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We propose a transparent and easy-to-implement method for calculating the charge and potential distribution of nanosystems.
The method consists of a Monte-Carlo simulation which forms a direct implementation of the Hohenberg-Kohn (H-K) 
theorems[1]. This "Density-Functional-Monte-Carlo method" is explained and applied to a nanoshell.
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Conclusion

Example
Nanoshells[2]

 

are spherical symmetric nanosize particles with alternating dielectric and metallic concentric layers. They have 
applications in biomedicine, opto-electronics, high-pressure measurements[3], … The Density-Functional-Monte-Carlo method 
is used to calculate the density and potential distribution of a

 

nanoshell with a dielectric core and a metallic shell.

Method
A Monte-Carlo simulation is performed in which the domain is a mesh in a

 

nanosystem, the random inputs are "walkers" on 
the mesh and moves of the walkers to neighbouring mesh points, the deterministic computation is the calculation of the 
energy functional corresponding to a certain density and the evaluation is the comparison between the energy functionals 
corresponding to different electron densities. This is a way to implement the H-K theorems.

The Density-Functional-Monte-Carlo method is presented as a transparant and easy-to-implement method. Applying it to a 
nanoshell shows that it can be used to calculate the density and

 

potential distribution of a nanosystem. 

Hohenberg-Kohn (H-K) theorems
1. The energy E of a system is a unique functional of the density n(r) 

(if the system is non-degenerate)

E = E[n(r)]

2. If the number of particles N is conserved, this unique functional
reaches its minimum at the correct ground state density nGS

 

(r)

N constant ⇒ Emin

 

= E[nGS

 

(r)]

basis of Density Functional Theory (DFT)

Monte-Carlo simulation
"Iteratively evaluating a deterministic model using sets of random numbers as inputs."

Mostly the calculations follow the next pattern:
1. Define a domain of possible inputs.
2. Generate inputs randomly from a probability distribution over

 

the domain.
3. Perform a deterministic computation on the inputs.  
4. Evaluate the results of the deterministic computation.
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Nanoshell

homogeneous 
neutralizing 
background

1. Domain 

a mesh in a nanosystem
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2. Inputs
a. initial density distribution of 

'walkers' on the mesh    
b. iterative random moves of walkers 

to a neighbouring mesh point

2a. walker density ↔ electron density 

Ne
Nw=nw = n

Ne
Nw

3. Deterministic computation
calculation of the energy functional 

E[n(r)]

 

= T[n(r)] + EH

 

[n(r)] + EXC

 

[n(r)] 

2b. moving a walker ↔ changing electron density distribution 

nw     (r)[i-1]

n  (r)[i]

n     (r)[i-1]

random direction

nw (r)[i]

change              in next iteration

4. Evaluation
E[i][n(r)] < E[i-1][n(r)]

Nw

 

is constant ⇒ Ne

 

is constant

Emin

 

= E[nGS

 

(r)]

nGS

 

(r) is found -

 

stop

E[i][n(r)] >

 

E[i-1][n(r)]

change           in next iterationnw (r)[i]

nw     (r)[i-1]

because

E[i][n(r)] =

 

E[i-1][n(r)]
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