
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distances for bulk vortices, the field falls off only as r−3 for a vortex in a
thin film.

Bz(r) = ϕ0
4πΛ(T )r ξ < r ≪ Λ (1.49)

Bz(r) = 2ϕ0Λ(T )
πr3 r ≫ Λ (1.50)

And the associated supercurrent distribution around the vortex core is
given by:

j(r) = ϕ0
2πΛ(T )r ξ < r ≪ Λ (1.51)

j(r) = ϕ0
πr2 r ≫ Λ (1.52)

• Important is that due to the thin film geometry, the repulsive energy
between two vortices decreases as r−1, similar to a Coulomb repulsion
between two electric charges. Vortices in a thin film interact primarily
through their fields in the free space adjacent to the film, where no
screening current can flow resulting in a long-range interaction.

• Due to demagnetizing effects the local magnetic field at the surface cannot
be considered anymore to be uniform over the surface and equal to the
applied magnetic field. This can have profound consequences for the
superconducting properties, such as the appearance of the intermediate
state in type-I superconductors, the drastic reduction of the critical fields
in thin film geometries, etc.

1.8 Non-equilibrium properties of superconductors

Up till now, we only considered the equilibrium properties of superconductors.
In this section, we focus on the non-equilibrium properties of type-II
superconductors in the mixed state, in particular we describe the response
to an electromagnetic field excitation. As we will see, just as the dynamical
properties of electrons determine the electromagnetic properties of a metal.
The dynamical properties of the vortices together with the response of the
screening currents completely define the electromagnetic response of a type-II
superconductor in the mixed state.
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1.8.1 Electromagnetic properties of an Ohmic material

The penetration and propagation of electromagnetic waves in conducting
media and the detailed response has been an intensive line of theoretical and
experimental research. The interest extends from a classic topic such as the
skin effect in normal conductors towards the ac response of superconductors
and further towards the novel communities of plasmonics and meta-materials.
In general an alternating electromagnetic field induces screening currents in
a conductor (normal or superconducting), which will reduce the strength of
the field inside the conductor (cf. Lenz’Law). The efficiency of screening
is determined by the conductivity, σ(ω) and the rate of change of the
electromagnetic field. To quantitatively describe screening phenomena, we
consider propagation of an ac-magnetic field wave10 as described by the classical
wave propagation equation in an Ohmic medium[30],

∇2B(r) = µσ ∂B(r)
∂t − µε∂2B(r)

∂t2 (1.53)

Where B(r) denotes the magnetic field vector and µ, ε denote the material pa-
rameters the magnetic permeability and the electric permittivity, respectively.
Both are connected with the speed of the electromagnetic wave in the medium
as v =

√
1/µε. We assume further that the medium can be considered to be

linear and isotropic, no free charge is present in the conducting media and the
conducting media ’s response can be described by Ohm’s Law,

j(r, ω) = σ(ω)E(r, ω), (1.54)

Where E(r, ω) is the electric field vector, j(r, ω) the current density and this
Ohmic relation effectively defines the conductivity of the media, σ(ω). This
equation has plane wave solutions with a complex wave number, as can be
checked by substitution,

B(r, t) = B0 expi(k·r−ωt) with k2 = µω2(ε+ σi
ω ), (1.55)

What is the meaning of the complex wave-number? As is clear from,

B(z, t) = B0 exp−ℑm(k)·r expi(ℜe(k)·r−ωt), (1.56)

the complex part of the wave-number describes the decay of the amplitude of
the magnetic wave into the volume of the conductor, the characteristic decay

10As in this work the main study probes the response to an ac-magnetic field, we will only
consider the relevant equation for this case.
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length is called the skin depth,

δ = 1/ℑm(|k|) (1.57)

The real part of the wave-number describes the wavelength, λ = 2π/ℜe(|k|),
the phase velocity, v = ω/ℜe(|k|) and the index of refraction, n = cℜe(|k|)/ω,
in the usual way. Furthermore, the wave equation has to be supplemented
with the appropriate boundary conditions, as in general B(r) is discontinuous
at a surface that carries a surface current, these are provided by the Maxwell
equations.

ε1E
⊥
1 − ε2E

⊥
2 = σf , E

∥
1 − E

∥
2 = 0 (1.58)

B⊥
1 −B⊥

2 = 0, 1
µ1
B

∥
1 − 1

µ2
B

∥
2 = K⃗f × n (1.59)

where n is a unit vector perpendicular to the surface.

Note that in the above description of ac magnetic-wave propagation in a
conducting medium, we didn’t make any assumption about the origin of
the material property ‘conductivity’. The considerations mentioned above
describe the penetration and propagation in any conducting media which can be
described by Ohm’s Law. These conducting media satisfying Ohm’s law include,
under certain conditions, not only normal metals, but also superconductors and
plasma’s and in general linear response. The material property, ‘conductivity’,
should be distinguished from the actual conductance of the body. The
conductance requires also the knowledge of the spatial distribution of the
electromagnetic field within the medium. In the following we will describe from
the expression of the complex ac conductivity of a superconductor, as derived
from microscopic arguments, the consequences for the macroscopic response to
an ac-magnetic field. But let us first consider the ac magnetic field penetration
in a normal metal.

In the standard Drude model for a normal metal, the material property
‘conductivity’ is derived from a classical equation of motion for the charge
carriers[14], the electrons,

dp
dt

= −p
τ

− eE (1.60)

Here p = mv is the average impulse of electrons, v is called the ‘drift’ velocity
and τ describes a characteristic relaxation time11 related to scattering processes,

11The relaxation time, in principle, describes the average time in between electron
scattering processes. The path the electron travels before it is scattered is termed the mean
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typically of the order 10−14s to 10−15s at room temperature in normal metals.
The competition between a dc driving force, −eE and the frictional scattering
processes leads to a steady state average drift velocity v = −eEτ/m. For n
conduction electrons per unit volume a net current density results, given by:
J = −nev = σ0E, i.e. Ohm’s law, where σ0 = (ne2τ/m) is the Drude result
for the dc conductivity.

When the driving force is an external or induced ac electrical field, E(ω, t) =
ℜ(E0(ω)eiωt), we can describe the response of a normal metal by the ac-
conductivity. This time, using the complex number representation, Ohm’s
law will look like:

J exp−iωt = σ(ω)E0 exp−iωt ,with σ(ω) = σ0

1 − iωτ
(1.61)

where σ(ω) is the frequency dependent ac conductivity as derived from the
equation of motion and which reduces to σ0, the dc Drude result, when
ω = 0. It’s real part corresponds to currents which are in phase with the
applied electrical field (resistive), while the imaginary part corresponds to
out-of-phase currents (inductive and capacitive). In deriving the material
property ‘ac conductivity’, using the Drude model, we made some important
approximations. First point, in Eq.1.60 we didn’t add the additional Lorentz
force term e p⃗

m ×B⃗, which is expected as an electromagnetic wave is accompanied
by a perpendicular magnetic field component. This term is a factor v/c smaller.
As such for the slow drift velocities of electrons in a metal we can safely ignore
this term. The second assumption is what we call ‘locality’. As the fields in
an electromagnetic wave vary in space and time, it is not that straightforward
to assume a spatially uniform force in the equation of motion, Eq.1.60. This
assumption is ok as long as the wavelength, characterizing the scale of the
field variations, is large compared to the mean free path l or ωτ ≪ 1. For
typical metals at room temperature, this is still satistfied for visible light, whose
wavelength is of the order of 103 to 104Å, thousand times the typical electron
mean free path and corresponding with frequencies ω < 800Thz. 12

In the limit ωτ ≫ 1, the metal behaves as a plasma and the electron’s
inertia becomes the dominant factor. In this high frequency limit, where the
metal behaves as a plasma, the ac conductivity can be rewritten in a first

free path, l = vτ , typically of the order of l = 10−10m at room temperature, a length scale
comparable with the interatomic spacing.

12The result of Eq.1.61, i.e. Ohm’s law j(r, ω) = σ(ω)E(r, ω), incorporates that the current
density at a point is related to the field at the same point, E(r, ω) under the assumption
ωτ < 1. If this is not the case we have to use non-local theories c.f. Chambers’s generalization
of Ohm’s law.
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approximation, neglecting the locality assumption, as a pure complex number,
σ(ω) = −σ0/iωτ . The dispersion relation, Eq.1.55 , becomes:

k2 = ω2

v2 (1 − ω2
p

ω2 ) ,with ωp = ne2

mε (1.62)

where we introduced the so called plasma frequency ωp. For frequencies below
the plasma frequency, ω < ωp, the wave-number is complex. In this case
the solutions of the wave equation decay exponentially over a skin depth, δ,
and the waves are totally reflected as they cannot penetrate in the plasma.
For frequencies above the plasma frequency, ω > ωp, the wave-number is real
and the solutions become oscillatory, meaning the metal becomes transparent.
Moreover, this indicates that a plasma can sustain charge density oscillations
known as plasmons. For Pb, the material mainly used in this work, the plasma
frequency is in the ultraviolet, fp = 1.8 × 1015Hz.

In this work however, we are interested in what we call the low frequency
regime, ωτ << 1. This first of all means we can apply Ohm’s law, it is the
assumption that ‘locality’ is ok and we assume a pure real resistivity, meaning
we neglect the electrons inertia completely. On top of that, we can apply a
second approximation, called the ‘eddy current approximation’, which can be
used for a good conductor up till the microwave regime13: σ ≫ ωε. We can
understand this approximation by looking at the wave equation. The right
hand side of Eq.1.53 are essentially the first two terms in an expansion of
powers of the field frequency. Since we assume the frequency is ‘low’, it can be
shown that this second term only contributes a small correction. However note
that for poor conductors or semiconductors this term can become important
at ‘low’ frequencies. This approximation transforms the wave equation for the
magnetic field into a diffusion equation (c.f. heat equation):

∇2B = µσ ∂B
∂t (1.63)

This linear differential equation describes how a magnetic field wave penetrates
or diffuses into a conductor for a given boundary condition, with diffusion
constant 1/D = µσ. The higher the conductivity the lower the diffusion
constant, as it is more difficult for a field to penetrate. We obtain for the
dispersion relation:

k2 = µσωi (1.64)
13For Pb, the material mainly used in this work, the conductivity is about 107S/m, and

the condition σ ≫ ωε is satisfied up to the microwave regime( <100Ghz).
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As such, from Eq.1.57, the skin depth is:

δ =
√

2
µσω (1.65)

If the skin depth is large compared to the dimensions of the sample, we can
assume that the magnetic field distribution is identical to the steady state field.
In the opposite limit, when the skin depth is much smaller than the dimensions
of the conductor, the field only penetrates into a thin surface layer. In this sense
a conductor in a high frequency magnetic field behaves as a superconductor in
a constant field. For the frequencies used in this work, the normal skin depth
in Pb is δ > 5mm, much larger than the relevant sample dimensions. For an
overview, see Fig.1.11.(a).

1.8.2 Ac magnetic field penetration in a superconductor

In type-II superconductors, the electrodynamic properties are completely
determined by the vortex dynamics and the screening currents response. Both
contribute to the bulk property, conductivity, of a type-II superconductor in
the mixed state and consequently determine the penetration characteristics
of an ac magnetic field into the sample volume. Similar to a normal metal,
we can derive an expression for the material property ‘conductivity’ from
microscopic arguments. Describing the response of the entities responding
to the electromagnetic field excitation (the Cooper pairs and the vortices) in
a superconductor will provide us with the screening currents and the vortex
motion contributions to the ‘conductivity’.

Screening currents
Let’s start with describing the contribution of the screening currents to the
conductivity. In a first approximation one can use the simplified model
introduced by the London brothers. Inspired by the two fluid model of
superfluid 4He, they assumed that free electrons in a superconductor can be
divided in two groups: superconducting electrons with density, ns, which flow
without losses, and normal ones with density, nn, which continue to act as if
they had finite resistivity. The relative amount of these two types of carriers
depends on the temperature. With the total density of free electrons conserved,
n = ns + nn, ns = 0 and nn =n at T > Tc, while at T= 0, ns =n and nn =0.
The ‘normal’ electrons still have a typical metallic damping time, τn, but the
superfluid electrons would move without dissipation, corresponding to τs = ∞.
It can be shown, combining the solution for the equation of motion, Eq.1.60,
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for both groups of carriers, that the total ac-conductivity is given by,

ℜe(σ(ω)) = πnse2

2m δ(ω) + nne2τn

m = 1
µ0λ2

L

[ π
2 δ(ω) + nn

ns
τn] (1.66)

ℑm(σ(ω)) = nse2

mω = 1
µ0ωλ2

L

(1.67)

Here we assumed that the frequencies are low enough so that ωτn ≪ 1, which is
a good approximation as this derivation is only valid for frequencies below the
SC energy gap. It is clear that the normal electron fluid always provides a finite
dissipation for all non-zero frequencies. However, this contribution becomes
only appreciable for frequencies approaching the SC gap ∼10GHz, above which
the ac-response of a superconductor equals the one of a normal metal. For the
low frequencies used in this work, the screening current contribution can be
considered purely inductive and as such dissipationless as the current is always
out of phase with the applied or induced electric field. As expected, using this
expression for the conductivity of a ideal superconductor, neglecting the vortex
contribution, the dispersion-relation and the skin depth becomes,

k2 = −1
λL

,with δ = 1/ℑm(|k|) = λL, (1.68)

thus reproducing the London type screening, where the skin depth, in contrast
to a normal metal, equals the frequency independent London penetration depth
and there is no propagating component as the wave-number has no real part.
For an overview, see Fig.1.11.(b).

Vortex response
As anticipated, also the vortices contribute to the material property, ‘conduc-
tivity’ and it can be derived by describing the response of a vortex in a type-II
superconductor to an induced or applied current. However, before we dig into
the equation of motion for a vortex, let us ask the question why vortex motion
contributes to the conductivity of a type-II superconductor? A pioneering
experiment of Giaever[31], provided the first experimental evidence that a
voltage drop arises along a type-II superconductor as a direct consequence
of the motion of Abrikosov vortices. If a vortex moves with velocity v, with a
direction of motion perpendicular to a current drive, it induces essentially an
electric field of magnitude

E = B × v (1.69)

parallel to the current drive. As such, in the presence of moving vortices, the
superconductor is no longer ‘superconducting’ in a practical sense, as a resistive
voltage drop arises. This is why the study of vortex dynamics is an important
topic in superconductivity and of fundamental importance for the applications
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of superconducting materials. In the easiest approximation one can consider a
vortex as a rigid entity and describe the dynamics using particle-like equation
of motion[32],

FI = FVV + FL + Fdrag + FP + FM + FTh (1.70)

Let us discuss the different terms appearing in this phenomenological force-
balance equation.

The Inertial term is equal to FI = m∗üi, where m∗ is the mass of a vortex
per unit length, which is only effective in nature as a vortex cannot exist
outside a superconductor. The displacement field of the vortex ‘i’ is
denoted by ui. There are several mechanisms proposed to contribute to
the effective vortex mass per unit length[33, 34], in general it is accepted
to amount to several thousands of electron masses and represent only a
small contribution which can be easily neglected for the frequencies used
in this work.

The vortex-vortex interaction denoted by FVV, describes the interaction
with neighbouring vortices. The repulsive force between two vortices can
be calculated from the interaction-energy, Eq.1.44, as:

fij(|rij|) = −∂Uij(|rij|)
∂|rij|

= ϕ2
0

2πµ0λ3K1( |rij|
λ

) (1.71)

From the expression for the supercurrent density, one can write the force
exerted by vortex ‘i’ on vortex ‘j’ as:

fij = Ji(rj) × ϕ0j (1.72)

where ϕ0j is a vector of size the flux quantum and with a direction
parallel to the flux density of the vortex ‘j’. This expression, resembles
the structure of a ‘Lorentz’ force density and corresponds to a repulsive
interaction in case that both vortices have the same polarity and an
attractive one when they have an opposite polarity. The interaction
energy of vortex ‘i’ with the rest of the vortices is additive and can be
calculated as Fi

VV = −
∑N

j ̸=i ∇Uij . Note that, as discussed before, for
a thin film the interaction range is much longer as compared to a bulk
sample.

The ‘Lorentz force’ We can obviously generalize the above result for the
force on a vortex ‘i’ due to screening currents or transport currents as,

fi = J(ri) × ϕ0i (1.73)
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where J is the total supercurrent density at the location of the core of
the vortex under consideration. However, note that both forces, FL and
FVV, are not a ‘Lorentz force’ in the usual sense, it is qv × B, the force
experienced by a moving charge q with velocity v in a field B and that
the name is somewhat confusing14.

The viscous damping force The drag force, Fdrag, can be described as
Fdrag = −ηu̇, where η describes the viscosity experienced by the
vortex when moving through the superconducting medium. The ultimate
mechanism for the damping coefficient η is still a controversial issue. The
most popular explanation is the model propesed by Bardeen and Stephen.
They related η to ordinary resistive processes in the core of a vortex due
to the electric field needed to maintain a cycloidal motion of electrons
when a vortex moves [36]. Other mechanisms have been suggested even
before the Bardeen-Stephen theory, Tinkham had shown that dissipation
comparable to that observed in experiments could be explained if the
GL wave-function could adjust to the time-varying field configurations
induced by a moving vortex only in a finite relaxation time[37]. Another
approach has been proposed by Clem and is associated with the local
temperature gradients in the vicinity of the normal like regions produced
due to a difference in entropy between the leading edge and the trailing
edge when a vortex is moving[38]. It is not entirely clear to what extend
all these various mechanisms are additive and to what extend they simply
prove ways of looking at the same thing. As pointed out by Suhl[33], the
ratio η/m∗, which in the case of free flux flow describes the initial time
necessary to reach steady state motion is of the order of picoseconds.
Therefore the dynamics of vortices at low enough frequencies can be
described by ignoring the vortex mass.

The pinning force The motion of vortices can be reduced or eliminated by
providing pinning centers which ‘pin’ the vortex by exerting a pinning
force per unit length on the vortices, FP. The pinning centers can be of
two types.

Intrinsic pinning This type of pinning is caused by impurities, natu-
rally occurring crystal defects such as lattice imperfections, grain-
and twin boundaries which are typically distributed random and
which strength is difficult to control.

Artificially manufactured pinning centers The technological revo-
lution made it possible to introduce deliberately pinning centers

14Indeed if you would just translate qv and B into J and ϕ0, one will find that J × ϕ0
is the force acting on the current, and therefore, the driving force on the vortex should be
ϕ0 ×J, which has the opposite direction. A more detailed discussion can be found in Ref.[35],
where the driving force is derived from kinetic energy considerations.
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with required shape, size and distribution by means of lithographical
techniques. These artificial pinning centers such as holes, blind
holes or magnetic dots with magnetic moment in and out of plane
acquired a lot of attention in the previous years as well theoretically
as experimentally[27].

Mkrtchyan and Schmidt[39] considered a basic example of vortex pinning
by calculating in the London limit the interaction energy between a vortex
and an insulating cylindrical cavity, analogue to an anti-dot(AD). The
vortex-antidot interaction depends upon the magnetic flux trapped in
the antidot. The interaction between a vortex and an empty antidot
is attractive for all V-AD distances. However once a flux is trapped,
the competition between the attraction by the antidot and the repulsion
of the present screening currents due to the trapped flux quantum will
introduce a surface barrier at the edge of the antidot(see Chapter 4). The
height of the barrier will increase with the number of trapped flux quanta.
The saturation number, ns is defined as the point where the interaction
becomes repulsive and no additional flux can be trapped anymore by the
antidot. The saturation number depends on the ratio between the size of
the antidot and the size of the vortex, ∼ ξ. For small antidots, r0 ≪ λ,
the saturation number is approximately given by,

ns
∼=

r0

2ξ(T )
(1.74)

This indicates that the presence of an antidot or pinning center in
general can stabilize multi-quanta vortices[40, 41] and can have profound
consequences for the vortex lattice arrangements.

An important property of the superconductor is the maximum current
that can flow before the onset of motion of vortices, i.e. the critical
current, Jc, as it determines the lower limit to have dissipationless
current transport. As such, research to optimize the vortex pinning in
superconductors as to increase the critical current is of technological
importance. The upper limit of current that can flow through a
superconductor is given by,

jGL
d = Hc[

3
√

6
4 λ(T )

] , (1.75)

the so called Ginzburg-Landau depairing current, which is the theoretical
upper limit for the critical current at which the superconducting Cooper
pairs are destroyed.
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The Magnus force Is a hydrodynamic force experienced by a vortex moving
in a liquid, FM = αϕ0 × u̇i, where α is the Magnus force coefficient. This
force results in a component of the vortex velocity transversal to the drive
current, which will lead to a Hall-voltage. In most cases and for small
vortex velocities, this force can be ignored as most experimental data
indicate that the Hall angle is very small.

Thermal fluctuations At high temperatures or low frequencies, due to
Brownian motion induced by thermal fluctuations, a vortex may have
time to diffuse out of it’s pinning potential well and wander some distance
around. To model this effect one supplements the equation of motion with
a random force which is assumed to be Gaussian white noise with zero
mean, in analogy with an earlier work of Fulde[42].

Discussion
Analytical solutions for this equation of motion exist for certain limiting
cases[43, 44, 45]. For example let us assume that the vortices are all driven
by an identical weak periodic force due to an induced or applied ac current,
jac(t) = j exp−iωt. The steady state solution to the equation of motion, Eq.1.70,
within this single particle model is:

u(t) = u(ω) exp−iωt ,with u(ω) = j×ϕ0
−iηω+<αL> , (1.76)

We considered only weak excitations, as then the local potential each vortex
experiences, due to a combination of random disorder, neighbouring vortices or
boundaries, can be approximated by a harmonic potential with spring constant
< αL(r) >, (meaning we consider only linear response)

FP + FVV = − < αL(r) > u (1.77)

<αL> is called the Labusch constant, which is, in principle, within this single
particle model, a statistical average over all restoring forces. We neglected
further any thermal, inertial and Magnus effects. In the case of artificial pinning
arrays, all restoring forces are supposed to be similar, so <αL> can be taken as
a constant. However, in these artificial pinning arrays different types of vortices
can coexist, each still experiencing a different <αL> (see Chap.5). For example,
pinned vortices by an antidot lattice will experience a completely different
restoring force than an interstitial vortices caged by the pinned ones[46].

For low frequencies, ω ≪ ωL≡<αp>/η, the restoring force dominates
the motion over the viscous drag force which can then be neglected. Here
we introduced the pinning frequency ωL, which is typically of the order of
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Figure 1.10: Schematic presentation of the ac penetration depth in the
Campbell regime. For rigidly pinned vortices is λac ∼ λL, whereas for weak
pinning λac ∼ λC .

107 Hz[47]. In this case, only the elastic interaction with the pins has to
be considered and the motion consists of a pure reversible harmonic motion
perfectly in phase with the driving force,

u(ω) = ϕ0J
η

1
ωL

(1.78)

We call this regime the Campbell regime[48]. Using the relation E = u̇(t) × B,
where we use B = nϕ to make the step from a single particle model to the whole
sample’ average response, this leads to a pure complex contribution to the ac-
resistivity due to ac-vortex dynamics. Together with the screening current
contribution, Eq.1.66, we obtain a pure complex conductivity,

σC(ω) = (ωµλ2
L + ωµλ2

C)−1i ,with λC =
√

ϕ0B
<αL>µ , (1.79)

where we defined the Campbell penetration depth, λC , which is real and
frequency independent. As such in this low frequency regime, the ac-vortex
dynamics alters effectively the inductive properties of the superconductor as
compared to the ideal case where only the screening currents contribute. In
general the ac vortex dynamics can also change the resistive properties of the
superconductor, as we will see below. The dispersion relation and the total ac
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penetration depth are given by:

k2 = µσCωi = −1
λac

,with λ2
ac = λ2

L + λ2
C (1.80)

where λac is the skin depth or effective ac-penetration depth, which is larger
than the London penetration depth. The response is still a pure inductive
response which resembles the ideal Meissner response, see Eq.1.68. For weak
pinning and considering the applied ac and dc magnetic fields perpendicular to
the sample surface, this Campbell penetration depth can be written as λC =
(c11/ < αL >)1/2, where c11 is the compressional modulus of the vortex lattice.
By this it is clear that the ac-field penetration is carried by reversible vortex
oscillations near the equilibrium positions. For very strong pinning, it is when
< αL >→ ∞, the vortices are immobile under external field changes and the
superconductor behaves as if it where in the Meissner state, in this case the ac
penetration depth reduces to the London one, see Fig.1.10.

In the opposite limit, for high frequencies ω ≫ ωL, the viscous drag force
dominates the response and we can neglect the restoring force all together. The
motion is just like in a normal metal a motion damped by a viscous force

u(ω) = ϕ0J
η

i
ω , (1.81)

This motion is completely out-of phase with the driving force. The resulting
ac resistivity contribution due to the ac vortex dynamics is identical to the so
called flux flow(FF) resistivity, independent on the frequency, but dependent
on the field:

ρac(ω) = Bϕ0
η = ρF F = σ−1

F F , (1.82)

It is clear that in this regime the ac vortex dynamics alters the material property
‘conductivity’ of the superconductor by a pure resistive contribution. For the
ac magnetic field penetration, the superconductor will behave identical to a
normal metal with a field dependent and frequency dependent skin depth. The
dispersion relation and the so called flux-flow penetration depth are given by,

k2 = µσF Fωi , and δ2
F F = 2Bϕ0

µηω (1.83)

A more complete description of the vortex’ linear response has been done
by Coffey and Clem, who derived a complete expression for the ac-resistivity
by solving the equation of motion, Eq.1.70, taking into account, in addition to
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the previous dynamic modes, also vortex motion due to thermal fluctuations.
Within linear response the motion due to thermal fluctuations is found to be
accounted for by the following equation of motion,

u̇ ∼ e(−U/kBT ) (1.84)

meaning the vortices move with a linear average vortex velocity proportional to
a Boltzmann factor, where U describes an effective activation energy related to
the strength of the intrinsic pinning landscape. Because of the activated nature
of this type of flux motion, one speaks of ‘thermally assisted flux flow’(TAFF).
The resulting ac resistivity contribution due to TAFF is similar to the case of
FF, purely resistive,

ρ(ω) = ρT AF F ∼ exp(−U/kBT ) = σ−1
T AF F (1.85)

and results likewise in a frequency dependent skin depth,

k2 = µσT AF Fωi , and δ2
T AF F = 2ρT AF F

µω (1.86)

Rigourously, for the whole superconductor containing vortices and
screening currents one has to add all the different contributions. A
general form for the equation of motion taking into account all the above
described contributions is given by[43, 44],

u(t) = −
[

−<αL(r)>
1−i/ωτ1

+ iωη

]−1

fL(t) , (1.87)

with τ1 = ( η
<αL(r)> )I2

0

[
U

2kBT

]

where I0(x) is the modified Bessel function, which closely resembles an
exponential for large argument x and I0(0) = 1. Further τ1 is a characteristic
relaxation time below which thermally activated hopping of vortices becomes
important. For conventional superconductors this characteristic time is of
the order of 1/τ1 < 10Hz and scales with the ratio between an effective
activation energy characterizing the intrinsic pinning, U and the thermal energy,
kBT . For high-Tc superconductors the effect of TAFF can be much more
pronounced. This equation of motion describing the linear response of a
vortex to an ac-drive is a combination of in-phase(reversible motion) and out-of-
phase(dissipative motion) components and will be probed directly in Chapter.5.
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It is clear that when neglecting thermal fluctuations as can be done for low
temperatures, meaning U ≫ kBT , τ1 diverges exponentially and the equation
of motion reduces to the previous discussed cases in both limits of high and low
frequencies. Moreover for high temperatures and low frequencies, f < 1/τ1, the
TAFF regime is recovered. This description of the vortex response, taking into
account all the above mechanisms, results, in general, in a complex ac resistivity
and a complex wave-vector. A schematic overview of the above described linear
response taking into account only the response of the screening currents is given
in Fig.1.11(b) and for the vortex contribution in a type-II superconductor in
Fig.1.11(c).

A few last remarks. The simplified model used here to describe the ac-
dynamics, considering a vortex as a particle-like object has of course it’s
limitations, as it ignores the internal structure of the vortices and their elastic
nature. It is expected to fail for high vortex velocities where more realistic
approaches such as time-dependent GL theory become necessary. Moreover,
in the above we considered only linear response, which is valid for small
disturbances from equilibrium. Once the applied ac-field amplitude becomes
sufficiently high, it is able to introduce vortex displacements much larger than
the pinning site size (intrinsic defects, surface barriers,etc.), the system will be
in a regime of strong nonlinear response. In this regime Ohm’s law will not be
valid anymore and, in general, the material property ‘conductivity’ will become
a function of the induced or applied current. In this case the response can be
described by critical state models not further discussed here[49].
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Figure 1.11: This figure presents an overview of the above discussion regarding
the penetration of an ac magnetic field in a conductive medium. Schematic
presentations of the different dispersion relations for a normal metal (a) and
a superconductor (b and c) are given. The left column shows the frequency
dependence of the real part of the wave vector related to the wavelength by,
λ = 2π/ℜe(|k|). The right column shows the frequency dependence of the
complex part of the wave-number related to the characteristic length scale
over which the amplitude of the magnetic wave decays into the volume. This
characteristic length scale, the skin depth, is given by δ = 1/ℑm(|k|).
For the normal metal (a) the skin effect regime (ω < 1011Hz) and the plasma
regime are shown ω > 1015Hz. The light line indicates the propagation of
an ac-magnetic field in the absence of any conductive medium, ω = ck. For
the superconductor, both contributions of the screening currents (b) and the
vortices (c) are shown separately. In (b), the Meissner response is shown
for frequencies below the gap frequency ω < δ/~ = 1010Hz and the normal
skin effect is recovered for frequencies above the gap frequency. In (c) the
different indicated frequency regimes are related to the corresponding dominant
mechanism describing linear ac-vortex motion in this regime. for frequencies
below 10 Hz, thermally activated flux flow (TAFF) contributes substantially
to the ac-vortex motion. For 10Hz < ω < 107Hz, the ac-vortex motion is
described within the Campbell model of reversible oscillations. For 107Hz <
ω < 1010Hz, the linear ac-vortex response will be of flux flow (FF) type.
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CHAPTER2
Experimental techniques

2.1 Introduction

This chapter will introduce the experimental technique central to this work,
scanning Hall probe microscopy (SHPM). A brief review will be given describing
the setup, the principle of operation and the general characteristics. Further, a
general description is provided of the production process used to fabricate the
nano-structured superconducting thin films studied in this work.

2.2 Scanning Hall probe microscopy

The operating principle of a typical scanning Hall probe microscope is
schematically illustrated in Fig.2.1(a). In SHPM, a submicron-sized Hall probe
is scanned in close proximity to the sample surface and measures at every
pixel, within a certain scan area, the Hall voltage. The Hall voltage is in
first approximation proportional to the perpendicular component of the local
magnetic induction, and as such a SHPM acts as a high resolution ‘magnetic
field plotter’. The first two dimensional SHPM images were made in 1972
by Goren and Tinkham[50]. They used micrometer-based scanning stages and
Hall probes made of the semi-metal bismuth, which has a low carrier density. A
spatial resolution as high as 4µm was obtained, with a magnetic field sensitivity
of 0.01mT. In the following we will discuss the different components of the setup
and the principle of operation.

The Hall effect
Hall probes are based on the Hall effect, a phenomenon discovered by Edwin
Herbert Hall as Phd student in 1878[52]. In his experiment he noticed that

41
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a) b)

STM tips Hall Cross

20µm

0,5µm

Figure 2.1: (a) Schematic illustration of the operating principle of SHPM, a Hall
sensor scans over a magnetic sample and measures the induced Hall voltage at
every pixel.[51] (b) Optical microscopy image of a typical Hall sensor integrated
on a chip. The arrows indicate the position of the Au metallization for the STM
tips and the position of the Hall cross. The inset shows a SEM image providing
a closer view on the Hall cross itself.

when a current carrying conductor is placed in a perpendicular magnetic field, a
transverse voltage appears, VH , the so called Hall voltage. What Hall observed
(the electron was still to be discovered) is nowadays ascribed to the deflecting
Lorentz force on the carriers. For an ideal plate like Hall device in a uniform
perpendicular magnetic field, B, the Hall voltage can be obtained in terms of
the applied current bias, Ibias, through the plate as

VH = RH
IbiasB

t
∼= 1

nq
IbiasB

t = µ
σ

IbiasB
t , (2.1)

here q denotes the charge of the carriers, n is the carrier concentration in the
plate and t is the plate thickness. Further, RH denotes the Hall coefficient
characterizing the intensity and sign of the Hall effect. In the last equality we
expressed1 the Hall coefficient in terms of σ and µ denoting the conductivity
and the mobility of the carriers, respectively. For a long rectangular bar, with
small sense contacts, Eq.2.1 applies and can be derived from a semi-classical
equation of motion for the carriers, Eq.1.60. When RH and the thickness of

1When an electric field E is applied across a piece of material, the electrons respond by
moving with an average velocity called the drift velocity, vd. Then the electron mobility µ
is defined as vd = µE. As the total current is given by J = nqµE, the relation between the
conductivity and the mobility is σ = nqµ.
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the Hall device are known, a one-to-one relationship exists between the field
through the device and the experimentally accessible Hall voltage. Conversely,
the Hall effect can also be used to obtain some important material properties,
e.g. type of carriers, mobility, etc[14]. Real Hall devices usually have different
shapes and larger contacts and a detailed treatment is necessary taking into
account the geometry, the type of carriers, their concentration and kinetic
properties (eg. diffusive or ballistic transport). However, Eq.2.1 provides us
with a first-order approximation, and indicates the main properties and the
rules of thumb for the design of a good Hall sensor.

Magnetic field resolution
What are the necessary ingredients to assemble a high quality Hall probe? First
of all, from Eq.2.1, the Hall voltage is inversely proportional with the carrier
density, this is why the Hall effect is typically small in metals having high carrier
densities (1022cm−3). From this point of view, the much lower carrier densities
in semiconductors (1014 − 1020cm−3) result in Hall coefficients as much as 7
orders of magnitude larger than in metallic Hall devices, making them perfect
candidate materials for magnetic field sensors. Secondly, note that the Hall
effect is larger for thinner conductors. On top of that, thin Hall probes have
the advantage of sampling the field at a well defined height. Thirdly, from
Eq.2.1, we see that a good Hall sensor also exhibits a high carrier mobility,
which additionally determines, for a fixed carrier concentration, bias current
and probe size the signal-to-noise ratio (SNR). At low temperatures (T<100K),
the main noise component of the current state-of the art probes up to a certain
critical dc bias current Imax is the Johnson (thermal) white noise of the Hall
voltage contacts. For an ideal 2D Hall device at temperature T with carrier
density n2D, the SNR for a sensor is given by[53],

SNR =
√

µ
n2D

√
w

4kBT ql∆f IbiasB, (2.2)

where w and l are the width and length of the voltage leads, respectively.
Further, ∆f is the measurement bandwidth. It is clear that high carrier
mobilities, low carrier concentrations, low temperatures and a small bandwidth
(Lock-in techniques) for a certain Hall probe geometry provide the best SNR.

The invention of modulated doped2 semiconductors in 1978 has subsequently
revolutionized the field, as it became possible to fulfil the above considerations
for having an optimum Hall probe. This advance to develop semiconductor
heterostructures with well defined electronic properties, together with the

2In modulation doping, the doping elements are implemented in such a way that the
resulting free electrons are spatially separated from the positive donor ions, as a result
scattering of moving electrons on the dopant atoms is avoided.
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development of lithographic techniques to produce sub-micron sized probes,
paved the way to SHPM devices with very high field and spatial sensitivity.
The prime candidate for high resolution Hall probes are heterostructures
assembled of GaAs/Al0.3Ga0.7As, where the electrons are confined in a very
narrow layer of thickness around 10nm typically located at 100 nm below the
surface. This ‘electron sheet’ embedded in an insulating matrix, referred to
as a two dimensional electron gas (2DEG) has very high carrier mobilities
and low carrier concentrations at liquid Helium temperatures of 100m2V−1s−1

and 1011cm−2, respectively. This results in typical Hall coefficients of RH=3Ω
mT−1. The 2DEG Hall probes used in this work are manufactured by Magcam,
see Fig.2.1(b) and the detailed production process can be found in Ref.[54]. The
probes have effective dimensions of 0.4µm×0.4µm, the Hall sensor asymmetry
is +/−1% and it is integrated on a chip of size 3mm×3mm. The resistance
at 300K is around 50kOhm, while at 4K the resistance is around 5kOhm.
The specifications of the sensors, as provided by Magcam, are checked for
the different Hall probes used in this work. For the optimum choice of the
bias current through the Hall cross3, typically ∼20µA, a practical detection
limit(DL) of 5µT is obtained. A thorough characterization of the Hall probes
can be found in Ref.[54].

Spatial resolution
The spatial resolution of the Hall probe scales roughly as

√
s2 + h2, where s is

the size of the probe and h the height of the probe above the sample. From
this, it is clear there is no reason to have a probe with size s≪h, since having
the smaller s in that limit does not improve the spatial resolution, but would
decrease the sensitivity. To have optimum spatial and magnetic field resolution,
while investigating a certain area of interest, one places the probe as close to
the sample surface as possible using piezoelectric actuators and one determines
the optimum probe size to have a good magnetic field resolution. To be able to
approach the sensor within close proximity of the field source, the Hall sensor
is processed on a chip, see Fig2.1(b) containing the above described sub micro-
meter sized Hall cross in close proximity to an STM tip4. This chip is mounted
in a modified scanning probe setup of nano-magnetics which allows accurate
positioning and scanning of the Hall probe over the surface.

An overview of the scan head is given in Fig.2.2(a) and Fig.2.2(b) This scan
head contains two sets of piezo-actuators. The first set, indicated as Set I in

3In this work we mainly use dc bias current, the advantage of using dc bias currents is that
it results in faster acquisition times for an image and it allows an easy implementation of an
alternative technique, scanning ac susceptibility microscopy as described in Chap.5 However
when using dc bias currents the detection limit is somewhat lower.

4The chip contains two STM tips as indicated in Fig.2.1(b), a distance of 15µm away from
the actual Hall cross.
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Figure 2.2: (a) Schematic overview and a photograph (b) of the modified
SHPM-setup with incorporated coarse positioning unit and the heater in
proximity to the sample.[51] (c) Photograph of the sample holder with contacts
for transport measurements. (d) Schematic illustration of the sample-sensor
chip orientation and position.

Fig.2.2, contains a coarse z-positioning system and a scan tube having the Hall
chip at the end of it. This set allows to scan the Hall probe over the sample
surface in a scan area of 16×16µm2 at 4.2K with nanometer scale resolution
and to approach the surface until tunneling between the STM tip and the
sample surface is reached. To allow STM approach, the sample is covered
with a conductive Au layer and biased to a potential of -100mV. The approach
process is as follows. First, the scan tube is elongated over a maximum distance
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of 2.4µm while continuously monitoring the tunnel current. When no tunnel
current is found during elongation, the coarse z-positioner5 approaches one
step, where the approach distance corresponding with one step is less than the
elongation of the scanner tube, to avoid crashing the probe during approach.
However, when tunnel current is found a PID protocol stabilizes the tunnel
current by continuously adjusting the elongation of the z-scanner. This process
is repeated until a tunnel current of 0.5nA is obtained corresponding to a
tunnel resistance of 200MΩ and a tip-sample distance of <1nm. The second
set of positioners, indicated as Set II in Fig.2.2, contains two x and y coarse
piezoelectric stick-slip motors of Attocube, allowing for moving the sample
plate up to 3mm in both lateral directions with nanometer-scale resolution.
This second set of positioners makes it possible to explore different areas of the
sample.

Once the tip is in ‘STM-contact’ with the sample, the ultimate lower limit
for the height above the sample surface is determined by the depth of the
2DEG below the surface of the heterostructure, typically 100nm. However an
additional limitation comes from the angle between the sample and probe chip
∼1-2deg, put during the installation process to assure the STM tip is the closest
point to the surface and to provide room for the current and voltage leads
coming from the Hall probe chip, see Fig.2.2(d). Both the distance between
the active area and the STM tip and the tilt angle contribute to the height of the
probe. In principle it is possible to scan the sensor over the sample surface while
keeping the tunneling current constant, using continuously the PID feedback
on the z-piezo. As such we can obtain simultaneously the topography and the
magnetic field distribution. However, in practice we always prefer to operate
in ‘flying mode’. In this mode the probe is lifted a few 100nm after ‘STM-
contact’ in the highest corner of the scan area, and the scan is performed at
this fixed distance. The lift height is limited by the surface roughness within
the scanarea and can be continuously adjusted during scanning in both lateral
and transversal directions for compensating the tilt of the sample. This ‘flying
mode’ allows for faster imaging, with less risk of crashing the probe. Eventually,
the typical scan height is around ∼1µm.

Is it possible to obtain quantitative and qualitative data with the SHPM? In the
end, the spatial resolution of the Hall probe is comparable with the length scale
of magnetic field variations in Type-II superconductors, it is the penetration
depth (cf. Sec.1.4) and as such one expects appreciable convolution effects. In
a first approximation one could argue that the Hall probe measures an average

5The z-coarse positioner consists of a glass tube glued to a piezo-actuator. The whole
copper part carrying the first set of piezo’s and the sample moves over the glass tube by a
stick-slip inertial principle. The scanner tube is located inside the glass tube.
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of the local field distribution over the whole square cross junction. However, at
low temperatures the electron mobility reaches such high values that the mean
free path exceeds the Hall cross size. In this ballistic regime, carriers can be
imagined to fly in long straight lines over the cross junction. A local magnetic
field in the junction can then be considered as a scattering center strongly
affecting the electron transport. As such, when a spatially inhomogeneous
field is present, the Hall voltage will depend on the exact position of the
inhomogeneities within the Hall probe. In general, one describes the response
of the Hall cross by a response function Γ(x, y), which modifies the simple
relation between the measured Hall voltage and the applied field, Eq.2.1, as,

VHall = Ibias
n2De

∫ ∫
dxdyBz(x,y)Γ(x,y)∫ ∫

dxdyΓ(x,y)
, (2.3)

The integral in the denominator normalizes the introduced response function,
so that it is simplified to Eq.2.1 in the case of an homogeneous field. Several
references can be found that calculate this response function depending on the
kinetics of the electrons (diffusive regime[55, 56], ballistic regime[57, 58]) and
the size of the Hall probe. It is shown that when the Hall sensor operates in
the ballistic regime and at low field, i.e. µbz ≪ 1, the response function can be
considered as a constant within the main junction area, with rapid decaying
tails in the contact paths and independent of the shape and position of the
field inhomogeneity profile in the junction.

Operation environment
The scanning head operates in a 4He variable temperature (4.2K-300K) flow
cryostat from Cryogenic Limited. In this cryostat liquid helium is pumped from
a 52 liter liquid helium reservoir via a needle valve into variable temperature
insert space (VTI), where the temperature is controlled using a temperature
sensor and a heater (50W) connected to a Lake Shore 340 temperature
controller. The helium gas flows around the sample space containing some
static He exchange gas (1bar) and the SHPM head. The static gas supresses
vibrations which would have been caused by a helium flow. A second
temperature sensor and small heater (500mW) are mounted on the SHPM
head itself which can be controlled by a second PID loop of the Lake Shore
340 temperature controller. Temperature stabilities up to 1mK are reached at
liquid helium temperatures. Further, a superconducting magnet is available
and installed in the helium reservoir, capable of generating fields up to 5T.
To prevent vibrational noise, the whole cryostat is suspended on a two-
stage vibration-isolation stage. Further the scanhead contains the sample
table on which the sample holder is screwed, see Fig.2.2(c). As the sample
holder contains copper contact pads, it is possible to do standard transport
measurements even while measuring. The whole scan head is surrounded by a
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small copper coil which allows to apply small dc and ac fields in a range of |5mT|.
A small IR LED is present to activate the 2DEG after the cooling process from
room temperature to He4 temperatures. The electrical connections between the
scan head and the control electronics run through the center of the microscope
insert and subsequential through three lemo connectors. The Hall voltage
is amplified by a factor of 1000 and the tunnel current is converted using a
100mV/nA current-to-voltage converter in a shielded box at the top of the
cryostat. As current source for delivering the bias current a Keithley 220
programmable current source is used and the Hall voltage is digitized by an
ADC card of Nanomagnetics having 16 bit resolution at a maximum speed of
200kS/s.

Some important properties of SHPM, as compared to other magnetic imaging
techniques (e.g. The bitter decoration technique, Magnetic force microscopy,
scanning SQUID, magneto-optical imaging, etc.), are listed in Ref.[59, 53]. In
summary, SHPM is a direct non-invasive magnetic field sensor, having self
fields of only <10−3mT at typical operating currents (20µA) and sample-
probe distances. The magnetic field detection limit is around 5µT and as the
probe size can be made much smaller than typical standard scanning SQUID
probes6, a good spatial resolution below 1µm can be obtained. These properties,
together with the possibility of measuring over broad temperature ranges and
field ranges, without strict sample preparation requirements, make SHPM a
powerful tool for the investigation of magnetic flux structures in a variety of
materials.

2.3 Sample fabrication

All samples are fabricated by a standard e-beam lithography process and
subsequent deposition of a variety of materials using standard e-beam
evaporation or dc-sputtering techniques. An overview of the different steps
in the production process are schematically shown in Fig.2.3. In a first step, a
substrate [Fig.2.3(a)] consisting of single crystalline Si, covered with a thermally
grown amporphous SiO2 layer of 2000Å is coated [Fig.2.3(b)] with a single
or double ‘positive’ resist layer(s) by a spinning process. The resist layer(s)
consists of the polymers, typically Co-PMMA/PPMA, and has a total thickness
of about 150nm. Next, a desired mask is imprinted by means of a scanning
electron beam [Fig.2.3(c)]. By exposing the polymer to a focused electron-

6Currently, nano-meter sized SQUIDs are fabricated on the apex of a sharp quartz tip and
integrated into a scanning SQUID microscope. The diameter of these nanoSQUIDs ranges
down to 100 nm, having a flux sensitivity as high as 1.8 × 10−6Φ0/Hz1/2 and they are
operational in fields as high as 0.6T [60].



SAMPLE FABRICATION 49

a) b) c)

d) e) f)

Figure 2.3: Schematic overview of the sequential steps describing the sample
production process by e-beam lithography.

beam, which serves as ‘pen’, a computer generated pattern can be transferred
to the polymer film by locally destroying or braking up the polymer chains
(positive resist). The electron beam used to write the pattern can be focussed
to a spot of typically around 2nm diameter. However, the resolution of the
resulting structures exceeds the focus size due to proximity effects; the resist
is exposed not only by electrons from the beam, but also by secondary and
backscattered electrons. As such, the typical line widths are limited around
10nm. In the next step, the so called ‘development’ step [Fig.2.3(d)], the
e-beam exposed regions, consisting of broken up polymers, are removed by
immersing the substrate into a development solution (typically, 4 methyl-2
pentanone:1-pentanol(1:1) for 1m45sec) followed by rinsing in 1-pentanol to
stop the development process and flushing with nitrogen gas. Now that a
resist mask is established, the desired metal is evaporated onto the substrate
[Fig.2.3.(e)]. The resist pattern will function as a protective mask, it must
‘resist’ or protect the underlying substrate while bared areas are being exposed
to the evaporated materials. The materials Pb and Ge used mainly in this
work are deposited using a Varian ultra high vacuum system. It can reach a
base pressure of 10−9mbar, by using an ion pump and assisted cooling with
liquid nitrogen. Two electron guns of 6KW and 10KW are used to evaporate
Pb and Ge, respectively. The materials are grown in a pressure range of
(3−8)×10−8mbar with a typical rate of 1−3Å/s depending on the material. For
uniform Pb film growth the sample is cooled during the deposition with liquid
nitrogen to a temperature of 77K, as at elevated temperatures Pb tends to form
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clusters. The Microscience dc-magnetron sputtering system is used to deposit
Ti and Au films, where the latter is used frequently in this work as a conductive
top layer for STM approach of the Hall probe, see Sec.2.2. The base pressure
of the system is 5 × 10−8mbar and the deposition itself is done at Ar-pressures
of 5 × 10−3mbar. The typical deposition rate is 16nm/min. As Au films do not
‘stick’ well to the SiO2, typically a thin Ti adhesion layer has to be deposited
to prevent the release of the Au film during the final step. This final step, the
so called ‘lift-off’, involves the removal of the resist layers, including the metal
deposited on top, using hot acetone, so that only the metal deposited on top
of the patterned area remains on the substrate(Fig.2.3[f]). A successful lift-off
usually requires applying ultrasonic agitation. For more details concerning the
e-beam lithography process an excellent and detailed description can be found
in Ref.[61].

In this work, the first four steps in the above described e-beam lithography
process are preformed at the Interuniversity Micro-electronics Centre (IMEC),
whereas the last two steps are preformed in our group. Further, structural
characterization of the nano-structured thin films is done using room tempera-
ture atomic force microscopy (AFM) and scanning electron microscopy (SEM).
The electrical transport properties were investigated by standard transport
measurements using a standard four-probe configuration in cryogenic set-ups.



CHAPTER3
Symmetry-induced giant vortex

state in a superconducting Pb
film with a fivefold Penrose array

of magnetic pinning centers

3.1 Introduction

Crystals are classified according to their translational and rotational symmetry
(cf.14 three dimensional Bravais lattices and the related 7 point symmetry
groups)[14]. Until mid 80’s, the lack of crystalline structures having a five fold
rotation symmetry axis was generally accepted. However, the revolutionary
discovery in 1984 of crystals with "forbidden" symmetry [62], introduced a
new family of crystallographic structures, known as quasicrystals. These
new structures are like crystals in that they have long-range translational
order and long-range orientational order, however the translational order is
not periodic1 and the structures have no rotational point symmetry group2.
Instead, the quasicrystals are quasiperiodic, a well-defined but more subtle
kind of translational order and although they have no rotational point
symmetry group, they exhibit long-range orientational order. Experimentally,
this quasiperiodicity was observed by Shechtman in the diffraction patterns
produced by certain Aluminium-Manganese alloys, for which he was awarded

1In case of periodic translational order, a translational operation exists carrying the lattice
in itself. This means that their exists a Bravais lattice.

2The point group of a crystal is the collection of symmetry operations (rotations,inversions,
reflections) applied about a lattice point carrying the lattice into itself.
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the Nobel price in chemistry in 2011. Quasiperiodic tilings in two dimensions
with similar properties as the quasicrystals discovered by Shechtman, were
already earlier introduced by Penrose [63] in a mathematical context. These
famous two dimensional Penrose tilings, combine two different unit cells or tiles
to fully cover a two-dimensional plane. The resulting tilings possess likewise
quasiperiodic translational order and long-range orientational order.

The interest to the unique properties of quasi crystals has nowadays surpassed
the boundaries of the crystallographic community and reached most research
fields in condensed matter physics [64, 65, 66, 67, 68]. Particular attention has
been recently devoted to the pinning properties of flux lines in superconducting
thin films with aperiodic, fractal or quasiperiodic arrays of pinning sites [69,
70, 71, 72, 73, 74].

In this Chapter we will first introduce the extraordinary properties of a
quasiperiodic tiling. Next, the pinning properties of flux lines in periodi-
cally nano-structured superconductors are discussed and compared with the
theoretical predictions (Molecular dynamics) [69, 70] and experimentally mea-
sured (indirect transport measurements) [72, 73] commensurability effects in
quasiperiodic nano-structured superconductors. We used scanning Hall probe
microscopy as introduced in Chap.2, to directly visualize the flux distribution
in a specific two-dimensional quasiperiodic nano-structured superconductor,
containing a five-fold Penrose array of Co dots underneath a Pb film. The
obtained flux distributions not only show the theoretically and experimentally
anticipated vortex configurations for specific matching fields but unveil new and
so far unpredicted vortex patterns. The most fascinating result is the collective
and synchronized arrangement of both, pinned and interstitial vortices, forming
ring-like structures which stabilize a giant vortex at the center of this "vortex
corral". To the best of our knowledge, this finding represents the first direct
evidence of symmetry induced giant vortices, a long standing subject of
theoretical investigation which remained experimentally elusive up to now.

3.2 The quasiperiodic Penrose tiling

In this work we will use the famous two-dimensional rhombus Penrose tiling as
a quasi periodic modulation of the trapping potential for flux lines. However,
before discussing the resulting effects on the vortex distribution, let us
discuss first the properties of this specific quasiperiodic tiling[75]. An ideal
quasiperiodic tiling is constructed by the infinite repetition of two or more
distinct "cells" or "tiles", packed in a lattice that has long-range quasiperiodic
translational order and long-range orientational order. We illustrate the
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latter two terms "long-range quasiperiodic translational order" and "long-range
orientational order" within the rhombus Penrose tiling, after discussing the
construction of this tiling.

Figure 3.1: (a) The geometry of the Penrose rhombs, the basic building blocks
of the two-dimensional Penrose Patterns. The matching rule restricting the
juxtapositions is illustrated by the coloured circular arcs and θ = 36◦. (b)
Two-dimensional Penrose tiling, illustrating how the rhombuses fit together
using the matching rule. Five decagons are shown in boldface, illustrating the
ten-fold, long-range orientational order[76].

Construction
The two-dimensional rhombus Penrose tiling is constructed from a basis set
of two rhombuses. These basic building blocks, the so-called thick and thin
rhombs, are depicted in Figure 3.1(a). Both rhombs have identical edge lengths
and all interior angles are multiples of 36◦. To assure that the tiles form a
non-periodic tiling, restrictions have to be made on the assembly of the tiling.
For example, no two tiles can form a parallelogram, as this would allow a
periodic tiling, however this is not a sufficient constraint for aperiodicity of
the tiling. The so called matching rules to obtain aperiodicity, restrict the
juxtapositions between tiles and can be described in several ways. One way is
illustrated in Figure 3.1(b), here tiles must be assembled such that the curves
on the faces match in colour and position crossing an edge. The golden ratio,
τ = (

√
5 + 1)/2 = 1.618, satisfying τ2 = τ + 1, shows up in several properties

of the rhombus Penrose tiling. In an infinite Penrose tiling, the two rhombuses
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occur in the ratio of the golden mean, with the larger tile being more prevalent.
Moreover, the ratio of the areas of the thick to the thin rhombus is equal to
the golden mean.

Properties
A Penrose tiling has several interesting properties. First of all, as the interior
angles of the tiles are multiples of one-tenth of a complete rotation, a Penrose
lattice has ten-fold, long-range orientational order. This is illustrated by
the boldface decagons with identical orientations in Fig.3.1(b).

Figure 3.2: (a) The deflation rules for the two cells. (b) Each tile in Fig.3.1
has been decorated with line segments as shown. These segments join to form
five sets of quasiperiodically spaced parallel lines[75].

On top, they posses the more subtle, quasiperiodic ‘translational’ symme-
try. The definition of a quasiperiodic function is that it can be expressed
as a sum of periodic functions, where at least some of the periods are
incommensurate (i.e. have an irrational ratio.). There are several ways to
demonstrate this for the rhombic Penrose lattice. The nicest way is pointed out
by Ammann[75], who showed that by decorating each tile with a line segment as
according to Fig.3.2(b), the line segments join to form sets of continuous lines
running parallel to each of the symmetry axis of a pentagon. The position of
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the Nth line of a parallel set is given by:

xN = N + α+ 1
τ

⌊N
τ

+ β⌋, (3.1)

here τ is the golden ratio; α,β are arbitrary real numbers and ⌊⌋ represents the
greatest integer function. The alpha parameter alone will result in a periodic
spacing, while the second term increases by τ−1 every time N is increased by
τ . As τ and 1 are irrational, this satisfies indeed a quasiperiodic function. The
spacing between two consecutive parallel lines (xN −xN−1) is given by L or S
where L/S=1+1/τ . This quasperiodicity will result in sharp Bragg spots in a
diffraction pattern.

The Penrose tiling is also self-similar3, meaning it is exactly or approximately
similar to a part of itself. As such, a so called deflation rule or self-similarity
transformation exists to form a new tiling with all unit cells scaled down by
a constant factor. This deflation rule is illustrated in Fig.3.2(a) and is closely
connected with the appearance of the golden ratio in Eq.3.1. The self-similarity
results in many built-in periods within the Penrose lattice.

3.2.1 Commensurability effects in periodic nano-structured
superconductors

With the advent of modern lithographic techniques it is possible to structure
superconductors at the micro-and nano-meter scale. By nano-structuring,
it is possible to create an artificial potential in which the superconducting
condensate or flux lines are confined. Confinement of the condensate itself
at it’s characteristic length scales, the coherence length and the penetration
depth, can result in mesoscopic effects where the boundary conditions and
the confinement geometry predominantly determine the superconducting
properties [77, 40, 41, 78]. In this work, however, we focus on the effect of
a spatial modulation of the trapping (pinning) potential on the properties of
the flux line lattice. Resonant or commensurability effects are expected when
the scale of the modulation matches the field dependent lattice constant of the
vortex lattice, c.f. Eq.1.47.

When arranging the pinning centers in a regular (translational-invariant)
periodic lattice, so called matching effects are observed as a consequence of
commensurability between the vortex lattice and the periodic pinning potential.
In particular the first matching field,

H1 = Φ0/S, (3.2)
3Many objects in the real world do posses this property, eg. fern leaves, fractals,etc.
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is defined as the field where the density of vortices equals the density of
pinning centers forming the lattice with a unit cell area S. Similarly, matching
features are expected to appear at integer or rational multiples of H1, due to
commensurability between the vortex lattice and the pinning array. In general
these matching fields are denoted as,

Hn = n×H1 {n} ∈ N, (3.3)

Hp/q = p

q
×H1 {p, q} ∈ N, (3.4)

respectively. These commensurability effects result in a strong overall
enhancement of jc compared to a film without a regular pinning array. On
top, when the matching conditions between the vortex lattice and the regular
pinning potential are fulfilled, sharp local maxima in jc(B) appear close to Tc.
This enhancement is a consequence of the perfect compensation of the vortex-
vortex interaction at every matching field, resulting in a more stable vortex
configuration.

However, the highly symmetric configuration resulting in a local enhancement
of jc at the matching conditions, can promote at the same time channeling or
guidance of vortices for particular current directions. This results in a strong
suppression of the critical current for these particular current directions [79, 80].
To prevent this channeling effect, random pinning centers can be introduced
at the expense of suppressing the matching features [81]. An alternative way
is presented below, where the extraordinary properties of quasiperiodic arrays
(cf. Sec.3.2) of pinning centers have been used.

3.2.2 Commensurability effects in quasiperiodic nano-structured
superconductors

The effect of quasiperiodic and fractal pinning arrays is more recently
investigated in Ref.[69, 70, 72, 73]. Quasiperiodic pinning arrays have, from
technological point of view, several advantages as compared to periodic pinning
arrays. In this case, the lack of perfect periodic translational order of the
pinning landscape prevents the formation of one-dimensional channels for easy
vortex flow. Moreover, whereas in regular pinning arrays the enhancement
of jc(B) occurs only for applied fields close to the matching conditions, the
convolution of many build-in periods (self-similarity) present in a quasi crystal
favors the proliferation of many matching features or an extremely broad
peak in jc(B). In principle, both properties tend to improve the maximum
current attainable without dissipation, i.e. the superconducting critical current.



RESULTS 57

Indeed, it is shown that a quasi-periodic tiling can result in a dramatic increase
of jc even compared to triangular or random pinning arrays. It is worth noticing
that, unlike a regular periodic pinning array, the vortex-vortex interaction is
never perfectly compensated in a quasiperiodic lattice.

Molecular dynamic simulations of driven vortices interacting with a rhombic
two dimensional Penrose array of pinning sites predicted local enhancements of
the critical current at external fields H = 0.757H1, H1, and 1.482H1, where H1
is the field at which the density of singly quantized vortices coincides with the
density of pinning centers [69, 70]. The non trivial matching features below and
above H1, should correspond to the occupancy of three out of four pinning sites
in the vertices of the thin tiles and the presence of an interstitial vortex in each
thick tile, respectively. Indirect evidence of these stable vortex configurations
has been obtained by transport measurements for a Penrose array of holes in a
Nb film [72] and magnetic dots in Al and Pb films [73]. In both experimental
investigations additional unforseen features were also reported. Unfortunately,
the lack of direct visualization of the vortex patterns in this sort of systems
have concealed the real space vortex arrangement associated with the observed
matching features in the transport properties.

3.3 Results

In this section we establish a clear correlation between the theoretical
predictions and the transport measurements by mapping the local field
distribution in a Pb film covering a Penrose array of Co dots via scanning
Hall probe microscopy (SHPM). The vortex patterns, directly visualized at
H = 0.765H1 and H = H1, are in agreements with the theoretical expectations.
Additional matching features below H1 are investigated at H = 0.25H1
and H = (1/τ)H1. However for these low field features the limited scan
area cannot provide us with a complete picture of the corresponding vortex
distribution. For H > H1, interstitial vortices are placed inside the thick
tiles, as anticipated by molecular dynamic simulations [69, 70]. However, as
we will see below these interstitial vortices lie at a bistable position rather
than in the geometrical center of the tile. Due to the long range vortex-vortex
interaction, this degeneracy is lifted by the lack of reflection symmetry of the
surrounding tiles. As a result, at certain magnetic fields the interstitial vortices
accommodate themselves in order to achieve an ordered ring-like structure
involving several tiles. Strikingly, this highly symmetric ring like structure is
similar to that obtained in disk-shaped mesoscopic structures and results from
the local field pressure exerted by the surrounding vortices. Complementary
transport measurements show that this behavior leads to the appearance of a
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clear matching feature at H ≈ τH1. Additional unforeseen commensurability
effects above H1 are also found at H = 3.8H1 and H = 6.0H1. However, the
accompanying vortex distributions can not be probed by SHPM, as at these
high fields, individual vortices can not be resolved anymore.

3.3.1 Sample details

In this work we will use the famous two-dimensional rhombus Penrose tiling,
introduced in Sec.3.2, as a quasi periodic modulation of the trapping potential
for flux lines.

10 µm

Figure 3.3: Scanning electron microscopy image of the square dots distributed
in a five-fold Penrose array. For clarity, the dots are connected with dotted
(yellow) lines. Five thin and thick tiles are painted with green and red color,
respectively. The black bar indicates a distance of 10 µm.[82]

The investigated samples consist of a 50 nm thick Pb film evaporated directly
on top of a five-fold Penrose array of square Co dots made by electron beam
lithography and subsequent lift-off. The experimental procedure used for the
sample preparation can be found in Sec.2.3. Fig. 3.3 shows a scanning electron
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microscopy image of the dot array. For clarity the magnetic particles have
been connected by dotted lines to indicate the distribution of the thin and
thick tiles, which represent the building blocks of the five-fold Penrose lattice.
The size of the Co dots is 0.7 µm and the length of the connecting lines is
3.1 µm. The pinning potential is created predominantly by a local depletion of
superconductivity above the Co dots due to the proximity effect at the Co/Pb
interface. Experiments performed before and after magnetizing the dots, show
no differences, thus confirming that the electromagnetic coupling does not play
a relevant role. For transport measurements the samples were patterned in a
bridge shape, 102 µm wide with a voltage contacts’ separation of 392 µm.

Figure 3.4: Temperature dependence of the coherence length and the effective
penetration depth versus reduced temperature for a typical 50 nm Pb film, as
derived from Eq.1.20 and Eq.1.48 using the dirty limit expressions for ξ(T ) and
Λ(T ) (Eq.1.48) .

As in this chapter and the next, thin Pb films will be used to investigate vortex
physics, we give here an overview of the characteristic superconducting length
scales. The Pb film has a critical temperature Tc0=7.24K as determined by 50%
of the normal state resistance. The intrinsic BCS coherence length for pure Pb
is ξ0=0.083µm and the London penetration depth is λL=0.037µm (Values taken
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from Ref.[2] p.24). From measurements of the temperature dependence of the
perpendicular upper critical field Hc2(T) of a reference film, Eq.1.28, we obtain
from the Hc2(T ) slope, the superconducting coherence length ξ(0)=0.033µm.
Using the dirty limit expression for the coherence length, Eq.1.20, the electron
mean free path ℓ=0.015µm is found. As such, using similarly the dirty limit
expression for the penetration depth, Eq.1.24, we obtain λ(0)=0.06µm. As we
are dealing with a thin film restricting the screening-currents to the thickness
of the film, t, the field is less efficiently screened resulting in an even larger
penetration depth as suggested by Pearl, see Sec.1.7. This effective penetration
depth, Λ, is given by, Eq.1.48. The temperature dependence of the effective
penetration depth Λ(T ) and coherence length ξ(T) for the 50 nm thick Pb film
used in this work, are shown in Fig.3.4. For the experimental temperatures used
in this work, T>4.2K, we obtain the following lower limits, κ>3.3, ξ>0.046µm
and Λ>0.15µm. Due to the dirty limit constraint and the fact that the increase
of Λ with increasing temperatures is stronger than the increase of ξ, κeff=Λ/ξ
exceeds κ(0) at the experimental temperatures and the film behaves as a type-II
superconductor.

3.3.2 Transport measurements

We first investigated the vortex dynamics of the prepared sample by measuring
a series of current-voltage characteristics as a function of field H at temper-
atures very close to Tc0. A detailed measurement of the voltage V vs H at
constant current I = 300µA and T = 7.21 K is shown in the upper panel of
Figure 3.5.

The first matching field H1 ∼ 0.28 mT can be clearly identified as a
pronounced dip in the dissipation, indicating that each pinning site can trap a
maximum of one flux quantum4. The value of the first matching field, where
we assume there is one flux quantum per tile, can also be derived from the
geometric details of the Penrose lattice. Knowing that the thick(fat) tiles,
having an area of SF=a2 sin π/5, outnumber the narrow(small) ones by a factor
corresponding to the golden mean, τ , we find with a= 3.1µm,

< H1 >= nFH1F + nsH1s

nF + ns
= 2Φ0

(1 + τ)a2 sin π/5
= 0.279mT, (3.5)

We made use of several relations of the Penrose lattice. First of all in an infinite
lattice, nF /ns = τ , where nF and ns denote the number of fat and small tiles,

4This sharp decrease in the critical current typically indicates the appearance of interstitial
vortices which drastically reduce the critical current as compared to double quantized
ones.[77]
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Figure 3.5: The upper panel shows the voltage for a fixed bias current of 300
µA as a function of the external field at T = 7.21 K. The lower panel and
the inset shows the superconducting critical current, estimated with a voltage
criterion of 2 µV, as a function of the external field for T = 7.1K and T = 7.2K,
respectively. Matching features are indicated with black arrows.[82]
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respectively. Further, the surface ratio between the fat and small tiles is given
by, SF = τSs and we defined H1s ≡ ϕ0/Ss and H1F ≡ ϕ0/SF , related by
H1s = τH1F . This value agrees well with the experimentally obtained value,
H1 = 0.28mT , estimated from the sharp reduction of Ic.

Additional matching features are present at H ∼ 0.25H1, H ∼ 0.62H1 ∼
(1/τ)H1 and H ∼ 0.76H1 ∼ νH1 ∼ (2/τ2)H1. These matching features
were found in previous magnetoresistance measurements [73] and in molecular
dynamic simulations [69, 73]. It is clear that the latter two can be related to
the golden mean as derived from geometric considerations within the Penrose
tiling and an assumption for the corresponding vortex distriution. The feature
at H ∼ 0.25H1 is attributed to a situation where every flux line is surrounded
by a corral of vacant pinning centers[73]. The dip at H ∼ 0.76H1 corresponds
to a vortex distribution leaving one vacancy in one of the vertices of the thin
tiles[70]. The feature at H ∼ 0.62H1 can be ascribed to the presence of one
vortex line per thick tile[73].

To demonstrate the presence of stable vortex configurations at higher densities
we plot the depinning current Ic, using a dissipation criterion of 2 µV, for
T = 7.1 K (Fig.3.5, lower panel). Higher matching features can be seen
for H ∼ 1.6 ∼ τH1, 3.8 H1, and 6.0 H1. It it worth stressing that typically
commensurability effects in periodic pinning arrays are attributed to the perfect
compensation of vortex currents, a condition which seems to be never satisfied
in a quasiperiodic array.

3.3.3 Scanning Hall probe microscopy measurements

In order to clearly identify the microscopic vortex distribution associated with
the different features observed in the Ic(H) and V (H) curves, we acquired
scanning Hall probe microscopy images at different fields. The SHPM images
presented in this work were recorded at 4.2K with a scanning area of SA =
14 × 14µm2 after field cooling the sample. Measurements performed at higher
temperatures (up to 7.0K) show no difference with those obtained at 4.2K, thus
indicating that the vortex distribution is frozen at high temperatures close to
the onset of the superconducting state. The images were recorded in lift-off
mode with the Hall sensor at about 1µm above the surface of the sample. Xy
positioners allow us to explore different regions of the same sample in order to
avoid unwanted effects arising from the sample borders, imperfections, or small
particles. A series of pictures obtained at 4.2 K after field cooling procedure
with fields ranging from −1 mT to +1 mT (-3.5H1 to 3.5H1) in steps of 0.005 mT
allowed us to determine the remanent field with high accuracy. Indeed, notice
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that steps of 0.010 mT(∼ ϕ0/SA) correspond to one extra vortex per scanning
area between two consecutive images. Fig 3.6 summarizes the obtained images
for a selected set of fields5 (different columns) and at three different locations
on the Penrose pattern (different rows). In this figure we indicate the Penrose
tiles with white lines for clarity. The determination of the dots’ position was
achieved by performing a scan in presence of a large external field (∼ 400 mT)
which produces a clear contrast of the Co microparticles as their their magnetic
moments are strongly aligned by the perpendicular field.

H ~ 0 mT H ~ H1H ~ 0.76 H1 H ~  1.6 H1

14 µm

Figure 3.6: Scanning Hall probe microscopy images obtained after field cooling
the sample down to 4.2 K. Each row corresponds to a different location of the
array. The first, second, third and fourth columns corresponds to H ∼ 0 mT,
H ∼ 0.220 mT ∼ 0.76H1, H ∼ 0.275 mT ∼ H1, and H ∼ 0.455 mT ∼ 1.6H1,
respectively.[82]

5It is worth emphasizing that more than 600 images were acquired at each of the three
different spots.
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The first column in Fig. 3.6 shows the local field profile obtained at H ∼ 0. On
this column, all panels show a single isolated vortex. The second column in
Fig. 3.6 shows the vortex arrangement corresponding to the matching condition
H ∼ 0.76H1 (see also Fig. 3.5). It is clear from this image that unoccupied
pinning sites are located at one of the vertices of the thin tiles. This vortex
distribution was anticipated by Misko et al. [70] based on the rapid increase
of the vortex repulsion as the vortex separation decreases. The third column
in Fig. 3.6 corresponds to the exact commensurability of the vortex lattice
with the pinning landscape, H ∼ H1, i.e. every vortex sits on top of a Co dot.
The last column illustrates the vortex pattern obtained at H ∼ 1.6H1. Here,
due to the repulsive interaction between vortices, interstitial vortices are only
inside the thick tiles. It is clear that these interstitial vortices tend to avoid
the geometrical center of the tile. This is further supported by differential
images, obtained by subtracting two consecutive field cooling around this
matching feature[Fig. 3.7(c)]. This finding indicates that an interstitial bistable
configuration exists inside each thick tile.

To indicate the stable energy positions within the thick tile, we calculated
the spatial dependence of the interaction energy between a single interstitial
vortex and the pinned vortices sitting at the corners of a thick tile, as such
considering, in a first approximation, only the nearest neighbour interactions.
The interaction energy is calculated as a superposition of the interaction energy
between a Pearl vortex ‘i’ at position ri =(xi,yi) within the thick tile and the
pinned Pearl vortices ‘j’ sitting at the corners. For this an excellent fit for the
interaction energy between two Pearl vortices is used as derived in Ref.[83],

Vint(ri) = ϕ2
0

2πΛµ0

∑
j

[ln( 2.27Λ
|ri − rj |

− 0.27Λ
9λ+ |ri − rj |

+ 1)], (3.6)

Further the dimensions of the thick tile are taken as a = 3.1µm and Λ = 0.15µm
as discussed in Sec.3.3.1. The index ‘j’ in Eq.3.6 runs over the pinned vortices.
Two local minima with equal energy are obtained. They are not in the center
of the thick tile but along the long diagonal and offcenter by an amount 1.61µm
or 54% .

The formation of ring-like structures or vortex corrals clearly seen in the last
column of Fig. 3.6, demonstrates that a long range interaction eventually lifts
this two-fold degeneracy of the interstitial positions. One of the discussed
bistable states will become more favorable for vortex occupancy. This long
range interaction is expected as we deal with a thin film and the vortices behave
as Pearl vortices (cf. Sec.1.7.). More importantly, a detailed analysis of the
field intensity at the core of the ring-shaped vortex structures indicates that
the central vortex carries two flux quanta[see Fig. 3.7(f)]. These multiquanta
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a)   H ~ 1.58 H1 b)   H ~ 1.6 H1 c)   difference 
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Figure 3.7: (Color) Scanning Hall probe microscopy images obtained at two
consecutive field values, H ∼ 0.445 mT ∼ 1.58H1 (a) and H ∼ 0.45 mT
∼ 1.6H1 (b) together with the differential image (c) taken at a specific location
where the vortex corral appears. Black dots in (a) and (b) mark the vortices
illustrated in (d) and (e). Black and white spots in panel (c) indicate the
change of position of individual vortices. In panels (d) and (e) a schematic
representation of the vortex distribution is given for the two consecutive field
values. Red circles represent pinned vortices and green squares represent the
interstitial vortices. Panel (f) shows the magnetic field profile obtained along
the dotted line drawn in panel (a) and (b) for both magnetic field values.
Integrated field for 1.6H1 clearly corresponds to the giant 2ϕ0-vortex.[82]

vortices are not a mere consequence of a stochastic distribution of pinning
strength since they appear at well defined locations on the pinning landscape
corresponding to multinodal agglomeration of Penrose tiles.

To obtain a better insight into the mechanism responsible for the creation
of these multiquanta vortices we show the field profile corresponding to two
consecutive images and their difference [Fig. 3.7 panel (a), (b) and (c)]
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exactly at the creation of a vortex corral (H ∼ 1.6H1). A reconfiguration
of the interstitial vortices creates a highly symmetrical vortex structure around
specific multinodal points of the Penrose lattice. This process is schematically
presented in Fig. 3.7 [panel (d) and (e)], which shows the distribution of
pinned (red circles) and interstitial (green squares) vortices for both consecutive
magnetic fields. At H ∼ 1.6H1 the mobile interstitial vortices rearrange
themselves in a structure with high rotational order. The exact locations,
where the vortex corral appears, are surrounded by ten vortices, seven pinned
at the Penrose lattice and three interstitial vortices. As a result, a ten-fold
rotational symmetry is obtained [Fig. 3.7(b) and (e)]. At the center of this
highly symmetric vortex structure a multiquanta vortex is favored.

This unexpected result resembles the symmetry-induced giant vortex states
in mesoscopic or microstructured superconductors close to the superconduct-
ing/normal phase boundary [84, 85, 86, 87, 88]. In that case, the boundary
conditions impose the sample symmetry on the order parameter which manifest
itself in the formation of unconventional vortex patters as giant vortices
or vortex-antivortex pairs. Here, the combination of the applied magnetic
pressure, induced by the surrounding vortices, and the high local symmetry
leads to the generation of a multiquanta vortex at the center of the vortex corral.
This is in agreement with previous experimental [84, 89] and theoretical [90]
reports showing that the number of vortices trapped by a single pinning site
increases with increasing external field. In our particular case, it is the highly
inhomogeneous local field which drives the system to the multiquanta vortex
state.

It is important to emphasize that the theoretical investigations of the vortex
matter in a five-fold Penrose array performed so far [69, 70], assumed a short
range interaction between vortices. Since the present work has been done
on a thin Pb film with thickness smaller than the temperature dependent
penetration depth, a more suitable comparison should be done with long range
repulsive Pearl vortices in the presence of a quasiperiodic array of pinning
sites [28]. The combination of this long range vortex-vortex interaction with
the large penetration depth expected by freezing the flux lattice at high
temperatures are most likely necessary ingredients for the formation of a giant
vortex state at H ∼ 1.6H1.

Now we discuss the two additional weak matching features observed in the
transport measurements around H ∼ 0.62H1 and H ∼ 0.25H1(see Fig.3.5).
In Fig.3.8 we show scanning Hall probe images at two consecutive field values
and their difference image to investigate the vortex pattern associated with
the feature around H ∼ 0.62H1. We see that three out of four pinning
sites in the vertices of the thin tiles are occupied with one or two defects,
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Figure 3.8: Scanning Hall probe microscopy images obtained at two consecutive
field values, H ∼ 0.61H1 (a) and H ∼ 0.63H1 (b) together with the differential
image (c) after field cooling the sample down to 4.2 K.[82]

a) H�0,25H1 H�0,25H1 b) H=1/4H1

14µm

Figure 3.9: (a) Scanning Hall probe microscopy images obtained at two different
location on the tiling after field cooling the sample down to 4.2 K in a field
around H ∼ 0.25H1 (b) Possible vortex configuration at H ∼ 0.25H1 as
determined by molecular dynamics simulations. Red dots indicate flux lines
whereas open circles correspond to pinning sites.[73]

i.e., vortices not following this rule, per scanning area. We also notice that
vortices arrange in ring-like structures and form vortex chains. Fig.3.9 shows
scanning Hall probe images obtained around the matching feature H ∼ 0.25H1
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and the corresponding result obtained from MD simulations[73]. As is clear
from the MD simulations, every flux line is surrounded by a corral of vacant
pinning centers as indicated by black lines. This distribution establishes a
degree of correlation giving rise to the obseved matching feature. A similar
behavior is seen in the corresponding SHPM images obtained around this
feature. Unfortunately, in both cases, H ∼ 0.62H1 and H ∼ 0.25H1 a larger
scanning area is needed to discern the differences in the vortex distribution
compared to the situation at H ∼ 0.76H1 and to extract a building rule for the
vortex pattern at this matching field from the Hall probe images. Likely, the
same argument as for the feature H ∼ 1.6H1 justifies the lack of the feature
at H ∼ 0.62H1 and H ∼ 0.25H1 in the early molecular dynamics simulations
which do not account for a long range interaction as expected for the Pearl
vortices in this thin film geometry.

3.4 Conclusion

In conclusion, we have investigated the vortex distribution in a superconducting
film with a Penrose lattice of Co dots by scanning Hall probe microscopy.
The images not only show the theoretically anticipated vortex configurations
for specific matching fields but unveil new and so far unpredicted vortex
distributions. The most fascinating result is the collective and synchronized
arrangement of both, pinned and interstitial vortices, forming ring-like
structures which stabilize a giant vortex at the center of this "vortex corral".
This arrangement indicates the importance of the interplay between the
long range vortex interaction and the defining properties of the underlying
quasiperiodic pinning potential. This chapter evidences the power of SHPM
to discern and connect vortex properties measured before as a macroscopic
response, involving millions of vortices, with the real microscopic vortex
distributions.



CHAPTER4
First vortex entry into a

perpendicularly magnetized
superconducting thin film

4.1 Introduction

The magnetic response of a type-II superconductor is radically different de-
pending on whether the superconductor is in the Meissner state, characterized
by a reversible magnetic response, or in the mixed state, where vortices
appear. The free motion of these vortices gives rise to energy dissipation
and to an irreversible response. The transition between the Meissner and the
vortex state is very crucial from a fundamental point of view as well as for
applications, although it is never investigated at the single vortex level. In
general, vortices do not simply enter the sample at the lower critical field Hc1,
as discussed in Sec.1.4, but several contributions alter the entry field. These
contributions include surface effects, the nucleation process of vortices at the
edge, demagnetizing effects, etc. In this chapter, we study in detail the process
of first vortex penetration in superconducting thin films. Superconducting thin
films have a remarkable importance because the vast majority of applications
for superconductivity involve this geometry. We first introduce some theoretical
concepts, and then present experimental results from a carefully designed
experiment. This experiment visualizes the first vortex penetration in a thin
superconducting sample with a periodic array of antidots. Our results confirm
that the mechanism for the first vortex penetration arises when the screening
Meissner currents reach values of the depairing current (cf. Eq.1.75), breaking
down locally superconductivity and thus leading to vortex nucleation.

69
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4.2 Theoretical background

At which field vortices first appear in a zero-field cooled type-II superconductor?

The lower critical field
Vortex entry is thermodynamically allowed as soon as the applied field H
becomes larger than the lower critical field Hc1 [2]. The lower critical field, Hc1,
is defined as the field at which the Gibbs free energy of the superconducting
volume, Gs has the same value whether the first vortex is in or out of the
sample. Thus at H = Hc1,

∆G = Gs|Meissner − Gs|vortex = 0 (4.1)

For an Abrikosov vortex in a bulk sample the extra energy cost per unit length,
εv is given in the London-vortex limit by Eq.1.43.

εv = ϕ2
0

4πµ0λ2 ln(λ
ξ

+ 0.12) (4.2)

Therefore in a superconductor with nv=N/A flux lines per unit area, the total
energy cost due to vortices is, εvnv per unit volume. We assume that vortices
are far enough from each other to neglect the vortex-vortex interaction energy.
Each vortex carries a flux ϕ0, and so the change in the average induction in
the sample, as compared to the Meissner state, is dB = ϕ0nv

1. The magnetic
work per unit volume gained by the presence of vortices is µ0HdM = HdB.
The energy balance condition, Eq.4.1, takes the form

∆G = εvnv −Hϕ0nv (4.3)

Thus it becomes energetically favorable for vortices to enter a bulk sample when
H > Hc1, where

Hc1 = εv/ϕ0 = ϕ0

4πµ0λ2 ln(λ
ξ

+ 0.12) = Hc√
2κ

ln (κ+ 0.12) (4.4)

where Hc is the thermodynamical critical field, defined as the condensation
energy at zero external field and λ(T ) and ξ(T ) are the temperature dependent
Ginzburg-Landau penetration depth and coherence length, respectively.

However, it is known that the Meissner state can remain thermodynamically
metastable [91, 92, 93, 94] at higher magnetic fields, H > Hc1, up to the so

1Here we consider a perfect infinite cylinder. As such we do not have to consider any
demagnetizing effects.
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called superheating field, Hsh, at which the first vortex penetrates. The
determination of the field Hsh and the underlying criteria for first vortex entry
has a long history.

Figure 4.1: Top view of a superconducting half space occupying x > 0
containing a vortex at position x’. The external magnetic field, Happ, is applied
as indicated and induces screening currents, Js, in the superconducting half
space. These decaying screeningcurrents interact with the vortex located at
position x′ and produce a Lorentzforce, FL, towards the center of the sample.
The vortex supercurrent distribution is distorted near the surface. This can be
described conceptually by placing an image anti-vortex at position −x′ which
acts attractive, FI , on the vortex at position x′. As such, the distortion of
the vortex supercurrent distribution results in an attractive force towards the
surface.

The Bean and Livingston surface barrier field
A pioneering work [91] of Bean and Livingston(BL) describes, within the
London limit, the effect of a surface on vortex penetration. They considered
a vortex inside a type-II superconducting half-space parallel to a smooth
surface as depicted in Fig.4.1. Close to the surface, the vortex’ supercurrent
distribution is distorted, as described by an image anti-vortex. The concept
of an image anti-vortex to describe the distortion of the vortex’ supercurrent
distribution assures no current can flow perpendicular to the surface. Since
currents with opposite senses attract, this results in an attractive force between
the vortex and the surface. Work has to be done against this attractive force
for a vortex to escape the attractive surface potential and to move into the
bulk of the sample. The amount of work required per unit length equals the
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interaction energy between two vortices, given by Eq.1.44. The energy per unit
length of a vortex at a distance x’ from the surface is given by,

ε1(x′) = εv − ϕ2
0

2πµ0λ2K0(2x′

λ
) (4.5)

where εv is the energy per unit length of a vortex far from the surface. Closer
to the surface it is clear the interaction between the vortex and the image
antivortex results in a lower energy. On the other hand, the vortex experiences
a repulsive Lorentz force at the surface arising from the screening currents
induced by the external magnetic field. This results in an energy per unit
length of:

ε2(x′) = ϕ0Hsurfe
−x′/λ (4.6)

Where Hsurf , denotes the local field at the surface of the superconducting half
space. As such the total potential energy per unit length of a vortex at a
distance x’ from the surface is given by:

εT (x′) = ε1(x′) + ε2(x′) = εv − ϕ2
0

2πµ0λ2K0(2x′

λ
) + ϕ0Hsurfe

−x′/λ (4.7)

The dependence of εT is shown in Fig.4.2 as a function of position. For low
fields a vortex parallel to the surface is impeded to penetrate, even though a
vortex solution is thermodynamically allowed in the bulk for fields above Hc1.
At higher fields, the repulsion from the surface due to the Meissner screening
currents begins to dominate, resulting in a lower vortex energy in the center of
the sample as compared to the edge. It is clear that the competition between
both forces, results in the so called BL surface barrier for vortex entry. It was
shown in Ref.[91] that this barrier disappears when, H > HBL

HBL = Hc√
2

= Φ0

4πµ0λ(T )ξ(T )
, (4.8)

where HBL is the BL surface barrier field. This estimate of HBL assumes
that the maximum of εT is within a coherence length of the surface. At finite
temperatures, one has to take into account the thermal energy of a vortex,
which allows in principle thermally activated penetration of a vortex for fields
below HBL. It is shown in Ref.[95, 96], that this process becomes ineffective
for low temperature superconductors and T ≪ Tc as the energy scale of the
BL barrier exceeds kBT substantially. To probe the BL surface barrier field,
the observation time of the experiment has to be much less than the minimum
time required for vortex energy fluctuations resulting in thermally activated
penetration.

The Nucleation field
Furthermore, HBL does not represent yet the field determining first flux
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Figure 4.2: The distance dependence of total potential energy per unit length
of a vortex at a distance x from the interface is illustrated for several applied
magnetic field. The curves are calculated using Eq.4.7, with κ = 5 and λ =
0.6µm.

penetration, because it ignores the nucleation of the vortex at the border[97].
It was shown in Ref.[92, 93, 94, 98, 99], by investigating the onset of
instability of the Meissner solution within the Ginzburg-Landau theory, that
the necessary condition for vortex entry into a superconductor is fulfilled when
the Meissner screening current density at an ideal defect-free surface approaches
the depairing current density jd of a one dimensional superconducting channel.

jedge = jd = Hc[
3

√
6

4 λ(T )
] , (4.9)

We denote with Hjd , the external applied field where this criterium for the
superheating field is met. The difference between Eq.4.9 and the London
expression for the depairing current[1] is given by the factor 3

√
6/4=1.84. This

factor results from the decrease of the density of states with increasing current.
It is described within the first Ginzburg-Landau equation, which expresses
conservation of energy and effectively couples the Cooper pair-density with the
pair velocity. This necessary condition and it’s consequences for vortex entry
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will be discussed further on in this chapter.

Demagnetizing effects
The sample geometry can play a crucial role for the vortex penetration, as
it determines the current distribution within and at the edges of the sample.
For example, for samples with a large demagnetization factor, such as thin
films (width≫thickness) in a perpendicular field, the strong curvature of the
field lines at the edges can introduce a broad current distribution across the
entire top an bottom surfaces and across the strip width. When the sample
is thicker than the penetration depth, a competition between the line tension
of a vortex cutting through the upper and lower ridges at the sample edge
and the Lorentz force induced by the Meissner currents results in a so called
geometrical barrier[100, 101]. When the sample thickness is smaller than the
penetration depth, vortices are unable to tilt. However the hybrid effect of
the distortion of the supercurrent flow caused by the strip geometry itself and
the vortex’ supercurrent deformation near the edges results in a so called edge
barrier[102].

Indirect experimental verification of the superheating field and the correlation
with the above described models was based on detecting the onset of
nonlinearity of the initial magnetization in bulk superconductors[103, 104, 105].
We propose here a more direct and reliable way to determine the superheating
field by imaging, with single vortex resolution, the first entered vortex in a
thin superconductor. In order to achieve this goal, a careful sample design and
fabrication has to be complied. Firstly, the presence of surface defects may
create spots for premature entry of vortices [106, 93, 107], thus hindering the
study of the intrinsic mechanisms. Secondly, in thin film geometry, vortices
will move to the center of the sample as soon as they nucleate [108] making it
impossible to experimentally observe their entry. The former problem can be
solved by using a superconductor with well defined edges, whereas creating an
array of antidots, acting as pinning centers, allows one to keep the entered
vortices relatively close to the sample’s edge, where they can be directly
visualized by SHPM.

4.3 Sample details

In this work we study two high-quality Pb superconducting strips of widths
2a = 300µm (Sample A) and 2a = 600µm (Sample B), and thicknessess t = 50
nm, see Fig.4.3.

Sample A contains a triangular array of antidots with an antidot void area of
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Figure 4.3: (a) Schematic layout of the investigated sample A. The upper panel
shows the transport bridge with a 3 mm long patterned area. The lower panel
shows a zoom-in close to the sample’s border. The box indicated by the dashed
line shows the area where most of the scanning Hall microscopy images were
obtained. (b)Similar schematic layout of the investigated sample B.

0.28µm2 obtained by electron beam evaporation and subsequent lift-off. The
sample was deposited on top of a SiO2 insulating substrate. The antidots have
a V-shape with each leg of the V being 0.8µm long and 0.2µm wide and forming
an angle of 120◦. The period of the pattern is w = 3µm which corresponds to
a commensurability field H1 = (2ϕ0)/(

√
3w) = 0.27mT at which the density of

vortices and antidots coincide, as described in Sec.3.2.1.

Sample B contains a square array of square antidots with an antidot void
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0.2 μm

Figure 4.4: Atomic force microscopy image of Sample A. The box indicated
by the dashed line of 12 µm side, shows the area where most of the scanning
Hall microscopy images were obtained. Notice that the first row of boomerang
shaped antidots is only 0.2 µm away from the edge of the film. The arrow
indicates the direction of the applied field perpendicular to the plane of the
film.

area of 0.36µm2, obtained by an identical production process. The periodicity
of the antidot lattice is likewise 3µm, resulting in a commensurability field
H1 = (ϕ0)/(w2) = 0.23mT . The superconductor to normal transition at zero
field occurs at Tc = 7.2K. Typical values of the superconducting coherence
length and penetration depth at zero temperature estimated in similar samples
are ξ(0) ≈ 33 nm and λ(0) ≈ 50 nm, respectively. More details about the
characteristic length scales can be found in Sec.3.3.1. Fig.4.4 and Fig.4.5 show
representative atomic force microscopy images of the Sample A and Sample
B surface, respectively. Notice that the antidots are close to the border but
not at the border in order to avoid the creation of spots of premature flux
entry. Further details about sample preparation can be found in Sec.2.3. In
all cases the magnetic field is applied perpendicularly to the plane of the film.
Local magnetic field measurements were carried out via scanning Hall probe
microscopy (SHPM) near the sample’s border. It is important to note that
although previous works have shown spatial resolved flux penetration in bulk
and thin films [109], the power of SHPM allows us to determine unambiguously
the flux penetration with unprecedented resolution of a single vortex.
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Figure 4.5: Atomic force microscopy image of Sample B. The left picture
shows a representative image in the center of the sample, while the right AFM
picture surveys a representative area at the edge of the sample. The large peak
appearing at the edge and the peaks in some of the antidots are due to resist
residues.

In samples with periodic arrays of antidots, stable vortex arrangements are
expected for every value of field at which the vortex lattice commensurates with
the antidot lattice, as theoretically studied via molecular dynamics simulations
in [111, 110]. A way to quantify the quality of the samples consists of
imaging low matching features where the vortex-vortex interaction is weak
and therefore small imperfections on the pattern have a sizeable impact on the
vortex distribution. Experimentally we can obtain near-to-equilibrium vortex
distributions by performing field cooling experiments. Some examples of the
resulting flux patterns for sample A directly visualized via SHPM at T = 6.9
K, and for different applied fields are shown in the upper row of Fig.4.6. The
observed sub-matching vortex patterns at H = 0.33H1, H = 0.52H1 and H =
0.63H1, where H1 is the first matching field, are in agreement with previous
theoretical predictions[110] schematically depicted in the second row of Fig.
4.6. It is important to emphasize that the mere existence of regular patterns
in the above field-cooling (FC) experiments is indicative of a low dispersion
in pinning energy among different pinning sites and the fingerprint of a highly
homogeneous sample[40, 77, 112, 113, 114, 115]. Vortex distributions above
first matching, e.g. at H = 1.3H1[Fig. 4.6], show the appearance of double
quantized vortices. Similarly, the near-to-equilibrium vortex distributions
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Figure 4.6: Upper row: scanning Hall probe microscopy images obtained for
sample A at the sample’s edge as indicated by the dashed box in Fig. 4.4 after
cooling down to T = 6.9 K in presence of a field H = 0.33H1, H = 0.52H1,
H = 0.63H1 and H = H1. The dashed line indicates the sample’s edge. Second
row: schematic representation of the expected vortex patterns according to
Ref.[110]. Here the open (filled) circles represent empty (occupied) pinning
sites. Lower row: scanning Hall probe microscopy images obtained for sample
A at the sample’s edge after cooling down to T = 6.9 K in presence of a field
H = 1.3H1.

obtained by FC in sample B show high quality commensurability effects, as
will be further discussed in Chap.5.
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4.4 Experimental results

Figure 4.7: Scanning Hall probe microscopy images obtained at the sample’s
edge upon increasing external field, after preparing the sample in a zero-field
cooled state at T = 7 K; for a field H = 12 A/m the sample is in the Meissner
phase, at H = 28 A/m the first vortex enters as indicated by the white circle
and at H = 75 A/m a more complex vortex state is observed. The dashed lines
indicate the sample’s edge.

We now focus on the vortex entry under zero-field-cooling condition. Fig.4.7
shows SHPM images for sample A at the same spot as in Fig.4.6, next to the
sample’s edge, at T = 7 K and after a progressive increase of the external field.
At low fields, H = 12 A/m, the superconductor is in the Meissner state and no
vortices are observed inside the sample. The strong screening currents give rise
to the well known magnification of the local magnetic field close to the sample’s
edge. By increasing the field stepwise in intervals of 4 A/m it is possible to
determine experimentally the field Hen at which the first vortex enters the
scanned area, as shown in Fig.4.7, for T = 7K this happens at H = 28 A/m.
Because of the restricted scanning area, Hen is an overestimation of the first
vortex entry field. For fields slightly above Hen the first row (i.e. the row closest
to the sample’s edge) of antidots is completely occupied by vortices before a
vortex appears in the second row. Further increasing the external field leads to
a completion of the second row of antidots. This process ends when the second
row is completely occupied, beyond which a far more complex penetration is
observed, see Fig.4.7 at H = 75 A/m. Indeed, (i) vortices can move further
inside the sample skipping empty rows of antidots, (ii) double quantized vortices
appear although they never nucleate at the sample’s edge. This penetration
process was associated with the terraced critical state proposed theoretically
by Cooley and Grishin [116], as studied experimentally in [117]. A similar
process is observed in Sample B. The temperature dependence of Hen for
sample A (black square symbols) and sample B (red circular and triangular
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symbols) are shown in Fig.4.8. The different symbols for sample B reflect two
distinct locations at the sample border used to obtain Hen. The fact that the
experimentally obtained values for Hen are independent on the measurement
location, demonstrates that the nucleation field is homogeneous along the
sample border, validating our determination of the overall superheating field
as a reliable and accurate estimation.
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Figure 4.8: Temperature dependence of the field Hen at which the first vortex is
visualized in the scanning area; Square symbols are experimental data obtained
for sample A, whereas triangular and circular symbols present data obtained
at two different locations for sample B. The dashed lines are a guide for the
eye.

4.5 Discussion

Let’s now compare these experimentally obtained values with the theoretical
models for vortex entry. As explained above, the necessary criterium for vortex



DISCUSSION 81

entry is the requirement that the induced screening current density by an
external magnetic field, H, at the edge matches the Ginzburg-Landau depairing
current density, jd, of a one-dimensional superconducting channel as given by
Eq.4.9. The field where this condition is met, we denote with Hjd

. We need
to extend the derivation for Hjd

, to the case of a perpendicularly magnetized
thin superconducting strip.

To determine when the current density at the edge reaches this critical value,
jd, an expression for the current density at the edge has to be found. For
an infinitely long thin strip of width |y| < a and thickness, |z| < t/2,
the complete current density distribution, J(y), for a perpendicular applied
external magnetic field field, Hẑ, was obtained as in Ref.[102] by solving
numerically the Maxwell-London equations:

J(y)t
H

= y√
1
4 [a2 − y2] + Λa

π

(4.10)

Where Λ denotes the effective screening length of the superconducting bridge.
In the thin film limit (i.e. λ ≪ d) the Ginzburg-Landau penetration length,
λ, is replaced by the effective penetration depth[28], Λ = λ(T )2/t. The reason
for this is the reduced screening capacity of a very thin superconducting film
(cf.Sec.??). It is shown in Ref.[118, 99, 119] that this expression derived
from the Maxwell-London equations, fits over a broad range of parameters
with the Ginzburg-Landau solutions for the screening-current distribution as
long as H < Hen. Moreover, measurements of the magnetic field profile
crossing the sample border when the sample is prepared in the Meissner state,
can be well fitted using the current distribution in Eq.4.10 and Ampère’s
law. The agreement between the London limit approximation and the full
Ginzburg-Landau solutions for the screening-current distribution in the regime
H < Hen can be interpreted as follows. First of all, our samples have a small
κ at zero temperature, and therefore one could argue that the London limit
approximation is not valid. However, due to the reduced screening efficiency
in the thin film geometry, it is appropriate to use the effective penetration
depth Λ. The increase of Λ with increasing temperatures is stronger than
the increase of ξ. As a result, κeff = Λ/ξ exceeds κ(0) at the experimental
temperatures (cf. Sec.3.3.1). Secondly, the condition H < Hen, means that
there is a limited kinetic reduction of the density of states at the edge due to
current induced depairing. Moreover, the periodic lattice of antidots forces the
pair density to be nearly constant in the space between antidots, due to the
boundary conditions at the supercondutor-insulator interface[2].

However, we are interested in the condition that the induced screening current
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Figure 4.9: The obtained experimental data for the first vortex entry field
versus Hc(T ) obtained by Dekker et al. is shown for sample A (square symbols)
and for two locations at the border for sample B (circular and triangular
symbols). The theoretical curves obtained from Eq.4.12 for sample A and
B with C= 3

√
6

4 are shown by the full black and red lines, respectively. The
black and red dashed lines take into account the effect of the pattern induced
enhancement of the screening current density for sample A and B, respectively.

at the edge of the sample approaches jd. It is expected then that Eq.4.10 fails
to describe the correct relation between the induced screening current density
and the applied magnetic field particulary in the neighbourhood of the edge, as
current-induced depairing will locally alter the density of states dramatically.
However, at distances larger than the effective penetration depth away from
the sample edge, the current density decreases quickly below the critical value
for depairing and the London limit is restored. Since the global response of
the superconducting strip to an applied magnetic field is determined by the
whole current distribution, it is expected that in the limit 2a ≫ Λ, the London
limit gives a very good description of the demagnetizing effects as it is valid
in the majority of the sample volume. However, the condition for vortex entry
is a local one and we have to take into account the effect of current induced
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depairing at the edge. In first approximation, we will introduce this effect by
using a new effective Ginzburg-Landau penetration length λ′ = Cλ in Eq.4.10,
as a cutoff factor at the edge. Here, C is a constant bigger than unity, since
due to current induced depairing the screening-currents are weakened and the
magnetic field is less effectively screened. Therefore, using Eq.4.10, the current
at the edge (y = a) of the sample, is given by:

jedge =
[

1
Cλ(T )

][√
aπ

t

]
H (4.11)

As such, rewriting jedge and H as Jd and Hjd and using Eq.4.9 we obtain an
expression for Hjd,

Hjd
=

[
C

3
√

6
4

][√
t

aπ

]
Hc(T ) (4.12)

As a result Hjd
is determined by the temperature dependence of Hc(T ), a

geometric demagnetizing factor and a constant related to the depletion of the
condensate of our superconducting film.

The temperature dependence of Hc for bulk Pb samples was accurately
measured by Decker et al., leading to an extrapolated value of Hc(0) = 63.87
kA/m at T = 0 K [120]. This value is remarkably close to Hc(0) = 64.06
kA/m given in [121] for an amorphous Pb film. In Fig.4.9, the experimentally
obtained values for Hen(T ) are plotted versus Hc(T ) obtained by Decker et
al.[120]. According to Eq.4.12 and a linear fit of the data Hen(T ) for sample A
(square symbols) versusHc(T ), a slope of (10, 6±0, 4)×10−3 is obtained. Taking
into account the width, 2a=300µm and thickness, t=50nm of the sample,
we obtain for C=1.03 × 3

√
6

4 . This means that if we enhance the Ginzburg-
Landau penetration depth by this factor C to take into account the effect of
current induced pairing within the London model expression for the screening-
current density at the edge, a nice match is found between the experimental
results, Hen(T ) and the theoretically estimated superheating field, Hjd

(T ), as
indicated by the full black line in Fig.4.9. The enhancement factor of the
effective penetration depth, C, is in good agreement with the factor appearing
in the Ginzburg-Landau expression for Jd due to current induced depairing.
This is not a surprise, since in a bulk sample, in first approximation the
field penetration at the edge can be assumed as an exponential decrease of
the magnetic field, B = B0e

−y/Λedge . Where, Λedge is the locally increased
penetration depth compared to the bulk value due to current induced depairing.



84 FIRST VORTEX ENTRY INTO A PERPENDICULARLY MAGNETIZED SUPERCONDUCTING THIN
FILM

In the case of a thick superconductor, using an exponential penetration of
magnetic field, the physical meaning of Λedge is nicely shown by applying
Ampères Law:

|∇ ×B| = B0
Λedge

= µ0Jedge, (4.13)

As the current density at the edge can be maximum the Ginzburg-Landau
depairing current density, which is lower than the London depairing current
density by a factor (3

√
6/4), the field will be screened over a larger distance.

It is clear from Eq.4.13 and Eq.4.9 that the new length scale on which the field
varies at the edge is given by:

Λedge = (3
√

6/4)λ(T ) (4.14)

In order to corroborate these results we performed similar measurements on
sample B. The obtained experimental data for the first vortex entry field
versus Hc(T ) obtained by Dekker et al. is plotted in Fig.4.9 (triangular and
circular symbols). As expected, a clear reduction of Hen is observed, see also
Fig.4.8, related to the larger width of sample B (i.e. increased demagnetization
field). However, the value we obtain for C=0.74 × 3

√
6

4 from a linear fit of
the experimental data obtained for the first vortex entry field in sample B,
deviates significantly from the value we obtained for C in sample A. Ascribing
this factor C to the current induced depairing effect alone, one does not expect
any difference in this factor for both samples.

It is worth discussing at this point some relevant differences between a plain
amorphous Pb film (like the ones present in [121]) and an amorphous Pb film
perforated with antidots (as it is in the present case), and how these differences
may affect our results. It is known that in the presence of cylindrical antidots
with a radius R > ξ, if a vortex is captured by the antidot there is no loss
of superconducting condensation energy. Then, not only is the vortex core
energy changed but the energy of the superconducting current will also be
effected. In particular, in the vortex energy expression the cut-off is at R
rather than at ξ, which, for R ≫ ξ, leads to an essential decrease of the lower
critical field and surface barrier [122]. This effect can be taken into account
by a renormalization of the value of λ with respect to that of the plain film
[123]. The renormalization depends entirely on the antidots / film surface ratio
(Sa/St). For a dense antidot lattice the renormalization will be strong, λ will
increase and hence Hs will decrease. Our antidot lattice is not cylindrical,
but we estimate an effective radius of Reff = 0.3 µm and 0.33 µm for the
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boomerang and the square antidot sample, respectively. Nonetheless, both
antidot lattices are quite dilute, with first matching fields H1 of only 0.27 mT
and 0.23 mT, respectively. This incurs in a Sa/St ≤ 0.07, which, consequently,
yields to a renormalization of λ of only 7%. Therefore, in a first approximation,
we will exclude from our current discussion the effect that the antidot lattice
has on the Hs value. Finally, it is worth mentioning that previous reports
show that the effect that a diluted antidot lattice (antidot separation ≥ 2µm)
have in ξ and λ in a Pb film is indistinguishable to those of the plain film
[124]. Nevertheless, if Λ is comparable to the distance between the edge of the
sample and the first antidot a local modification of the screening currents is
expected. In this case, the presence of holes has a pronounced effect on Hjd

.
In first approximation, compared to an unpatterned film the current density is
increased by a factor equal to the ratio between the period perpendicular to the
current direction and the lattice period perpendicular to the current direction
reduced by the cross section of the holes. Due to different sample antidot array
geometry and effective antidot width, a more pronounced effect is expected
in sample B compared to sample A. The periodicity of antidots perpendicular
to current circulation is 5 µm and 3 µm for sample A (triangular array) and
sample B (square array), respectively. For sample A the enhancement factor of
the edge screening-current density is, 5µm/4.77µm = 1.05 , while for sample
B this factor is, 3µm/2.4µm = 1.25. In Fig. 4.9 the dashed curves incorporate
this effect for both samples, while in the full lines this effect is neglected. It
is clear that by taking this effect into account, a nice fit is recovered. The
importance of these local enhancements of the current density at the edge due
to the presence of the antidots is evidenced by observed modulations of the
edge field in the vortex free state.

4.6 Conclusion

In conclusion, we have visualized the first penetration of vortices in supercon-
ducting films with antidots by Scanning Hall probe microscopy. The studied
thin film geometry and the presence of antidots have allowed us to confirm at
the single vortex scale, using the London approximation that the first vortex
penetration occurs when the condition jedge=jd is met. From the presented
results, we can construct a picture for the observed vortex entry process as
follows. At low values of the applied field, the superconductor is in the Meissner
state, where supercurrents circulate in the whole sample with a decreasing
density toward the center. When the applied field reaches Hjd

and the edge
current density approaches its depairing value (more accurately it should be
the current density averaged over a ξ distance), there is a local breakdown of
superconductivity and a first vortex nucleation at the edge near an antidot,
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where the Meissner current density has a local maximum due to the reduced
current path width. The nucleated vortex is immediately depinned from the
edge and is caught by the nearest antidot, where it is observed by SHPM.
Since the vortex current has its sense opposite to the Meissner current, the
involved edge current density decreases back to below its depairing value, and
the nucleation of the second vortex occurs in another place, and so on.
The SHPM technique is used here to investigate a fundamental property of a
superconductor, it is the first vortex entry field. Through the static imaging
of the vortex distribution near the edge and the careful sample design, a one-
to-one relationship exists between the observed vortex distribution and the
dynamical entry of vortices. However, no observations are made during the
motion itself. In the next chapters an alternative SHPM technique will be
introduced allowing to probe and to infer information during vortex motion.



CHAPTER5
Local mapping of the response of

a superconductor to a
perpendicular alternating

magnetic field

5.1 Introduction

The hallmark of type-II superconductors is the formation of quantized magnetic
flux lines encircled by a rotating condensate of paired electrons when a
sufficiently strong magnetic field is applied. A free motion of these fluxons
leads to dissipation thus destroying the perfect conductivity of the system.
Consequently, in a world where energy dissipation has become a top priority
problem, the motion of fluxons restricts the technological desirable properties
of superconductors. Understanding, improving and optimizing the mechanisms
to prevent the motion of fluxons has become a top priority. This can be done
by introducing a rich diversity of pinning centers and new methods to evaluate
the efficiency of these pinning centers.

Among the most powerful experimental methods used to determine the
efficiency of pinning sites is the ac-susceptibility technique which consists of
shaking the flux line lattice with a small alternating magnetic field while
recording the superconductor’s in-phase and out-of-phase magnetic response.
However, such experimental technique is focused on a macroscopic response
where the recorded signal represents an average over millions of flux lines each
of which trapped in different pinning potentials and subjected to different

87
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environments. Hence, this technique gives little information about the local
pinning potential that each flux line experiences. Moreover to derive more
information about the dynamic properties of the vortices at the microscopic
scale, pioneering theoretical works have been invoked to make the link between
the experimentally measured integrated ac magnetic field response and the
induced microscopic vortex dynamics.

These limitations of the conventional ac-susceptibility technique, it is the
inability to resolve the ac-response of a single vortex and the indirect
relation between the vortex dynamics and the integrated response, provides
a drive to find alternative methods to directly probe the ac-properties of a
superconductor with single vortex resolution. In this chapter these limitations
are circumvented by using a recently introduced scanning probe technique,
scanning ac-susceptibility (SSM), which reveals, with unprecedented resolution,
the motion and dissipation of individual units of flux quanta driven by an
applied ac magnetic field or current. In a similar fashion as in a driven damped
harmonic oscillator, the visualization of the dissipation is directly inferred from
the phase lag between the vortex motion and the driving force induced by
an oscillatory magnetic field, whereas the amplitude of the oscillatory vortex
motion provides us with information about the shape of the local potential each
fluxon is experiencing. This method has permitted us to separate damping-
driven (viscous) motion from pinning-driven (thermally activated) motion, to
demonstrate the non dissipative (dissipative) nature of the Meissner(vortex)
state at microscopic scale and to obtain a detailed cartography of the intensity
of the pinning landscape. These results shed new light on unraveling the basic
mechanisms of vortex dissipation with unmatched single vortex resolution and
provide for the first time direct evidence for the previously introduced models
to explain the measured integrated ac-vortex responses in ac-susceptibility
experiments.

5.2 The response of a superconductor to an ac
magnetic field

5.2.1 Introduction

In general, whenever a dissipative system is subjected to a periodic excitation,
e.g. a crystal to electromagnetic radiation or a driven damped harmonic
oscillator, the periodic force will perform work to drive the system through
subsequent dissipative cycles. The dissipative or frictional component of
the system, related to a non-conservative force, will induce a phase shift
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between the response and the external drive, giving rise to hysteresis. For
example, the imaginary part of the relative permittivity is closely related to the
absorption coefficient of a material[125] or a phase-lag appears in the motion of
a damped harmonic oscillator[126]. This close connection between dissipation
of energy and the out-of-phase component of the system’s response is used
in spectroscopic measurements to gain information concerning the nature and
efficiency of the dissipation processes. Likewise, we will use this spectroscopic
approach to investigate the response of a superconductor to an applied ac
magnetic field.

In this section we start with the description of the linear response of a classical
system, a driven damped harmonic oscillator, to illustrate the above mentioned
connection between dissipation and the appearance of a phase-lag between the
drive and the response. Moreover, we will see that this simple classical system
has it’s merit of introduction as it has not only an instructive value, it can also
be mapped to describe the linear response of the vortices and the screening
currents in a type-II superconductor to an ac magnetic field as described in
Sec.1.8

5.2.2 A classical example, the driven damped harmonic
oscillator

Figure 5.1: Schematic presentation describing the linear response of a driven
damped harmonic oscillator. The (small) periodic driving force, F(t), provides
the excitation mechanism of a system consisting of a mass-spring system and a
damping pot with friction coefficient, γ. The response (the displacement), x(t),
is also a periodic function in time. In general a phase lag, θ exists between the
drive and the response.

A lot of physical systems in nature, driven out of equilibrium, can be modeled,
when the drive is small, by a forced damped harmonic oscillator, e.g. we can
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model absorption of light by the interaction of the electromagnetic field with
an oscillating dipole, different dynamic modes in condensed matter resemble
harmonic oscillator modes such as phonons in solids, spin waves in magnets,
etc. Using Newton’s equation for a forced damped harmonic oscillator, Fig.5.1,
we obtain the general force balance equation of motion:

ẍ(t) + ω2
0x(t) + γẋ(t) = f(t)/m (5.1)

here x(t) is the displacement of the oscillator from equilibrium and ω0 =
√
k/m

is the natural frequency of the oscillator, with spring constant k and mass m.
For a sphere of radius R moving in a fluid with shear viscosity η, mγ is given
by Stokes’s law mγ = 6πηR. For a monochromatic oscillating driving source:

F (t) = F0 cos(ωt) (5.2)

Within linear response, Eq.5.1 has the steady state solution1:

x(t) = F0χ(ω)cos(ωt) with χ(ω) = 1
m(ω2

0 − ω2 + iγω)
, (5.3)

where the complex frequency dependent number χ(ω) = χ′ + iχ′′ describes
the response of the system. This solution can be parameterized either by the
amplitude and the phase of χ(ω), or by the real and imaginary part. In the
former case:

x(t) = F0|χ(ω)|cos(ωt+ θ(ω)) with, (5.4)

|χ(ω)| = 1
m

√
(ω2

0−ω2)2+γ2ω2
and tan θ(ω) = χ′′

χ′ = −γω
(ω2

0−ω2) , (5.5)

This equation of motion shows that the driven oscillator has an oscillation
period dictated by the driving frequency ω. The phase and amplitude relative to
the drive are determined by the detuning from the natural resonance frequency,
(ω − ω0). The different lineshapes are plotted in Fig.5.2(a). It is clear the
amplitude of x(t) reaches a maximum for driving frequencies in the vicinity
of the natural frequency ω0 of the oscillator. Furthermore, the phase shift θ
between x(t) and the drive is always negative, meaning x(t) lags behind the
drive and passes through −π/2 at precisely ω0. For later purpose we rewrite
the solution in yet another way, as having an in-phase component and an out-of

1In principle, the general solution of the differential Eq.5.1, consists of the sum of the
homogeneous solution and a particular solution. However, the homogeneous solution is
transient, whereas the particular one describes the steady state solution.
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Figure 5.2: Lineshapes of a driven damped harmonic oscillator for the case
ω0/2γ = 8. (a) The frequency dependence of the normalized modulus and the
phase (b) The frequency dependence of the normalized in-phase and out-of-
phase components.

phase component, in this form the solution resembles the first term in a Fourier
series expansion,

x(t) = F0(χ′(ω)cos(ωt) + χ′′(ω)sin(ωt)) with, (5.6)

χ′ = (ω2
0−ω2)

m((ω2
0−ω2)2+γ2ω2) and χ′′ = −γω

m((ω2
0−ω2)2+γ2ω2) , (5.7)

where the Fourier components are proportional to χ′ and χ′′. What is the
meaning of these Fourier components? To answer this question, let us consider
the Q-factor of the system, which is defined as 2π times the mean energy stored
in the system, dived by the work done per cycle[126],

Q = 2π Energy stored
Energy dissipated

=
[
− (ω2

0 + ω2)
2(ω2

0 − ω2)

]
χ′

χ′′ (5.8)

Apart from the frequency dependent prefactor between square brackets, it
is clear the rate of energy dissipation is proportional to the out-of-phase
component χ′′(ω), whereas the stored energy in the system is proportional
to the in-phase component χ′(ω). To see this explicitly, the rate at which the
external drive performs work (the power) on the oscillator that is eventually
dissipated as heat in the viscous fluid, is given by:

dW

dt
= f(t)ẋ(t) (5.9)
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Since in steady state, both the drive f(t) and the velocity ẋ(t) are periodic
functions of time with the same period, it is convenient to define the average
power dissipated in one period,

Wq =
∫ T

0
dtf(t)ẋ(t) = πF 2

0 χ
′′(ω) (5.10)

And a clear connection is made between the rate of energy dissipation and the
out-of-phase component χ′′(ω). The in-phase response is related to the mean
stored energy in the system, which is given by the sum of the average kinetic
and potential energy in the system,

< E >= 1
2
m < (dx/dt)2 > +1

2
mω2 < x2 >=

[
(ω2

0 + ω2)
2(ω2

0 − ω2)

]
F 2

0
2
χ′(ω) (5.11)

confirming the relation between the in-phase response an the stored energy.
Moreover, it is clear that both response functions, χ′(ω) and χ′′(ω) are related
(cf. Kramers-Kronig Relations). In the following we will see that the above
results, describing the linear response of a driven damped harmonic oscillator,
can be mapped to a superconducting system driven by a weak ac magnetic
field.

5.2.3 The response of a superconductor to an ac magnetic
field

Macroscopic response

The integrated response of the superconductor upon the application of an
external alternating magnetic field

hac(t) = hac cos(ωt), (5.12)

with amplitude, hac and angular frequency ω = 2πf , is standardly recorded
in global ac-susceptibility measurements[127]. These measurements contain
important information about the dynamics and the pinning properties of the
vortex lattice in the mixed state, of fundamental importance for applications.
In the following we will discuss the principle of this measurement technique.

Consider a type-II superconductor excited by an alternating external magnetic
field, hac(t). In general, it is then expected that the average sample response2,

2In principle, the response of the sample alone is the magnetization, < M > (t), related
to the magnetic induction, < B > (t), and the applied field, < ha > (t) as, < M > (t) =
<B>(t)

µ0
− < ha > (t). As such, the magnetization does not include the contribution of the

drive, < ha > (t). As in our experiments we probe directly the local induction rather than
the magnetization, we will describe the response in these terms.
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Figure 5.3: Schematic presentation of a superconductor excited by a small
monochromatic oscillatory magnetic field, hac(t). The periodic drive, hac(t),
provides the excitation mechanism of a type-II superconductor. The sample
response, < B > (t), will also vary periodically in time, however a phase lag, θ
may exists between the drive and the response.

the magnetic induction averaged over the sample volume, < B > (t), is also
periodic, with the same period as the applied magnetic field T = (2π)/ω, see
Fig.5.3. Here the average denoted by, <>, is taken over the whole sample
volume. The distorted periodic wave form can be expressed as a Fourier series
expansion.

< B > (ω, t) = µ0hac

∞∑
n=1

[< µ′
n > cos(nωt)+ < µ′′

n > sin(nωt)] (5.13)

here < µ′
n > and < µ′′

n > are the real and imaginary part of the nth Fourier
component and µ0 is the permeability of vacuum. In the first approximation,
if one considers the ac drive to be sufficiently small, one can consider only the
linear response.

< B >≈ µ0hac[< µ′
1 > cos(ωt)+ < µ′′

1 > sin(ωt)] (5.14)

As such, the linear response is completely determined by a measurement of
the Fourier components < µ′

1 > and < µ′′
1 > which can be considered as the

real and imaginary part of the so called complex relative permeability3, <
µ1 >=< µ′

1 > +i < µ′′
1 >. What is the meaning of the two Fourier components

3As < M > (t) = <B>(t)
µ0

− < hac > (t), the first term in a Fourier series expansion
of < M > (t), will have Fourier component < χ′

1 >=< µ′
1 > −1 and < χ′′

1 >=< µ′′
1 >,

which can be considered as the real and imaginary part of the complex ac susceptibility
< χ >=< χ′

1 > +i < χ′′
1 >, respectively. In terms of the magnetization, < M > (t), the

response of the sample alone is considered.
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appearing in Eq.5.14? The real part describes the in-phase response of the
magnetic induction to the external magnetic ac field and is related to the
macroscopic shielding abilities or the inductive properties. To see this, we
calculate the time average of the magnetic energy supplied by an alternating
field per unit volume into the sample[128],

Wa = 1
T

∫ T

0
(hac(t) < B > (ω, t))dt = < µ′

1 > B2
a

2µ0
(5.15)

where Ba = µ0hac. When no sample is present, the magnetic field energy
stored is equal to W0 = B2

a

2µ0
. The difference,

δW = Wa −W0 = (< µ′
1 > −1) B

2
a

2µ0
(5.16)

reflects the ac response of the sample. As such, < µ′
1 > describes whether the

material increases or decreases the amount of stored energy per unit volume.
Diamagnetic behavior of the investigated sample, 0 < < µ′

1 > < 1, leads to
a reduction of the magnetic energy stored per unit volume as compared to a
situation when no sample is present, this is reflected in a negative value of
δW . Thus in case of a ideal superconductor in the Meissner state, we expect
< µ′

1 >= 0. A paramagnetic response, < µ′
1 >> 1, leads to an increase of the

magnetic field energy as compared to a situation when no sample is present.

The imaginary part describes the out-of-phase response of the magnetic
induction, arising, as in the case of a driven damped harmonic oscillator,
necessarily from dissipative ac-losses within the superconductor. To see this
connection, we calculate the energy converted into heat during one cycle of the
applied ac magnetic field[128]:

Wq = 1
µ0

∫ T

0
(hac(t)d < B > (ω, t)

dt
)dt

=
∫ T

0
(hac(t)d < M > (ω, t)) = π

1
µ2

0
B2

a < µ′′
1 >,

(5.17)

and a direct relation exists between the dissipated energy and the complex
part of the permeability < µ′′

1 >. Notice that the second equality in Eq.5.17,
is just the the area of a magnetization hysteresis loop. As Wq is always
positive, < µ′′

1 >> 0. In general terms one can say that < µ′′
1 > measures

magnetic irreversibility or the resistive reaction to ac fields, whereas < µ′
1 > is

related to the inductive properties of the sample. Note, that all of the above
considerations are in one-to-one correspondence with the case of an harmonic
oscillator, where the displacement plays the role of the magnetization and the
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driving force plays the role of the applied ac magnetic field.

In standard ac-susceptibility measurements, one excites the sample with an
ac magnetic field, hac, and detects the macroscopic response, < B > (t),
inductively by a pick-up coil. Using a lock-in technique one can obtain directly
< µ′

1 > and < µ′′
1 > or higher Fourier components[127]. The dependencies

of these two response functions upon changing the thermodynamical variables
or the ac-excitation parameters, provide very valuable information concerning
the pinning efficiency and reveal the fingerprints of the particular ac-dynamic
phases the vortex lattice exhibits[129, 130, 131]. Since the recorded signal
represents an average over all present flux lines and screening currents in
the sample, the link with the microscopic ac-reponse is indirect. Pioneering
theoretical works[48, 44, 45] contributed substantially to link this global
response to the microscopic vortex dynamics and/or the ac-field penetration.

In these theoretical works, as discussed in Sec.1.8, the macroscopic response
of a superconductor, or a conductive medium in general, to an ac magnetic
field is described by introducing a complex frequency dependent conductivity
or impedance. This complex conductivity, σ(ω), completely determines the ac
magnetic field penetration through the dispersion relation, Eq.1.55. As such
it determines the time evolution of the induction averaged over the sample
volume, which is completely characterized by it’s Fourier components. As the
complex conductivity was determined by the equation of motion for the entities
which respond to the ac excitation, the electrons for a normal metal and both,
the screening currents and the vortices for a superconductor, it is possible to
relate indirectly the measured dependencies of the Fourier components to the
microscopic response. In the following we will introduce a technique which
allows to probe directly, at the level of the screening currents and the vortices,
the response of a superconductor to an ac-magnetic field.

Microscopic response

The above described variation of the average response, < B > (t), of a type-II
superconductor is produced at the microscopic level by the vortices, the induced
screening currents or the external field itself. In Fig.5.4 the reaction at the end
of a long(0.5mm) superconducting Pb ribbon to a magnetic field variation is
probed by making snapshots of the z-component of the local induction, Bz(x,y),
as measured at every pixel (x,y) by SHPM. The Pb ribbon is 9µm wide and 50
nm thick and is prepared by a field cooling procedure in a field of hdc = 0.13mT
to T = 7K, see Fig.5.4(b) The prepared state contains two vortices whose
positions are indicated by red dots, further a clear enhancement of the local field
is observed at the border of the Pb ribbon due to demagnetizing effects. Two
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Figure 5.4: The reaction at the end of a 9µm wide superconducting Pb ribbon
to a magnetic field variation is shown by making snapshots of the z-component
of the local induction, Bz(x,y), as measured by SHPM. The borders of the Pb
ribbon are indicated by the dashed white line. The Pb ribbon is prepared by a
field cooling procedure in a field of hdc = 0.13mT to T = 7K (b). Two snapshots
of Bz(x,y) are shown at hdc = 0.23mT(c) and hdc = 0.03mT(a) obtained upon
increasing and decreasing the field with 0.1mT after preparing the ribbon as
described. In (d), the average cross section is shown for the different field
configurations, as obtained by averaging the cross sections in the rectangular
area indicated by the black dashed line in (b).

snapshots of Bz(x,y) are shown at hdc = 0.23mT (Fig.5.4(c)) and hdc = 0.03mT
(Fig.5.4(a)), obtained upon increasing and decreasing the field with 0.1mT after
preparing the ribbon as described. The following observations can be made
when the Pb ribbon undergoes a field variation of 0.1mT:

• When we increase or decrease the field by 0.1mT, additional screening
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currents will be induced in the superconducting Pb ribbon as indicated
by the long black arrows in Fig.5.4(a) and Fig.5.4(c). The magnetic
field they generate will contribute to the local induction, Bz(x,y), at
the edge of the ribbon. This explains the observed field enhancement
and reduction at the edge of the Pb ribbon, respectively. This field
enhancement is also observed in the prepared state, Fig.5.4(b) and is
determined by a geometrical demagnetizing factor, identical for every
magnetic field amplitude as long as the induced current is insufficient to
induce depairing.

• The induced screening currents will produce a Lorentz force on the
vortices, that will displace them from their initial equilibrium position
in the prepared state. The initial vortex position at hdc = 0.13mT is
indicated by the red dots in every snapshot. The short black arrows
in Fig.5.4(a) and Fig.5.4(c) show the displacement of the vortices as
compared to the positions of the vortices in the prepared state. Both
observations are clearly visible in the derived average cross sections for
every field amplitude, shown in Fig.5.4(d).

The crucial point we want to make clear with the above ‘snapshot movie’, is
that the variation of the magnetic induction, Bz(x,y,t), at the microscopic scale
or at every pixel of our scan area, is again a periodic function with the same
period as the applied magnetic field, whether one looks at the variation of the
field due to vortices deep in the sample volume or due to the screening currents
at the edge. This is not surprising as the average response, < B > (t), is
just a superposition of the individual microscopic contributions. Once again,
Bz(x,y,t) can be expressed as a Fourier series expansion and if we consider only
linear response we obtain,

Bz(x, y, t) ≈ µ0hac[µ′
1(x, y) cos(ωt) + µ′′

1(x, y) sin(ωt)] (5.18)

Similar as in the macroscopic case, the observation and the study of these
response functions or Fourier components and their dependencies upon
variations of temperature, driving parameters, etc. will provide us with
information concerning the vortex dynamics. Whereas up till now, one was
able to track only the integrated response over the whole sample volume by
macroscopic ac-susceptibility experiments. Where the connection between the
measured response, < µ′

1 > and < µ′′
1 > and the microscopic models is indirect.

A measurement of µ′
1(x, y) and µ′′

1(x, y), completely characterizing the linear
variation of the local induction, will provide us with direct information about
the microscopic response, without the need to invoke theoretical models to
explain the measured responses.
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Figure 5.5: Schematic illustration of the experimental implementation of the
scanning ac-susceptibility technique.

Scanning ac-susceptibility microscopy

Using a recently developed experimental technique, scanning ac-susceptibility
microscopy(SSM), a lock-in variant of the SHPM technique it is possible to
measure directly, with single vortex resolution, the two Fourier components,
µ′

1(x, y) and µ′′
1(x, y) and, in principle, all higher harmonics, see Fig.5.5.

In SSM, we continuously excite the sample with an external ac magnetic
field, hac(t)=hac cos(ωt), applied perpendicular to the sample surface by a
small copper coil. The Hall voltage, VH(x, y, t), measured locally by a Hall
microprobe is picked up by a lock-in amplifier. The excitation signal for
the external applied ac field, feeds a phase-locked loop which extracts the
in-phase, V′

1(x, y), and out-of-phase components, V′′
1(x, y), of VH(x, y, t). In

the first approximation these are, respectively, proportional to the in-phase,
B’z(x, y) and out-of-phase, B”z(x, y), ac-components of the local magnetic
induction, Bz(x, y, t), coarse grained by the size of the cross, which are directly
related to the real and imaginary part of the local relative permeability,
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µ1(x, y) = µ′
1(x, y) − iµ′′

1(x, y), through the definition[132]:

µ′
1(x, y) = B′

z(x, y)
µ0hac

,

µ′′
1(x, y) = B′′

z (x, y)
µ0hac

(5.19)

SSM provides a tool to spatially map these two Fourier components. The
mapping of Bz(x, y, t) was obtained using a modified low-temperature SHPM
from Nanomagnetics Instruments as described in Chap.2. As the SHPM
technique used to map Bz(x, y, t) has single vortex resolution, SSM allows
likewise to probe the ac-response of a superconductor at this scale. In
all the experiments, the collinear DC and AC external magnetic fields are
always applied perpendicular to the sample surface. Just as in the global ac-
susceptibility technique, one can again relate, by making a similar analysis, the
in-phase component, µ′

1(x, y), to the local inductive response, while the out-of-
phase component, µ′′

1(x, y), is related to microscopic ac-losses.

In the following sections, we will use this tool to analyse the ac-response of
two superconducting systems. In the first system the ac-response of a Pb
ribbon is investigated. Whereas in a second case the response of a periodically
nano-structured superconductor is investigated. The interpretation of the
measured local response functions µ′

1(x, y) and µ′′
1(x, y) and the analysis of

their dependencies upon varying thermodynamical variables (temperature, dc
magnetic field) or the drive amplitude will be discussed for both case-studies.

5.3 Results

5.3.1 Ac response of a superconducting Pb ribbon

Sample layout

In this section we investigate the response of a superconducting Pb ribbon to an
ac magnetic field. The Pb ribbon is 0.5 mm long, 50 nm thick and 9 µm wide.
The characteristic superconducting properties of the Pb ribbons are similar to
the ones discussed in Sec.3.3.1. As the signal picked up by the Hall probe
contains different contributions, arising from the screening currents, the vortex
signals and the external field itself, the measured local linear ac-response is also
determined by all contributing factors. This particular sample design allows
us to map the spatial dependence of the linear response to hac(t), covering the
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whole width of the sample in a single scanning area, including the Meissner
response at the sample border and the vortex motion deeper into the ribbon
volume.

5 6 7 8
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Figure 5.6: In-phase (χ’) and out-of-phase (χ”) ac-signal picked up by the Hall
cross located at the center of a 7 µm stripe, using an ac-amplitude of 0.1 mT
and a frequency of f = 77.5 Hz.

Temperature dependence of the ac response

Before we discuss in detail the response in the whole scan area, let us first
discuss the temperature variation of µ′

1(x, y) and µ′′
1(x, y) picked up by the

Hall cross located ∼ 1µm above the center of a ZFC 7µm wide Pb ribbon, see
Fig. 5.6. An ac-amplitude of 0.1mT and a frequency of f= 77.123Hz are used for
this measurement. This dependence is identical to the temperature dependence
observed in macroscopic ac-susceptibility experiments. It is clear that the Pb
ribbon exhibits a superconducting transition at Tc=7.20 K. For temperatures
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below Tc a diamagnetic response is observed, 0 < µ′
1(x, y) < 1, meaning the

ribbon screens out the applied field. Above Tc, µ′
1(x, y) ≈ 1, meaning the ac-

magnetic field penetrates completely as expected for this low frequency for a
normal metal, see sec.1.8. µ′′

1(x, y) Is initially zero, goes through a maximum,
and reduces to a zero value near Tc. The maximum marks the coincidence of
the magnetic penetration depth with the relevant sample dimensions (the film
thickness)[127].

Fig.5.7(a) shows a SHPM image of a vortex distribution prepared by performing
a field cool (FC) in H=0.13mT to T=6.7K. After preparing the state, a SHPM
image is obtained while an external field with hac=0.1mT and f=77.123Hz, is
continuously applied. The scan speed is chosen properly, 1µm/s, to assure that
the integration time at every pixel (125ms) is much larger than the period of the
applied ac field(13ms). As one image has 128 by 128 pixels, the time for a single
scan takes 1.13hr. The resulting vortex distribution obtained by performing
a FC experiment, corresponds to a frozen vortex structure nucleated close to
Tc[133]. The FC process forces vortices to nucleate at the strongest pinning
sites and results in a non-symmetrical vortex distribution. The external ac-field
shows up as an additional monochromatic noise in the SHPM images getting
more pronounced for temperatures close to Tc. However, for all investigated
temperatures the average vortex positions do not change, indicating that for
hac=0.1mT the resulting average vortex response is limited to displacements
below the experimental spatial resolution.

Fig.5.7(b) shows a representative set of simultaneously acquired SSM images
of µ′

1(x, y) (top row) and µ′′
1(x, y) (bottom row), respectively describing

the inductive and dissipative response, when the temperature is decreased
progressively from T=7K to T=6.7K. A first straightforward observation is
that at the edges of the scan area, meaning relatively far away from the Pb
ribbon, the local induction is equal to the applied ac magnetic field hac(t) as
µ′′

1(x, y) = 0 and µ′
1(x, y) = 1. A clear paramagnetic response, µ′

1(x, y)>1,
is visible at the edge of the Pb ribbon, where the response is dominated
by the induced screening currents. This enhancement of the external ac-
field is caused by a strong demagnetizing effect resulting from the thin film
sample geometry[134]. Upon entering the volume of the ribbon, we observe
an increasing diamagnetic response as hac(t) gets shielded by the screening
currents. At the center of the Pb ribbon, a maximum diamagnetic response
due to the screening current of µ′

1(x, y)=0.27 at T=6.7K is reached, indicating
an incomplete field expulsion. An important observation in Fig.5.7b is that
the shielding currents do not show any contributing signal in µ′′

1(x, y) for all
temperatures, indicating that they are, within our experimental resolution,
perfectly in-phase with the ac-excitation and as such are non-dissipative.
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Figure 5.7: (a) Scanning Hall Probe Microscopy image of the local induction,
Bz(x,y), acquired during shaking with an external applied ac field of amplitude,
hac=0.1mT, and with frequency, f=77.123Hz at a temperature of T= 6.7K. The
initial vortex distribution is obtained by performing a field cool in an external
applied dc magnetic field, H= 0.13 mT. The white dashed line indicates the
border of the Pb ribbon.(b) Simultaneously acquired maps of the real part of
the relative permeability, µ′

1(left column) and the imaginary part of the relative
permeability, µ′′

1(right column), for different temperatures:(top to bottom)
T=6.7K, 6.9K and 7.0K.

Within the ribbon volume the induced screening currents, j(t), will periodically
shake the vortices, with a force: fL(t) = j(t)×ϕ0. The ac-dynamics of the
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vortices will crucially depend on the thermodynamical parameters of the SC
system and the properties of the drive. As shown in Fig.5.7(b), the fingerprint
of their motion in the SSM images, consists of two distinct unidirectional spots
of opposite polarity surrounding the equilibrium vortex position. The inductive
response can be easily interpreted. An area with a response exceeding the
ac-response of the screening currents, µ′

1(x, y)>µ′
1(x, y)s, corresponds with a

vortex, carrying an intrinsic positive local induction, moving in-phase with
hac(t) within this area. A region with a response lower than the ac-response
of the screening currents, µ′

1(x, y)<µ′
1(x, y)s, in some cases resulting even in

a local negative permeability, µ′
1(x, y)<0, indicates that bz(x, y, t) increases

(decreases) upon decreasing (increasing) instantaneous hac(t), corresponding
with a vortex moving in anti-phase with hac(t) within this area. A similar
unique local negative µ′

1(x, y) response, but on a substantially larger spatial
scale, has already been observed in the ac-dynamics of flux droplets in the
presence of a geometrical barrier[132].
From thermodynamical considerations, neglecting the demagnetizing field, an
overall integrated response between zero and one is expected for <µ′

1>. Note
however, that the meaning of the complex permeability as a macroscopic
thermodynamical variable is lost in this local limit. Upon integrating the local
signal over the whole scan area the expected non-negative response for <µ′

1>
and <µ′′

1> is recovered. This connection between <µ1> as the integrand of the
‘local’ permeability, µ1(x, y), which is directly related to the microscopic vortex
dynamics, is used in theoretical models to explain the fingerprints of different
dynamical VL regimes in measurements of the global ac-susceptibility and can
be studied now directly by SSM. Furthermore it is clear, the particular depth
and shape of the local pinning potential each vortex experiences has a profound
effect on the ac-dynamics, i.e. at T=6.9K only one of the two vortices present
in our scan area is shaken by hac.
In sharp contrast to the screening currents’ response, the vortices do leave
a fingerprint in µ′′

1(x, y) for sufficiently high temperatures. As such, the
oscillating magnetic stray field produced by an harmonic motion of the vortices
exhibits an out-of-phase component. The out-of-phase response disappears
below T<6.8K, here the ac-response of the vortices is weak and, within the
experimental resolution, perfectly in-phase. The nature of the microscopic
processes influencing vortex motion, each having a characteristic time, is a
question of interest[135, 136, 37]. In the following we will start from an equation
of motion for a vortex to explain the observed temperature dependence of the
vortex response.
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Figure 5.8: This figure illustrates schematically the forces working on a vortex
in a harmonic well at time t1 as described by Eq.5.20.

In general, as described in Sec.1.8, vortex-dynamics can be described by a
phenomenological force balance equation of the form[47]:

mẍ(t) − fL(t) + ∇U = −ηẋ(t) + ξ(t) (5.20)

Where x(t) is the vortex position. Here the left hand side describes the
conservative part of the dynamics, including a combination of an inertial
term, the periodic Lorentz drive, fL(t) and the local potential, U, the vortex
experiences due to a combination of interactions with other vortices, the surface
and the local quenched disorder. For small excitations the local potential in
the equation of motion can be approximated by an harmonic potential with
spring constant αL, called the Labusch constant[137]. The inertial term is
accepted to be very small[33, 138] so that there is a short initial period of
acceleration needed to reach the steady state motion we consider. The right
hand side of Eq.5.20, describes the effects of the non-conservative environment
presenting energy dissipation and modeled as a combination of a viscous
friction, η, and a random thermal force, ξ(t)[42]. It is this right hand side of
the equation of motion which describes the coupling to the environment. The
linear approximation to the steady state solution of Eq.5.20, has the following
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general form[44, 43]:

x(t) = −( −αL

1 − i/ωτ1
+ iωη)−1fL(t) (5.21)

Here τ1 = (η/αL)I2
0 (U(j)/2kBT ) is a characteristic relaxation time related to

thermally activated hopping of the vortex, I0(x) is the modified Bessel function
and U(j) describes an effective activation energy which is a combination of
the intrinsic pinning potential energy, U(j=0) and the Lorentz force energy
resulting from the induced super currents, j(t).
The solution, given by Eq.5.21, directly shows the out-of-phase component
in the linear response induced by the aforementioned dissipative mechanisms.
The term iωη represents the viscous damping mechanism. It is connected by
an elementary model developed by Bardeen and Stephen[136] with resistive
processes in the normal core and by a more rigorous analysis with a finite
intrinsic relaxation time of the SC order parameter[37]. This dissipative process
has a typical short characteristic time of the order of, τp=η/αL≤0.1µs[47, 139].
For the applied low driving frequency, f=77.123 Hz, the restoring force
dominates over the viscous drag force, as ω<<1/τp and this term can be
neglected. The term i/ωτ1 is related to thermally activated vortex hopping
across an effective activation barrier, following the classic ideas of Anderson
and Kim[140] and results from ξ(t) in Eq.5.20. This activated hopping process
is typically associated with longer characteristic time scales[141]. Under certain
conditions it is expected to contribute substantially in our low frequency SSM
experiment.

It is interesting here to make a small intermezzo to compare the vortex system
and the observed response with the driven damped harmonic oscillator(HO)
discussed in Sec.5.2.2. If we consider the vortex-system in the limits of
the experiment. Meaning we neglect the viscous damping force as for the
applied low driving frequency, f=77.123 Hz, the restoring force dominates over
the viscous drag force, ω<<1/τp. In this case we can rewrite Eq.5.21 in a
the following way, using the same structure as the driven damped harmonic
oscillator. If we rewrite Eq.5.21 as,

x(t) = χ(ω)fL(t) with χ(ω) = ( 1
αL

− i
ωτ1αL

) (5.22)

Here x(t) is the vortex position and the complex number χ(ω) describes the
response of the vortex system. As in Sec.5.2.2, we can parameterized the
solution by the amplitude and the phase of χ(ω) as:

|χ(ω)| = 1
αL

√
1 + 1

(ωτ1)2 and tan θ(ω) = 1
ωτ1

, (5.23)
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In both expressions for the amplitude and the phase-lag, the term ωτ1 shows
up. For a fixed characteristic time τ1 the deviation from pure reversible motion
arises when ωτ1 approaches 1. It implies that the driving frequency approaches
the characteristic time for thermally activated motion and the vortex motion
will be dominated by this process. It is clear that when the vortex motion is
thermally activated a phase lag appears between drive and vortex displacement.
When the driving frequency is much larger than ωτ1 ≫ 1, but still small enough
to neglect viscous damping, ω<<1/τp, the motion reduces to Campbell’s
reversible vortex motion. In this frequency regime thermally activated motion
will contribute negligible to the motion properties of a vortex. The situation
where ωτ1 < 1 can not be described within linear response, as in this case
the response is strongly non-linear[44] and the above equations do not apply.
In the reversible Campbell regime a one-to-one correspondence exists between
a vortex and a driven damped harmonic oscillator as discussed in Sec.5.2.2,
within the limits ω << ω0 and ω ≪ (k/η).

Before we continue with the interpretation of the measured temperature
dependence of the vortex response, we show explicitly that the measured
phase with SSM corresponds with the phase-lag in Eq.5.23. We denote with
Bz

v(xi, yi, t) the magnetic induction carried by a single vortex, shaking back
and forth around its equilibrium position, ri0. If we assume the vortex is driven
by a small ac excitation in a way that ri = (xi, yi) oscillates about ri0. In this
situation, we can expand Bz

v(xi, yi, t) in a Taylor series around ri0. Without
loss of generality, we can choose the x axis parallel to the applied drive. We
further assume that the vortex displacement is parallel to the drive, which is
valid for linear response. In this case, vortex motion is restricted to the x
direction and the expansion can be performed in powers of δxi = xi − xi0:

Bz
v(x− xi(t), y) =

∑∞
p=0

1
p!

∂pBz
v

∂xp
i

|xi0δx
p
i (5.24)

= Bv−dc
z (x, y) − ∂Bv−dc

z

∂x δxi + 1
2

∂2Bv−dc
z

∂x2 δx2
i + O(δx3

i ) (5.25)

Notice the change of sign of the odd terms of the expansion due to changing xi

by x in the derivatives. If we assume the vortex displacement can be expressed
as δxi = |χ(ω)| cos(ωt + θ(ω)), as in Eq.5.23. We obtain for the in-phase and
out-of-phase response,

B′
z

v = 1
T

∫
dt cos(ωt)Bz(x, y, t) = −|χ(ω)| ∂Bv−dc

z

∂x cos(θ(ω)) (5.26)

B′′
z

v = 1
T

∫
dt sin(ωt)Bz(x, y, t) = |χ(ω)| ∂Bv−dc

z

∂x sin(θ(ω)) (5.27)
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Notice that the length scale in the case of a diluted vortex distribution for
Bv−dc

z , is the penetration depth, see Sec.1.6 for an Abrikosov vortex and
Sec.1.7. for a Pearl vortex. This scale exceeds, in the linear regime, typical
vortex displacements and hence one can safely keep the leading order terms.
These results, leads to the conclusion that the measured modulus by SSM,√

(B′
z

v)2 + (B′′
z

v)2, is directly related with the amplitude of vortex motion,
with a proportionality constant given by the gradient of Bv−dc

z in the direction
of shaking. Further, the measured phase angle corresponds directly with the
phase lag between the vortex motion and the Lorentz drive.

|χ(ω)| = ( ∂Bv−dc
z

∂x )−1
√

(B′
z

v)2 + (B′′
z

v)2 (5.28)

tan(θ(ω)) = − B′′
z

v

B′
z

v (5.29)

In these parameters the dependence on the probe position cancel out and should
be homogeneous, apart from the places where ∂Bv−dc

z /∂x = 0.
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Figure 5.9: (a) Scanning Susceptibility Microscopy image of the real part of
the relative permeability, µ′

r for a single vortex upon shaking with an external
ac magnetic field of amplitude, hac=0.1mT, and frequency f=77.123Hz at
a temperature of T= 6.9K. The initial vortex distribution is obtained by
performing a field cool in an external applied dc magnetic field, H= 0.13 mT.(b)
Simultaneously acquired map of the imaginary part of the relative permeability,
µ′′

r . (c) Calculated spatial dependence of minus the phase angle.

Let us use the above considerations to interpret the temperature dependence
of out-of-phase component of the vortex response. At low temperatures, when
U(j)>>kBT and thermally activated flux motion can be neglected, τ1 diverges
exponentially and the character of the ac-response, x(t) = αLfL(t), is a pure
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reversible harmonic motion as described by Campbell and Evetts[48]. This
behaviour explains the absence of a response in the SSM images of µ′′

r (x, y)
for T<6.8K, while a response is still visible in µ′

r(x, y). As the temperature
rises, the thermal activation energy decreases and 1/ωτ1 becomes appreciable,
meaning thermally activated vortex jumps between metastable states come
into play and contribute substantially to the vortex motion. This explains
the observed out-of-phase component for T>6.8K. Fig.5.9 shows a zoom on
the ac-response of a single vortex for T=6.9K and the corresponding spatial
dependence of the calculated phase, where we use a cutoff for | µ′

r(x, y) |<0.15
to limit the divergence of arctan and we subtracted the contribution of the
screening currents in µ′

r(x, y). As shown in Fig.2(c), the obtained phase shift is
θ=-0.5rad. From Eq.5.23, the phase shift between the response and the drive
is given by θ=− arctan(1/τ1ω). As τp≤0.1µs, we obtain a lower limit for the
effective activation barrier height of U(j)≥8.50×10−3eV∼14.3 kBT, similar to
typical average effective barrier heights found in the literature by macroscopic
measurements[142].
The temperature dependence of the phase shift shows a maximum at T=6.85K.
Optimal energy dissipation is expected when the driving frequency matches
the characteristic frequency of our vortex system, it is, when the resonant
absorption condition, ωτ1=1, is fulfilled. As the driving frequency is fixed, we
approach or de-tune from the resonant absorption condition by changing τ1
with temperature. The non-monotonic temperature dependence of the phase
shift reflects the non-trivial temperature dependencies of the different factors
contributing in τ1.

Amplitude and field dependence

In the previous case we considered both the in-phase and out-of-phase response
of a Pb ribbon to an ac magnetic field. The power of this technique is illustrated
further for the same sample in Ref.[143], wherein the response to an ac magnetic
field is probed upon changing the vortex distribution within the Pb ribbon. A
clear correlation is found in this work between the position of the vortices within
the Pb ribbon and the corresponding SSM images. For example, a vortex in a
very symmetrical position in the center of the bar does not show up in the SSM
image as the driving Lorentz force is zero in the center. However, vortices in
off-center position clearly show a response in the SSM images. As such, SSM
can be used as a tool to probe the vortex mobility. Further, the response is
investigated for a fixed vortex distribution and temperature, upon increasing
driving amplitude. A transition from intra-valley to inter-valley vortex motion
is observed upon increasing amplitude. The low amplitude phase retains the
original vortex configuration and vortices shake in their own potential well,
whereas beyond a certain oscillation amplitude, vortices can escape from their
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local potential well and the initial vortex distribution is altered. This transition
was already pointed out by Campbell in 1969 and this model can now be
checked directly by SSM with single vortex resolution[48].

5.3.2 Ac response of a nano-structured superconductor

Sample layout

In this section we study the ac-response to an applied ac magnetic field of a
nano-structured high-quality Pb superconducting strip of width 2a = 600µm,
and thickness t = 50 nm, as described in Sec.4.3 ( see Fig.4.3 and Fig.4.5).
The sample contains a square array of square antidots (b= 600nm) with an
antidot void area of b2 = 0.36µm2, as obtained by standard electron beam
lithography technique, electron beam depositing techniques and subsequent
lift-off as described in Sec.2.3. The sample was deposited on top of a SiO2
insulating substrate and covered by a Ge layer of 60 nm to prevent it against
oxidation processes. An additional gold layer of 50 nm covers the whole strip to
allow an STM approach of the sample surface. The periodicity of the antidot
lattice is w=3µm, resulting in a commensurability field,

H1 = ϕ0

w2 = 0.2298mT, (5.30)

at which the density of holes coincides with the density of vortices. In all cases
the magnetic field (ac and dc) is applied perpendicularly to the plane of the film.
The superconductor to normal transition at zero field occurs at Tc = 7.2K as
measured by monitoring the in-phase and out-of-phase response to an applied
ac magnetic field with the Hall probe while sweeping the temperature through
the metal-superconductor transition. For the experimental temperatures used
in this work, T > 4.2K, the film behaves as a Type-II superconductor as
described in Sec.3.3.1. Before starting with the ac response, we investigate the
dc response of the nano-structured superconducting film to an applied magnetic
field.

Dc response of a nano-structured superconducting film

Some selected results of obtained dc vortex distributions at T=4.2K after
performing field cooling procedures in different applied dc magnetic field Hdc,
are shown in Fig.5.10 and Fig.5.11. The color scale is adjusted for every image
to maximise the contrast. The detailed procedure follows respectively the next
steps: we heat the sample up to T> Tc = 7.2K, subsequently we cool down to
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Figure 5.10: (Top rows) Schematic representation of the obtained equilibrium
vortex distributions by MD simulations in a square array of antidots. Open
circles indicate the unoccupied pinning centers, whereas filled circles indicate
pinning centers occupied by a single vortex. (Bottom rows) Scanning Hall
probe microscopy images obtained after cooling down to T = 4.2 K in presence
of a field H ∼ 0H1, H ∼ 1/4H1, H ∼ 1/3H1, H ∼ 1/2H1, H ∼ 2/3H1 and
H ∼ 3/4H1

T=4.2K, while a dc magnetic field Hdc is continuously applied (Field cooling
process (FC)). When the temperature 4.2K is reached an image is captured
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of the vortex distribution by measuring the local induction in a scan-range
of 16 × 16µm2 with a micro-sized Hall probe (0.5×0.5µm2), approximately
1.2µm above the sample surface. This procedure explores near to equilibrium
vortex distributions as the obtained nucleated vortex distribution is frozen in
close to Tc[133]. The scan-speed for the images is 40µm/s and the cross is
biased by a dc current of I= 20µA. The field steps are hdc = +0.004mT, which
is less than the field necessary to have one additional vortex per scanarea
ϕ0/(16 × 16µm2)=0.008mT. The field is applied perpendicular to the sample
surface.

H=H
1

H>H
1

H>>H
1

16µm

1
6
µ
m

Figure 5.11: Scanning Hall probe microscopy images obtained after cooling
down to T = 4.2 K in a scan area of 16x16µm2; for H = H1(Left), showing
perfect commensurability; (Middle) for H > H1, showing the presence of an
interstitial vortex; (Right) for H ≫ H1, showing the presence of interstitial-and
double quantized vortices.

It is clear the sample shows nice commensurability effects. Not only first
matching is nicely present, also fractional matching features can be identified
in accordance with Ref.[111]. However, it is clear that the commensurate
vortex distributions at fractional matching fields posses defects. These defective
states can be attributed to the possible degeneracy of the fractional matching
states under symmetry operations as compared to integer ones. This particular
feature of fractional matching states can result in the domain formation as
observed in Ref.[114, 115]. Nonetheless, the observation of these quasi sub-
matching features, where the vortex-vortex interaction is weak and therefore
small imperfections on the pattern have a sizeable impact on the vortex
distribution, assure good sample quality and is indicative of a low dispersion
in pinning energy among different pinning sites. Above the first matching
field, first interstitial vortices appear while upon further increasing the dc field
a combination of interstitial and double quantized vortices (at the pinning
sites) is established. Detailed analysis shows that a clear difference in the field
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profile is observed between interstitial, pinned and double quantized vortices.
Whether a pinning center can sustain a multi quanta vortex, depends for an
antidot upon the ratio between the dimensions of the antidot and the coherence
length, see Sec.1.8. For a cylindrical cavity with radius R= b/2, the maximum
number ns of vortices trapped was theoretically estimated by Mkrtchyan and
Schmidt[39], within the London approximation (high κ). According to this
calculation, depending on the radius Rp of the defect, more than one flux can
be trapped, up to a certain saturation number, ns, given by Eq.1.74. In our
particular case, with Rp = 300nm and using an estimate for ξ(Tf ) ∼ 0.18µm
at the freezing temperature, Tf > 7K . We obtain ns ∼ 0.85. However, it
is clear from the SHPM image at H ≫ H1 in Fig.5.11, that the antidots can
stabilize in some cases double quantized vortices. This indicates clearly that
the interaction with neighbouring vortices plays a role in the determination of
the energy of a pinned n-quanta vortex.
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Figure 5.12: (Top row) Regular dc SHPM image at 4.2 K in a scan area of
16x16µm2, showing Bz(x, y) after freezing in the motion for three different
indicated field configurations, H = 0,−1/2,−1H1.(Bottom row) Picked up
in-phase response µ′(x, y) at 6.7K when an ac magnetic field is applied of
hac = 0.015mT and frequency f = 77.123Hz. The dots indicate the positions
of the square antidots, while the white line indicates the physical edge of the
sample.
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Ac response of a nano-structured superconducting film

The SSM technique is applied to investigate the ac-response of the nano-
structured superconductor. The response upon changing the vortex config-
urations, as obtained by a FC process, is investigated. The measurement
procedure is the following: First, we preform a FC in hdc to obtain a near-
to equilibrium vortex distribution. Subsequently, we switch on an additional
co-linear ac magnetic field, hac and measure simultaneously µ′(x, y), µ′′(x, y)
and the time averaged local magnetic induction < Bz(x, y, t) >t. As such,
we obtain in linear approximation information about the ac-response of the
prepared vortex distribution obtained by a FC process. Subsequently we cool
down further to freeze in the vortex motion to obtain a snapshot during ac
shaking.

A selected subset of data following the described measurement procedure
is shown in Fig.5.12 and Fig.5.13, for hac = 0.015mT and frequency f =
77.123Hz, sweeping the dc field over a broad interval. The ac dynamics is
probed at T = 6.7K and the snapshot of the motion is obtained by freezing
to T = 4.2K. The white dots and the white line in Fig.5.12 and Fig.5.13
show schematically the position of the square anti-dots and the sample edge,
respectively. The first row shows a SHPM image at 4.2 K, showing Bz(x, y)
after freezing in the motion. The second row is the picked up in-phase response
µ′(x, y) at 6.7K. All images have optimized colour contrast to show the ac-
dynamics in the optimum conditions. Below the first matching field, H ≤ −H1,
the response is a pure Meissner response, the vortices are strongly pinned at
this temperature and do not show up in µ′(x, y). As described before, within
linear response, the equation of motion for a vortex at low temperatures and
frequencies is given by, Eq.5.21, which reduces in these limits to:

x(t) = χ(ω)fL(t) with χ(ω) = ( 1
αL

) (5.31)

In this case the motion is a pure reversible oscillatory motion in a potential
well characterized by the Labush constant αL. In this field range, it is expected
each pinned vortex experiences a similar large restoring force. This can be
argument from the observation of the fractional matching features indicating
good sample quality and a uniform pinning strength of the antidots. From
similar measurements in the field range H ≤ −H1 and for the same ac
excitation, no response from single quanta vortices in µ′(x, y) is observed below
6.95K. Similar as for the Pb ribbon, a paramagnetic field enhancement is
observed at the border due to demagnetization effects and upon penetrating
deeper in the sample volume the field is diamagnetically screened. Above first
matching, H > −H1, the interstitial vortices show an in-phase response, which
is even more clear in the images where the SSM image at H= 0mT is subtracted,
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Figure 5.13: (Top row) Regular dc SHPM image at 4.2 K in a scan area of
16x16µm2, showing Bz(x, y) after freezing in the motion for different indicated
field configurations above first matching, H > −H1.(Second row) Picked up
in-phase response µ′(x, y) at 6.7K when an ac magnetic field is applied of
hac = 0.015mT and frequency f = 77.123Hz. (Third row) Similar images as
in the second row, µ′(x, y), only here we tried to isolate the vortex response
by subtracting µ′(x, y)(hdc = 0). The dots indicate the positions of the square
antidots, while the white line indicates the physical edge of the sample.

see Fig.5.13(third row). However, the vortices at the site locations stay perfectly
pinned. The interstitial vortices are highly mobile as they are pinned by
a cage formed by the surrounding repulsive pinned vortices, as discussed in
Ref.[46]. The means the Labusch constant in Eq.5.31, characterizing the
potential well each vortex experiences, is very different for pinned (αL = αp)
vortices and interstitial (αL = αv) vortices, with αp ≫ αv. This proves that the
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SSM technique is able to probe the local pinning potential with single vortex
resolution. Moreover, for the interstitial vortices the inductive response is not
a sharply peaked distribution and it is clear in this regime the displacement at
the edge diffuses into the sample due to elastic coupling. This results in the
observation of chains which resemble a set of coupled harmonic oscillators.

µ’(x,y)

[a,u]

In SC

Out SC

Hdc[H/H1]
0 1 2

Figure 5.14: Field dependence of the average cross-sections as obtained from
the SSM images. The average cross-section at a certain field amplitude, hdc, is
obtained by averaging over 80 cross-sectional lines parallel to the black dashed
line indicated in Fig.5.13. The white dashed line indicates the sample border.

As the vortex dynamics alters the impedance of the superconductor, it
determines completely the penetration of the ac magnetic field into the
sample volume, as described in Sec.1.8. For the case of harmonic vortex
motion (Campbell regime) as considered above, it is expected that for a fixed
temperature, the penetration depth varies with the applied dc field, as derived
in Eq.1.79. The ac-penetration depth is given in this particular case of a
periodic pinning array having a composite vortex lattice, composed of strongly
pinned vortices and weakly caged interstitial vortices by[46]:

λ2
ac = λ2

L + λ2
C ,with λ2

C = [NAλ
2
C(A) +NBλ

2
C(B)]/N, (5.32)
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where λL is the London penetration depth, λ2
C(A) = (ϕ0B

2)/B1µ0αp the
Campbell penetration depth for the pinned species of vortices and λ2

C(B) =
(ϕ0B)/µ0αv, with describes likewise the contribution to the penetration depth
of the interstitial vortices. In these expressions, αp and αv denote the Labusch
constant for the pinned vortices and the interstitial vortices, respectively and
B1 denotes the first matching field. Further, we assumed in accordance with
the observations that αp ≫ αv. From Eq.5.32, it is clear that the screening
currents at the edge will vary with the applied dc magnetic field. Moreover, it is
expected that the introduction of interstitial vortices will result in a much larger
field dependence of the ac penetration depth as compared to pinned vortices. In
Fig.5.14 we show the field dependence of the average cross-section as obtained
from the SSM images. The average cross-section at a certain field amplitude,
hdc, is obtained by averaging over 80 cross-sectional lines parallel to the black
dashed line indicated in Fig.5.13. It is clear that above first matching, where
interstitial vortices appear, the amplitude of the local induction at the edge,
induced by the screening currents, decreases with field. This indicates that the
field is less effectively screened and penetrates deeper inside the superconductor
forH > H1. Below first matching, as expected for very strongly pinned vortices,
the screening current distribution and strength does not change.

These results provide for the first time direct evidence that the vortex dynamics
inside the sample, changes the ac-penetration of the field. In macroscopic
measurements, it is exactly this vortex dynamics induced change of the
penetration depth that determines the measured inductive response. As the
macroscopic measurements allow no direct measurement of individual vortices
shaking back and forth. SSM allows to make a clear correlation between the
observed dynamics of a single fluxon and the induced changes of the screening
currents.

5.4 Conclusions

In summary, we explored and described the microscopic linear response of
a SC to an applied alternating magnetic field. It should be noted that up
till now the ac-response of individual vortices remained concealed, despite the
enormous amount of theoretical works. In this work we combine the strength
of phase sensitive detection used in global ac-susceptibility measurements and
the power of individual vortex visualization, accessible with Scanning Hall
probe microscopy (SHPM), to reveal the microscopic linear response of a
type-II superconductor to an external applied ac-magnetic field. The local
character of this scanning ac-susceptibility microscopy(SSM) technique and
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the argument “Seeing is believing” allow us to bridge the gap between the
global ac-susceptibility measurements and the associated microscopic theories
of vortex motion and ac-field penetration and the real microscopic ac-response.
In a first case study, the response of a SC ribbon to an external applied
alternating magnetic field upon decreasing temperature is investigated. A
clear dichotomy between the ac-response of the vortices and the screening
currents was observed using the phase sensitive character of the SSM technique.
The observed out-of-phase response of the vortices, which was absent for the
reversible screening currents, directly shows the local dissipation of the vortex
motion. As viscous losses can only account for a small fraction of the measured
large phase-lag at the used experimental excitation frequency, the observed
large phase-lag, θ=-0.5rad, is explained by thermally activated vortex hopping
over pinning centers. As such, a new and powerful tool is introduced and
employed allowing to investigate for the first time vortex dynamics with single
vortex resolution as has been done for example in Ref.[143]. This opens new
and exciting possibilities to study locally loss mechanisms in a variety of not
only superconducting systems but also magnetic systems, including magnetic
domain walls, etc [144].

In a second case-study, a superconductor having a square lattice of antidots,
the response to an external applied alternating magnetic field upon changing
the vortex distribution is investigated. A clear difference in mobility is observed
between pinned and interstitial vortices. This difference arises due to the
different pinning potential each vortex species experiences. Whereas, vortices
pinned by an antidot are strongly anchored, the interstitial vortices are very
mobile as they are weakly caged due to surrounding pinned vortices. Moreover,
we made a direct observation of the correlation between the ac-penetration
depth and the vortex dynamics used in theoretical models[44, 45, 43] to explain
macroscopic ac-susceptibility measurements.





CHAPTER6
Scanning Hall probe microscopy

of unconventional vortex patterns
in the two-gap MgB2

superconductor

6.1 Introduction

Single-gap superconductors are usually categorized as being either type-I or
type-II, depending on their behavior under a magnetic field (cf. Sec.1.4). For
κ < 1/

√
2 , the superconductor-normal state (SN) wall energy is positive and

the magnetic field is expelled from the bulk. For κ > 1/
√

2, the SN wall energy
is negative, and the superconductor gets rapidly flooded above a certain critical
field, Hc1, with tiny tubes of magnetic field carrying one unit of flux quantum.
These so called vortices repel each other and form in absence of pinning, the
famous Abrikosov lattive as described in Sec.1.6. However, this classification of
superconductors has been challenged by Babaev and Speight when considering
a multigap superconductor, consisting of two coupled condensates[145]. In
that paper, the authors propose that, in these materials within a broad range
of material parameters, the flux distributes unevenly, combining bundles of
vortices, as in Type-II materials, separated by vortex-free regions, like in
Type-I superconductors. This vortex distribution arises due to a competition
between a vortex-vortex long-range attraction and a short-range repulsion.
Since this peculiar vortex clustering shared reminiscence with both Type-
I(Meissner-state) and Type-II superconductors(Vortex-state), it was coined as
the ‘semi-Meissner state’[145] or ‘type−1.5 superconductivity’[20]. Two-gap
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superconductors, have many more remarkable new possibilities interesting for
both fundamental research and applications. For example, upon confinement,
it was shown, within the non-linear Ginzburg-Landau (GL) theory, that
mesoscopic size effects stabilize fractional flux vortices in the thermodynamical
ground state of s-wave two-gap superconductors. The value of these fluxes can
be an arbitrary fraction of the flux quantum[146]. Further, in the mesoscopic
regime novel vortex phases with non-composite vortices and with different
vorticity in the two condensates have been found[147].

Vortex states similar to those predicted theoretically were first experimentally
observed in 2009 by Moshchalkov et al.[20] in clean prototypical two-band
superconductor MgB2. In these experiments, inhomogeneous vortex patterns,
such as stripes and clusters, were found at low fields by the Bitter decoration
technique.

With Bitter decoration, small magnetic particles (∼10nm) vaporized from
a ferromagnetic filament are dispersed over a magnetic surface. The fine
magnetic powder adheres to the sample surface via van der Waals forces.
When an inhomogeneous magnetic field exists at the surface, the approaching
ferromagnetic particles, having dipole moment m, are attracted to regions
having a high field gradient (Fdip = −∇(m · B)). The resulting decoration can
be visualized with scanning electron microscopy and mimics the distribution of
the magnetic induction at the time of decorating. The first succesful decoration
experiment revealing the Abrikosov flux line lattice was done by Essmann and
Träuble in 1967[148].

However, the Bitter decoration technique suffers from certain drawbacks, such
as the ex situ determination of the vortex patterns and the fact that only
poor temperature control at the actual moment of decorating the vortex
lattice is typically achieved. Moreover, as it is not a scanning technique
it is not possible to investigate a certain area while changing continuously
some thermodynamical parameters. Later on, scanning SQUID microscopy
experiments performed on similar clean MgB2 crystals revealed alike unusual
vortex patterns typical of a type−1.5 superconductor[149]. However, due to the
low spatial resolution only a few low field distributions could be investigated
at 10µT, 20µT and 50µT. Moreover 2D multifits have to be used to identify
the position of the vortices from the measured field distributions.

In this chapter, we investigate vortex patterns in clean MgB2 single crystals by
using scanning Hall probe microscopy (SHPM) having single-vortex resolution
in a broader field range than the measurements described in Ref.[149]. On top,
SHPM offers in contrast to the Bitter decoration technique the possibility to
change the thermodynamic variables, magnetic field and temperature, while
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simultaneously visualizing the vortex patterns in the same scanarea. We have
been able to observe the progressive formation of stripes, in agreement with
previous studies, and to investigate the reproducibility and stability of different
vortex patterns. In addition, we have carried out a back-to-back comparison
with the conventional type-II superconductor NbSe2. These studies provide
direct information about the vortex pattern formation and evolution of the
vortex stripe phase observed in high quality single crystals of MgB2[150].

6.2 Type-1.5 superconductivity

In this section we will first discuss the Vortex-Vortex(VV) interaction in single
component and two-component superconductors within the GL theory. Next,
the profound consequences of the particular VV-interaction potential for the
vortex distribution are discussed.

The Vortex-Vortex interaction

The interaction energy per unit length between well-separated vortices in a
single-gap superconductor is calculated within the GL theory in Ref.[151,
152]. The detailed interaction energy is given by,

Uij(|rij|) = ε1 + ε2 = d1(κ)K0( r
λ ) − d2(κ)K0(

√
2r
ξ ) (6.1)

where ε1, is the repulsive contribution due to the interacting screening currents,
whereas ε2 represents an attractive term arising from the gain in condensation
energy as vortices overlap. Here d1(κ) and d2(κ) are constants depending on
the GL-parameter κ and K0(x) denotes the modified bessel function with the
asymptotic limits, ln(x) for x ≪ 1 and (π/2x)1/2 exp(−x) for x ≫ 1. It is
clear that the repulsive interaction of the screening currents acts on a scale
of λ, while the attractive interaction has a range of ξ/

√
2. As discussed in

Sec.1.4, we can make a distinction between two types of superconductors by
using as a single criterium the temperature independent ratio, κ = λ(T )/ξ(T ),
defining the GL-parameter. Kramer discusses in Ref.[152] the dependence of
the VV-interaction on the GL-parameter. First of all, in the limit of high
κ ≫ 1, d1(κ) approaches ϕ2

0/(2πµ0λ
2) whereas the term corresponding to ε2

becomes negligible at low fields. As such Eq.6.5 reduces to the London limit
expression for the interaction energy, Eq.1.44. As discussed in Sec.1.6, within
the London model, the vortex core is taken into account by a delta-function
arising in Eq.1.44. The London limit approximation does not consider the
condensation energy gained by the overlap of the normal cores and is purely
repulsive. Further, it is shown that for κ = 1/

√
2, d1 = d2 and the vortices do
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Figure 6.1: Schematics of the VV-interactions: in type-I superconductors,
vortex cores are overlapping first, thus causing an attraction between vortices
(top). In type-II materials, the first to overlap are the local field h(x), which
leads to a VV-repulsion (middle). Type-1.5 superconductors combine both the
VV-attraction and repulsion, since type-I and type-II conditions are formally
fulfilled for the two subcomponents of the order parameter simultaneously
(bottom). Remark that this is only a didactic illustration as in principle the two-
components will generate a common λ, characterizing the field penetration.[27]

not interact at all distances. Whereas, in the limits, κ ≶ 1/
√

2,the following
relations hold:

ε1 + ε2 ≶ 0 for κ ≶ 1/
√

2 (6.2)

In case of a type-I superconductor vortices attract each other at all distances,
since due to the larger ξ their cores overlap first and the gain in condensation
energy dominates Uij . For a type-II superconductor there is VV-repulsion at all
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distances, as due to the larger λ their screening currents interact first. Moreover,
in contrast to the type-I case, the vortex solution is thermodynamically stable
in the regime κ > 1/

√
2. In Fig.6.1 both cases, type-I(a) and type-II(b) are

illustrated.

The vortex-vortex interaction potential has been studied for two-gap su-
perconductors within the two-component GL theory, by minimizing the
free energy of two vortices with a variational procedure[145, 153]. The two-
component GL theory starts as in the single component case, Eq.1.10, from
a free energy functional which can be derived from the microscopic theory in
the appropriate limits[154, 155]. For two-band superconductors with s-wave
symmetry, characterized by two order parameters ψn, one for each band, the
free energy functional is given by,

FGL = F1 + F2 − γ(ψ∗
1ψ2 + ψ1ψ

∗
2) + ∇ × A2(r)

2µ0
, (6.3)

where the contributions from each band

Fn(T ) = ( ~2

2m∗
n

|(∇r − iq

~
A(r))ψn(r)|2 + αn|ψn(r)|2 + βn

2
|ψn(r)|4)d3r (6.4)

are supplemented by a Josephson-type coupling term and the magnetic energy.
The Josephson type coupling describes Cooper pair tunneling between the two
bands. In principle it is possible that other mixing terms appear coupling both
bands, however for the case of clean single crystals of MgB2 we can neglect
them[156]. Although α1 and α2 can change sign at different temperatures,
a finite Josephson coupling γ forces both ψn to vanish at a single critical
temperature Tc[157].

In contrast to single-component superconductors, where the VV-interaction is
characterized by a single parameter which describes the ratio between the two
characteristic length scales, the GL-parameter κ. In two-gap superconductors
the situation is much more complex[153, 158] as three length scales are present
with an additional Josephson coupling parameter. These three length scales
characterizing the superconductor are: the two partial coherence lengths, ξn

describing the smallest distance over which we can bend each component
and a single penetration depth λ, which describes how deep a magnetic field
penetrates the superconductor. When no coupling is considered, γ = 0,
depending on the ξn and λ relative values, several different regimes can be
realized. If ξ1 ≈ ξ2 ≶ λ, the two-component superconductor just shows
typical type-II(≫) and type-I(≪) behavior. An interesting case is discussed in
Ref.[145] for two uncoupled components having ξ2 <

√
2λ < ξ1. In this case
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where one component is of type-I, while the other is of type-II, it is found that
the VV-interaction varies non-monotonic. The origin of this non-monotonic
VV-interaction when the two-components are in different regimes, it is one
condensate is in the Type-I regime, while the other acts as being type-II is
conceptually illustrated in in Fig.6.1. One can expect that the resulting VV-
interaction results from a competition between the dominant attractive VV-
interaction present in the type-I component favoring the overlap of vortex cores
and a dominant repulsive VV-interaction in the type-II component due to the
overlap of screening currents.

Figure 6.2: Temperature evolution of the separation dmin at Uvv minimum and
of the magnetic penetration depth λ for the material parameters corresponding
with MgB2[153] in units of λ(0).

A universal criterium to a priori determine the type of vortex interaction in
a two-band system is discussed in analogy with the derivation of Kramer[152]
in Ref.[158]. It is shown therein that the character of the short-range VV-
interaction is determined by the sign of the NS surface energy, in analogy with
the conventional differentiation between type-I and type-II superconductors.
However, the long-range interaction is determined by a modified temperature
dependent GL-parameter. As such a non-monotonic temperature dependent
VV-interaction can result, characterized by a minimum (dvv) in the VV-
interaction potential. For MgB2, the evolution of the minimum in the
VV-interaction potential, dvv, is shown as a function of temperature in
Fig.6.2. It is clear that upon cooling down, the VV-interaction crosses a
sequence of transitions behaving as Type I(dvv→ 0)→Type-1.5→Type-II(dvv→
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∞))→Type-1.5. For a more detailed description of the possible VV-interaction
potentials in two-component superconductors we refer to Ref.[153, 158, 145].

The Vortex distribution

a) b) c) d)

Figure 6.3: Molecular dynamics simulations of systems consisting of (a) 6, (b)
27, (c) 122, and (d) 500 vortices which have the interaction energy calculated
from a two-gap GL theory for the type-1.5 condition. A scale bar corresponds
to 10 µ m.[149]

The particular interaction potential between two single-quantized vortices has
profound consequences for the vortex distribution. Type-I superconductors
in an applied magnetic field below the thermodynamical critical field, Hc,
should exhibit an ideal Meissner effect. However, in samples of finite size the
demagnetizing factor N>0, allows for the observation of an ‘intermediate’ state
containing superconducting and normal domains. Depending on the sample
geometry, the amount of pinning, different topologies are observed such as
tubular or laminar domains[159, 160]. For type-II superconductors the pure
repulsive interaction between vortices results in the formation of the triangular
Abrikosov lattice in the field range between Hc1 < H < Hc2 when no pinning
is present, as discussed in Sec.1.6. Also here pinning, sample geometry, crystal
anisotropy can have profound consequences for the vortex-lattice structure. In
the case of single component superconductors where κ ∼ 1/

√
2, one does

not expect to have any interaction between vortices within the GL model.
However in a realistic system even in this limit, there will be always leftover
inter-vortex interactions (appearing beyond the GL desciption) from underlying
microscopic physics which can result in a non-monotonic VV-interaction[161].
The non-monotonic V-V interaction results in this case in unconventional vortex
distributions, having a coexistence of Meissner regions and regions having a
regular vortex lattice[162].

Within the two-component GL model, as discussed a non-monotonic VV-
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interaction having a long-range attraction and short range repulsion can exist as
a consequence of several superconducting components with different coherence
lengths. This particular type of interaction results at low fields in a vortex
distribution having vortex clusters wherein vortices sit a preferential distance,
d0, from each other, immersed in domains of Meissner state[145, 163]. This
is evidenced by molecular dynamic (MD) simulations modelling a system of
overdamped vortices under influence of this specific interaction potential. The
resulting vortex distribution upon changing the density is shown in Fig.6.3.
The corresponding distribution of the first neighbour distance, Pa, for a
vortex distribution obtained in a type-II and a type-1.5 superconductor by
MD simulations is shown in Fig.6.4(a). It is clear that where the distribution
function for the type-II case is single peaked, the distribution function for the
type-1.5 case shows a bimodal behavior corresponding with both inter (green
arrow)-and intra (red arrow) vortex cluster separations.

Figure 6.4: (a)The distribution of first neighbor distance, Pa, of the
theoretical vortex structures obtained in a Type-II(orange) and a Type-
1.5(blue) superconductor by MD simulations. In the case of Type-1.5, Pa shows
additional peaks at distances shorter(red arrow) and longer(green arrow) than
the most probable separation(blue arrow)(b) A tentative schematic H-T phase
diagram of a Type-1.5 two-gap superconductor. [20, 27].

At higher fields, when d0 > dvv it is expected that a regular Abrikosov lattice
is recovered. A schematic phase diagram characterizing the vortex distribution
for a type-1.5 superconductor is given in Fig.6.4(b) and should be compared
with the phase diagram for a single-component superconductor, Fig.1.7. An
excellent review about type-1.5 superconductivity can be found in Ref.[164].
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6.3 Experimental details

As discussed in Ref.[20, 27], the two-gap character and the details of every
subband, make MgB2 a prime candidate to observe type-1.5 superconductivity.
The MgB2 single crystals have been grown by a high temperature and high
pressure cubic anvil technique, using a precursor containing Mg, B, and
BN as described in Ref.[165]. The quality of similar crystals has been
already confirmed by crystallographic studies and magnetization measurements
showing low pinning and clean limit behavior. Additionally, 2H-NbSe2 crystals
grown by the standard iodine vapor transport method[166] have been used in
this work as a reference well-understood type-II superconductor.

The SHPM images in this chapter are obtained by using a modified low
temperature scanning Hall microscope from Nanomagnetics Instruments as
described in Chap.2. By locating the Hall cross just above the surface
of the crystals, we are able to determine the normal-to-superconducting
phase transition temperature as the temperature at which the out-of-phase
component χ” of the ac response has a maximum. Using a magnetic field
amplitude of 1 Oe and an excitation frequency of 77 Hz, we obtain a critical
temperature Tc ≈ 38.2 K with a transition width δTc ≈ 90 mK for the MgB2
crystal, whereas for the NbSe2 crystal, we found a Tc ≈ 7 K with a transition
width δTc ≈ 100 mK.

6.4 Unconventional vortex patterns in MgB2

In order to corroborate the presence of unconventional vortex arrays in MgB2,
we have investigated SHPM images under field-cooling (FC) conditions, i.e. the
sample is cooled down from T > Tc, to a chosen temperature in presence of
an external field. It is well known that following this protocol guarantees a
nucleated vortex state closer to the equilibrium configuration in comparison
to that taken under zero-field-cooling conditions, where surface barriers and
pinning give rise to a more pronounced irreversible behavior. Fig.6.5 present a
direct comparison of the flux distribution in the NbSe2 single crystal [Fig.6.5
(a) at 1 Oe and Fig.6.5 (c) at 2 Oe] with those obtained in the MgB2 crystal
[Fig.6.5 (b) at 1 Oe and Fig.6.5 (d) at 2 Oe] after field-cooling down to 4.2 K.

Although NbSe2 exhibits a nearly perfect triangular vortex lattice with long-
range order in agreement with a scenario where pinning is weak, the MgB2
crystal shows a highly inhomogeneous vortex distribution with coexistence
of vortex chains and extensive vortex-free regions. These results confirm
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Figure 6.5: Scanning Hall probe microscopy images after performing a FC at
1 Oe for the (a) NbSe2 and (b) MgB2 single crystals; and after doing a FC at
2 Oe for (c) NbSe2 and (d) MgB2 single crystals. Images are taken at 4.2 K.
The white bar on each picture corresponds to a length of 10 µm.[150]

previous studies by Bitter decoration[20] and scanning SQUID microscopy[149]
in similar MgB2 single crystals from different sources. The question naturally
arises whether the anomalous vortex patterns seen in MgB2 result from
unconventional vortex interactions[20, 161] or simply reproduce an accidental
peculiar inhomogeneous pinning landscape strong enough to prevent the
formation of a regular Abrikosov lattice. Before addressing this point, let us
first consider whether a triangular lattice as seen in NbSe2 necessarily implies
negligible pinning. For the NbSe2 single crystal, the average distance between
first neighbors (dvv) nicely follows the relation for a triangular lattice

av =
√

2ϕ0√
3B
, (6.5)

with B (the average internal field) being replaced by H (the applied external
field), Fig.6.6. Considering the penetration of the magnetic field in our sample
Hp(4.2 K)> Hc1(4.2 K)

√
d/W ≈36 Oe (here, Hc1 is the lower critical field,
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W the sample half width, and d its thickness), it is surprising that the
above relation for dvv(B), with B=H, works perfectly well all the way down
to 1 Oe≪Hp. This indicates that, in NbSe2, the vortex lattice is retained
in a metastable state (i.e. frozen) by surface barriers or pinning sites at
high temperatures, where Hc1 is negligible and B≈H. In other words, the
temperature at which the vortex pattern is formed Tq seems to be substantially
higher than the actual temperature of the experiment[133, 143]. We can obtain
a lower limit for this freezing temperature as the temperature above which the
vortex motion prevents a clear identification of vortices by SHPM and the
image looses all contrast. Following this criterion, we have found that, for
NbSe2, Tq≥ 0.978 Tc, in agreement with previous experiments[133], while for
the MgB2, Tq≥0.967 Tc.

Figures 6.5.(c) and 6.5.(d) show the evolution of the flux patterns for both
materials exactly at the same spots as in panels (a) and (b), respectively, but
at higher magnetic field, H = 2 Oe. For the NbSe2 crystal, a vortex lattice
containing some defects is observed[167]. As it has been pointed out by Larkin
and Ovchinnikov, any disorder in a superconductor, no matter how weak, could
destroy the long-range positional order in the vortex lattice due to collective
pinning[168]. The increase in the magnetic field reveals that (i) the vortex
stripes in MgB2 have a range of preferential directions, and (ii) they are not
straight but rather curved, i.e. they cannot be related to crystallographic
orientations of the atomic lattice. It is also worth noticing that some vortex-
free regions at 1 Oe become occupied at 2 Oe, indicating that the voids in the
vortex lattice do not appear due to repulsive pinning potentials. Furthermore,
at 2 Oe, it is possible to find stripes containing two rows of vortex chains forming
a zigzag structure similar to that seen in narrow superconducting ribbons with
weak pinning[143, 169]. In the case of broader stripes, containing three or more
vortex chains, vortices with sixfold coordination, as in an Abrikosov lattice, are
also observed. These features strongly suggest that the vortex clustering is not
a consequence of an inhomogeneous vortex pinning.

Interestingly, vortices in MgB2 not only depart dramatically from a triangular
array, but they also violate locally the relation, Eq.6.5, found for the NbSe2
single crystal. The existence of vortex clusters and stripes separated by
vortex-free regions leads to a unique bimodal vortex distribution which has no
counterpart in type-2 superconductors. This bimodal behavior can be split into
an intragroup and an intergroup vortex distribution[20, 149]. We have found
that the average first vortex neighbor distance in the intragroup distribution
has changed only slightly, from 2.5 µm at 1 Oe to 2µm at 5 Oe.
One possible explanation of this unique behavior can be found through
the combination of the long-range attractive and short-range repulsive VV-
interactions characteristic of the type-1.5 regime, where the VV-interaction
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Figure 6.6: Average first neighbors distance as a function of B for an NbSe2
single crystal (open triangles), an MgB2 single crystal (open stars), and for a
perfect Abrikosov lattice (solid line). Additionally, there is represented the
intergroup first neighbor distances for an MgB2 single crystal (full circles)
and the intragroup first neighbor distances for different MgB2 single crystals;
squares, triangles, and open circles correspond to scanning Squid microscopy,
Bitter decoration, and to our SHPM results, respectively. The inset shows the
same data as a function of 1/

√
B.[150]

potential, which is magnetic field independent, presents a minimum at a vortex
separation dmin[153]. Dao et al. predicted dmin≈ 2 µm in MgB2 for the vortex
lattice freezing at Tq/Tc = tq = 0.97, see Fig.6.2. This estimate is in very
good agreement with our experimentally determined intragroup average first
neighbor distance, giving support for the two-gap origin of non-monotonic V-V
interaction in clean MgB2 crystals.

In Fig.6.6, we summarize the obtained average first neighbor vortex distances
for NbSe2 and MgB2 single crystals as a function of the local induction B.
The local induction has been calculated as the number of vortices divided
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by the total area of the image. It is shown that both the NbSe2 and the
MgB2 follow very well the expected behavior, Eq.6.5 (shown in the graph
as the solid red/dark gray line). Nonetheless, it is worth noticing that,
in the MgB2 single crystal, the average first neighbor vortex distances in
the intergroup distribution show strong magnetic field dependence while the
intragroup distribution dmin(B) data demonstrate only, as already mentioned,
a weak dependence on the magnetic field. We observe that the average V-V
intracluster distance changes only from 2.5 µm at 1 Oe to 2 µm at 5 Oe, in
a good agreement with the equilibrium distance dmin proposed by the theory.
Since the theory predicts that dmin is field independent, in our FC experiments,
dmin should vary with the magnetic field through tq(B)= Tq/Tc(B), which
explains why a weak dependence on the magnetic field is seen. Moreover, this
is in accordance with the dependence shown in Fig.6.2. This striking feature
has no counterpart in a type-II superconductor, irrespective of the details of
the pinning landscape.

6.5 Stripe pattern evolution in MgB2

Since in the absence of surface barriers or no pinning at all, one could expect
strong degeneracy in the stripe ground state orientation each time a FC is
performed[170], data shown in Fig.6.5(d) point out the possibility that pinning
still might play a certain role in their stabilization. In order to address this
point, we have performed successive FC experiments down to 4.2 K, under
identical conditions and in the same area for both investigated materials. In
Fig.6.7(a), we show four successive FC’s at 0.9 Oe for NbSe2; and in Fig.6.7(b),
we repeat the same experiment for MgB2. The NbSe2 shows a weakly distorted
triangular lattice, which at every FC nucleates somewhat at a different position
and with the principal axes of the triangular array slightly rotated. The same
experiment performed for the MgB2 crystal reveals a behavior similar to that for
the NbSe2, but with very unusual inhomogeneous vortex patterns. Individual
vortices nucleate in the successive FC’s at positions that differ by more than
1 µm, a distance which is larger than the typical range of the elementary
pinning interaction (rp≈ ξ for fields B ≤ 0.25Bc2)[168]. This behavior rules
out the possibility of the existence of isolated strong pinning centers. Indeed,
it has been demonstrated that, in the presence of such strong pinning sites,
the positions of the vortices are not random, and they nucleate preferentially
at these sites[171]. Clearly, our experiments reveal that, in both systems, the
existing pinning centers must be quite diluted and weak, in agreement with
the high quality of the crystals. Since the explored area in Fig.6.7(b) (about
16 × 16 µm2) is rather small compared with the total crystal surface (300
× 200 µm2), we have performed other field-cooling experiments on the MgB2
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Figure 6.7: Four successive FCs at 0.9 Oe for (a) NbSe2 and (b) MgB2 single
crystals. Panel (c) shows an FC at 1 Oe for the MgB2 crystal. Panel (d) shows
the difference in vortex position from two consecutive FCs. Images are taken
at 4.2 K. The white bar on each picture corresponds to a length of 10 µm.[150]

crystal at 1 Oe, covering nearly the same extended area as in Fig.6.5(b) (68 ×
45 µm2). The results are given in Fig.6.7(c). By comparing the two images,
it is found that, even though generally individual vortices do not nucleate at
the same position, there is a tendency for stripes and vortex-free regions to
maintain their position and orientation. To better show this; in Fig.6.7(d), we
present the difference between two consecutive FC’s [those shown in Figs.6.5(b)
and 6.7(c)]. Where a bright spot is observed, a vortex nucleated during the
first FC [Fig.6.5(b)], but not during the second FC [Fig.6.7(c)]. Contrary to
that, where a dark spot appears, a vortex nucleated during the second FC in
vortex-free position seen at the first FC. It is important to mention that there
exists an unavoidable error in our spatial distribution that comes mainly from
the composition and alignment of the two images. We estimate this error to
be certainly less than 0.5 µm, which in the image equals to approximately 1/3
of the size of a vortex. Therefore, all bright and dark spots in Fig.6.7(d) which
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fall below this size can actually represent vortices nucleating at the same spot.

Figure 6.8: (a) Two successive field cools at 5 Oe for the MgB2. The images
are taken at 4.2 K. The white bar on each picture corresponds to a length of
10 µm.[150]

In Fig.6.8, we show two successive nucleations at 5 Oe in a partial area of the
images shown in Fig.6.7. At 5 Oe, the vortex-free regions have greatly shrunk
in size, while vortex clusters have grown and merged with some of the stripes
appearing at lower fields. It is relevant to highlight that, at the right part of
both images, extended vortex-free regions still coexist with long curved stripes
where vortices with sixfold symmetry can be observed. A relevant question is
why the stripes align for subsequent field cools in a single preferential direction?
It is expected that the presence of any type of bias produced by the boundaries,
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a substrate, a small in-plane component of the magnetic field, or an external
drive, such as a shear, breaks the symmetry of the stripe ground state and
causes the stripes to align in a single direction[170, 172]. Which particular bias
mechanism resulting in stabilizing this preferential direction is still a question
for further study.

6.6 Vortex pattern stability in MgB2

Thus far, we have shown that the MgB2 crystal exhibits a very weak pinning
behavior, very much like NbSe2, although the vortex patterns are still very
different. It is particularly relevant to find out which mechanism defines the
preferential orientation of vortex stripes. In the absence of extended vortex
pinning centers, this feature can be hardly described by only taking into account
a weak diluted pinning landscape. Furthermore, MgB2 is usually considered as
a two-band material having an isotropic s-wave pairing potential with uniaxial
symmetry[173], which rules out the possibility that in-plane modulations of the
order parameters could cause some preferential vortex stripe orientations. We
can also rule out the pinning produced by omnipresent surface defects, such as
terraces, since the Bitter decoration experiment[20] already demonstrated that
the vortex stripes actually run across terraces without being aligned by them. It
is worth mentioning that, using the magneto-optical technique, Soibel et al.[174]
observed inhomogeneous flux distributions in Bi2Sr2CaCu2O8 single crystals
grown by the floating-zone method. These unusual flux patterns persisted up
to magnetic fields as high as 100 Oe, and they were related to compositional
inhomogeneities of the crystal and to structural defects. We can certainly rule
out this effect in our MgB2 single crystals, where the unusual patterns are
observed only up to fields as high as 7-10Oe. At such fields, the first neighbor
distance dvv for a regular type-II system is of the order of 1.83-1.54µm, and
when dmin > dvv, we find the whole surface covered by a vortex lattice in
correspondence with the expectations from MD simulations for vortices having
a Type-1.5 interaction potential.

In order to investigate whether the orientation of the vortex stripes responds
to a particular sample boundary effect, we took SHPM images at the sample’s
border. Figure6.9(a) shows FC’s at +3 Oe taken close to the sample’s edge
(indicated by a red/dark gray line) at T /Tc = t = 0.78. The picture shows a
vortex-free region close to the edge of a length ranging between ∼10-20 µm.
Similar vortex-free regions close to the edge have been observed in NbSe2
and were attributed to geometrical barrier effects[175]. Behind the vortex-
free region, vortices nucleate and form clusters with a tendency to be aligned
parallel to the sample’s edge. However, Fig.6.9(b), corresponding to a FC at -3



VORTEX PATTERN STABILITY IN MGB2 135

Figure 6.9: (a) Field cooling at +3 Oe for the MgB2 crystals close to the
sample’s border (highlighted in red/dark gray). (b) Field cooling at −3 Oe for
the MgB2 crystal, and (c) image of the same region after shaking the vortex
lattice at t = 0.9 and with and Hac = 10 Oe, f = 77.1 Hz. The images are
taken at 30 K. Pictures are at the same scale, the white bar below each picture
indicates 10 µm.[150]

Oe and in a different spot close to the sample’s border, shows that the stripes
form a certain angle with respect to the sample border. This behavior suggests
that there is no straightforward correlation between the border of the sample
and the orientation of the observed vortex stripes.

The stability of the vortex stripes in MgB2 can be investigated by applying an
ac shaking. It is well known that, in the presence of a weak disorder (i.e. weakly
distorted vortex lattices), vortices can be reordered by a symmetric shaking of
the magnetic field[172]. In that sense, one may wonder if a similar disorder-to-
order transition can be induced in MgB2. Starting from an FC at -3 Oe of the
MgB2 crystal taken at t = 0.78 as shown in Fig.6.9(b), we then shake the lattice
at t ∼ 0.9 by applying an ac magnetic field of 10 Oe oscillating at a frequency
of 77.1 Hz. The result (after switching off the ac field and cooling down back
to t = 0.78) is shown in Fig.6.9(c). Due to the strong shaking, vortices as far
as 95 µm away from the edge (left-most vortices) have been displaced from
their initial positions, but contrary to what has been observed in low pinning
type-II superconductors, no disorder-to-order transition is observed. Moreover,
vortex clusters and stripes persist, and they have realigned themselves following
a different orientation. Additionally, after the shaking at t ∼ 0.9 [Fig.6.9(c)],
vortices inside stripes show the tendency to have moved closer together, as
revealed by the clear darkening and difficulty to further distinguish individual
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vortices at some spots. This reveals that the equilibrium VV- distance, dmin,
is lower at t ∼ 0.9 as compared to the freezing temperature tq. The variation
of dmin with temperature is in agreement with Fig.6.2 showing the dependence
of dvv(t) proposed by the theory of 1.5 superconductivity, where dmin ∼ 1.25
µm in MgB2 for the vortex lattice freezing at tq = 0.9. Once more, this clearly
demonstrates that pinning cannot account for the observed inhomogeneous
vortex patterns, like vortex stripes, chains, and clusters, and more likely they
are the result of competing VV- interactions.

6.7 Conclusions

By directly visualizing the vortex patterns via scanning Hall probe microscopy,
we have provided convincing direct experimental evidence that the anomalous
vortex distributions observed in MgB2 are not caused by inhomogeneous
pinning landscapes, even though pinning or/and surface barriers are playing
an important role in trapping the vortices at fields much lower than the
lower critical field. These results support the existence of a non-conventional
VV- interaction in clean crystals of the two-gap MgB2 superconductor.
One possible explanation for this particular type of interaction reproducing
the observed vortex distributions is the type-1.5 superconductivity scenario
proposed within the GL-theory in Ref.[20, 21]. The measured intragroup VV-
distance corresponds with the predictions made within this model. Future
experiments, certainly in the mesoscopic regime, where the behavior of a two-
gap superconductor differs significantly from the single-gap case (cf. fractional
vortices[146], non-composite vortices[147], etc.), could provide a conclusive
evidence of type-1.5 superconductivity.

In addition, we have tracked the evolution of the different patterns as a function
of the vortex density (B) and interaction strength (T); as the density increases,
the system progresses from a low-density clump phase to an intermediate-
density stripe phase and then to a higher-density stripe phase, where vortex
voids appear in the system. This extends the observations of the data taken
by scanning SQUID[149] to a broader field regime and this further supports
the previous data obtained by Bitter decoration[20] in the same field regime.
Moreover, the SHPM technique allows, in contrast to Bitter decoration, an
observation of the same scan area while continuously varying the controllable
thermodynamical variables. For example, we were able to investigate the
stability of the stripe patterns having a preferential direction when obtained
in a FC process at the border. No direct correlation is found between the
preferential direction of the stripe and the sample boundary. By shaking the
distribution with an external ac magnetic field, the orientation of the stripes
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changes, supporting further that pinning cannot account for the observed
inhomogeneous vortex patterns and the existence of a non-conventional VV-
interaction is responsible for this behavior. However, the driving mechanism
resulting in the preferential nucleation direction of the vortex stripes still
remains unsolved.





CHAPTER7
Conclusions and outlook

Conclusions

In the framework of this thesis the main pursued objective was to explore
the superconducting properties at the single fluxon level. As the flux dynamics
determines the electromagnetic properties of a superconductor, this study is
of fundamental importance. The behavior of fluxons is determined by an
interplay between different competing forces: the pinning force, the vortex-
vortex interaction and an applied or induced driving force. Whereas, most of
the research done up till now, probes the average response of millions of vortices
in for example transport measurements or magnetization measurements. The
observation of a single vortex allows to check the theoretical models introduced
to explain these macroscopic measurements. Moreover, it was hoped to find
extraordinary and unexplored behavior at this single vortex scale in similar
manner as K. Onnes bumped onto the phenomenon of superconductivty, while
checking Drudes theory of resistivity at the lowest temperature possible. These
objectives, which are described more in detail in the preface, are pursued
by using scanning Hall probe microscopy, a technique which scans a sub-
micron sized Hall probe over the sample surface to reveal the flux carried by a
single vortex. Further this dissertation strived to contribute to the continuous
drive to push further the techniques which allow access to investigate the
superconducting properties at the single fluxon scale.

In a first part of this dissertation these objectives are addressed using well
defined playgrounds to check the described interplay between the repulsive
vortex-vortex interaction in conventional superconductors and the tunable force
field created by the pinning potential. These playgrounds are provided by
the production of nano-structured superconductors. With the advent of nano-
lithography it is possible to structure superconductors at the characteristic
length scales, ξ and λ and to create well defined pinning centers. The shape and

139
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distribution of these pinning centers has profound consequences for the vortex
properties. A particular interesting case is discussed in Chapter 3, where the
influence of a quasiperiodic Penrose tiling of pinning centers upon the vortex
lattice properties is investigated. The competition between the vortex-vortex
interaction favoring triangular order and the extraordinary properties of the
quasi-periodic modulated pinning landscape has profound consequences for the
resulting vortex distributions and their dynamical properties.
Regular (translational-invariant) periodic lattices of pinning centers are well
studied, here so called matching effects are observed as a consequence of
commensurability between the vortex lattice and the periodic pinning potential.
When the matching conditions between the vortex lattice and the regular
pinning potential are fulfilled, sharp local maxima in jc(B) appear close to
Tc. This enhancement is a consequence of the perfect compensation of the
vortex-vortex interaction at every matching field, resulting in a more stable
vortex configuration. However, the highly symmetric configuration resulting
in a local enhancement of jc at the matching conditions, can promote at the
same time channeling or guidance of vortices for particular current directions,
resulting in a strong suppression of the critical current for these particular
current directions [79, 80].
From technological point of view, quasiperiodic pinning arrays provide several
advantages as compared to periodic pinning arrays. In this case, the lack
of perfect periodic translational order of the pinning landscape prevents the
formation of one-dimensional channels for easy vortex flow. Moreover, whereas
in regular pinning arrays the enhancement of jc(B) occurs only for applied
fields close to the matching conditions, the convolution of many build-in
periods (self-similarity) present in a quasi crystal favors the proliferation of
many matching features or an extremely broad peak in jc(B). In principle,
both properties tend to improve the maximum current attainable without
dissipation, i.e. the superconducting critical current. These properties were
theoretically predicted (Molecular dynamics) and experimentally measured by
indirect transport measurements[69, 70, 71, 72, 73, 74]..
By using SHPM we were able to discern and connect vortex properties
measured before as a macroscopic response, involving millions of vortices,
with the real microscopic vortex distributions. The experimentally observed
vortex distributions are contrasted with the theoretical predicted (Molecular
dynamics) and experimentally measured (indirect transport measurements)
commensurability effects in quasi-periodically nano-structured superconduc-
tors. The obtained flux distributions not only show the theoretically and
experimentally anticipated vortex configurations for specific matching fields but
unveil new and so far unpredicted vortex distributions. The most fascinating
result is the collective and synchronized arrangement of both, pinned and
interstitial vortices, forming ring-like structures which stabilize a giant vortex



CONCLUSIONS AND OUTLOOK 141

at the center of this "vortex corral". This study illustrates that the ability of
observing single vortices by SHPM is a powerful tool to study vortex physics,
to check theoretical theories and to reveal new and unexpected behavior, such
as the observation of the symmetry induced vortex corral.

As the SHPM allows to observe only static vortex distributions it is difficult
to probe dynamical properties of the vortices. In Chapter 4, SHPM is used
to probe the critical entry field above which a type-II superconductor is
flooded with vortices. To allow the observation of the first vortex entering
the sample a carefully sample design is used, being a thin superconducting
film with a periodic array of antidots. The periodic antidots assure that
the entered vortex is captured in close neighbourhood of the sample border,
as in absence of pinning, the entered vortex is driven to the center of the
sample by the screening currents at the edge. As such the combination of
the single vortex resolution of SHPM and the careful sample design allow
to observe the entry of vortices by SHPM, a dynamic property. As the
magnetic response of a type-II superconductor is radically different depending
on whether the superconductor is in the Meissner state, characterized by a
reversible magnetic response, or in the mixed state, where vortices appear,
the determination of this field is of fundamental importance. Moreover, the
superconducting thin film geometry used here has a remarkable importance as
it is used in the vast majority of applications for superconductivity. Despite it’s
importance it is never investigated at the single vortex level. Through history
several contributions are proposed which determine this entry field. These
contributions include surface effects, the nucleation process of vortices at the
edge, demagnetizing effects, etc. Our results confirm that the mechanism for
the first vortex penetration arises as a consequence of the screening Meissner
currents reaching values of the depairing current at the edge. The depairing
current is the maximum current that can run before superconductivity is locally
destroyed and which thus leads to to vortex nucleation. On top of that, we
also investigated the vortex entry process for different antidot shapes and
distributions. In all cases, the criterium for vortex entry is found to be the
same. As in Chapter 3, also here SHPM allows to reveal extraordinary local
vortex behavior, unable to be probed by macroscopic measurements. It is shown
in Ref.[117] for an identical sample having a triangular array of boomerang
shaped antidots and also observed here for a sample with a square array of
square antidots, that upon vortex entry, a stepwise flux gradient develops as a
consequence of the periodic pinning landscape. This so called ‘terraced critical
state’ was proposed by Cooley and Grishin[116], but up till now it is never
directly visualized with single vortex resolution.

While in the two preceding cases the visualisation of a static vortex distribution
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by SHPM is used to infer information about the vortex properties, no
observations are made during the motion itself. In Chapter 5, we present a
novel local imaging technique with unprecedented resolution, termed scanning
ac-susceptibility microscopy (SSM), which allows us, for the first time, to
directly visualize the microscopic dynamics of an individual flux quantum. The
technique combines the ability of scanning Hall probe microscopy to observe
a single fluxon and the phase sensitivity of the standard ac-susceptibility
technique. The ac-susceptibility technique is a powerful experimental method
to gain information about the dynamical properties of these fluxons by
detecting their reaction upon shaking them back and forth with a small
external ac magnetic field. Whereas in the global ac-susceptibility technique,
the recorded signal represents an average over millions of fluxons, each in a
different pinning potential and subjected to a different environment, in SSM
the ac-response can be probed of a single fluxon. In similar fashion as in a
driven damped pendulum, the displacement of the flux quanta will provide
us with information about the potential well where the fluxon is trapped
into. Whereas the measured phase lag between the oscillatory motion and
the driving force reveals the drag a single moving fluxon experiences. In
this chapter, the SSM technique will be used to investigate the response of a
superconducting Pb ribbon and a nano-structured Pb film to a perpendicular
applied ac magnetic field. The results obtained in these two case-studies render
new insights on the basic mechanisms of vortex dissipation with unmatched
single vortex resolution and provide an essential tool to measure a detailed
cartography of the intensity of the pinning landscape. For example, a clear
dichotomy between the ac-response of the vortices and the screening currents
was observed using the phase sensitive character of the SSM technique. The
observed out-of-phase response of the vortices, which was absent for the
reversible screening currents, directly shows the local dissipation of the vortex
motion. As viscous losses can only account for a small fraction of the measured
large phase-lag at the used experimental excitation frequency, the observed
large phase-lag, Θ=-0.5rad, is explained by thermally activated vortex hopping
over pinning centers. On top of that, in the second case-study, a clear
difference in mobility is observed between pinned and interstitial vortices. This
difference arises due to the different pinning potential each vortex species
experiences. Whereas, vortices pinned by an antidot are strongly anchored, the
interstitial vortices are very mobile as they are weakly caged due to surrounding
pinned vortices[46]. Moreover, we made a direct observation of the correlation
between the ac-penetration depth and the vortex dynamics used in theoretical
models[44, 45, 43] to explain macroscopic ac-susceptibility measurements.

In a last part, the SHPM technique is used to reveal the extraordinary behavior
of fluxons in two-gap superconductors. As compared to the conventional
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single-gap nano-structured superconductors, where the competition between
the repulsive vortex-vortex interactions and the pinning force determines the
vortex properties. In two-gap superconductors, the new degrees of freedom,
give rise to many more remarkable new possibilities interesting for both
fundamental research and applications. An interesting new feature is discussed
in Ref.[145, 153, 158] for two uncoupled components having ξ2 <

√
2λ < ξ1.

In this case, where one component is of type-I, while the other is of type-
II, it is found within the GL-theory that the vortex-vortex interaction varies
non-monotonic. This particular type of interaction results at low fields in a
vortex distribution having vortex clusters wherein vortices sit a preferential
distance, d0, from each other, immersed in domains of Meissner state[145].
Since this peculiar vortex clustering shared reminiscence with both Type-I
(Meissner-state) and Type-II superconductors (Vortex-state), it was coined as
the ‘semi-Meissner state’[145] or ‘type−1.5 superconductivity’[20]. In Chapter
6, we use SHPM to directly visualize the vortex patterns in clean crystals
of the two-gap MgB2 superconductor, a prototypical two-gap superconductor
and a perfect candidate to observe type-1.5 superconductivity. As compared
to previous investigations on similar single crystals, SHPM has single-vortex
resolution in a broader field range than the measurements described in Ref.[149].
On top of that, SHPM offers in contrast to the Bitter decoration technique
the possibility to change the thermodynamic variables, magnetic field and
temperature, while simultaneously visualizing the vortex patterns in the same
scanarea. We have been able to observe the progressive formation of stripes, in
agreement with previous studies. This provides convincing direct experimental
evidence that the anomalous vortex distributions observed in MgB2 result from
a non-monotonic VV-interaction and are not caused by inhomogeneous pinning
landscapes. One possible explanation for this particular type of interaction
reproducing the observed vortex distributions is the type-1.5 superconductivity
scenario proposed within the GL-theory. The measured intragroup VV-distance
corresponds with the predictions made within this model. The stability of the
stripe patterns having a preferential direction when obtained in a FC process
at the border is also investigated. No direct correlation is found between the
preferential direction of the stripe and the sample boundary. By shaking the
distribution with an external ac magnetic field, the orientation of the stripes
changes, supporting further that pinning cannot account for the observed
inhomogeneous vortex patterns and the existence of a non-conventional VV-
interaction is responsible for this behavior. However, the driving mechanism
resulting in the preferential nucleation direction of the vortex stripes still
remains unsolved.
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Outlook

The scanning Hall probe technique and the scanning ac-susceptibility technique
have clearly proven their power to investigate the single fluxon world,
unaccessible by macroscopic measurements. As the investigation of vortex
dynamics is of fundamental importance, SSM is an important new tool. The
general principle of operation, namely phase-sensitive detection, can be used
in other scanning techniques and extended beyond the superconductivity
community. For example, applying the same principle in a scanning
tunneling microscopy setup, would allow to check the ac-response at higher
magnetic fields, unaccessible by SHPM. Not only within the superconductivity
community, the SSM technique could be used, also in magnetic systems it can
be a new tool to investigate for example the dynamics of magnetic domain
walls. As in this work only the linear low frequency response is considered, this
technique is just a first step as a tool to investigate vortex dynamics and will
hopefully be extended further or triggers new techniques, to capture locally the
vortex motion at higher frequencies and in the non-linear regime.



List of symbols

Constants

Symbol Name Value Unit
e Electron charge 1.602 × 10−19 C
h Planck constant 6.626 × 10−34 J· s
~ =h/2π Reduced Planck constant 1.054 × 10−34 J· s
kB Boltzmann constant 1.381 × 10−23 J/K
Φ0 Magnetic flux quantum 2.067 × 10−15 T·m2

Symbols

Symbol Object Unit
Tc Critical Temperature K
vF Fermi velocity m/s
kF Fermi wavevector m/s
kF Fermi wavevector m−1

m∗ effective electron bandmass kg
εk single particle energy J
E Overall energy J
σ Spin ↑, ↓
Φ Wavefunction ?
ϑ Phase of the wavefunction ?
ωD Debye angular frequency rad/s
∆ Superconducting gap eV
N(ε) Density of states at ε ?
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