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Preface

In these course notes I attempt to give an overview of the physics of (i)
Bose-Einstein condensates in dilute atomic gases, (ii) superfluid helium, and
(iii) superconductivity. While the choice of material and presentation is my
own, I like to acknowledge hand-picking nice ideas for presentations from a
score of excellent textbooks, that I list in the biography. I would encourage you
to also consult these textbooks — they can in particular give additional clues to
solving the problem sets.
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Introduction

The world around us, observed and experienced on the human scale, is very well
described by classical theories (and a bit of Pauli exclusion). While quantum
mechanics is (at the moment) the fundamental theory on which we build our
insight into the world, its counterintuitive predictions usually remain hidden
deep into the microscopic world of atoms. At the macroscopic scale quantum
effects usually only appear in the form of subtle refinements of classical theories,
brought about by intricate experiments. To bring out the quantum nature of
matter these experiments peer at the microscopic scale. This course discusses
another way to probe quantum mechanics, namely by transfering the quantum
aspect of the microscopic world on to macroscopic objects, making those objects
behave in the same manner as the quantum particles they are built up from.
This is, condensed in one sentence, what superfluids and superconductors are
— in this state of matter, the appropriate description is a macroscopic wave
function.
Until 1995 there were only two macroscopic quantum states available:

superfluid helium and superconducting solids. Since then, a third realization
appeared: ultracold dilute atomic gases. The latter offers an unexpected level
of experimental control: it is a very pure state whose geometry, interaction
strength, and composition can be very accurately tuned by experimentalists.
It has since then been used to build systems that correspond to specific model
Hamiltonians. These Hamiltonians can now be studied and manipulated not
only by analytical calculation or by computer simulation, but “in vivo”, and they
can be brought in conditions hitherto unavailable. So, not only fundamental
tests of quantum mechanics are made possible, but also new territory has
been opened up for exploration, in particular regarding the many-body aspects
of quantum mechanics. That is why in this course we will spend a lot of
attention to this new and exciting system — the first chapter focuses entirely
on it. In that chapter we introduce and discuss the concept of Bose-Einstein
condensation. While this concept and the properties engendered by it are most
clearly learnt from the quantum gases, they are also at the basis of superfluidity
in liquid helium and of superconductivity. The difference lies in the nature of
the interactions and the building blocks. In superfluid helium-4, the system
is no longer dilute, and the role of interactions is more prominent. We discuss
this system in the second chapter. Finally, in superconductors, electrons exhibit
macroscopic quantum behavior — but in order to do so they have to form pairs
first. Here, the interactions are crucial. We investigate superconductivity in the
third chapter.
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Chapter 1

Bose-Einstein Condensation

Classical physics started out as a study of the familiar world around us, on
human length scales. But as our ability to probe larger or smaller scales got
better, it became clear that classical physics had to be extended and corrected.
Better telescopes shifted the boundary of the largest possible scale, and better
microscopes or particle accelators reduced the smallest scales available. At the
largest scale, Newtonian physics could not explain the precession of Mercury,
and at the smallest scale, black-body radiation did not fit in with classical
mechanics. The former required general relativity to be developed, and the
latter led to quantum mechanics. Here, we focus on another boundary that
physicists have been working on: the record of the coldest temperature. It is by
moving that boundary ever closer to absolute zero that first superconductivity
and then superfluidity were discovered. For these phenomena, the laws of
classical physics do not apply, and it was found that quantum mechanics
—under normal circumstances of temperature and pressure confined to the
microscopic world— governs the behaviour of superconductors and superfluids
on a macroscopic scale.
To understand how low temperatures can bring out the quantum nature of

matter, we start from Boltzmann’s classical description of a gas of atoms. The
atoms are described as mass points with definite positions and momenta, drawn

Figure 1.1: A gas of atoms, from Boltzmann to De Broglie, from classical to
quantum mechanics.

1



2 CHAPTER 1. BOSE-EINSTEIN CONDENSATION

Figure 1.2: Upon cooling, the wave packets spread out, until they overlap and
-in the case of bosonic atoms- result in a macroscopic wave function shared by
all atoms.

from a statistical distribution. They jiggle and bump into eachother. As the
gas cools down, the average velocity (and hence momentum p) of these mass
points is reduced, the jiggling motion becomes less agitated. The average kinetic
energy of the atoms is given by (3/2)kBT =


p2
®
/(2m), where h..i represents

and averaging over Boltzmann’s statistical distribution.
Since Louis de Broglie, we know that the atoms should not be thought of as

little balls with definite position and momentum, but they must be represented
by wave packets. These wavepackets necessarily result in a certain spread in the
momentum ∆p and a spread in the position ∆x of every single atom, illustrated
in figure 1.1. The average kinetic energy can still be written as (3/2)kBT =
p2
®
/(2m), but now h..i must represent an averaging over both the classical

ensemble and over the quantum mechanical uncertainty. It remains true that a
colder gas will have, on average, slower atoms than a hot gas.
The spread or uncertainty in the position is linked to the uncertainty in

the momentum through the Heisenberg relation ∆x∆p < h/(4π). When the
gas cools down, the average momentum of the atoms is reduced, and hence
the uncertainty on the momentum must decrease as well, since obviously ∆p <p
hp2i so∆p <

√
3mkBT . Heisenberg’s uncertainty relation then states that∆x

must start to grow when the temperature is reduced. The relation between the
spread on the atom’s position and the temperature is given by the wavelength
of de Broglie:

λdB =

s
2π~2
mkBT

.

For a gas of nitrogen molecules N2 (mnitrogen = 4.65 × 10−26 kg) at room
temperature (T = 293 K) the de Broglie wavelength equals λdB = 0.019 nm.
The distance between the molecules is a lot larger. At a typical gas density of
ρ = 1.25 kg/m3 the density of molecules is n = 2.7 × 1025 N2 molecules/m3,
from which we derive an intermolecular distance of 3.3 nm. A good measure of
the ratio between the quantum mechanical uncertainty in the position (i.e. the
spread of the wave packet) and the distance between the atoms or molecules is
the “gas parameter” nλ3dB . For air at room temperature we have nλ3dB ≈ 10−7.
We’ve argued that as the gas cools, the momentum decreases, so also the

uncertainty on the momentum decreases, which implies that the uncertainty
on the position increases. This goes un until nλdB ≈ 1, when the spread on
the atom’s position is as large as the distance between the atoms. Then we
can no longer consider the atoms as separate classical mass points: their wave
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functions start to overlap. Two cases must be distinguised: either the particles
are fermions, in which case they cannot share the same wave function, either
they are bosons and they can be in the same quantum state. In the latter
case the individual wave functions will get in phase, just as people, in an
audience that starts to appload, will end up clapping their hands simultaneously.
If this were not the case, the spreading wave functions would destructively
interfere. All the bosonic atoms acquire the same wave function that oscillates in
phase. This phenomenon, described here qualitatively, is called Bose-Einstein
condensation or BEC : a macroscopic occupation of a single-particle state,
together with phase coherence. Don’t worry if these words sound alien now,
we’ll delve into their meaning soon enough. The idea is that cooling the gas has
resulting in overlap of the atomic wave functions, so that the individual atoms
“lose their identity” and start acting collectively and on the macroscopic scale.
That is why Bose-Einstein condensation is said to be an expression of quantum
mechanical behavior on a macroscopic scale. This behavior differs from that of
usual gases, fluids or solids; BEC is a new phase of matter.

1.1 The experimental search for the new phase

A gas at room temperature is very far from this quantum phase of matter: its
gas parameter nλ3dB ≈ 10−7 is much smaller than one. Cooling down the gas
will increase λ3dB and also reduce the distance between the atoms, so that is
what you’ll want to do to get closer to BEC. The story about the experimental
detection of BEC in atomic gases is basically the story of our quest to make
things colder and colder. Just as it is interesting to build telescopes that look
farther and farther into the university (in the hope that we’ll see something new
just beyond the current horizon), it is interesting to develop techniques that
bring us closer and closer to absolute zero, even though thermodynamics tells
us we can never get to absolute zero itself. Let’s have a look at this long journey
into the cold.
The proverbial man in the street has a simple technique to cool things down:

bring them in contact with something colder. Drop an ice cube in your drink. Or
drop some liquid nitrogen in your drink, for even better cooling. Liquid nitrogen
is called a “cryogen”, from Greek cryos (cold) and genesis (to produce). So
it’s quite literaly something you can use to produce cold. The liquid nitrogen is
produced itself by expanding nitrogen gas (the Joule—Thomson effect says it will
cool down when expanding adiabatically!), which is also the principle behind a
fridge. The best croygenic fluid is liquid helium, which boils at 4.2 K. If you
pump on the helium vapor that boils off, you can reduce the vapor pressure and
bring down the boiling temperature to about 1 K without too much trouble.
Physicists can do much better, and pump out helium-3 from a helium-4 and
helium-3 mix in a so-called “dilution refrigerator”, bringing the edge of cold to
about 10 millikelvin. Since λdB ∝ T−3/2 and n ∝ T−1 for pV constant, such a
drop in temperature by a factor 1000 would bring us close to the holy frontier
of nλ3dB = 1.
But that’s too easy. At such low temperatures, the aggregation of atoms

is no longer gaseous, but it has long become solid (helium itself is the only
material that would remain liquid, as we’ll discuss later). In a solid we can no
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Figure 1.3: The principle of laser cooling: (a) after frontal collision and
absorption of a photon with momentum ~k, (b) the atom has been slowed
by the recoil ~k/m. (c) After spontaneous re-emission of the -now redshifted-
photon the atom will remain slower.

longer think of the movement of atoms as free wave packets cruising through
space, because the atoms are anchored to their lattice sites. That means that
by definition their center-of-mass wavefunctions shouldn’t overlap (the orbitals
are a different thing!): the lattice potential localizes the atom wavefunctions to
well within one unit cell so that the distance between the atoms remains always
larger than the uncertainty on their position. If that were not the case, we
couldn’t claim to have atoms on a lattice! Solids cannot undergo Bose-Einstein
condensation1. So we need to avoid solidification as we cool down, and this can
be done by keeping the gas dilute and pure. Then crystallization does not start
and we keep the system in a metastable gaseous state. The price to pay is of
course that the density has to be kept low and that is bad news when we want
to increase nλdB .
In the eighties, Cohen-Tannoudji, Chu and Phillips developed laser cooling

to slow down a beam of atoms and cool them down. Their spectacular results
were rewarded by the 1996 Nobel prize. The idea behind laser cooling is a frontal
collision between the atomic beam and a laser beam (see figure 1.3). The atoms
absorb the photon, along with its momentum ~k = ~ω/c. The collision has
reduced atom’s velocity in its direction motion by ~k/m, and excited the atom.
After spontaneous de-excitation the atoms re-emit the photon in an arbitrary
direction, not necessarily the beam direction, so the velocity along the beam
remains reduced on average. There is also a reduction in the overall kinetic
energy: the doppler shift causes the atoms to emit photons that have higher
energy than the photons absorbed. Let’s see how this works, and suppose the
atoms are resonant with blue light. We, in our lab, shine red light at them.
The atoms are fast when seen in our lab reference frame, so they will experience
our red light as blueshifted and accept our red photons for absoption. But once
they’ve absorbed them, the atoms are slow, and have joined us in the lab frame
of reference. When they re-emit light to the lab, it will be blue. There has been
a net transfer from kinetic (thermal) energy of the atoms to the energy in the

1Never say never... there is still ongoing discussion about “supersolids”: solids that act
like superfluids.



1.1. THE EXPERIMENTAL SEARCH FOR THE NEW PHASE 5

Figure 1.4: Doppler cooling in 1 dimension using 2 laser beams. If the atoms are
moving in a particular direction, they will preferentially absorb photons from
the beam that pushes them back.

photons. But we even have better news: now that the atoms are slow, they are
no longer influenced by our red light! They won’t collide with the red photons
any more and won’t be pushed back by our laser beam. The doppler effect is
a crucial element in laser cooling, and hence lasers are because we need to be
able to carefully tune the frequency of the light that we want to use.
Doppler cooling is also used to trap atoms. This uses two counterpropagating

beams. If an atom is moving towards the right, it will get in better resonance
with the photons from the beam that comes from the right and pushes it back,
and it will go out of resonance with the left beam. It will therefore absorb more
photons from the right beam and be pushed back to the center of the trap, as
shown in figure 1.4. This setup is called “optical molasses”. Since the resonant
frequency of a hyperfine transition in an atom is also influenced by the Zeemann
splitting in a magnetic field, we can also use spatially varying magnetic fields to
get resonance in one place and not in another place. This will further help the
trapping : outside the trap region we bring atoms into even better resonance
with the push-back beam. By having counterpropagating beams in all three
orthogonal directions, we get a 3D trap for atoms called a magneto-optical
trap or MOT, illustrated in figures 1.5 and 1.6. If there are enough atoms
captured in the MOT, the laser beams can be switched off: for atoms with a
strong magnetic moment and intrinsic angular momentum the magnetic trap
suffices. Alternatively, the magnetic trap can be switched off once the gas is
cold enough, and then we can rely on the optical trapping alone to keep the
blob of atoms trapped.
This cooled and trapped collection of about a billion atoms is the starting

point of any experiment on atomic Bose-Einstein condensates. At this stage,
the cloud has a temperature of a few tens of microkelvins, a thousand times
colder than what can be achieved with a dilution refrigerator. No bulk material
can be made that cold! The walls of the cell that contains the trapped cloud are
much warmer than the cloud itself, and it is important that the cloud does not
come into contact with the walls of the cell. That is why a magnetic (or optical)
trap is needed. The purely optical trap is only a strong trap is the cloud is even
colder, so at this stage in the experiment usually a magnetic trap is used. As
a consequence, you can only trap atoms or molecules with a magnetic moment
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Figure 1.5: A magneto-optical trap with a cloud of trapped atoms (indicated
by the arrow). The glass cell is vacuum-pumped, and has protrusions where the
cooling laser beams enter. A coil for the magnetic quadrupole trapping is also
visible on top and at the bottom of the cell.

Figure 1.6: By correctly positioning external magnets a cloud of atoms with a
magnetic moment can be trapped.

different from zero. Alkali atoms, with a single electron in the outer s-orbital
are particularly well suited.
But a few tens of microkelvins is still too hot for our purpose: to reach the

regime where nλ3dB ≈ 1 the cloud needs to be cooled down to about hundred
nanokelvins. This can no longer be done with laser cooling, since to reach the
nanokelvin regime, the velocity of the atoms should be made smaller than the
recoil they get from re-emitting the photon. So we need another method: the last
cooling stage is evaporative cooling. Using a radiofrequent electromagnetic field,
spin flips can be induced in the atoms. This alters the magnetic moment of the
atom with respect to the magnetic trapping field, so that the spin-flipped atoms
are expelled from the cloud. The most energetic atoms are those that can travel
into the regions farthest from the center of the trap, regions where the magnetic
trapping field is higher. If we choose the radiofrequent field resonant only in
these regions (using again the Zeeman effect), we can actively select which atoms
will be expelled from the trap, as illustrated in figure 1.7. Choosing the most
energetic atoms for banishment, the remainder of the cloud will have a smaller
average energy, and hence the remaining cloud has a smaller temperature. This
is the principle of evaporative cooling, which is also at work when you blow on
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Figure 1.7: Evaporative cooling with a radiofrequent field, chosen in resonance
for atoms that have the most energy and climb the highest in the trapping
potential.

hot soup. The most energetic soup molecules can reach the vapour, and bounce
back between vapour and liquid. By blowing on the soup, you remove these
more energetic molecules, and cool down the whole.
With this technique, we can reach well within the nanokelvin regime with

still about a million atoms remaining in the cloud. This is amazingly cold: even
in the cosmic voids between galaxy clusters, far away from any star, the universe
with its background radiation of 2.7 K is scorchingly hot in comparison to what
we need. The current record in cold, the coldest spot in the known universe, is
at a lab in Finland, where experimenters reach 100 picokelvin... Evaporative
cooling imposes another constraint on what atoms we can use: we need ‘good’
elastic collisions that rethermalise the cloud and make new ‘most energetic
atoms’ that we can remove, and we need to avoid ‘bad’ inelastic collisions that
could flip spins of atoms with small energy in the center of the trap. One of
the very best atoms to use for evaporative cooling turns out to be 87Rb. Also
23Na and 7Li are good, although lithium presents an added difficulty since it has
attraction between the atoms and this could lead to clustering and bad losses.
We don’t need to go down to 100 picokelvin to witness a change occurring in

the cloud. At about 100 nanokelvin, a density anomaly appears in the central
region of the cloud, a small region of higher density. Also in the velocity
distribution something happens, as shown in the top row of figure 1.8: the
height represents how many atoms, and the x-and y-axis are the velocities in
x-and y-direction, respectively. These velocity distributions are measured by a
time-of-flight measurement: switch off the trap and let the cloud expand. The
fastest atoms will travel farther and after a while the density represents the
velocity distribution. The tails of the velocity distribution (far away from the
central anomaly) are used to estimate the temperature (by fitting a Maxwell
distribution to them): remember that we cannot stick a thermometer into the
cloud! The shape of the central anomaly is remarkable: it is the quantum
mechanical ground state wavefunction, modulus squared. Typical magnetic
traps give rise to harmonic potentials — you have already solved the Schrödinger
equation for a harmonic potential and know what the ground state wave function
looks like. We’ll later calculate what effect the interactions have on this wave
function, but it is always remarkable to see quantum mechanical wave functions
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Figure 1.8: As the cloud cools down (lower row of figures) the cloud shrinks.
Below a certain temperature a droplet of condensate appears, and the velocity
distribution (upper panel) gets peaked around zero. As the temperature is
reduced further, all atoms collect in the condensate. Figure source: Ketterle
lab, MIT.

with the naked eye. All the atoms have the same wave function, and so
measuring the density is like doing many repeated measurements of this single,
macroscopic wavefunction.

As the atoms are cooled to below the transition temperature, there are less
and less atoms in the ‘normal’ tails of the distribution, and they all collect in
the central region. This is the Bose-Einstein condensate. The BEC is then
only a few tens of microns large (up to a hundred microns but this is still a
a macroscopic object, the size of a speck of dust just visible with the naked
eye), and contains typically hundred thousand up to a million atoms. So it is
not only very cold, but also very dilute. In the previous section we mentioned
that in the BEC, not only do we have all atoms sharing the same single-particle
wave function (we’ll be more precise later), but also there should be phase
coherence. The central anomaly in figure 1.8 only reflects the modulus square
of the macroscopic wave function, not the phase. To check that there is also a
well defined phase throughout the entire BEC, we can try to mix two BEC’s:
their phases will interfere, and this will show up in the resulting density as
interference fringes, as shown in figure 1.9.

Bose-Einstein condensates were predicted by the Indian physicist S.N.
Bose2 ,3 in collaboration with Einstein in 1924. But it was only in 1995 that

2S.N. Bose, Zeitschrift für Physik 26, 178 (1924).
3A. Einstein, Sitzungsberichte der Preussischen Akademie der Wissenschaften 1, 3 (1925).
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Figure 1.9: When two condensates overlap, they make a matter interference
pattern. Image source: M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S.
Durfee, D.M. Kurn, and W. Ketterle, Science 275, 637-641 (1997).

BECs were first observed in trapped atomic gases4 ,5 ,6 . For this feat Ketterle,
Cornell and Wiemann received the 2001 Nobel prize. Since then, many more
labs have created condensates and exotic atoms as ytterbium have been Bose
condensed. Condensates also grew larger, up to about a centimeter in size
for a sigar-shaped hydrogen condensate. A new challenge is to Bose condense
molecules: we want to use ever larger objects with more internal degrees of
freedom and bring their quantum nature to the macroscopic scale.

Summary: A dilute atomic gas can be trapped and cooled
down to the nanokelvin regime, where the de Broglie wavelength
becomes larger than the distance between the atoms and a phase
transition takes place to the Bose-Einstein condensed phase. In
the BEC, all atoms can be said to be in the same single-particle
quantum state, leading to a macroscopic wave function and phase
coherence.

1.2 The ideal Bose gas

1.2.1 The idea behind BEC

The cloud of atoms in the magnetic trap is still very dilute: 1013 atoms/cm3.
To start, we can treat the atoms as if they are not interacting, and write
the Hamiltonian of the many-body system as a sum over single-particle
Hamiltonians. These can be solved to find, for every particle, the energy levels
εv in the trap. For example, for free particles in a square box, the states are
labeled by the wave numbers (ν → kx, ky, kz) and the corresponding energy
level is (~k)2 /(2m). Most magnetic traps are better described by a harmonic
potential rather than a square box, and in that case the single-particle states are
labeled by the harmonic oscillator quantum numbers (v → nx, ny, nz) and the

4M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Science
269, 5221 (1995).

5K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, and
W. Ketterle, Physical Review Letters 75, 3969 (1995).

6C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Physical Review Letters 75,
1687 (1995).



10 CHAPTER 1. BOSE-EINSTEIN CONDENSATION

corresponding energy is ~ω(nx+ny+nz+3/2). In thermodynamic equilibrium
at temperature T , the occupation of the single-particle state labeled by v is
given by the Bose-Einstein distribution:

f(εν) =
1

exp{(εν − μ)/(kBT )}− 1
, (1.1)

since we work with bosonic atoms. These are all the isotopes that contain an
even number of fermionic building blocks — for example 7Li contains 3 electrons,
3 protons and 4 neutrons → 10 fermion compound → this isotope acts like a
boson when treated as a point particle itself. In the Bose-Einstein distribution,
μ is the chemical potential. This indicates that we work in the grand-canonical
description. Granted, for a trap the canonical ensemble seems more suitable,
since we have a fixed number of particles. But the grand-canonical ensemble
is easier to use. The price to pay is that we always need to find the correct
chemical potential, so that the total number of particles is correct:

N =
X
v

f(εv). (1.2)

The chemical potential will thus depend on the temperature and on the total
number of particles. At high temperature, the chemical potential is large and
negative, meaning that it lies well below the lowest energy level εmin . The
occupation of the any level is much smaller than one, and the gas can be treated
classically (with the Boltzmann distribution). As the temperature goes down,
we need to increase the chemical potential to satisfy (1.2), and with it the
occupation of the lower levels. Indeed, for any εv, f(εν) increases monotonically
with increasing μ. However, the chemical can never become larger than εmin,
otherwise f(εmin) would be negative and we cannot have a negative number of
atoms in a certain energy level. This means that there is a maximum occupation,
a maximum to any f(εν), that is reached when μ→ εmin :

fmax(εv) =
1

exp{(εν − εmin)/(kBT )}− 1
(1.3)

The crucial insight is that for any εv, except for εmin, the maximal occupation
fmax(εv) is finite. Only f(εmin) can grow indefinitely. As we keep increasing
the number of atoms, at some point the occupation of any energy level will be
maxed out and the only energy level left over to put additional atoms is εmin.
The special role of the lowest energy level is made explicit in

N = f(εmin)| {z }
N0

+
X

v 6=min
f(εv)| {z }

Nexc

. (1.4)

Here, we denote the number of atoms in the lowest energy level N0, and this
number can be infinite. The number of atoms in higher energy levels, called
excited energy levels, is Nexc. Since all the f(εv 6=min) are bounded from above,
it is certainly possible that also Nexc is bounded from above by some number
Nmax
exc . This depends on how many excited levels there are, in a sense that we

make more clear in the next subsection. At any given temperature, if N strongly
exceeds Nmax

exc , then we need to put a macroscopically large number of atoms in
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Figure 1.10: The space of states

N0, and we have a condensate. It is also clear that fmax(εv) and hence Nmax
exc

are decreasing functions of temperature. So, for any number of particles N , we
can drop the temperature to a point where Nmax

exc (T ) becomes smaller than N .
Below that temperature, we again have to place a large number of atoms in
N0, and have a condensate. The temperature where this happens is the critical
temperature for Bose-Einstein condensation, Tc.

1.2.2 Density of states

The sums over single-particle that appear in the previous subsection can in
general not be performed analytically. In order to calculate these, the sums
are replaced by integrals, where a density of terms should be included to do the
conversion. That is, we replace the sum over single-particle states by an integral
over the energy

R
dε, and to do that we need to include a factor g(ε) that counts

how many single-particle states (terms in the sum) there were between ε and
ε+ dε. This is the density of states. It allows to smoothen out the sum into an
integral, X

v
F (εv)→

Z
dε g(ε)F (ε) (1.5)

where F can be any function of energy, and will work whenever there are many
states in the domain over which we want to integrate and over which F (ε) varies
smoothly. Some examples will clarify this.

First, the particles in a 3D box of size L and periodic boundary conditions.
There we have quantum numbers {kx, ky, kz} = {nx, ny, nz} 2π/L, where the
n are integers (both positive and negative7). The triplet {kx, ky, kz} can be
viewed as cartesian coordinates of a cubic grid of lattice points as illustrated in
figure 1.10, and there is one point per (2π/L)3 of k-space volume. The surface

7Alternatively, we can use dirichlet boundary conditions on the box and find {kx, ky, kz} =
{nx, ny, nz}π/L. Note the factor 2 difference in the scale factor π/L that gives the separation
between the points. This lattice of points is 2×2×2 = 8 times as dense, but now n is restricted
to the positive integers — one eight of the sphere — so you’ll get the same result for the density
of states.



12 CHAPTER 1. BOSE-EINSTEIN CONDENSATION

of constant energy is a sphere with radius R (ε) =
√
2mε/~ in the {kx, ky, kz},

so that the total number of states with energy less than ε is the number of
points within a sphere with radius R(ε), i.e.

G(ε) =
4π

3

Ã√
2mε

~

!3
× L3

(2π)
3 = V

2

3π2
(2mε)3/2

~3
. (1.6)

with V = L3. We defined the density of states as the number of states with
energy between ε and ε+ dε, so that

g(ε) = V
1

π2
(2m)3/2

~3
ε1/2. (1.7)

The next example is the harmonic trapping potential, given by

V1(r) =
m

2
(ω2xx

2 + ω2xy
2 + ω2xz

2). (1.8)

This is the usual case when magnetic trapping potentials are used. Often, there
will still be axial symmetry eg. ωx = ωy and the trap can now be prolate (cigar
shaped) for ωz < ωx,y or oblate (pancake shaped) for ωz > ωx,y. The quantum
numbers are {nx, ny, nz}, triplets of positive integers, and the corresponding
energy is

ε = ~ωxnx + ~ωyny + ~ωznz (1.9)

where we put the zero of energy at the ground state energy. For fixed ε, this
equation defines a plane in {nx, ny, nz}-space, going through ε/ (~ωx) at the
x-axis, ε/ (~ωy) at the y-axis and ε/ (~ωz) at the z-axis. The points with less
energy than ε are contained in a tetrahedron with with these points as corners
and the origin as the fourth corner. The volume of this tetrahedron also equals
the number of states with energy less than ε,

G(ε) =
1Q3

i=1(~ωi)

εZ
0

dε1

ε−ε1Z
0

dε2

ε−ε1−ε2Z
0

dε3 =
ε3

6~3ω1ω2ω3
(1.10)

from which we find the density of states

g(ε) =
ε2

2~3ω1ω2ω3
. (1.11)

In both cases we find that the density of single-particle quantum states
increases with a the energy as a power law. This is a conclusion that holds for
many cases: the ways to distribute the energy over the excitations related to
the different quantum numbers grows as some power of the energy. So, we will
proceed with a general formula

g(ε) = Cαε
α−1 (1.12)

where Cα is some constant. Once we obtain the results for this general density
of states, we can plug in the specifics. For our atoms in a 3D box, α = 3/2 and
the coefficient is

C3/2 =
V m3/2

√
2π2~3

. (1.13)
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For atoms in a 3D harmonic trap, α = 3 and the coefficient is

C3 =
1

3~3ω1ω2ω3
. (1.14)

1.2.3 Transition temperature

The BEC transition temperature is defined as the temperature below which we
have to start populating the lowest energy state N0 by a macroscopic amount of
atoms. By macroscopic, we mean something large as compared to 1. Yes, we’ll
have difficulties defining this temperature when we only have a few atoms...
Let’s get back to expression 1.4 and rewrite the sum in Nexc by an integral:

Nexc =

∞Z
0

g(ε)f(ε)dε. (1.15)

Here f(ε) is the Bose-Einstein distribution (1.1). Firstly, note that we have
set the zero of the energy at εmin. That is why the integral has as its lowest
boundary 0 and not εmin . Next, you could be worried that the sum was over
states v 6=min, i.e. in the sum we have excluded the single-particle ground
state. But that is not a problem in moving from the summation to the
integration. Switching to the integral is an approximation, and it turns out
that this approximation throws away the lowest energy level anyway. Indeed,
g (ε→ 0) = 0, so we could just as well have written δ, an infinitesimal positive
number, as lower boundary in the integral.
Remember that the occupations f(ε), and hence Nexc, increase as the

chemical potential is increased. However, we cannot increase the chemical
potential beyond μ = εmin (= 0 in our case). Thus, the upper bound for
Nexc is found by setting μ = 0 in Bose-Einstein distribution:

Nmax
exc (T ) =

∞Z
0

g(ε)
1

eε/(kBT ) − 1dε

We see that as the temperature drops, Nmax
exc becomes smaller, and we’ll reach a

temperature where N = Nmax
exc (Tc). If we still decrease the temperature T < Tc

we find that N > Nmax
exc (T ), and we cannot put all the atoms in excited states.

We are forced to put N0(T ) = N −Nmax
exc (T ) atoms in the condensate. Hence,

the equation that defines Tc is

N = Nmax
exc (Tc)

⇔ N =

∞Z
0

g(ε)
1

eε/(kBTc) − 1dε

Now we can plug in g(ε) = Cαε
α−1,

N = Cα

∞Z
0

εα−1

eε/(kBTc) − 1dε
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and use the following formula from the calculus books

∞Z
0

xα−1

ex − 1dx = Γ(α)ζ(α). (1.16)

where Γ(α) is the gamma function (defined by Γ(α) = (α − 1)Γ(α − 1)) and
ζ(α) =

P∞
n=1 1/n

α is the Riemann zeta function. In the table below we list
some value for common α’s :

α 1 3/2 2 5/2 3

Γ(α) 1
√
π/2 1 3

√
π/4 2

ζ(α) ∞ 2.612 . . . π2/6 1.341 . . . 1.202 . . .

Using our formula (1.16) we can now find the critical temperature (note the
substitution x = ε/ (kBT )):

N = Cα(kBTc)
α

∞Z
0

xα−1

ex − 1dx = Cα(kBTc)
αΓ(α)ζ(α). (1.17)

from which

kBTc =
N1/α

[CαΓ(α)ζ(α)]1/α
. (1.18)

So, for a three dimensional harmonic trap we have

kBTc = ~ω̄ 3

s
N

ζ(3)
≈ 0.94 ~ω̄N1/3, (1.19)

with ω̄ = (ω1ω2ω3)
1/3 the geometric average of the confinement frequencies.

These confinement frequencies are typically 100− 1000 Hz, and the number of
atoms can range N = 103 − 107. Let’s choose ω̄ = 100 Hz and N = 106, then
the typical transition temperature from this formula is indeed of the order of
100 nK. Note that kBTc À ~ω̄ (in our example even by a factor 100). That
is good, since it means we can safely replace the sums by integrals as we did.
The discrete nature of the lattice of states doesn’t matter when we look from
afar, from an energy scale much larger than the energy differences between the
individual states.
For a uniform Bose gas in a 3D box with volume V , we find

kBTc =
2π

[ζ(3/2)]2/3
~2(N/V )2/3

m
≈ 3.31~

2n2/3

m
. (1.20)

The critical temperature grows as the 2/3 power of the density. Note that for the
uniform Bose gas in two dimensions you would have α = 1, and since ζ(1) =∞
the transition temperature Tc = 0. Indeed, the density of states is such that at
any nonzero temperature we can accomodate all the particles safely in excited
states, Nexc(T ) > N for all T > 0. This means that Bose-Einstein condensation
cannot occur in a uniform, two-dimensional Bose gas. However, if we go to a
harmonically trapped two dimensional Bose gas, α = 2 and once again BEC is
possible.
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Figure 1.11: Fraction of the total number of atoms in the condensate, N0/N ,
as a function of the temperature, plotted for a uniform Bose gas (dashed curve)
and for the harmonically trapped Bose gas (full curve).

1.2.4 Condensate fraction

For temperatures smaller than the critical temperature, the number of atoms is
excited states is still given by (1.15) with μ = 0. We keep the chemical potential
“maxed out” in the BEC phase, and find

Nexc(T < Tc) = Cα

∞Z
0

εα−1

eε/(kBT ) − 1dε

= CαΓ(α)ζ(α)(kBT )
α. (1.21)

Of course this result only holds for α > 1. We see that it doesn’t depend
on the total amount of particles, only on the temperature and the exponent
α. Using our result (1.18) for the critical temperature, we can divide this by
N = Cα(kBTc)

αΓ(α)ζ(α) to find

Nexc(T < Tc)

N
=

µ
T

Tc

¶α
(1.22)

since the common factor CαΓ(α)ζ(α)k
α
B drops out. From this we can find the

fraction of particles in the condensate,

N0

N
= 1− Nexc(T < Tc)

N
= 1−

µ
T

Tc

¶α
for T < Tc (1.23)

(and 0 for T > Tc). (1.24)

This result, for atoms in a box and in a harmonic trap, is shown in figure 1.11.
The right hand side also shows the comparison with the experiment8. Our
theory matches the experimental dots well, but there seems to be a systematic
shift to the left, the experimental critical temperature is a bit lower. This is due
to the interactions — remember that we are restricting ourselves in this section
to the ideal Bose gas. The effect of interactions may be small sometimes, but it
is not completely absent.

8The experiment is reported in “Bose-Einstein Condensation in a Dilute Gas: Measurement
of Energy and Ground-State Occupation”, J.R. Ensher, D.S. Jin, M.R. Matthews, C.E.
Wieman, and E.A. Cornell, Phys. Rev. Lett. 77, 4984 (1996).
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Figure 1.12: The condensate is observed by shining in light and capturing the
shadow image on a CCD camera (after some magnifying optics). This is how
the images in figure 1.8 were obtained. Image source: Eric Cornell lab, JILA.

1.2.5 Condensate density and velocity distribution

The magnetically trapped cloud of atoms is observed by simply taking a picture!
Laser light is focused on the condensate, and some of that light gets absorbed
so that the cloud casts a shadow. Some lenses are needed to zoom in on
the 10-micron sized object, but basically the image of this shadow is the
measurement result (see figure 1.12). As mentioned, you can use a time of
flight method to convert the density into the velocity distribution (and then
you won’t need to zoom in that much any more, but you lose some contrast).
Taking the picture destroys the condensate: the flash of light heats it up too
much. Techniques have been developed to do non-destructive imaging: by
looking basically at the refraction of light that does not get absorbed, we can
reconstruct the density. Also, the images in the basic set-up project the 3D
density profile onto a plane, summing all the density along the line of sight.
Also here there are work-arounds: you can do tomographic imaging, or rely on
the symmetry of the cloud to reconstruct the full 3D image.
The ground state of the atoms in the harmonic trap is a Gaussian as a wave

function

φ0(r) =
1

π3/4(a1a2a3)1/2
exp

½
− x2

2a21
− y2

2a22
− z2

2a23

¾
where the ai are the oscillator lengths in the three directions, ai =

p
~/(mωi).

Each of the N0 À 1 atoms is in the state described by this wave function.
Experimenters usually rewrite this as

ai = 10.1

µ
100 Hz
ωi

1

A

¶1/2
μm. (1.25)

Here A is the mass number of the isotope that is being Bose condensed (i.e. it’s
87 for 87Rb). This expression is basically telling you that the typical oscillator
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length of the trap is on the order of 10 micron. The ground state wave function
in momentum space (in momentum representation) is the Fourier transform of
φ0(r) :

φ̃0(p) =
1

π3/4(c1c2c3)1/2
exp

(
− p2x
2c21
−

p2y
2c22
− p2z
2c23

)
, (1.26)

with ci = ~/ai. The velocity distribution n(p) = N
¯̄̄
φ̃0(p)

¯̄̄2
will be anistropic,

in contrast to the Maxwell-Boltzmann velocity distribution of the thermal atoms
n(p) ∝ exp{−p2/(2mkBT )}. The anisotropy of the central condensate bump in
figure 1.8 is therefore due to the anistropy in the ground state wave function,
and a sign that the object in the center is not an ideal gas in the normal state.

1.2.6 Thermodynamic quantities

The energy of the condensate is E = 0. Indeed, we have put our zero of the
energy at εmin, and all N0 atoms in the condensate are in this energy level, so
obviously N0εmin = 0. Only the excited states contribute to the energy,

E =
X

v 6=min
εvf(εv) (1.27)

and again we rewrite this as an integral

E =

∞Z
0

εg(ε)f(ε)dε (1.28)

For T < Tc we know that μ→ 0, so we can substitute f(ε) = 1/(e−ε/kBT − 1).
Also we use our general power law for the density of states, g(ε) = Cαε

α−1, and
get

E(T < Tc) = Cα

∞Z
0

εα

eε/(kBT ) − 1dε (1.29)

= CαΓ(α+ 1)ζ(α+ 1)(kBT )
α+1 (1.30)

We have used the integration formula (1.16) again, with now an extra energy
factor so we have α+ 1 in stead of α.
The specific heat (still for T < Tc) is

C =
∂E

∂T
= (α+ 1)

E

T
(1.31)

The specific heat can be used to calculate the entropy via C = T∂S/∂T , leading
to

S =
α+ 1

α

E

T
. (1.32)

The condensate also does not contribute to the entropy (regardless of where we
place the zero of the energy). So, below Tc, the specific heat, the energy and
the entropy are independent of the number of particles, just like the number
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Figure 1.13: Measurement of the energy and the specific heat (inset) as a
function of temperature (here the critical temperature is T0). This graph comes
from the publication mentioned earlier (Phys. Rev. Lett. 77, 4984 (1996)).

of atoms in excited states. In fact, these thermodynamic quantities grow as
the number of excited particles! Dividing the energy by the number of atoms
N = Cα(kBTc)

αΓ(α)ζ(α) we get

E(T < Tc)

N
=
Γ(α+ 1)ζ(α+ 1)

Γ(α)ζ(α)

µ
T

Tc

¶α
kBT (1.33)

we can simplify this since Γ(α + 1) = αΓ(α) and since (T/Tc)α = (Nexc/N),
and find

E(T < Tc) = α
ζ(α+ 1)

ζ(α)
×NexckBT (1.34)

A comparison with experiment as can be seen from figure 1.13. The main
figure shows the energy. The full straight line is the value for a classical ideal
Maxwell-Boltzmann gas, E/(NkBTc) = αT/Tc, it is what we expect above Tc.
We see that below Tc the energy falls short of this classical result. We still more
or less have (1/2) kBT per degree of freedom (equipartition), but the degrees
of freedom are related to the atoms in excited states, not the total number of
atoms, and Nexc drops well below N . The dashed line represents the result for
the ideal gas. Again the dots are not perfectly corresponding to the ideal gas
result: interactions change the results somewhat. From the energy we can now
also extract

C = α(α+ 1)
ζ(α+ 1)

ζ(α)
×NexckB, (1.35)

S = (α+ 1)
ζ(α+ 1)

ζ(α)
×NexckB. (1.36)

In the classical limit the specific heat of a homogeneous ideal gas is C = αNkB
and E = αNkBT . What happens near Tc ? As we approach Tc from above,
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C/NkB = α. As we approach Tc from the BEC side however, we find

C

NkB
= α(α+ 1)

ζ(α+ 1)

ζ(α)
(1.37)

There is a jump: below Tc the specific heat is a factor (α+ 1) ζ(α + 1)/ζ(α)
larger. For the uniform Bose gas this factor equals 1.28 . . ., for the harmonically
trapped Bose gas it is larger, 3.60 . . .This jump is generally smoothed out into
a peak, that has a typical “lambda” shape: rising with some power law below
Tc, and then rapidly dropping to some constant above Tc. Keep this in mind as
we start studying liquid helium: the superfluid transition there is also known
as the “lambda transition” because of the shape of the specific heat. This is
shown in the inset of figure 1.13: the predicted ideal Bose gase result is the thin
curve, the measurement result is the thick curve. The jump is not so large as
predicted, again due to interactions.
It seems we should no longer delay taking a close look at interactions.
And that is precisely what we’ll do in the next sections.

Summary: An ideal Bose gas can be described as a collection
of independent atoms to be placed on a set of single-particle
energy levels. Using the techniques of statistical mechanics we see
that depending on the density of states we should start placing a
macroscopic number of atoms in the ground state level as we lower
the temperature below a critical temperature. All relevant
thermodynamic quantities can be calculated exactly, once the
density of states is given.

1.3 The Penrose-Onsager criterion for BEC

We need to generalize our definition of Bose-Einstein condensation to the case
of the interacting Bose gas. The main difficulty is that we can no longer assign
atoms to different energy levels of the trapping potential. The Hamiltonian is no
longer a sum of single-particle Hamiltonians but contains two-body interaction
potentials. To define BEC in this case, we following the reasoning of Penrose
and Onsager9:

1. The non-interacting Bose gas that we have discussed up till now is only
an idealisation, and we have seen that interactions still play a role. It will be
even more important in liquid helium. For an interacting system, the concept
of single-particle levels, derived from solving the single-particle Schrödinger
equation for the trapping porential, should be modified.

2. The solution is to turn to density matrices to describe the interacting
Bose system. In a ‘pure state’ the system of N atoms is described by a
single many-body wave function Ψ(r1, ..., rN ), just like we have single-particle
wave functions Ψ(r) for N = 1. The many-body wave function describes the

9O. Penrose en L. Onsager, Phys. Rev. 104, 576 (1956).
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amplitude for a certain configuration of atoms (with an atom at position r1, one
at position r2, etc...) The corresponding density matrix is defined by

ρ̂ = |Ψi hΨ|
⇔ ρ(r1, .., rN ; r

0
1, .., r

0
N) = Ψ

∗(r1, ..., rN )Ψ(r
0
1, ..., r

0
N ). (1.38)

The many-body wave function contains all the information we need to calculate
the expectation value of any observable. Similary, the many-body density matrix
contains all the necessary information about our system. Indeed,D

Â
E

=

Z
dr1 . . .

Z
drNΨ

∗(r1, ..., rN )A(r1, ..., rN )Ψ(r1, ..., rN )

= Tr[ρ̂Â] (1.39)

You can choose whether you describe physics through the wave function or
through the density matrix. We can construct so-called reduced density
matrices by tracing out some of the N variables. The single-particle reduced
density matrix or first order reduced density matrix is defined by taking the
trace over all but one position variable:

ρ1(r; r
0) = N

Z
dr2...drN ρ(r, r2, .., rN ; r

0, r2, .., rN ). (1.40)

This is a very general definition, usable for both interacting and non-interacting
systems. The one-particle density matrix can also be written as a function of
the field operators ψ̂

+
(r), ψ̂(r) that respectively create and annihilate a boson

on position r, and obey bosonic commutation relations:

ρ1(r; r
0) =

D
ψ̂
+
(r)ψ̂(r0)

E
. (1.41)

The idea is that for many expectation values we don’t need the full information
contained in the many-body density matrix, but we have enough information
in the reduced density matrix. Indeed, if an observable Â1 acts only on
a single particle, or if it can be written as a sum of operators acting on

individual particles, then N −1 integrations do not contain Â and
D
Â1

E
=
R
dr

A1(r)ρ1(r, r) = Tr[ρ̂1Â1]. These operators are called single-particle operators.
The potential energy of the trap, and the kinetic energy are examples. Also the
density is an example, and a particularly simple one since

n(r) = ρ1(r; r). (1.42)

Hence the name “density matrix”.

3. Starting from an ideal gas we can work with single-particle states
determined solely by the external trapping potential. Then the many-body
wave function can be written as a product of single-particle wavefunctions:

Ψ(r1, ..., rN ) =
NY
j=1

ϕ
j
(rj). (1.43)
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This describes a system of N particles where particle number j is in the
single-particle quantum state labeled by j , with corresponding single-particle
state ϕ

j
(and energy level εj). For bosons, we need to symmetrize this wave

function. The atoms are identical, and swapping two atoms should not change
the many-body wave function. So, we need to write:

Ψ(r1, ..., rN ) =
X
P

⎡⎣ NY
j=1

ϕ
j
(P [rj ])

⎤⎦ . (1.44)

where P are the permutations of the N coordinates r1, ..., rN . The
single-particle reduced density matrix can then easily be found:

ρ1(r; r
0) =

∞X
=0

n ϕ∗(r)ϕ (r0) (1.45)

Here n is the occupation of the single-particle state . From the previous
discussion, we know that below the transition temperature the single-particle
ground state ϕ0 will become macroscopically occupied, meaning that n0 → N
while all other n >0 remain small (since the sum over all occupations is also N).
The macroscopically occupied ground state is the hallmark of a BEC.

4. The preceding analysis shows the way to generalize the results to
interacting Bose gases. Even for strongly interacting systems, we can always
define the density matrix and trace it out until we get to the first order reduced
density matrix. This is a hermitean (linear) operator by definition, ρ∗1(r, r

0) =
ρ1(r

0, r). The spectral decomposition theorem tells us that every hermitean
linear operator can be decomposed in its (orthonormal) eigenfunctions and (real)
eigenvalues Z

ρ1(r, r
0)φ (r)dr =λ φ (r0), (1.46)

as follows:

ρ1(r, r
0) =

∞X
=1

λ φ∗(r)φ (r0). (1.47)

Note the analogy between (1.47) and (1.45). In the present case the φ ’s are no
longer single-particle wave functions relating to the trapping potential. And yet
they play the same role as single-particle states that get occupied by λ particles.
So we can define BEC using these “effective” best single-particle wavefunctions:

5. The Penrose-Onsager criterionstates: BEC occurs if and only if the
single-particle reduced density matrix has an eigenvalue λ0 that is of
order N . The function Ψ(r) =

√
λ0φ0(r), proportional to the eigenfunction

with the largest eigenvalue and normalized to λ0, is the order parameter
for the Bose-Einstein condensed phase. The eigenvalue itself is interpreted
as the number of particles in the condensate, λ0 = N0. So, the order
parameter Ψ(r) is zero (or negligibly small, 1/N → 0) in the normal phase, and
becomes macroscopically large in the Bose-Einstein condensed phase. The order
parameter determines the phase transition from the normal to the Bose-Einstein
condensed phase.
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6. The fact that λ0 = N0 ≈ N implies that all other eigenvalues are small,
so that

ρ1(r, r
0) ≈ Ψ∗(r)Ψ(r0). (1.48)

The remaining terms are called (thermal) fluctuations, and vanish as T → 0.
We’ll get back to them when we study temperature effects. However, for the
temperature zero result it is clear that the expectation values that we now
calculate will be equal to the single-particle expectation values calculated for a
single-particle wave function Ψ(r). We again have that all the atoms act as if
they have the same wave function, this time not related only to the trap, but
also including effects of interactions. That is why the order parameter of the
BEC is also called the “wave function of the condensate” or the ‘macroscopic
wave function’: it is a wave function depending on a single position variable,
describing the global behavior of the system. Note that this macroscopic wave
function is normalized to N0, the number of particles in the condensate. We
have

R
|Ψ(r)|2 dr = N0 in stead of = 1. From the density matrix, it is clear

that |Ψ(r)|2 = ρ1(r, r) : the modulus square of the order parameter can be
interpreted as the density of the condensate. Only in the limit of vanishingly
small interactions, the condensate wave function Ψ(r) becomes proportional to
the ground state single-particle wave function of the trap.

Summary: Interacting Bose gases cannot be described as a set of
independent atoms to be placed on single-particle levels. But we
can work with the first order reduced density matrix ande define
that BEC occurs when this object has an eigenvalue that becomes
macroscopically large. Then we can treat the corresponding
eigenfunction as the wave function of the condensate, and the
order parameter of the BEC phase.

1.4 The Gross-Pitaevskii equation

From Penrose and Onsager’s definition of Bose-Einstein condensation, we learn
that the order parameter Ψ(r) is the central quantity from which to derive the
properties of an interacting BEC. We have argued that it should exist, since the
density matrix can always in principe be written in spectral decomposition. But
how should we find Ψ(r)? In this section we derive an equation that Ψ(r) has to
satisfy (just as ordinary wave functions have to satisfy Schrödinger’s equation).
This equation for the order parameter is called the Gross-Pitaevskii equation
after the two theorists who derived it10.

10E. P. Gross, Nuovo Cimento 20, 454 (1961) and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz.
60, 646 (1961).
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1.4.1 Derivation

We start from the general Hamiltonian of an interacting Bose gas, written in
second quantization:

Ĥ =

Z
dr ψ̂

†
(r)

∙
−~

2∇2
2m

+ V1(r)

¸
ψ̂(r)

+
1

2

Z
dr

Z
dr0 ψ̂

†
(r)ψ̂

†
(r0)V2(r− r0)ψ̂(r0)ψ̂(r). (1.49)

Here V1(r) is an external potential (for example the magnetic trapping potential
(??)). The interatomic interaction potential is given by V2(r− r0), and depends
on the distance between the interacting atoms. The operators ψ̂

+
(r), ψ̂(r)

respectively create and annihilate an atom with mass m at position r. The
fact that the first order reduced density matrix satisfies the Penrose-Onsager
criterion for BEC,

ρ1(r; r
0) =

D
ψ̂
†
(r)ψ̂(r0)

E
≈ Ψ∗(r)Ψ(r0), (1.50)

allows to replace the operators effectively by macroscopic wave functions,

ψ̂(r) ≈ Ψ(r). (1.51)

Let’s first focus a bit deeper on this remarkable step, and look at a familiar
example, the non-interacting uniform gas, to understand its meaning. The
ground state |Φ0i is the zero-momentum state, p = 0. This ground state is
macroscopically occupied. If we let the (bosonic) creation operator â+0 act on
the ground state, we have by definition

â+0 |Φ0i =
√
N + 1 |Φ0i ≈

√
N |Φ0i . (1.52)

The last step is a physical approximation based on N À 1. In this way, â+0 ≈√
N (multiplied by the identity operator). Mathematically this replacement

makes no sense, but physically we expect all relevant expectation values to
be approximately the same. For a homogeneous Bose gas the ground state is
uniform, so the Penrose-Onsager order parameter is Ψ(r) =

√
N.1. Here we see

that dat â+0 ≈ Ψ(r) (again multiply with the identity operator if you’re worried
about keeping the operator character), which is what we described above. This
concept of shifting the operator ψ̂(r) ≈ Ψ(r)1̂ + fluctuation operator was first
introduced by Bogoliubov11 in the description of liquid helium where alas it
is also necessary to look at the fluctuations. In quantum gases, the effect of
interactions and of the fluctuations is much smaller (at least for temperatures
well below the transition temperature), and we can therefore get a good estimate
of the energy by dropping all fluctuation terms:

E =

Z
dr Ψ∗(r)

∙
−~

2∇2
2m

+ V1(r)

¸
Ψ(r)

+
1

2

Z
dr

Z
dr0 Ψ∗(r)Ψ∗(r0)V2(r− r0)Ψ(r0)Ψ(r). (1.53)

11N. N. Bogoliubov, J. Phys. Moscow 11, 23 (1947).
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Now we can treat the macroscopic wave function as if it is a variational trial wave
function, and use variational calculus to obtain an equation for the best Ψ(r).
When varying Ψ(r), we need to keep the norm N =

R
|Ψ(r)|2 dr fixed. This

constraint can be taken into account with the method of Lagrange multipliers.
The Lagrange multiplier associated with fixing the number of particles is
interpreted as the chemical potential μ. So we get:

δE

δΨ(r)
− μ

δN

δΨ(r)
= 0. (1.54)

In order to perform the minimization, we still need to specify the form of
the interatomic potential. When working with a very dilute, cold gas (so that
both the de Broglie wave length and the distance between the atoms is much
larger than the range of the potential), we can use a contact potential:

V2(r− r0) =
4π~2a
m

δ(r− r0) (1.55)

Indeed, for a dilute cold gas the range of the potential is very small compared
to the other relevant length scales, and when zooming out the potential looks
as if it only acts when atoms are at the same position. The prefactor takes care
of the correct units and contains the parameter a which denotes the strength of
the potential. So, the entire effect of the interatomic interactions in the cold,
dilute regime can be characterized by a single number a, the s-wave scattering
length. This is a remarkable result, and if you want to learn more about this you
can check out books on interatomic scattering12. The scattering length tells us
how much the plane-wave wave function will shift due to the presence of another
atom. Far away from that atom, the solution remains a plane wave, only its
phase can be shifted: pulled in (a < 0) for attraction, or pushed out (a > 0)
for repulsion. The scattering length depends on the type of atoms interacting
and on the hyperfine state of the two interacting atoms. Some values are given
in the table below, in units of the Bohr radius (aB = 0.0529 nm), and for the
triplet potential:

atomic species a/aB
7Li −27.6± 0.5
23Na 65.3± 0.9
41K 65± 13
87Rb 106± 4

(1.56)

Note that lithium has a negative scattering length, so these atoms attract each
other.
Substituting the contact potential (1.55) in the expression for the energy

(1.53), and performing the minimization (1.54), we obtain the Gross-Pitaevskii
equation for the order parameter:

− ~
2m
∇2Ψ(r) + V1(r)Ψ(r) +

4π~2a
m

|Ψ(r)|2Ψ(r) = μΨ(r) (1.57)

This equation describes the condensate at zero temperature, assuming that all
particles are in the condensate λ0 = N . It is a non-linear Schrödinger
12Landau and Lifschitz, volume 3, Quantum Mechanics — non-relativistic theory, section

132 “scattering of slow particles” is a good source of information.
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equation, which looks like an ordinary Schrödinger equation where the
potential is the sum of the external potential V1(r) and a mean-field potential
(4π~2a/m) |Ψ(r)|2. The non-linear character has important consequences: it is
no longer true that the sum of two solutions is still a solution of the equation.
Another difference with the usual Schrödinger equation is that we have the
chemical potential occuring where we expect to find the energy eigenvalue. Only
in the case of non-interacting gases, the chemical potential will be equal to the
energy per particle, in general it is different. Finally, note that we also have a
time-dependent version of the Gross-Pitaevskii equation,

− ~
2m
∇2Ψ(r, t) + V1(r)Ψ(r, t) +

4π~2a
m

|Ψ(r, t)|2Ψ(r, t) = i~
∂

∂t
Ψ(r, t) (1.58)

From which we see that solutions of the time-independent Gross-Pitaevskii
equation have a trivial time dependence Ψ(r, t) = exp{−iμt/~}Ψ(r). Of course,
this is no longer true if we start from any other initial value Ψ(r, t0) for the
order parameter. We’ll get back to the condensate dynamics in section 1.5.

1.4.2 Solution for the ideal Bose gas

Let’s look at the simplest example first, and consider an ideal Bose gas in
a harmonic trap. Then the Gross-Pitaevskii equation reduces to the linear
Schrödinger equation for the harmonic oscillator:

− ~
2m
∇2Ψ(r) + mω2

2
r2Ψ(r) = μΨ(r), (1.59)

The solution is well known to those who know it. It is the Gaussian wave
function

Ψa=0(r) = A exp{−r2/(2a2HO)}. (1.60)

with aHO =
p
~/(mω) the oscillator length of the trapping potential. The norm

A has to be fixed through the total number of condensed atoms

N =

Z
|Ψa=0(r)|2 dr = |A|2

Z
e−r

2/a2HOdr

= |A|2
µ

π

a2HO

¶3/2
, (1.61)

from which
|A| = N1/2a

3/2
HO/π

3/4. (1.62)

The chemical potential is μ = 3~ω/2. Note that this is just the ground state
energy of the 3D harmonic oscillator, so we get μ → εmin as discussed in the
very beginning of this course.

1.4.3 The Thomas-Fermi approximation

Expression (1.53) for the Gross-Pitaevskii energy can be split up in a kinetic
energy term Ekin, a term representing the confinement energy EHO, and a term
representing the interaction energy Eint :

Ekin = −
~2

2m

Z
dr Ψ∗(r)∇2Ψ(r) (1.63)
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EHO =
mω2

2

Z
dr r2 |Ψ(r)|2 (1.64)

Eint =
2π~2a
m

Z
dr |Ψ(r)|4 (1.65)

Here we consider an isotropic trapping potential so that ω = ωx = ωy = ωz,
and we have also used the contact potential (1.55) to describe interactions. The
use of the contact potential is, as mentioned before, linked to the diluteness
parameter n|a|3 where n is the density of atoms and a the scattering length.
This diluteness parameter tells us how many atoms are contained in a volume
detemined by the effective range a of the potential. For at typical experiment
n = 1013 − 1015 cm−3, so that n|a|3 is smaller than 10−3, and we can safely
replace the real interatomic potential by a contact potential.
This doen not mean that the effects of interactions are necessarily small.

We have to compare the interaction energy with the kinetic energy, for atoms
trapped within a region of typical size aHO. This means that the density of
atoms is N/(a3HO), and we haveZ

dr |Ψ(r)|4 ≈
Z

dr

µ
N

a3HO

¶2
≈ N2

a3HO

(1.66)

⇒ Eint ∝
N2a

a3HO

(1.67)

The kinetic energy of a particle in a box of size L scales as 1/L2, so that for a
trap with size aHO and N paticles,

Eint ∝
N

a2HO

(1.68)

Hence, the ratio of interaction energy to kinetic energy scales as

Eint

Ekin
∝ Na

aHO
. (1.69)

This is the Thomas-Fermi parameter. If N |a|/aHO is much larger than one,
the interaction energy is much larger than the kinetic energy, and the latter
can be neglected. Doing this is called the Thomas-Fermi approximation.
How many atoms do we typically need to be in the Thomas-Fermi (TF) regime
? Since the scattering length is of order nanometers and the oscillator length
of the trap is of order microns, we’ll be in the Thomas-Fermi regime already
for more than a few thousand atoms. Most experiments work with hundreds of
thousands of atoms, and are well within the TF regime.
In the Thomas-Fermi regime we don’t need any additional approximation

to solve the Gross-Pitaevskii equation! Indeed, without the kinetic energy term
the GP equation becomes

V1(r)ΨTF (r) +
4π~2a
m

|ΨTF (r)|2ΨTF (r) = μΨTF (r) (1.70)

⇔ |ΨTF (r)|2 =
m

4π~2a
[μ− V1(r)]. (1.71)
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Figure 1.14: Column density of the condensate (this is the density integrated
along the line of sight), as a function of the distance to the center of the trap.
The dashed curve is the result for the ground state of the trap (and for the ideal
Bose gas). The full curve represents the Thomas-Fermi result, which agrees well
with the experimental measurement (the points). Image source: Pethick and
Smith’s book (see bibliography).

The density of the condensate is the modulus square of the order parameter
(cf. expression (1.42)) so that nTF (r) = |ΨTF (r)|2. For a harmonic trap,
V1 = mω2r2/2, and the density profile is an inverted parabola:

nTF (r) =

⎧⎨⎩
m

4π~2a

∙
μ− mω2

2
r2
¸
for mω2r2/2 < μ

0 elsewhere
. (1.72)

The height (and hence extent) of the inverted parabola is set by the chemical
potential μ, it’s curvature is set by the scattering length. The chemical potential
in turn is fixed by the total number of atoms:

N =

Z
nTF (r)dr (1.73)

=
m

~2a

Z √2μ/(mω2)

0

r2
£
μ−mω2r2/2

¤
dr (1.74)

⇒ μ =
~ω
2

µ
15Na

aHO

¶2/5
. (1.75)

With this, we can rewrite the density of the condensate as

nTF (r) =

⎧⎪⎨⎪⎩ nTF (0)

"
1−

µ
r

RTF

¶2#
for r < RTF

0 for r > RTF

, (1.76)
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with RTF the Thomas-Fermi radius given by

RTF = aHO

µ
15Na

aHO

¶1/5
(1.77)

and the central density

nTF (0) =
R2TF /(aaHO)

16πa3HO

Outside the Thomas-Fermi radius there are no more condensate atoms. Without
interactions the atoms would all be in the (Gaussian) ground state of the trap.
Interactions modify this result strongly: we now get an inverted parabola,
less dense in the center but extending further out — the repulsive interactions
push out the atoms. Figure 1.14 compares the two theoretical curves with the
experimental result for a 87Rb condensate of 100000 atoms, well in the TF
regime. It is clear that the TF approximation describes the measurements best.
Note that at the edge of the cloud (near the TF radius), the experimental points
deviate a little from the Thomas-Fermi solution. Indeed, where the density
becomes low, the interaction energy again becomes (locally) less important than
the kinetic energy and we have a tiny region near the edge of the condensate
where in principle the TF approximation doesn’t hold. There, we expect the
kinetic energy to smoothen then sharp kink between the parabola and the
zero-density line.

1.4.4 Coherence length

What will be the typical length scale over which the kinetic energy smoothens
the TF profile? This should also be the smallest length scale over which the order
parameter can change. Let’s consider a scale ξ over which the order parameter
changes. So, for distances smaller than ξ we take the order parameter constant
and the kinetic energy is ~2/(2mξ). The interaction energy is (4π~2an/m) with
n the density. Equating these two energies gives us a qualitative estimate of ξ,
namely

ξ =
1√
8πan

. (1.78)

The TF approximation works when the length scales over which the order
parameter varies is much larger than ξ.
Let’s rephrase this to get a better insight into ξ, and as the following question:

what is the smallest length scale over which the order parameter can grow from
zero to its bulk value? To find this, we’ll use the Gross-Pitaevskii equation in
one dimension, and place a hard wall at x = 0. The condensate is restricted to
the half-space x > 0. It is zero for x 6 0. So our boundary conditions are that
(1) far away from the wall x → +∞ the condensate is homogeneous and the
density has reached its bulk value n∞ = |Ψ∞|2 = |Ψ(x→∞)|2; and (2) at the
wall Ψ(x = 0) = 0. Let’s solve the Gross-Pitaevskii equation

− ~
2

2m

d2Ψ(x)

dx2
+
4π~2a
m

|Ψ(x)|2Ψ(x) = μΨ(x).
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for these boundary conditions. Firstly, let’s look far away from the wall. In this
region, the second derivative vanishes, and we must have our bulk solution:

4π~2a
m

|Ψ∞|2Ψ∞ = μΨ∞

→ μ =
4π~2a
m

n∞ = gn∞ (1.79)

Interpreting the chemical potential as usual as a cost to remove a particle from
the condensate, we see that to remove all N particles from a volume V , we need
to pay an energy (μN) = gN2/V = gnV . Having fixed μ, we can substitute it
in the Gross-Pitaevskii equation:

− ~
2

2m

d2Ψ(x)

dx2
+
4π~2a
m

|Ψ(x)|2Ψ(x) = 4π~2a
m

n∞Ψ(x) (1.80)

We can simplify this by writing

Ψ(x) = |Ψ∞| f(x) =
√
n∞f(x) (1.81)

so that our boundary condition for x→∞ now simply becomes f(x→∞) = 1.
Then we have, after division by

√
n∞:

− ~
2

2m

d2f(x)

dx2
+
4π~2a
m

n∞
£
f(x)2 − 1

¤
f(x) = 0 (1.82)

Dividing by 4π~2an∞/m, we get

−ξ2 d
2f(x)

dx2
+
£
f(x)2 − 1

¤
f(x) = 0 (1.83)

where again our length scale ξ = 1/
√
8πan∞ pops up. To find the solution, we

substitute a trial form f(x) = tanh(ax). The hyperbolic tangent starts at 0 in
x = 0 and goes to 1 for x→∞, so it satisfies the boundary conditions. Since

d2

dx2
tanh(ax) = 2a2 tanh(ax)

£
tanh2(ax)− 1

¤
(1.84)

we find that a = ξ/
√
2 and

Ψ(x) =
√
n∞ tanh

µ
a√
2ξ

¶
(1.85)

The hyperbolic tangent rises from zero to 1 over a length ξ ! This length is
also known as the healing length (healing a condensate back from zero to its
bulk value) or the coherence length (the shortest length scale over which the
order parameter can appreciably vary). Indeed, it costs energy to bend the wave
function, and it is energetically unfavorable to bend it over a shorter distance
than ξ. If you do that, the wavefunction “breaks” and you excite atoms out
of your condensate. So, the coherence length is a very important length scale
for the study of condensates! It’s typical size in the experiments that we have
considered is of the order of 100 nm.

Summary: The order parameter of the BEC satisfies a
non-linear Schrodinger equation known as the Gross-Pitaevskii
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equation. For a dilute gas the interaction is fully described
by a single parameter, the scattering length, which together
with the density gives rise to the coherence length, the shortest
length over which the order parameter can change. When
N |a|/aHO>>1, the order parameter varies much more slowly
than the coherence length, and we can apply the Thomas-Fermi
approximation, neglecting kinetic energy.

1.5 Condensate dynamics

1.5.1 Time dependent Gross-Pitaevskii equation

The second-quantized Bose gas Hamiltonian (1.49) is

Ĥ =

Z
dr ψ̂

†
(r)

∙
−~

2∇2
2m

+ V1(r)

¸
ψ̂(r)

+
1

2

Z
dr

Z
dr0 ψ̂

†
(r)ψ̂

†
(r0)V2(r− r0)ψ̂(r0)ψ̂(r). (1.86)

This also allows to investigate the time dependence of the operator ψ̂(r, t) in
the Heisenberg picture. For bosonic operators the following commutation rules
hold: h

ψ̂
†
(r, t), ψ̂(r0, t)

i
= δ(r− r0) (1.87)h

ψ̂(r, t), ψ̂(r0, t)
i
= 0 (1.88)

With these rules, we can work out Heisenberg’s equation of motion for ψ̂(r, t):

i~
∂ψ̂(r, t)

∂t
=

h
ψ̂(r, t), Ĥ

i
(1.89)

=

∙
−~

2∇2
2m

+ V1(r)

¸
ψ̂(r, t)

+

∙
1

2

Z
dr0 ψ̂

†
(r0, t)V2(r− r0)ψ̂(r0, t)

¸
ψ̂(r, t). (1.90)

Now we can proceed by again making using Bogoliubov’s assumption that the
Bose-Einstein condensed state is characterized by ψ̂(r, t) ≈ Ψ(r, t) : we can
replace the field operator by the order parameter (times the identity operator).
From this we find the time dependent Gross-Pitaevskii equation already
mentioned in the previous section:

i~
∂Ψ(r, t)

∂t
=

∙
− ~
2m
∇2 + V1(r) +

4π~2a
m

|Ψ(r, t)|2
¸
Ψ(r, t) (1.91)

We re-iterate that in the ground state —and only in the ground state— the right
hand side is equal to μΨ(r, t) and hence

Ψ(r, t) = Ψ(r) exp{iμt/~}. (1.92)
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Note that for the usual Schrödinger equation, eigenstates behave just like the
ground state here: as a function of time all that happens is that they acquire
a uniform phase factor exp{iEt/~} where E is the energy-eigenvalue. Here,
the chemical potential takes the role of the ground state energy, and we no
longer have a simple time dependence for excited states. The appearance of
the chemical potential here is not surprising, since Ψ corresponds to the matrix
element of an annihilation operator ψ̂ between the ground state with N atoms
and the ground state with N − 1 atoms:

Ψ(r, t) = hN − 1| ψ̂(r) |Ni ∝ exp{−i(EN −EN−1)t/~}. (1.93)

Here EN and EN−1 are the energies of the ground state with N and N − 1
atoms, respectively. For large N this difference is equal to ∂E/∂N , the chemical
potential.

1.5.2 Velocity as a phase gradient

We have already seen that the modulus squared of the order parameter
corresponds to the particle density of the condensate, |Ψ(r, t)|2 = n(r, t). But
what is the meaning of the phase? To find out, let’s multiply the time dependent
Gross-Pitaevskii equation (1.91) with Ψ∗(r, t),

i~Ψ∗(r, t)
∂Ψ(r, t)

∂t
= − ~

2m
Ψ∗(r, t)∇2Ψ(r, t)+V1(r) |Ψ(r, t)|2+

4π~2a
m

|Ψ(r, t)|4 ,
(1.94)

and subtract from this equation its complex conjugate. We then obtain

∂ |Ψ(r, t)|2

∂t
+∇ ·

½
~
2mi

[Ψ∗(r, t)∇Ψ(r, t)−Ψ(r, t)∇Ψ∗(r, t)]
¾
= 0. (1.95)

This looks like the continuity equation for the probability density in the
Schrödinger equation. For the Gross-Pitaevskii equation this becomes the
continuity equation for the particle density:

∂n

∂t
+∇ · (nv) = 0 , (1.96)

where we have identified the velocity field of the condensate as:

v =
~
2mi

Ψ∗∇Ψ−Ψ∇Ψ∗
|Ψ|2

. (1.97)

In the usual Schrödinger equation this continuity equation describes the
conservation of the probability density of the wave function. For the
Gross-Pitaevskii equation it becomes more tangible: we now have conservation
of the condensate density. This means that if the condensate density decreases
somewhere and increases somewhere else, there must have been a flow of atoms
between these two spots. Writing the order parameter with modulus and phase,

Ψ =
√
neiS , (1.98)

we now find that the velocity is given by

v =
~
m
∇S . (1.99)
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This is an important result: the velocity field of the condensate is given by
the gradient of the phase of the order parameter. An equally important
consequence of this is that the velocity field of a condensate is irrotational,

∇× v = 0.

Indeed, the curl of a gradient is always zero.
We end this subsection by defining another useful hydroynamic variable, the

condensate current density:

j = mnv = ~ |ψ|2∇S. (1.100)

This is of course not an electrical current, but a mass current indicating the
flow of mass. So in SI units is is expressed in kg passing per second through
a square meter window, set in a plane perpendicular to j. These big units are
quite unsuited for the atomic condensates, where often we use the healing length
as a length scale at the atomic mass as mass unit, and set also planck’s constant
to one. For the moment, let’s not specify the units. Note furthermore that the
density we have used till now, n(r, t) is an atom density (#atoms per volume),
different from the mass density ρ(r, t) = mn(r, t) in kg per volume. Using this
mass density and the current density, we can write the continuity equation in
its usual form ρ̇+∇ · j = 0.

1.5.3 Hydrodynamic equations

Rather that using an equation for the order parameter (the Gross-Pitaevskii
equation), we could look for equations for the condensate density and velocity.
Such equations, in analogy with the theory of fluids and continuous media, are
called hydrodynamic equations13 . The density and velocity of the condensate
contain essentially the same information as the order parameter, since they are
related to modulus and phase (gradients), respectively. Substituting (1.98) in
the Gross-Pitaevskii equation, we get

i~
∂
√
n

∂t
eiS − ~

√
n
∂S

∂t
eiS

= − ~
2

2m

h¡
∇2
√
n
¢
+ 2i

¡
∇
√
n
¢
· (∇S) + i

√
n
¡
∇2S

¢
−
√
n (∇S)2

i
eiS

+V1(r)
√
neiS +

4π~2a
m

n
√
neiS (1.101)

Both the real part and the imaginary part of this equation should hold. Collect
the imaginary parts and multiply by divide by 2

√
ne−iS to find

2~
√
n
∂
√
n

∂t
= −~

2

m

£
2
√
n
¡
∇
√
n
¢
· (∇S) + n

¡
∇2S

¢¤
. (1.102)

Since 2
√
n (∇
√
n) = ∇n this can be rewritten as

∂n

∂t
= −∇ ·

∙
~
m
(n∇S)

¸
. (1.103)

13 In the context of the Schrödinger equation these would be called the Madelung equations
for the probability density.
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The imaginary parts correspond to the continuity equation, nothing new. Next,
collect the real parts of (1.101), and divide by

√
neiS . You obtain:

~
∂S

∂t
+

µ
~2

2m
(∇S)2 + V1 +

4π~2a
m

n− ~2

2m
√
n
∇2
√
n

¶
= 0 (1.104)

Now take the gradient of this equation, and write the phase gradients as
velocities using (1.99). This yields

m
∂v

∂t
= −∇

µ
μ̃+

1

2
mv2

¶
, (1.105)

with

μ̃ = V1 +
4π~2a
m

n− ~2

2m
√
n
∇2
√
n. (1.106)

This equation for the velocity field (1.105), taken together with the continuity
equation (1.96), form a closed set of differential equations for density and
velocity field. The equation for the velocity field can be rewritten (using
∇× v = 0) as

∂v

∂t
+ (v ·∇)v = − 1

m
∇μ̃ (1.107)

This is known from classical hydrodynamics as the Euler equation for a perfect
(frictionless, non-viscous) fluid. In classical hydrodynamics, that is just an
approximation, not too bad for water and very bad for marmelade. But
here we get the Euler equation without approximation, directly from the
Gross-Pitaevskii equation. We must conclude that the condensate behaves
as a perfect fluid, and flows without friction. Hence we can call it a
superfluid, in analogy with a superconductor where we also have (electrical)
flow without resistance.
Let’s take a closer look at the notation μ̃ that we have introduced. In the

Euler equation it represents a pressure. Here, it contains three terms:

∇μ̃ =∇V1 +
1

n
[∇p+ n∇pq] (1.108)

The first term, represents the mechanical pressure. If we have a container or
trap with potential V1, and we compress it, the mechanical pressure increases.
Next,

p = (4π~2a/m)n2 (1.109)

is the interaction pressure. This is the additional pressure on the “walls” of the
container due to the repulsive interactions between the atoms, that strive to
expand the container. Finally,

pq =
~2

2m
√
n
∇2
√
n. (1.110)

is a purely quantum mechanical effect — it represents the aversion of the
wavefunction to be deformed, i.e. to change from place to place. The more
we deform the wave function locally, the larger it is. In particular, if we have
to squeeze the wavefunction into a small box, it grows inversely proportional to
the square of the size of the box.
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Figure 1.15: This sequence of frames (with 5 msec time interval between each
frame) shows the condensate in motion. Blue is low density and red is high
density. This motion was initiated by a sudden translation in the confinement
potential. After the translation, the condensate sloshes back and forth.

This is called quantum pressure. It comes from the quantum kinetic
energy −~2∇2/(2m) and tells us that if the modulus of the order parameter
is not constant throughout space, this will cost kinetic energy. Of course, the
place-dependent changes in the phase also cost energy, but we already have those
in mv2/2 where v now contains the gradient of the phase. In the Thomas-Fermi
approximation we have learned that the kinetic energy due to the deformation
of the wavefunction can be neglected in the regime N |a| /aHO >> 1. So, in
this regime we can neglect the quantum pressure pq.

Collective modes and sound

The Euler equation is a nonlinear equation, just like the Gross-Pitaevskii
equation, and hence it is hard to solve. What one usually does is look
at perturbations around equilibrium, and then linearize the equations by
expanding them in the small perturbation and neglecting higher order terms
in the small perturbation. Let’s take neq to be the equilibrium density, and
veq = 0 to be our equilibrium velocity field (i.e. no flow). We’ll also assume
that we are in the Thomas-Fermi regime so we’re not bothered by the quantum
pressure. To look at the dynamics of such modes14 we write

n = neq + δn (1.111)

and assume that δn¿ neq and that moreover δn and v vary slowly in space (so
the gradients can also be treated as small parameters). Now we can plug in this
expression for n, and linearize the hydrodynamic equations (1.96) and (1.105):

m
∂v

∂t
= −∇ (δμ̃) , (1.112)

∂(δn)

∂t
+∇ · (neqv) = 0. (1.113)

14They’re called collective modes since all the atoms in the condensate share the energy of
the mode and participate in the motion. This contrasts with single-particle excitations, where
we kick a single atom out of a condensate.
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Figure 1.16: Oscillation frequencies for two modes. The dots are the experiment,
the dashed line is the result neglecting the quantum pressure, obtained via
(1.119). The full line is the numerical result taking quantum pressure into
account.

We can combine both equations into one by taking the time derivative of the
second equtaion and substituting the first equation into the result:

m
∂2

∂t2
(δn) =∇ · [neq∇ (δμ̃)]. (1.114)

We have used that neq does not depend on time. When the quantum pressure

is neglected in (1.106), the effective potential μ̃ reduces to V1 +
4π~2a
m

n, so the

change in μ̃ is given by

δμ̃ =
4π~2a
m

δn, (1.115)

Now we obtain a second order differential equation for the density disturbance
δn:

m
∂2

∂t2
(δn) =

4π~2a
m
∇ · [neq∇ (δn)]. (1.116)

When we’re looking for small amplitude oscillations, we mean by that that
the time dependence of the density disturbance is of the form δn ∝ eiΩt. This
simplifies the result to

−Ω2δn = 4π~2a
m2

£
∇neq ·∇ (δn) + neq∇2 (δn)

¤
. (1.117)

Now we can the Thomas-Fermi result for the equilibrium density, expression
(1.72),

neq =
m

4π~2a
(μ− V1) , (1.118)

where μ is the chemical potential, not to be confused with μ̃. After substitution
we get

−Ω2δn = 1

m

£
∇V1 ·∇ (δn) + neq∇2 (δn)

¤
(1.119)
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Figure 1.17: Measuring the speed of sound in a condensate: a bump in the
density travels with constant speed through the cloud. This is seen in this
sequence of frames, showing a condensate cut in half so that the central atoms
show up as bumps just above and below the cut.

Solving this equation allows us to find the frequencies of the small amplitude
oscillation modes of the condensate. In figure 1.16 we see that the results of this
equation match the experimental measurements well. Below N = 2000 atoms
(x-axis), the deviation between experiment and theory grows, signalling that the
number of particles has become too small for the Thomas-Fermi approximation
to be applicable.
An important collective mode is sound. Sound modes are density waves,

and hence we get δn ∝ eik·r−iωt. Looking at a homogeneous condensate (∇V1
negligible), equation (1.116) becomes

∂2

∂t2
(δn)− 4π~

2aneq
m2

∇2 (δn) = 0. (1.120)

This is indeed the wave equation, with wave velocity

c =
~
m

p
4πaneq =

1√
2

~
mξ

. (1.121)

Once again the healing length pops up: it determines the speed of sound in a
condensate. We’ll get back to this special role of the healing length when we
look closer at the difference between collective modes and single-particle modes,
in the section on finite temperatures. For now, we can note that the sound
velocity calculated here also matches experimental results well. The experiment
is done as follows: with a blue detuned laser beam, atoms are repelled from the
center of the condensate. These atoms heap up in the condensate just next to
the region where the beam is, as is seen in the leftmost frame of figure 1.17. The
bumps start travelling up (resp. down) the condensate, and go equal distances
in equal time (i.e. at constant speed), as indicated by the yellow dashed line in
figure 1.17. This constant speed is the sound velocity.
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1.5.4 Superfluidity

We have seen that the dynamics of the condensate is governed by the
equations for a frictionless, irrotational fluid. Untill before the discovery of
the macroscopic quantum mechanical phases of matter, it was assumed that
every fluid experiences some friction, just as it was thought that every electrical
conductor, no matter how good, has a little bit of resistance. Here we see that
condensates are really completely frictionless, just as superconductors really
have no electrical resistance, at least below a critical current or velocity. This
frictionless, irrotational behavior of a fluid is called superfluidity. Another
property is that superfluids carry no entropy. Remember our discussion for the
ideal Bose gas: Bose condensed atoms do not contribute to the entropy, only
the atoms in excited states. Another way to see this is that there is only one
microscopic state that gives energy zero, namely the state with all particles in
the same single-particle state. From Boltzmann’s formula we then know that
S = kB log(1) = 0.
Note that superfluidity is not a concept which is rigourously defined in

the same way as Penrose and Onsager define Bose-Einstein condensation.
Superfluidity is an “umbrella” concept covering a number of properties that
in superfluid helium all occur together, but that do not necessarily have to
occur together. For each of these properties you can find criteria, but it is the
collection of these properties that earn a fluid the title of superfluid, as will
become clear when we proceed in our study of macroscopic quantum systems.
Frictionless flow is just one of these properties. Another important property is
the occurrence of quantized vortices, and this phenomena is the subject of the
next section.

The time dependent Gross-Pitaevskii equation is equivalent to a
set of hydrodynamic equations for the density (modulus squared of
the order parameter) and the velocity field (gradient of the phase
of the order parameter). These equations show that condensate
flows are inherently irrotational and frictionless. A system with
these properties is called a superfluid.

1.6 Vortices

1.6.1 Quantization of the circulation

Laser light that is blue detuned from an atomic resonance will not be absorbed
(since it is off resonance), but it will still repel the atoms from regions of high
laser intensity due to the optical stark effect. Red detuned laser light in a
similar manner attracts atoms to regions of high light intensity. These detuned
light sources are therefore routinely used to engineer potentials for the atomic
condensates. In particular, if we shine a blue laser beam right through the
center of a condensate, the atoms will be pushed away from the laser beam and
the condensate will become toroidal in shape, as in figure 1.18.
To find the possible patterns of flow in such a toroidal condensate, we

calculate the circulation κ defined by a line integral of the velocity along a
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Figure 1.18: With a blue detuned laser beam and a harmonic potential from
the magnetic trap, a toroidal condensate can be prepared.

closed contour C:

κ =

I
C

v · dx. (1.122)

We take the contour to be completely in the condensate and to go around the
torus, circling the axis of symmetry. Since the velocity can be written as the
gradient of the phase, we find

κ =
~
m

I
C

∇S · dx. (1.123)

It is tempting to use Stokes’ theorem and relate the line integral to a surface
integral over a surface bounded by the contour. In general we must distinguish
two cases:

1. the surface A bounded by the contour lies completely in the condensate
⇒ Stokes’ theorem holds

2. a piece of the surface lies outside the condensate, i.e. there are holes in
the condensate and the contour circles one of these holes

In the first case, the phase is well defined everywhere on the surface A and
Stokes’ theorem can be applied:

κ =
~
m

Z
A
(∇× (∇S)) · n d2r. (1.124)

But the curl of a gradient is always zero! We have already noted the irrotational
nature of superfluid flow in the previous section. Here we see that it is equivalent
with stating that the circulation in the condensate is zero κ = 0. In the second
case however, we cannot apply Stokes’ theorem since there in part of the surface
over which we want to integrate the integrand is ill-defined. This is be the case
is we take a contour in the toroidal condensate circling the hole of the torus —
along such a contour the circulation can be different from zero.
However, we can still calculate the circulation exactly, using the fact that the

order parameter should be single-valued. This means that if we go round the
contour and we end up back where we started, the phase of the order parameter
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Figure 1.19: Some examples of classical vortices

can only have changed an integer times 2π. The line integral (1.123) adds up
all the changes in the phase along the contour, so it is equal to the phase after 1
loop around the contour minus the phase we started with — and we just stated
that this difference should be an integer times 2π. Hence we have

κ =
~
m
(n× 2π) = n

h

m
, (1.125)

with n ∈ Z. This means that h/m can be interpreted as a ‘quantum of
circulation’ (equal to 9.98 × 10−8 m2/s). The quantization of circulation
—sometimes called Onsager-Feynman quantization— means that not just
any velocity is possible as the condensate flows around the torus, but only
discrete velocities are allowed. This is truly quantum behavior, expressed on a
macroscopic scale.
The presence of non-zero circulation in the condensate has important

implications for the topology of the condensate. Suppose that we find that
a condensate contains circulation, i.e. that κ 6= 0 along some loop C. This
means that there should be a ‘hole’ in the condensate. In fact, there should be
a hole in any surface A bound by the loop C. No matter how we distort the
surface bound by the loop, going for example from A to A0, the hole should
be there. The simplest way to achieve this is to let the condensate density go
to zero along some line. Then, any loop around the line may have non-zero
circulation.
The line along which the density is zero could be created by an external

potential, for example the blue-detuned laser beam described above, giving rise
to the toroidal condensate of figure 1.18. But the line of zero density can also
appear spontaneously in the condensate, in which case the resulting flow pattern
is called a vortex (the line itself is referred to as the vortex line). We know
that the condensate takes a little distance ξ to heal from zero back to its bulk
value, so in fact the line is a tubular region going through the condensate, where
the condensate density is suppressed, reaching zero at the center of the tube.
The tube is called the vortex core. This should not be completely unfamiliar
from the world of classical fluids as is shown in figure 1.19. Whirling around
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a fluid can create a vortex, as can be seen in water draining from a sink, or
in hurricanes with the eye of the hurricane as the vortex core. The difference
between classical and quantum vortices is that the circulation of the latter is
quantized.
Let’s investigate the superfluid flow pattern around a straight vortex line.

We can place the vortex line along the z-axis, and choose for our loops C a
circle with radius r. Cylindrical symmetry tells us that the velocity field can
only depend on r and our experience with tornado’s tells us that the velocity
will be parallel to the circle, so v(r) = v(r)eθ where {r, θ, z} are cylindrical
coordinates. With this we can easily calculate the circulation, and the velocity:

κ =

I
C

v · dx

⇔ κ =

Z 2π

0

rv(r)dθ

⇔ v(r) =
κ

2πr
=

~
mr

. (1.126)

Solid body rotation has a velocity field v(r) = rΩeθ where Ω is the angular
velocity. Take a long stick, hold from one end, and point horizontal. Then whirl
around your vertical axis until you get dizzy. The outer end of the stick goes
faster than the inner end, following the solid body rotation law. A quantum
fluid does something very different : v(r) = (κ/(2πr))eθ. The velocity increases
as you go closer to the vortex line — just like the wind gets more strong as
you go towards the center of the hurricane. In the middle, in the eye of the
hurricane, there is no wind — that is the vortex core. The edge of the core
is where the wind speed is strong enough to tear the clouds apart. For our
quantum hurricanes, if we take ξ to be the typical size of the core, the velocity
there is ~/ (mξ), compareable to the sound velocity from the previous section.
This is no coincidence: as we shall see, this sound velocity is also the critical
velocity above which the superfluid flow breaks down and becomes normal flow
again.

1.6.2 Vortices

Vortices appear when a condensate is rotated, because rotation induces
circulation, and there can be no circulation without a vortex line. One way
to rotate the condensate is by using an anisotropic confinement potential, and
rotating this confinement potential. This is similar to rotating a bucket of
water, except that the bucket cannot be symmetrical in the case of condensates:
condensates have no viscosity and would not be dragged along. So you need an
anisotropic bucket, and a wall to push the condensate around. Below a critical
rotation frequency however, the condensate is seen not to turn around, only
some shape oscillations may appear. But when the critical rotation frequency is
reached, a hole is seen to come into the order parameter, swiftly moving in from
the edge of the cloud and settling in the middle. The appearance of the hole
can be seen in figure 1.20. The density of the condensate shown in this figure
was measured by the Dalibard group at the ENS in Paris, and the phase of the
condensate shown in the bottom row was measured by the Cornell and Wieman
group at JILA in Boulder, Colorado. As you move around the vortex core, the
phase of the condensate changes by 2π, so we have 1 quantum of circulation.
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Figure 1.20: The density of the condensate (top row with red=low, wit=high)
and the phase of the condensate (bottom row), are shown both above (right
column) and below (left column) the critical rotation frequency for vortex
nucleation.

The density can be measured by shining light onto the condensate and
taking a shadow image with a CCD camera, but the phase is harder to
measure. One way to map the phase is by making an interferogram. When
two condensates overlap, regions where the complex order parameters are in
phase will constructively interfere and obtain a higher density. In regions where
the interference is destructive, the density is suppressed. This was how phase
coherence was shown for a regular condensate, cf. figure 1.9. However, the
phase of a condensate with a vortex is obviously different from the phase of a
condensate without vortex! This is due to the defining property of a vortex that
in a loop around a (singly quantized) vortex line the phase should increase by
2π. The number of 2π increases along a single loop (the “winding number”) is
equal to the number of circulation quanta within the loop. Because the specific
phase field of a vortex condensate being is from that of a condensate without
a vortex, the interference pattern will also be different. Our Antwerpen lab
has shown that the presence of an edge dislocation in the pattern of parallel
fringes is a fingerprint of vorticity, and that can be used to detect the number of
vortices and their quantization level in the condensate. This method has been
subsequently used by the Paris team of Dalibard and co-workers, and by the
MIT team of Ketterle, and is also used in so-called polariton condensates.
The onset of circulation above a critical rotation frequency leads to a jump in

the angular momentum of the cloud. If we look at a small volume of condensate
at position r, the angular momentum at that spot is

Lz(r) = mv(r)× r = mv(r).r = m
κ

2πr
r = n~,

where we used cylindrical coordinates again, r =rer and v(r) = v(r)eθ, and we
look at a singly quantized vortex κ = h/m. The angular momentum can be
measured by looking at the quadrupole mode, a mode of oscillation with = 2
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Figure 1.21: Jump in the angular momentum per particle at the critical rotation
frequency (117 Hz) where the condensate also transits from zero vortices to one
vortex.

and m = ±2, visible in figure 1.15. Without circulation, the +2 and −2 modes
are degenerate, but when circulation occurs, the shape oscillation in one sense of
rotation is different from that in the other sense of rotation, and the degeneracy
is lifted. The difference in oscillation frequencies can be measured by imaging
the dynamics of the cloud, and related to the angular momentum by a formula
derived by Stringari and co-workers at the BEC center in Trento, Italy:

∆ν = 2Lz/(MR2).

Here M is the total mass of the condensate and R is its size. Using this
formula, the Paris team was able to detect experimentally the jump in the
angular momentum at the critical rotation frequency, as seen in figure 1.21.

1.6.3 Gross-Pitaevskii in a rotating frame

Now let’s turn to the theoretical description of the vortex. This will be a nice
textbook exercise on using Gross-Pitaevskii theory, so we’ll go into detail. The
Gross-Pitaevskii energy functional

Ẽ [Ψ] =

Z
dr

½
Ψ∗(r)

∙
−~

2∇2
2m

+ V1(r)− μ

¸
Ψ(r) +

1

2
g |Ψ(r)|4

¾
(1.127)

is minimized for the ground state, and obviously a vortex condensate is not the
ground state in a stationary trapping potential. I write a tilde on Ẽ to emphasize
that we minimize E − μN , using the method of Lagrange multipliers to ensure
the normalization constraint, and forcing us to find μ from

R
|Ψ(r)|2 dr = N .

That should be clear if you have understood the section where we derive the
GP equation, but it is not bad to keep it in mind.
But we know from experiment that it is the ground state in a rotating trap.

We could simply write out V1(r, t), the time-dependent trapping potential,
but that would only make matters more complicated to solve: indeed how
do we deal with the resulting energy functional? It’s better to transform the
time-dependence away by going to a rotating frame of reference. From your
classical mechanics, you know that in a rotating frame of reference, you should
not mimize Ẽ [Ψ] but

Ẽ [Ψ]− L [Ψ] ·Ω (1.128)

where L [Ψ] is the angular momentum and Ω is a vector with length equal to
Ω, the rotation frequency, and pointing along the axis of rotation. Placing our
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vortex line along the z-axis, we find that the functional to be minimized is

Ẽ [Ψ]−ΩLz [Ψ] (1.129)

Remember from your quantum mechanics course the position representation of
the z-component of the angular momentum: L̂z = −i~∂/∂θ. Here θ is the angle
of the cilyndrical coordinates {r, θ, z}. So, we obtain

Lz [Ψ] =

Z
dr Ψ∗(r)

µ
−i~ ∂

∂θ

¶
Ψ(r) (1.130)

and from this

Ẽ [Ψ] =

Z
dr

½
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∙
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2∇2
2m

+ V1(r)− i~Ω
∂

∂θ
− μ

¸
Ψ(r) +

1

2
g |Ψ(r)|4

¾
.

(1.131)
The different terms allow to write this expression also as

Ẽ [Ψ] = (Ekin +Etrap +Eint)−ΩLz[Ψ]− μN [Ψ] (1.132)

where N [Ψ] =
R
|Ψ(r)|2 dr and

Ekin =

Z
Ψ∗(r)

µ
−~

2∇2
2m

¶
Ψ(r)dr, (1.133)

Etrap =

Z
V1(r) |Ψ(r)|2 dr, (1.134)

Eint =
1

2
g

Z
|Ψ(r)|4 dr, (1.135)

are the kinetic energy, the potential energy from the trap, and the interaction
energy, respectively.

How would the order parameter for a vortex look like? The density will be
a function of the distance r to the vortex line. And, certainly, far away from
the vortex line the density should go back to n, whereas on the vortex line the
density should go to zero. So we set |Ψv(r)| = f(r)

√
n with f(r) going from

zero to one over a ‘healing distance’ of the order of ξ. How about the phase?
We know that as we loop around the z axis, it should increase by 2π. What
also does that? The polar angle of the cylindrical coordinates! If we want to
have quanta of circulation, just multiply θ by . The phase S(r) is just equal
to S(r) = θ. Hence, the order parameter for a condensate with a vortex along
the z-axis should look like this:

Ψvortex(r) =
√
nf(r)ei θ (1.136)

It’s not too hard to plug this into expression (1.131). The potential energy from
a cylindrically symmetric trap and the interaction energy are given by

Ekin = n2πH

∞Z
0

V1(r)f
2(r)rdr, (1.137)

Etrap = n2πH

∞Z
0

f4(r)rdr, (1.138)
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Since the vortex line lies along the z-axis, the system is translationally invariant
in the z-direction, and the z-integral evaluates to H, the height of the system.
Rather than dragging along this H in all the formula’s, we will work with the
energy per unit height, and set H = 1. Moreover, these energies do not depend
on the phase any more so the θ integral just gives 2π. The kinetic energy,

Ekin = Hn

2πZ
0

dθ

∞Z
0

dr r

½
f(r)e−i θ

µ
− ~

2

2m

¶
∇2
£
f(r)e−i θ

¤¾
, (1.139)

still depends on the phase. The Laplacian evaluates to

∇2
£√

nf(r)eiθ
¤
=

1

r

∂

∂r

µ
r
∂f

∂r

¶√
neiθ +

√
nf(r)

1

r2
∂2
¡
ei θ

¢
∂θ2

=
√
neiθ

∙
1

r

∂

∂r

µ
r
∂f

∂r

¶
−

2

r2
f(r)

¸
, (1.140)

from which we see that the kinetic energy splits up in a quantum pressure part
and a part related to gradients of the phase:

Ekin = Eqp +Esf (1.141)

with for the quantum pressure

Eqp = −
~2

2m
2πn

∞Z
0

∂

∂r

µ
r
∂f

∂r

¶
dr = −2π~

2

2m
n r

∂f

∂r

¯̄̄̄∞
0

, (1.142)

and for the kinetic energy of the superflow:

Esf =
~2

2m
2πn

∞Z
0

2

r
f(r)dr (1.143)

Why do we call this the kinetic energy associated with the superflow ? Because
if we substitue ρ(r) = mnf2(r) and v(r) = ~/(mr) in

Esf =

Z
1

2
ρ(r)v2(r)dr (1.144)

we get precisely (1.143). So, this corresponds to the kinetic energy of a fluid of
mass density ρ(r) flowing with velocity field v(r).

Finally, let’s evaluate Lz[Ψvortex ]:

Lz [Ψvortex ] = n

Z
dr f(r)e−i θ

µ
−i~ ∂

∂θ

¶
f(r)ei θ

= (−i~) (i )
Z
dr nf2(r) (1.145)

The derivative just brings a factor i down, that we have put in front of the
integral. The integration is N [Ψ] =

R
|Ψ(r)|2 dr, so that

Lz [Ψvortex ] = ~ ×N [Ψvortex ] (1.146)
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This says that in a (cylindrically symmetric) condensate that contains a
vortex with quanta of circulation (along the axis of symmetry), the angular
momentum per particle equals ~ . Hence, if a singly quantized vortex appears,
the angular momentum per particle will jump up by ~, as seen in the experiment
and in figure ??. Another way to see that we have the right expression for the
angular momentum is to compute the hydrodynamic equivalent expression:

Lz =

Z
[r× ρ(r)v(r)] dr, (1.147)

i.e. the integrand is the local angular momentum r×mv of a volume elements.
Again, if we plug in ρ(r) = mnf2(r) and v(r) = ~/(mr), we obtain the correct
result. This shows that we can indeed use the hydrodynamic interpretation
effectively, and see the condensate as a fluid with mass density mρ(r) and
superfluid velocity field v(r).

1.6.4 Critical rotation frequency in a big bucket

Now it’s time to specify the trapping potential. We could use a harmonic trap,
but in stead I will keep a hard-wall bucket:

V1(r) =

½
0 for r < R
∞ for r > R

, (1.148)

so no condensate can live outside r > R. We know that also near this wall, the
condensate will heal to its bulk value over a distance ξ, but we’ll keep ξ ¿ R,
i.e. we use a large bucket and don’t care what happens at the wall. That is,
we’ll assume we are in the Thomas-Fermi regime! Indeed

(R/ξ)2 = 8πnasR
2 ∝ Nas

H
(1.149)

So, provided our scattering length is still smaller than the height of the cylinder,
(R/ξ)

2 is a good proxy for the Thomas-Fermi parameter. Choosing a large
bucket helps a lot! The TF approximation does the following for us:

• Since V1 = 0 inside the bucket, Etrap = 0.

• The total number of particles won’t be affected much by drilling the hole
for the vortex core. So, also the chemical won’t be affected and we can
use the bulk result μ = gn.

• In the TF regime the quantum pressure energy can be safely neglected
Eqp ≈ 0.

• This in turn means that is it not important how (i.e. with which slope)
f(r) grows from 0 to 1, it is only important to know that it does so over a
distance ξ. Hence, we can choose f(r) such that it punches a hole of size
ξ, i.e. we set f(r) = 0 for r < ξ. Since there is no condensate outside the
bucket, we also have f(r) = 0 for r > R. In between, we set f(r) = 1. So,
in summary, for a cylindrical bucket large compared to ξ, we have

Ψvortex(r, θ) =

½ √
nei θ for ξ < r < R

0 elsewhere
, (1.150)
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With these simplifications, we can calculate the energy of the vortex condensate:

Ẽ [Ψvortex ] =
ξ/R¿1

Esf +Eint −ΩLz − μN (1.151)

with Esf given by expression (1.143), for the vortex

Esf , vortex =
~2

2m
2πn

RZ
ξ

2

r
dr = πn

~2

m
2 log(R/ξ) (1.152)

Similarly, we get for the interaction energy

Eint, vortex =
gn2

2
× 2π

¡
R2 − ξ2

¢
≈

ξ/R¿1

gn2

2
2πR2 (1.153)

where we neglect ξ2 with respect to R2. Note that N = 2πR2n (remember we
set H = 1, and 2πR2H is the volume). So, using μ = gn we can write

Eint, vortex ≈
ξ/R¿1

1

2
μN (1.154)

Finally, for the angular momentum we get

Lz, vortex = ~ × 2πn
¡
R2 − ξ2

¢
≈

ξ/R¿1
~ × 2πnR2 (1.155)

Adding up all these terms gives us

Ẽ [Ψvortex ] =
ξ/R¿1

πn
~2

m
2 log(R/ξ)−Ω~ 2πnR2 − 1

2
μN (1.156)

The last term, −μN/2, is the result we’d get for a condensate without a vortex.
So, the difference in energy between a condensate with and without a vortex is

∆E = Ẽ [Ψvortex ]− Ẽ [Ψno vortex ]

=
ξ/R¿1

πn
~2

m
2 log(R/ξ)−Ω~ 2πnR2 (1.157)

If this is positive, it costs energy to have a vortex, and the condensate will
prefer to remain without vorticity. If ∆E becomes negative, it is energetically
advantageous to bring in a vortex. Increasing the rotation frequency Ω tilts the
balance in favour of vortices. The rotation frequency at which ∆E becomes
negative is the critical rotation frequency

Ωc =
~
2m

log(R/ξ)

R2
(1.158)

If you plug in the size of the cloud for R, and set = 1 to obtain the critical
rotation frequency.
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Figure 1.22: When the condensate is stirred faster and faster, a second, third,
fourth,... vortex appear, each carrying one quantum of circulation. The vortices
repel eachother and form the “Abrikosov lattice”.

1.6.5 Abrikosov lattice

How about stirring the condensate faster? Will you obtain an = 2 vortex? No!
The kinetic energy of the superflow grows with 2, so it is energetically favourable
to have two singly quantized vortices in stead of one doubly quantized vortex.
Indeed, 2Esf , =1 < Esf, =2 because 2 × 12 < 22. For the angular momentum
in a homogeneous condensate, it doesn’t matter whether = 1 or = 2. So
what happens as you stir faster? The experimental result is shown in figure
1.22: more and more singly quantized vortices appear. The better student
may be worried that our formalism will find that the critical rotation frequency
for 2 vortices is equal to that of 1 vortex if we use 2Esf , =1 for the kinetic
energy of the superflow. And he would be correct. Actually, the kinetic energy
of the superflow in the case of two vortices depends on the distance between
these vortices: when the two vortices are on top of eachother, the situation is
indistinguishable from a doubly quantized vortex and the kinetic energy of the
superflow is Esf, =2. So, the kinetic energy of superflow grows from 2Esf , =1

for vortices far away from eachother to Esf, =2 when they are close. Vortices
repel eachother! This repulsion between the vortices result in an increase in the
critical rotation frequency as the number of vortices becomes bigger.
You can intuitively understand this repulsion from the fact that if you have

two nearby vortices, their individual velocity fields in the region between the
vortices are opposite in sign, as shown in the upper left hand corner of figure
1.22. So, they subtract from each other and in between vortices the superfluid
velocity field is supressed. To lower the energy, it is advantageous to make
the region between the vortices as large as possible: hence the vortex lines are
pushed apart. What happens if we switch the sense of rotation of the superflow
around on of the vortices? Then we get an antivortex,with = −1. In the
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region between the vortex and the antivortex, their velocities add up leading to
a higher kinetic energy. Now it is energetically favourable to bring the vortex
and the antivortex close to eachother. Vortices and antivortices in condensates
attract eachother, and annihilate (when they are exactly on top of eachother,
the resulting velocity field is zero everywhere).
The repulsion between vortices also means that the vortices want to sit as

far away from eachother as possible, and hence they will organise themselves in
a lattice, called the Abrikosov lattice. When we rotate the condensate fast
enough to have a dense Abrikosov lattice, the system will start to act more and
more like a solid body. Let’s take the axis of rotation to be the z-axis as usual,
and have all vortex lines parallel to ez. Then we compute the circulation for
a contour running along the edge of the condensate: we choose a circle with
radius R (where R is the radius of the condensate), placed in the xy-plane
(perpendicular to the vortex lines). For the superfluid we know that the total
circulation along this contour equals

superfluid:
I
C

v · dx = Nvκ, (1.159)

if there are Nv vortices, each carrying a single quantum of circulation κ = h/m,
piercing the disk bounded by our circular contour. For solid body rotation at
angular frequency Ω, we know that the velocity at a distance R from the center
equals RΩ, so the total circulation is

solid body:
I
C

v · dx = 2πR×RΩ. (1.160)

That’s what you have when you spin a solid disk like a CD. For our superfluid
to mimic solid-body rotation, the surface density of vortices should be

Nv

πR2
=
2Ω

κ
(1.161)

Rotating faster and faster (increasing Ω) will generate more and more vortices
(increasing Nv), and when the above condition is met, the system acts like a
regular piece of material rather than as a superfluid.
Remark — Running ahead to the third part, we can say that this is very

similar to type II superconductors, where the role of rotation frequency is played
by the magnetic field. Think of the superconductor as a charged superfluid —
in a magnetic field charges want to run around in cyclotron orbits. At first,
there is no running around, but as you increase the magnetic field above the
“first critical field”, a first vortex enters the superconductor. Increasing the
field further brings in more and more vortices, until at the “second critical
field” superconductivity breaks down and the system acts like a normal piece
of material again. Remark within the remark: vortices in superconductors
correspond to charged superflow around a vortex line — but now this current
loop generates it own magnetic field! There is magnetic flux going through
the vortex core, following the vortex line. This is different from the case of
uncharged superflow, and one way the difference is manifested is that there is a
“magnetic energy” term that complicates the interaction between the vortices.
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1.6.6 Hess-Fairbank effect and field cooling

In the preceding discussion, we always assume that we start from a condensate
which we set in motion by beginning to stir it. The “rotation field” is added
after we have cooled the gas down to form a condensate. But what happens if
we switch the two manipulations. What if we start with a rotating, warm gas,
and then cool down below Tc? This protocol is called “field cooling”: you
cool down while the rotation field (or magnetic field, for a superconductor) is
already in place.
Above Tc, we can have any angular momentum in the gas — any wind speed

is possible in a hurricane. But once we hit Tc and form a condensate, only
quantized values of Lz are allowed: N~, 2N~, 3N~, ... where N is the number
of atoms, cf. figure 1.21. What happens is that as we reach Tc, the unquantized
angular momentum of the normal gas will snap to the nearest quantum level for
Lz. Consider the hot gas rotating at an angular velocity Ω just below Ωc, with
wind speeds in the gas below v(r) < ~/ (mr). As the gas cools down to form
a condensate the system will suddenly speed up right at Tc and reach one full
quantum of angular momentum, and form a vortex condensate! This wonderful
effect was named after Hess and Fairbank15 who proposed it for the case of
liquid helium.
How about cooling down a gas that is spinning at Ω > Ωc and has too much

angular momentum? Indeed, that will slow down to the nearest quantized
velocity field as it forms a condensate. Field cooling reveals quantum weirdness
at the macroscopic scale. And how about conservation of angular momentum?
This will have to be absorbed by the rotating bucket — the trap and the
non-condensed atoms that are still present near Tc. This brings us seamlessly to
the next section where we investigate what happens at non-zero temperatures
when not all the atoms are in the condensate.

Summary: The velocity field of a condensate is proportional
to the gradient of the phase of the order parameter, and this
implies that the velocity field irrotational and that circulation
is quantized. Circulation can only appear in the condensate in
the form of vortices: lines where the condensate density is zero
and around which the phase of the order parameter changes by
an nonzero integer times 2π. Vortices carry quanta of circulation,
and appear as you rotate the condensate above a critical rotation
frequency.

1.7 Condensates at non-zero temperatures

1.7.1 Thermal cloud versus condensate

The Gross-Pitaevskii equation describes a pure Bose-Einstein condensate. There
are no thermal atoms in the description. This situation is only realized at
temperature zero. In this section we are going to extend the Gross-Pitaevskii
equation to the case of non-zero temperature, following Bogoliubov’s approach.

15G.W. Hess and W.M. Fairbank, Physical Review Letters 19, 216 (1967).
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The central idea that we have already encountered in our discussion of the
Penrose-Onsager criterion is that, in the Hamiltonian of the interacting Bose
gas,

Ĥ =

Z
dr ψ̂

†
(r)

∙
−~

2∇2
2m

+ V1(r)

¸
ψ̂(r)

+
1

2

Z
dr

Z
dr0 ψ̂

†
(r)ψ̂

†
(r0)V2(r− r0)ψ̂(r0)ψ̂(r), (1.162)

the operator for the boson field is shifted by a complex number Ψ(r) equal to
the order parameter,

ψ̂(r) = Ψ(r) + φ̂(r). (1.163)

When Bose-Einstein condensation is present, by definition ρ1(r, r
0) =D

ψ̂
†
(r0)ψ̂(r)

E
≈ Ψ∗(r)Ψ(r) so that the shifted operators φ̂†(r) and φ̂(r) must be

in a sense “small”. They are called fluctuation operators, indicating that they
implement small fluctuations around the order parameter. This was the idea
used to derive the GP equation, where we completely neglect φ̂(r)→ 0 so that
we can simply replace ψ̂(r) ≈ Ψ(r). At non-zero temperatures, we must keep
φ̂(r), and look for correction terms. Note that φ̂(r) is a bosonic operator (it is
just a shifted version of ψ̂(r)).

Another way to look at this is to remember that the first order reduced
density matrix always has a spectral decomposition,

ρ1(r, r
0) =

∞X
=0

λ ϕ∗(r)ϕ (r0). (1.164)

The Penrose-Onsager criterion states that there is BEC if and only if one of
the eigenvalues becomes macroscopically large (of order N), forcing the other
eigenvalues to be small, since they have to sum to N). With Ψ(r) =

√
λ0ϕ0(r)

the reduced density matrix can also be written as

ρ1(r, r
0) = Ψ∗(r)Ψ(r)| {z }

condensate

+
∞X
=1

λ ϕ∗(r)ϕ (r0)| {z }
fluctuations

(1.165)

The fluctuation part is generated by the fluctuation operators defined earlier,D
φ̂
†
(r0)φ̂(r)

E
. This contribution comes entirely from atoms that are not in the

condensate. Again: at non-zero temperatures we need to take these fluctuations
into account, at least perturbatively, as the thermal energy (and temperature16)
is linked to excitations. Treating fluctuation with perturbation theory becomes
more tenuous as T → Tc, and one can only hope that the higher order terms
will only become important very close to Tc.

16 Indeed, you’ll recall that the way temperature is measured in the experiments is by fitting
to the outer part of the cloud, i.e. the thermal atoms that are not in the condensate.
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The perturbation treatment is most easily done by substituting ψ̂(r) =

Ψ(r) + φ̂(r) in the Hamiltonian. This substitution results in

Ĥ − μN̂ =

Z
dr
h
Ψ∗(r) + φ̂

†
(r)
i ∙
−~

2∇2
2m

− μ+ V1(r)

¸
×
h
Ψ(r) + φ̂(r)

i
+
4π~2a
m

Z
dr
¯̄̄
Ψ(r) + φ̂(r)

¯̄̄4
(1.166)

Here we have again used the contact pseudopotential as the interatomic
interaction. Now we expand this Hamiltonian up to second order in the
fluctuation operator, that is, we drop all terms with three or four φ̂’s. If we only
keep terms without any φ̂, we get the Gross-Pitaevskii energy functionalEGP [Ψ].
There are no terms with only one φ̂ operator to be kept, since terms with an
odd number of atom creation and annihilation operators do not contibute to the
energy: we assume that the system has a well-defined number of atoms. Finally,
the terms with two φ̂’s yield the so-called Gross-Pitaevskii-Bogoliubov
Hamiltonian (also called Bogoliubov-De Gennes Hamiltonian in the context of
superconductivity):

Ĥ − μN̂ = EGP [Ψ]− μN [Ψ]

+

Z
dr φ̂

†
(r)

∙
−~

2∇2
2m

− μ+ V1(r) +
8π~2a
m

|Ψ(r)|2
¸
φ̂(r)

+
2π~2a
m

Z
dr
n
[Ψ∗(r)]2φ̂(r)2 +Ψ(r)2[φ̂

†
(r)]2

o
. (1.167)

The second line is a conventional Hamiltonian for the thermal atoms. Taking
the expectation value to obtain the energy, it is clear that the interaction term
describes the interaction between between the

Nc =

Z
dr |Ψ(r)|2

condensate atoms and the

N −Nc =

Z
dr
D
φ̂
†
(r)φ̂(r)

E
thermal atoms, in a mean-field type of description. There is no term describing
the interactions between thermal atoms (such a term would have four fluctuation
operators). This means that we work in a regime where the density of thermal
atoms is still low compared to the density of the condensate. Note that there is
a difference (of a factor 2) with the interaction term in the condensate:

condensate-condensate:
4π~2a
m

|Ψ(r)|2 |Ψ(r)|2 (1.168)

condensate-thermal atom: 2× 4π~
2a

m
|Ψ(r)|2

¯̄̄
φ̂(r)

¯̄̄2
(1.169)

Where does that factor 2 come from? This is an effect of the Bose symmetry.
If two atoms scatter and they are in a different quantum state, we need to
symmetrize the two-body wave function that describes the scattering process.
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This leads to two terms: besides the direct (Hartree) term there is also an
exchange (Fock) term:

Eint =

Z
ϕa(r)ϕb(r

0)V2(r− r0)ϕb(r0)ϕa(r)

+

Z
ϕa(r)ϕb(r

0)V2(r− r0)ϕa(r0)ϕb(r). (1.170)

For fermions we get the well-known minus sign. For bosons this becomes a
plus sign, and moreover for a contact potential V2 ∝ δ(r − r0) both terms are
equal, and the total is effectively twice the Hartree contribution. For atoms
in the same state, this symmetrization is not needed, and we do not have an
exchange term, only the Hartree contribution. Hence, the interaction energy
for two bosons in different states is twice as high as for two bosons in the same
state. In general, the bosonic exchange contribution for repulsive interaction
will increase the energy if bosons are in different states, so it will help to form
a condensate and put the bosons in the same state. That is why a ‘fractional
state’, with two large eigenvalues each N/2 (i.e. condensation in two different
single-particle states with half the total number of particles) does not arise even
if the single-particle ground state energies are degenerate: the exchange energy
prohibits it.
The last line in the Gross-Pitaevskii Hamitlonian (1.167) doesn’t look

like a “normal” Hamiltonian at all: it contains the “anomalous” products of
two creation operators (and two annihilation operators). Since we can make
superpositions of states with different amounts of thermal atoms (even for a
fixed total number of atoms), it may be possible that this term also contributes

to the energy. The expectation values
D
φ̂(r)2

E
and

D
φ̂
†
(r)
E
with respect to such

a number-superposition wavefunction need not be zero. Indeed, what this term
describes is the transformation of condensate atoms to thermal atoms and vice
versa, i.e fluctuations of the number of condensate atoms17.

1.7.2 Bogoliubov excitations

The Heisenberg equations of motion for the fluctuation operators are:

i~
∂φ̂(r)

∂t
=

h
φ̂(r), Ĥ − μN̂

i
, (1.171)

i~
∂φ̂

†
(r)

∂t
=

h
φ̂
†
(r), Ĥ − μN̂

i
. (1.172)

Using the bosonic commutation relations for the field operators we find

i~
∂φ̂(r, t)

∂t
=

µ
−~

2∇2
2m

− μ+ V1(r) +
4π~2a
m

2nc(r)

¶
φ̂(r, t)

+
4π~2a
m

Ψ(r)2φ̂
†
(r, t), (1.173)

17There is now an additional difficulty in setting the chemical potential μ: in principle, we
want to have the total number of particle N fixed by μ, rather than the condensate number
Nc as we did before. We’ll ignore this complication here, but be aware that by doing this, we
treat the termal atoms in a non-number conserving way.
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and

i~
∂φ̂

†
(r, t)

∂t
=

µ
−~

2∇2
2m

− μ+ V1(r) +
4π~2a
m

2nc(r)

¶
φ̂
†
(r, t)

+
4π~2a
m

Ψ∗(r)2φ̂(r, t), (1.174)

where we write nc(r) = |Ψ(r)|2 for the condensate atom density. In the ground
state we can choose Ψ(r) to be a real function (as will be discussed in more
detail in the chapter on superfluid helium), so we have Ψ(r)2 = nc(r). Equations
(1.173) and (1.174) form a set of coupled linear partial differential equations.
The advantage of the series expansion up to second order in the fluctuation
operator, performed in the previous paragraphs, that that a Hamiltonian that
is quadratic in the field operators can always be diagonalized by an appropriate
unitary transformation. To solve the set of equations, we will perform the
following transformation on the Hamiltonian:

φ̂(r, t) =
X
j

³
uj(r)α̂je

−i jt − v∗j (r)α̂
†
je
−i jt

´
, (1.175)

φ̂
†
(r, t) =

X
j

³
u∗j (r)α̂

†
je
i jt − vj(r)α̂je

i jt
´
. (1.176)

This is some sort of ‘fourier’ expansion in the energies j — nothing prohibits
us from writing the fluctuation fields in such a form. The coefficients ui and
vi are to be determined so that the transformed Hamiltonian is diagonal in
the new operators α̂i and α̂†i . That is, we substitute (1.175),(1.176) in the
Hamiltonian, look at the terms with (α̂i)

2 and (α̂†i )
2 and then choose ui and

vi so that these terms disappear. This is called the Bogoliubov(-Valatin-de
Gennes) transformation. Demanding that the new operators α̂i and α̂†i satisfy
commutation relations is related to requiring unitarity of the transformation
and comes down toh

α̂i, α̂
†
j

i
= δij

⇔
Z

dr
h
|ui(r)|2 − |vi(r)|2

i
= 1 (1.177)

We’ll always be able to find suitable values for ui and vi so that the coefficients
of (α̂i)

2 and (α̂†i )
2 disappear (two variables for two requirements). In other

words, the diagonalisation of the Hamiltonian will always work and we get

Ĥdiag =
X
j

jα̂
†
jα̂j + constant. (1.178)

The coefficient of the α̂†jα̂j term should be the energy j that we had before,
and this results in self-consistent equations to determine the set of energy levels
j . This diagonalized Hamiltonian tells us that the excitations of the system are
bosonic, have energies j and are created by the operators α̂

†
j . The elementary

excitations are not just thermal atoms, since α̂†j is not the same as φ̂
†
(r). Indeed,

at low temperatures there are other ways to excite the condensate than kicking
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individual atoms out of the condensate and into higher excited trap levels. This
“kicking out individual atoms” are the single-particle excitations that we talked
about in the section on condensate dynamics. In that same section, we saw
that the low-lying energy excitations were sound waves, phonons. These are
collective excitations: the α̂†j envolve a sum over all the particles, distributing
the energy over the collective.
OK, let’s proceed and find the energies j . Rather than substituting

(1.175),(1.176) in the Hamiltonian, we’ll substitute these formulae into the
Heisenberg equations of motions for the fields. This gives a nice shortcut to
finding uj(r),vj(r), and j . We get⎧⎪⎪⎨⎪⎪⎩

µ
−~

2∇2
2m

+ V1(r) +
4π~2a
m

2nc(r)− μ− j

¶
uj(r) =

4π~2a
m

nc(r)vj(r),µ
−~

2∇2
2m

+ V1(r) +
4π~2a
m

2nc(r)− μ+ j

¶
vj(r) =

4π~2a
m

nc(r)uj(r).

(1.179)
These look like Schrödinger equations for a coupled two-component system.
From this setting, the fact that eigenstates at different energies are orthonormal
leads to Z

dr
£
ui(r)u

∗
j (r)− v∗i (r)vj(r)

¤
= δij . (1.180)

The equations (BdGequations) are called the Bogoliubov(-de Gennes) equations.
Dr. de Gennes’ name is usually added when we look at this formalism in the
context of superconductivity, i.e. for a charged Bose gas.

1.7.3 Excitation spectrum for the homogeneous Bose gas

Let’s look at the homogeneous Bose gas: setting V1(r) = 0 simplifies the system
as we now have translational invariance. This means that wave numbers are
good quantum numbers, and that we can write the solutions of the Bogoliubov
equations (1.179) as

uj(r) = uq
eiq·r√
V
and vj(r) = vq

eiq·r√
V
, (1.181)

where V is the volume of the system. We already found (cf. expression (1.79))
that, for a uniform system with condensate density nc, the order parameter
satisfies the following Gross-Pitaevskii equation:

4π~2a
m

ncΨ(r) = μΨ(r), (1.182)

from which we obtained μ = 4π~2anc/m. In keeping this solution, we make
an approximation: in fact we should use the chemical potential to fix the total
number of particles, not only the condensate, as mentioned in footnote 17. In
this (non-number-conserving) approximation, the Bogoliubov equations become⎧⎪⎪⎨⎪⎪⎩

µ
−~

2q2

2m
+
4π~2a
m

nc − q

¶
uq =

4π~2a
m

ncvq,µ
−~

2q2

2m
+
4π~2a
m

nc + q

¶
vq =

4π~2a
m

ncuq.
(1.183)
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This set of linear equations has a nontrivial solution if and only if the
determinant of the coefficients is zero, so ifµ

−~
2q2

2m
+
4π~2a
m

nc − q

¶µ
−~

2q2

2m
+
4π~2a
m

nc + q

¶
=

µ
4π~2a
m

nc

¶2
,

(1.184)
is satisfied. It is easy to solve this with respect to q :

q =

s
0
q

µ
0
q + 2

4π~2a
m

nc

¶
. (1.185)

Here 0
q = (~q)2/(2m) is the excitation spectrum of the non-interacting system,

and q is the excitation spectrum of the interacting (uniform) Bose gas. In
the non-interacting system, all atoms condense in the q = 0 state. The
excitations then consist of bumping a single atom out of the q = 0 condensate
and into a higher q plane wave state, gaining energy 0

q. Interactions change
this picture. Not only should we now recalculate the condensate wavefunction
Ψ, but now the excitations are bosonic quasiparticles, created and annihilated
by the Bogoliubov operators α̂†q, and with excitation energy q different from
the free-particle dispersion, and given by (1.185). We call q the Bogoliubov
spectrum.
In the last chapter we’ll see that the Bogoliubov transformation also allows

to find the excitation energy spectrum of a superconductor, and in that case the
energy spectrum has a band gap ∆. However, for condensates of atomic Bose
gases, the behavior of the Bogoliubov spectrum at small q is given by

lim
q→0 q =

r
4π~2a
m2

nc × ~q. (1.186)

These low-lying energy modes are sound waves: the energy grows linearly with
the wave number. These are clearly collective modes, you cannot build a density
wave in the condensate from a single atom. In stead, all the atoms need to
shift small amounts away from their equilibrium density (like phonons in a
lattice). We’ve already seen in figure () that a bump in density moves through
the condensate with a constant sound velocity c. We can also extract this sound
velocity from the dispersion relation: for sound waves we always have ω = cq,
so in our case we get

c =

r
4π~2a
m2

nc. (1.187)

This is exactly the same result as what we had before.
The high-energy excitations correspond to large q, and are again free

particles, with dispersion (~q)2/(2m), since

lim
q→∞ q =

0
q (1.188)

The transition between “sound wave” type collective excitations and
single-particle like excitations happens when

~2q2c
2m

≈ 4π~
2a

m
nc (1.189)
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Figure 1.23: The Bogoliubov dispersion is shown as a function of the wave
number. For small wave numbers q ¿ ξ−1 we have sound waves, visible as
standing density waves in the condensate images, and for which ω = cq. For
q À ξ−1 the excitations would be thermal atoms kicked out of the condensate,
and near q ≈ ξ−1 there is a continuous transition in the nature of the excitation
mode. [reference: Engels et al., Phys. Rev. Lett. 98, 095301 (2007)]

from which we get

qc =
√
8πanc = 1/ξ. (1.190)

This is a very intuitive result! It says that when the wave number is larger than
the coherence length ξ, the atoms can act in a collective way to form a density
wiggle on top of the condensate. But we know that the condensate wave function
can be distorted only over distances larger than the healing length! If we try to
make the wave length smaller than the coherence length, the individual nature
of the atoms reappears, and all we can do is deposit the excitation energy in
an atom to kick it out of the condensate. Finally, note that we can rewrite the
Bogoliubov spectrum compactly using the healing length as follows:

q =

s
0
q

µ
0
q +

~2

mξ2

¶
⇒ ωq =

q

~
= cq

q
(qξ)

2
/2 + 1 (1.191)

where we used c = ~2/(
√
2mξ). Now the dimensionless correction factorq

(qξ)2 /2 + 1 due to the interactions is evident. The Bogoliubov spectrum
is plotted in figure (1.23), where the low-lying modes are visualized. The sound
modes here appear as standing waves in the density, with frequency linearly
related to the wave number.
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1.7.4 Thermodynamics of the interacting Bose gas

In the second section of this chapter we have calculated the thermodynamical
quantities for the ideal Bose gas. We used the density of states derived from the
energy spectrum of free atoms, 0

q = (~q)2/(2m). In the current section we have
seen that the Bogoliubov formalism allows to interpret the interacting Bose gas
at non-zero temperature as a condensate which does not contribute energy nor
entropy, plus an ideal gas of (bosonic) Bogoliubov quasiparticles with energy
spectrum q in stead of 0

q. The big advantage of this quasiparticle picture of
an interacting system is that we can easily extend all the results of the ideal
Bose gas — all we need to do is change the dispersion relation (and hence the
density of states). The disadvantage of the Bogoliubov treatment is that is
becomes less and less accurate when the temperature approaches the critical
temperature. In that limit, fluctuations are no longer small with respect to the
condensate density, and interactions between quasiparticles becomes important
again (the third and fourth order terms in the fluctuation Hamiltonian (1.166)
can no longer be neglected). Beliaev worked hard to take into account the
third order term, and showed that it leads to damping of the collective modes
— also this is seen experimentally. As the temperature gets lower and lower,
the damping becomes weaker and weaker and the oscillations of the condensate
keep going, and the Bogoliubov treatment works.
From the Bogoliubov spectrum, we can for example get the number of

quasiparticles:

N = N −Nc =
X
q

1

exp( q/kBT )− 1
, (1.192)

and the internal energy

E =
X
q

q

exp( q/kBT )− 1
(1.193)

=
V

(2π)3

Z
d3q

q

exp( q/kBT )− 1
, (1.194)

etc... We see that at the lowest temperatures, only the low-lying energy
modes contributes, and these have a phonon character. So, at low but nonzero
temperatures the condensate acts thermodynamically just like a gas of phonons.
An example: for phonons you’ll remember from other courses that the specific
heat grows as the cube of the temperature. Now you know this is also true
for a Bose gas, and if you use the correct sound velocity you get the correct
proportionality factor. As the temperature grows, also single-particle excitations
become important, and the specific heat with temperature will eventually go as
T 3/2 if we don’t reach Tc before.

Summary: At finite temperatures not too close to Tc we can
treat the interacting dilute Bose gas as a condensate plus an
ideal gas of bogoliubov excitations. These excitations have a
phonon-like dispersion relation for wave lengths longer than the
healing length and are thermal atoms when the wave length is
much smaller than the healing length.
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Chapter 2

Superfluid helium

2.1 The discovery of superfluidity

2.1.1 Helium-II

One of the unique properties of helium is that it cannot be frozen solid at
ambient (vapour) pressure. It remains a liquid down to temperature zero.
In order to solidify helium, you need to compress it under a pressure of 25
atmospheres. Of course, also helium atoms have a minimum in their interatomic
potential: the atoms would like to sit 2.8 Å apart. This minimum is very
shallow: a normal chemical bond has an energy of the order of electron volts
(thousands of degrees kelvin), but helium as a noble gas is quasi inert — the
Van der Waals binding energy is only of the order of ten kelvin, as can be seen
in figure 2.1.Still that does not mean helium will indeed become solid below
ten kelvin! To determine whether a material is a crystalline solid or a liquid,
the Lindemann criterion can be used as a rule of thumb. This criterion states
that there can only be crystalline order if the atoms move on average less than
10-20% of the lattice distance. The atoms jiggle around their equilibrium lattice
position due to thermal energy: if you heat the solid atoms will oscillate harder
and when they their kinetic energy is large enough to displace them 10-20%
away from their minimum in the lattice potential, then they are no longer
stuck to their lattice site and the material melts. But even when you could
cool down to absolute zero, the atoms will not be standing perfectly still due
to the Heisenberg uncertainty principle. The uncertainty principle requires a
zero point energy larger than the minimum of the classical potential well and a
corresponding zero-point motion. The jiggling around due to zero point motion
is larger for lighter atoms (smaller mass means more “quantumness”). Helium
combines small mass with a weak potential, leading to a zero-point motion larger
than 20% of the lattice distance. Thus, helium stays liquid.
The pioneers of cryogenics tried hard to test this by cooling down liquid

helium to as low a temperature as they can achieve. The cooling is performed
by strong pumps that remove the vapour above the liquid. This lowers the
vapour pressure, and brings down the boiling temperature, allowing to reach
temperatures down to about 1 kelvin. Heike Kamerlingh Onnes, the son of a
rooftile manufacturer, was the first to liquify helium (at 4.2 K) in 1908, and this
made him the front-runner in cooling all sorts of things, including helium itself.

59
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Figure 2.1: The interatomic potential between two helium atoms. The dashed
curve is the experimentally determined potential, and the full line is the best
fitting Lennard-Jones potential V (r) = 4

£
(σ/r)12 − (σ/r)6

¤
with = 10.22 K

and σ = 2.556 Å.

Figure 2.2: Above 2.18 K (left photo) helium boils with bubbles of vapour
churning the liquid. But as the temperature is lowered, at 2.18 the boiling stops
abruptly (middle photo). There is still evaporation, but no bubbling. Even
when a light bulb is switched on, the heat from the bulb does not cause boiling
(right photo).



2.1. THE DISCOVERY OF SUPERFLUIDITY 61

Figure 2.3: The lambda transition is the phase transition between He-II and
He-I, and gets its name from the shape of the peak in the specific heat.
The peak remains sharp even at the highest temperature resolution achievable
(microdegrees), obtained in experiments in space, to avoid chemical potential
gradients due to the gravitation potential [source: M. J. Buckingham, W.M.
Fairbank, Progress in Low Temperature Physics III, 1961].

He noticed a remarkable phenomenon in 1910: below 2.17 kelvin the violent
boiling process of the liquid suddenly stops completely. The liquid becomes
still, as can be seen in the middle panel of figure 2.2. The liquid still evaporates
and gets colder as you keep pumping away the vapour, but this goes smoothly
and is only apparent through the gradual lowering of the level of the helium in
the cryostat. Normally, bubbles appear when because some areas in the liquid
are hotter and already make the transition to vapour (rising up in the form of a
bubble). The disappearance of bubbling means that there are no such thermal
gradients. As can be seen in the right panel of figure 2.2, it is possible to switch
on a lamp generating a lot of excess heat: helium cooled to well below 2.17 K
will still evacuate the heat efficiently enough so no bubbling occurs. This state
of helium, below 2.18, became known as “Helium-II”, to distinguish it from the
normal phase, “Helium-I”. Willem Hendrik Keesom (a student of Onnes who
later succeeded him as head of the laboratory) found that Helium-II has by far
the best heat conduction of any known material, and flattens out any thermal
gradients.
For liquid helium-I, the normal state, each gram of vapour extracted removes

about 21 J in latent heat of evaporation. Moreover, the specific heat is about 3
Joules per gram per degree. So, to cool 7 grammes of helium-I down by 1 degree
requires 21 J, achieved by the evaporation of 1 gram of liquid. Kamerlingh
Onnes and Leo Dana notice that the cooling becomes harder near the transition:
they had much less helium-II liquid left over than expected, as they had to
evaporate more. The culprit is the specific heat: it rises sharply near the
transition temperature. Dana and Onnes first measure it in 1923, noting that
the curve has a “lambda” shape. The shape of the specific heat peak gave
a name to the phase transition between He-II and He-I: it became known as
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Figure 2.4: The phase diagram of liquid helium, showing the λ-line demarkating
the He-II phase.

the “lambda transition”. This is the sharpest phase transition that we know:
experiments in weightlessness (to eliminate potential gradients) show that the
lambda transition is sharp down to the best experimental resolution, on the
microkelvin scale, as can be seen in figure 2.3. A lambda-ish peak in the specific
heat should ring a bell: we found similar shapes studying the specific heat of
Bose gases near the Bose-Einstein condensation temperature: just flip back to
figure 1.13 and look at the inset. Gradually, the lambda-transition line was
mapped throughout the temperature-pressure phase diagram, shown in figure
2.4: the transition temperature goes down a bit as pressure increases up to the
solidification pressure.

2.1.2 Superflow

It was only in 1938 that the most remarkable property of He-II was discovered:
it can flow without any viscosity. Two papers appeared back to back in Nature
(volume 141): one by Jack Allen and Donald Misener, and one by Pjotr Kapitza.
They had independently performed experiments on the flow of helium through
narrow channels. If you drill a hole of about a millimeter diameter in the
bottom of an (open) pot of mayonnaise, the mayonnaise will not flow out — it
is viscous. If you replace the mayonnaise with water, it will flow through the
millimeter hole. But it will remain stuck at some point if you make the hole
smaller, micron sized. This would also block helium-I, the normal state. But
amazingly, as the temperature drops below the lambda temperature, helium-II
seems to have no problems and leaks out. Nowadays, capillary channels can be
made even smaller, down to the nanometer scale using porous plugs from tightly
packed fine powder such as jewellers rouge. Still that forms no unsurmountable
obstacle for helium-II, it can flow through such a plug as can be seen in figure
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Figure 2.5: A photo of He-II flowing without problems through a porous plug
that would definite stop He-I is shown to the right. On the left the result of
Andronikashvili’s experiment is shown: the superfluid and normal fractions of
He-II as a function of temperature.

2.5. This phenomenon —the capacity to flow through the tiniest capillaries— was
dubbed superfluidity. In 1938 this behaviour was a complete mystery, but
to you it is already familiar from the previous chapter. Already two elements
are in place to support the hypothesis that helium-II has a Bose condensate of
helium atoms: the lambda peak and the ideal fluid behavior.
It would be easy to claim that the capacity to flow through porous plugs is

due to the complete vanishing of viscosity, but the story is more complicated
than that. The viscosity can be measured directly by an oscillating wire
experiment. A tiny loop of wire is placed in a magnetic field B: when an
oscillating current I(t) is sent through the wire, a driving force F(t) = I × B
swings the wire back and forth. It starts to oscillate, with an amplitude that
is maximal if the frequency of the drive is equal to the mechanical resonance
frequency of the wire. But it is a damped harmonic oscillator: the width of
the resonance is related to the damping caused by the viscosity of the liquid in
which the wire is submerged. Thus, our little vibrating wire device is actually a
viscosimeter, and one that is able to measure very small viscosities. What the
vibrating wire viscosimeter shows is that the viscosity of He-II does not drop
to zero right at the transition temperature Tλ. It does decrease, and gradually
falls away as the temperature is reduced further and further below Tλ.

2.1.3 Andronikashvili torsional oscillator experiment

So what is going on ? All the liquid can drain through nanometer small
capillaries, but aparently there is still viscosity near Tλ ? This baffling behaviour
led the theorist Lev Landau to hypothesize that there is a viscous component and
a superfluid component, the former leading to the viscosity picked up by the
vibrating wire. However, these components are somehow not separate fluids:
you are not left over with the viscous component after you strain the liquid
through a porous plug. These components can morph into eachother, as if
each atom has both viscous and superfluid nature. That definitely sounds like
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something quantum mechaniccy — the Helium-II phase is a quantum state of
matter.
Elepter Andronikashvili set out to study this duality in a remarkable

experiment in 1946. He constructed a stack of disks with only a very small
spacing between the disks. This pile of disks was mounted on to a central pillar,
a rigid metal rod, that itself was fixed firmly to the ceiling of the experimental
cell. This forms a torsional oscillator: as you try to twist the stack with the rod
as axis of rotation, it will resist this torsion, and if you let go it will rotate back
and forth, oscillating. The frequency of oscillation is ω =

p
κ/I where κ is the

stiffness coefficient of the rod and I is the moment of inertia of the rod+disks
(this is similar to

p
k/m for a spring where k is the spring constant and m is

the inertial mass). A sketch of the setup, with the pile of disks immersed in
liquid helium, is shown in figure 2.5.
By measuring the frequency of the torsional oscillation you can find the

moment of inertia. The moment of inertia is determined by the oscillating mass
of both the disks and any fluid dragged along with them. Any viscous fluid
between the closely packed disks is certainly dragged along and contributes to
the moment of inertia. But any component of the fluid with zero viscosity is
not dragged along by the disks. As He-II is cooled down and its viscosity drops,
it develops a larger and larger superfluid component, and Andronikashvili could
now determine what fraction of the total helium density was superfluid (not
dragged along) and what fraction was still viscous. The result is shown, as a
function of temperature, in figure 2.5.
The experiment shows that the total mass density ρ can indeed be seen as

a sum of a superfluid component ρs, that has no viscosity and does not allow
temperature gradients, and a normal component ρn that carries viscosity. At
Tλ, the superfluid component appears. More and more of the total density
becomes superfluid density as the temperature is lowered, until below about
1 K the normal component is negligibly small. The total viscosity is the sum
of both components, and that is why also the viscosity gradually decreases as
the temperature is lowered below Tλ. The normal component may have some
thermal resistance, but it always acts in parallel with the superfluid component
that has zero thermal resistance: that is why the thermal gradients vanish
abruptly at Tλ. The ratio between superfluid and normal component is fixed
for a given temperature, and that, in combination with the absence of thermal
gradients, means that it is not possible to separate the two components, for
example by straining the liquid through a porous plug. Indeed, if you would have
more superfluid on one side, it would mean that this side is colder (as you can
read off the graph in 2.5), but thermal gradients are not allowed: the superfluid
component would immediately rush back to the hotter side and restore a uniform
temperature.

2.1.4 Are there supersolids?

We have already argued that there can be no Bose-Einstein condensation
of atoms when they are localized in lattice points (to within 10-20% of the
lattice site, as per the Lindeman criterion). Indeed, to obtain Bose-Einstein
condensation, we need the wavefunctions to spread out (their de Broglie
wavelength) over distances larger than the distance between the atoms.
Accordingly nobody expected superfluid behaviour in solid helium. The lambda



2.1. THE DISCOVERY OF SUPERFLUIDITY 65

Figure 2.6: Recently, the torsional oscillator experiment was performed for solid
helium, and strangely enough also there a drop in the moment of inertia was
found below a critical temperature [E. Kim and M. H. W. Chan, Nature 427,
225 (2004)].

line stops at the solidification line in figure 2.4. This doesn’t stop good physicists
from looking for it anyway: the torsional oscillator experiment was repeated in
2004 but now with solid, pressurized helium in the oscillating bob, as shown in
figure 2.6, top. And, to everyones big surprise, below about 100-150 millikelvin,
a part of the solid helium seems to avoid oscillating along, and the moment of
inertia drops, leading to a decrease in the period of the oscillation (left lower
panel in figure 2.6). Moreover, there is also a critical velocity1: if the velocity of
the solid is increased, the superflowing component is decreased, becoming zero
at the critical velocity. This is shown in the right lower panel of figure 2.6, where
“NCRIF” stands for Non-Classical Rotational Inertia Fraction and corresponds
to our ρs/ρ — note that this is at most about 1-2%.
The phase with this anomalous moment of inertia was named a

“supersolid”, in analogy with superfluids, and caused quite a stir, and a
lot of follow-up experiments. The supersolid phase, and what underpins it
microscopically, is still a mystery today. And there has been a big setback: it
was also discovered that the shear modulus of solid helium changes very strongly
at about 100-150 millikelvin. As there is also some solid helium in the filling
line inside the torsion rod, this influences the rod stiffness κ. So, the small
change in rotational frequency ω =

p
κ/I could be due not to a change in the

moment of inertia, as originally claimed, but to a change in the stiffness κ, a far
more mundane explanation. The devil is in the details: this is not something

1 I’m running ahead on the course: we’ll introduce the critical velocity for superfluid helium
later in this chapter.
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that affects Andronikashvili’s experiments, since the rod stiffness in his case
stays constant as the rod is made completely from a material with a well-known
behavior and only the disks are submerged in helium! In 2012, Chan and his
team diligently repeated the original experiments with a new apparatus that was
designed to eliminate any contribution from elasticity of the helium, and with
the new setup they found no evidence of supersolidity. But other experimenters
still do find phenomena that they cannot explain purely by a change in solid
helium elastic moduli, and the issue is not yet settled as researchers continue to
seek hard evidence for supersolidity.

2.2 The two-fluid model
Andronikashvili’s experiment mapped the superfluid and normal components
and gave such a strong corroborating evidence for Lev Landau’s hypothesis
that Eleptor was awarded the Stalin medal in 1952 (Kapitza got the “western”
Nobel prize, he had some trouble with the KGB). Lev Landau and Laszlo Tisza
captured the essence of Helium-II in 1940-1941 in their “two-fluid model”.
According to this model, Helium-II is considered an unseparable mix of a viscous
and an ideal component, so that ρ = ρn+ ρs. Each component also has its own
velocity field, the normal component velocity vn and the superfluid velocity vs.
The total current density is given by

j = ρsvs + ρnvn. (2.1)

The model aims to set up a hydrodynamic theory for these two fluids. Let’s
summarize their properties as we encountered them in the previous section:

density current viscosity entropy
total ρ = ρn + ρs j = js + jn ηn S
superfluid ρs js = ρsvs 0 0
normal ρn jn = ρnvn ηn S

(2.2)

We know that ρs/ρ is fixed by temperature: lower temperature means more
superfluid fraction and less normal fraction. So, if we have a spot where there
is excess superfluid, then the temperature there is lower. Similarly, if we have a
shortfall of superfluid in a spot, this corresponds to a hotspot. The superfluid
component will quickly flow away from the spot with too much superfluid and
towards the spot with too few superfluid to restore the correct fraction ρs/ρ
and iron out the temperature gradient. The thermodynamist in you should be
shocked: superfluid flows from cold spot to hot spot! This must mean that the
superfluid component carries zero entropy: that there can be no heat flow from
cold to hot.

How should we interpret these two components? All the pieces of the puzzle
have been set in place in the chapter on Bose gases. The superfluid component
has everything in common with a Bose-Einstein condensate: a lambda peak in
the specific heat, frictionless flow, zero entropy. Also the fraction of condensed
particles increases as you lower the temperature below the critical temperature,
just as ρs/ρ does (compare figure 1.11 to the ρs/ρ curve in figure 2.5). It
comes as no surprise that the superfluid component is indeed underpinned by a
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Bose-Einstein condensate of helium atoms! How about the normal component?
It appears as the temperature rises, and we’ve also seen that aspect before. The
normal component can be interpreted as the gas of Bogoliubov excitations on top
of the condensate. We still have to figure out the nature of these excitations,
as the Bogoliubov dispersion will certainly be different than that of a gas of
atoms interacting with a contact potential. That’s the programme for the next
section. But first, in this section, we want to figure out the correct hydrodynamic
equations for superfluid and normal components.

For the superfluid component this easy — we have already derived the
hydrodynamic equation for a condensate. It is the Euler equation, expression
(1.107):

∂vs
∂t

+ (vs ·∇)vs = −
1

m
∇μ. (2.3)

The chemical potential is no longer that of a dilute Bose gas (at a finite
temperature). In order to get the correct chemical potential, we won’t try to
calculate it from the microscopics, but we will derive it from thermodynamics.
The chemical potential as a function of pressure and temperature (the relevant
parameters for liquid helium experiments) is connected to the Gibbs free
energy2:

G(N, p, T ) = Nμ(p, T ). (2.4)

From this we find that

N dμ(p, T ) =
∂G

∂p

¯̄̄̄
T

dp+
∂G

∂T

¯̄̄̄
p

dT

= V dp− SdT (2.5)

Hence, gradients of the chemical potential are connected to gradients in pressure
or temperature by

∇μ = V

N
∇p− S

N
∇T. (2.6)

Note that if there is an external potential V (r), such as a gravitational potential,
the chemical potential also depends on position and we have to add ∇V to the
right hand side. We need the mass density ρ, related to the density of atoms by

ρ = (Nm)/V. (2.7)

where m is the mass of a helium atom. We can rewrite the entropy S (in Joule
per kelvin) to an entropy σ in units of Joule per kelvin per gram,

σ =
S

mN
. (2.8)

With these notations expression (2.6) becomes

∇μ = m

ρ
∇p−mσ∇T. (2.9)

2Reminder: The Gibbs free energy is defined from the internal energy U as G = U + pV −
TS = μN , so that dG = V dp− SdT + μdN and G is a function of pressure, temperature and
number of particles.
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leading to the following equation for the superfluid component:

∂vs
∂t

+ (vs ·∇)vs = −
1

ρ
∇p+ σ∇T. (2.10)

The total fluid, He-II, can’t be described by an Euler equation since it can have
viscosity — and viscous fluids are described by the Navier-Stokes equation:

ρs

∙
∂vs
∂t

+ (vs ·∇)vs
¸
+ ρn

∙
∂vn
∂t

+ (vn ·∇)vn
¸
= −∇p+ ηn∇2vn (2.11)

To isolate the hydrodynamic equation of the normal component of He-II, we
need to subtract the equation for the superfluid component (2.10) from the
equation of the entire fluid (2.11):

ρn

∙
∂vn
∂t

+ (vn ·∇)vn
¸
=

µ
ρs
ρ
− 1
¶
∇p− ρsσ∇T + ηn∇2vn (2.12)

This equation (2.12) for the normal component, and equation (2.10) for the
superfluid component have to be solved with respect to ρs, ρn, vs and vn. To
close this set of equations we need two more equations. The first is the continuity
equation ∂ρ/∂t = −∇ · j. We only have a continuity equation for the total mass
density, not for the separate components as you can transform normal into
superfluid component and vice versa by changing the temperature. The total
mass is conserved, and so it the total entropy. The second equation to be added
is the continuity equation for entropy transport ∂(ρσ)/∂t = −∇ · (ρσvn).

This gives us a closed set of hydrodynamic equations for He-II, known as
the two-fluid model:

ρs

∙
∂vs
∂t

+ (vs ·∇)vs
¸

= −ρs
ρ
∇p+ ρsσ∇T, (2.13)

ρn

∙
∂vn
∂t

+ (vn ·∇)vn
¸

= −ρn
ρ
∇p− ρsσ∇T + ηn∇2vn, (2.14)

∂ (ρs + ρn)

∂t
= −∇ · (ρsvs + ρnvn) , (2.15)

∂ (ρσ)

∂t
= −∇ · (ρσvn). (2.16)

In conjunction with the right boundary conditions, this allows to explain all
the strange properties of helium-II. We can add external potentials (gravity,...)
easily by adding the corresponding potential energy per unit volume to
the pressure. The theory is considered phenomenological: the microscopic
interpretation that we will get to in the next section was not worked out by
Landau and Tisza.

2.2.1 Fountain effect

As a first application of the two-fluid model, we turn to a curious phenomenon
known as the fountain effect. A flask, with a porous plug at the bottom, is half
submerged in helium-II. The superfluid component can flow through the plug
and enter or leave the bottle, but the normal liquid cannot. A heating wire, or
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Figure 2.7: The fountain effect: when the bottle is heated inside, superfluid
component flows in but normal component is prevented to flow out by a porous
plug. As a result, the helium-II level quickly rises and makes a fountain.

even a piece of black carbon absorbing light from a flashlight, is inside the flask
and acts as a source of heating. This warms up the helium in the flask, and
very quickly (at the speed of second sound!) superfluid helium flows towards
the hot spot in an attempt to neutralize the thermal gradient. However, the
normal fluid cannot flow away from the hot spot, so that the overall level of
helium-II in the bottle will rise. By supplying heat continously, the level may
even rise to above the top of the bottle, so that helium-II comes spouting out of
the top, forming a fountain. This thermo-mechanical phenomenon is called the
fountain effect: imposing a temperature gradient (over a porous plug) leads
to a pressure head. Figure 2.7 illustrates this effect.
The pressure gradient can be easily computed from equation (2.13), solved in

the steady-state regime (so that the time derivative vanishes). If we don’t have
a fountain but just want to know how high the level in the bottle will rise above
the level outside the bottle, we moreover have that vs = 0 once equilibrium has
set in . Then the left-hand side of (2.13) vanishes, and we get ∆p = ρσ∆T, the
fountain formula of Fritz London. The pressure difference will translate in a
level difference through ∆p = mg∆h, and this rise can be large enough to bring
the helium over the top of the bottle. Indeed, for a ∆T of the same order as
Tλ, the pressure head is somewhat over half an atmosphere, corresponding to a
∆h of... more than 50 meter. So, even a relatively small temperature gradient
needs to be sustained by pumping heat in the bottle to already have a vigorous
fountain.

2.2.2 Superfluid creep

Superfluid creep is a related effect, not a person. This strange phenomenon is
best seen when a cup is dipped into He-II and then lifted out of the liquid. The
helium will start crawling up the cup’s inner surface, and then back down the
outer surface, making a film that covers the entire surface. Then the helium in
the cup crawls along that surface to the bottom on the outside, where it forms
droplets and drips back to the liquid below. After a while, the cup is empty
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Figure 2.8: Superfluid creep: He-II crawls up the cup’s inner surface and back
down along the outer surface and then drips back down, emptying the cup.

(but it’s surfaces remain covered with a thin helium film). This propensity of
helium-II to cover all the surface that it is in contact with, is called superfluid
creep. Once the surfaces are covered, it can transport itself along the surface to
go to the lowest part of the apparatus.
Superfluid creep is the result of the capacity of helium to organise capillary

flow along even the thinnest channels. When you have water in a cup you can
also see a meniscus at the cup’s surface, where the water crawls up the walls
due to the adhesion between the liquid and the wall. But the film thickness
quickly reduces to a range in which it is impossible for the “viscous” water
to flow. Moreover, the film is fragile: temperature hotspots heat it up and
evaporate the film easily. In helium the ease of capillary flow and the good
thermal conductivity overcome the restrictions experienced by water.

2.2.3 Second sound

We have already encountered a lot of phenomena related to the fact that heat
propagation in helium-II is very different from heat propagation in normal fluids:
the absence of boiling, the fountain effect, superfluid creep,... In normal fluids,
the heat equation is a diffusion equation, and we get a dissipative proces: a heat
pulse will dissipate away, transporting the excess heat over a distance that grows
as the square root of elapsed time. But in helium-II, heat is propagated as
a wave! This means that the excess heat can be transported over a distance
that grows linearly in time, i.e. at constant velocity. The temperature “wave” is
called second sound, and the second sound velocity gives the typical speed
at which helium-II can iron out temperature gradients.
Superfluid component flows towards a hot spot, and normal component flows

away from a hot spot, in an attempt to restore the correct ρs/ρn ratio. In second
sound this is woven into a periodic pattern, as shown in the lower left panel of
figure 2.9: velocities of superfluid an normal fluid are exactly opposite and
oscillate. The density and pressure remain the same in second sound, but the
temperature and entropy density oscillate at a frequency ω = c2k. This can be
derived in the framework of the two-fluid model, with the result for the second
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Figure 2.9: Different types of propagating wave-like disturbances in He-II. First
sound is the usual density wave. Second sound is the wave-like propagation
of heat, peculiar to He-II. Third and fourth sound result from restricting the
normal component flow in resp. a film and a capillary.

sound velocity being

c2 =

r
ρs
ρn

Ã
− ∂S

∂T

¯̄̄̄
p

!−1/2
=

s
ρs
ρn

TS2

Cp
, (2.17)

where Cp is the specific heat (at constant pressure). The speed of second sound
is close to zero near the lambda point, and increases to approximately 20 m/s
around 1.8 K, below which it remains about constant (decreasing a little bit
towards lower temperatures). This is typically ten times slower than first sound,
but still pretty fast in order to remove heat efficiently.
What would happen if the second sound wave encounters a capillary or takes

place in a thin film, so that the normal component is pinned? Then vn = 0,
and only vs can oscillate. In a film, both ρn and the vapour pressure above the
film remain constant but we’ll heap up superfluid in some areas and deplete it
in other areas. This leads to a wave in ρs/ρn, or a temperature wave, known
as third sound. In a capillary the heaping up of superfluid density leads to an
increased pressure since we have no free surface like for a film — the resulting
density wave is known as fourth sound. Their velocities can again be derived
from (2.13)-(2.16), using suitable boundary conditions. Figure 2.9 shows an
overview of the different sounds of superfluid helium.

Summary: Liquid helium below the lambda point can be described
using the two-fluid model, equations (2.13)-(2.16), combining a
frictionless superfluid component and a normal viscous component
carrying entropy. One of the remarkable consequences is that
temperature is transported as a wave.
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2.3 Microscopic theory of helium

From the phenomenology of helium-II we already have obtained a good intuition
to hypothesize what is going on a the microscopic level. Indeed, the superfluid
component is compatible with a condensate of helium atoms, and the normal
component corresponds to the thermal excitations, the Bogoliubov modes.
We’ve already outlined Bogoliubov’s approach in the chapter on ultracold atoms,
but here we will go through it in more detail, and in a way adapted to the uniform
helium liquid. The contact potential is no longer a useful pseudopotential, so
we’ll need to keep the helium interatomic potential in all its generality when we
do the Bogoliubov fluctuation expansion.

2.3.1 Fluctuation expansion

The Hamiltonian of the Bose liquid in second quantization, using plane wave
states, is given by

Ĥ =
X
k

0
kâ
†
kâk +

1

2

X
k,k0

X
q

Vqâ
†
k+qâ

†
k0−qâk0 âk (2.18)

Here 0
k is the (kinetic) energy of the plane wave. The operator â†k creates

a helium atom in a plane wave single-particle state, and the operator âk
annihilates a helium atom in this state. We use plane waves since they are
a suitable basis for a uniform (translation-invariant) system. In contrast to the
parabolically trapped gases, the density of the helium liquid in equilibrium is
indeed uniform. The operators satisfy bosonic commutation relations [â†k, âk0 ] =
δk−k0 . Note that â

†
kâk is the counting operator: its expectation value tells you

how many helium atoms are expected to have momentum ~k. So, the first term
in the Hamiltonian writes the kinetic energy as a sum over all single-particle
states, of the kinetic energy that a particle contributes in this state, times the
number of particles in this state.
The second term describes collisions between atoms: two atoms with

incoming momenta ~k and ~k0 scatter off eachoter and obtain final momenta
~(k + q) and ~(k − q). Conservation of momentum is expressed through the
fact that in a collision, the only thing atoms can do is exchange a certain
momentum ~q. The quantum mechanical amplitude to exchange a momentum
~q is given by Vq. This interaction amplitude only depends on the size ~q of the
exchanged momentum and is given by the Fourier transform of the interatomic
helium-helium potential V (r). Now, the range of the potential is compareable
to the distance between the helium atoms — a point of difference with the dilute
gases where the distance between atoms is typically much larger than the range
of the interatomic potential.
Bogoliubov assumes that a Bose-Einstein condensate has formed in the k = 0

state. From the Penrose-Onsager criterion we know that this means that the
k = 0 state is macroscopically occupied:

N0 = â+0 â0 (2.19)

Now since N0 is a very large number (typically 1023 atoms for just a mole, or
four grams of liquid helium), we get N0 + 1 ≈ N0. The Bogoliubov shift from
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the previous chapter amounts to

â†0 |N0i =
p
N0 + 1 |N0 + 1i

≈
p
N0 |N0i (2.20)

where the ≈ sign in the second line is to be understood to mean that the
expectation values (the physics) calculated with |N0i is not too different from
that calculated with |N0 + 1i. From this we get that the equivalent of ψ̂(r) ≈
Ψ(r) (used in the previous chapter) is here

â†0 ≈
p
N0, (2.21)

â0 ≈
p
N0. (2.22)

Mathematically fussy people will insist that the right hand side should be
multiplied with the identity operator. If we now say that only the â†0,â0
operators matter, and we neglect all other “thermal” states, this corresponds to
our procedure to obtain the temperature zero Gross-Pitaevskii equation from
the previous chapter. Let’s look at the terms in the Hamiltonian (2.18) that
have only â†0,â0’s in them. We can collect those and call the result Ĥ0:

Ĥ0 = EGP =
0
k=0N0 +

1

2
V0N

2
0 (2.23)

Since k,k0,k+q and k0−q are all set to zero, also q = 0 and we have V0 appear
in this result. This is not too surprising: putting the zero of energy in 0

k=0 = 0,
we get 1

2V0N
2
0 , or

1
2gn

2 for the Gross-Pitaevskii energy! That is indeed the
result we previously found for Gross-Pitaevskii energy of the homogeneous Bose
gas3.
Next, we can collect all terms that have only one operator that is not â†0 or

â0. We’ll refer to these â
†
k, âk with k 6= 0 as fluctuation operators. But... there

are no such terms! That’s clear for the first term, and also for the interaction
term we find that if you set three of the momenta in the collision event zero,
the fourth is also zero. The smallest non-vanishing fluctuation effect is found
by collecting terms with precisely two fluctuation operators. The kinetic energy
is again easy, there we have just the summation without the k = 0 term. For
the interaction part, we make a table to find all the ways to set two operators
to momentum zero while keeping two others nonzero:

k+ q k0−q k0 k → terms remaining:

6= 0 6= 0 0 0 1
2N0

P
q6=0 Vqâ

†
qâ

†
−q

6= 0 0 6= 0 0 1
2N0

P
q6=0 Vqâ

†
qâq

6= 0 0 0 6= 0 1
2N0V0

P
k6=0 â

†
kâk

0 6= 0 6= 0 0 1
2N0V0

P
k6=0 â

†
k0 âk0

0 6= 0 0 6= 0 1
2N0

P
q6=0 Vqâ

†
qâq

0 0 6= 0 6= 0 1
2N0

P
q6=0 Vqâ−qâq

(2.24)

All these terms from the interaction also contain two â†0,â0 factors, hence the
factor N0 appears everywhere. In the last two rows we’ve used that Vq is

3The Fourier transform of gδ(r) is a constant, Vq = g/V , so the energy is E = 1
2
(g/V )N2

0 .
The result for the energy per volume E/V is indeed 1

2
gn2 with n = N0/V the number density.
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insensitive to changing q → −q. Let’s place all these terms back together
and obtain the Hamiltonian up to second order in the fluctuation expansion:

Ĥ = EGP +
X
k6=0

0
kâ
†
kâk +N0V0

X
k6=0

â†kâk

+
1

2

X
q 6=0

N0Vq

³
â†qâ

†
−q + â†qâq + â†qâq + â−qâq

´
(2.25)

The strange terms with â†qâ
†
−qN0 and N0â−qâqrepresent an event in which two

condensate atoms are converted into two thermal atoms, or vice versa. We can
rewrite this a bit, since

Nth =
X
k6=0

â†kâk (2.26)

just counts the number of thermal excitations. This can be included in the
Gross-Pitaevskii-Bogoliubov energy

EGPB =
1

2
V0N

2
0 + V0N0Nth. (2.27)

This is the simplest correction to the Gross-Pitaevskii energy that we had before
(with 0

k = 0). That only contained interaction of the condensate atoms amongst
themselves, with a factor 1/2 to avoid double counting. Now we include a term
describing the interaction of condensate atoms with thermal atoms (with no
risk of double counting, so no 1/2). The remaining piece of the interaction
contribution can be factorized, using³

â†qâ
†
−q + â†qâq + â†−qâ−q + âqâ−q

´
=
¡
â†q + â−q

¢ ³
â†−q + âq

´
. (2.28)

We get

Ĥ = EGPB +
X
q6=0

∙
0
q â
†
qâq +

N0Vq
2

¡
â†q + â−q

¢ ³
â†−q + âq

´¸
(2.29)

The goal is now to diagonalize this Hamiltonian. In general, for any Hamiltonian
that is at most quadratic in creation and annihilation operators, we can always
find a unitary transformation (from operators â to α̂) that will diagonalise it,
i.e. that will bring it in the form

Ĥ = const.+
X
q6=0

qα̂
†
qα̂q. (2.30)

This can be done by a suitable choice of the operators b̂q so that cross-terms
vanish. The resulting operators α̂†q and α̂q no longer create atoms in excited
plane wave states, but they create Bogoliubov excitations that may have a
different nature. The thermodynamics of the system of Bogoliubov excitations
can then be found easily through standard statistical physics methods by
occupied these Bogoliubov modes through a Bose-Einstein distribution,D

α̂†qα̂q
E

=
1

e− q/(kBT ) − 1 (2.31)

⇒ U =
P
q6=0

q

e− q/(kBT ) − 1
(2.32)
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This should all be very familiar to you if you have studied the first chapter
well. You will already have realized that the main thing to do now is to find
the Bogoliubov dispersion relation q for liquid helium!

2.3.2 Equivalence between bosons and oscillators

There is a nice analogy between bosonic particles on the one hand, and a set
of harmonic oscillators on the other hand. Populating an energy level Ek =
~ωk with Nk bosonic particles is equivalent to exciting a harmonic oscillator
with frequency ωk to the Nk’th level. To see this, remember your very first
encounter with creation and annihilation operators, when you have been studing
the harmonic oscillator in your first quantum physics classes. Suppose we have
a great number of harmonic oscillators (all decoupled), that we index by the
label k. The Hamiltonian of this set of oscillators is

Ĥosc =
X
k

µ
1

2

¯̄̄
P̂k

¯̄̄2
+
1

2
ω2k

¯̄̄
Q̂k

¯̄̄2¶
. (2.33)

The convention4 of labeling of the oscillators implies Q̂k = Q̂†−k and P̂k = P̂ †−k
We keep notations simple, with m and ~ set to one. You introduced creation
and annihilation operators through

b̂k =

r
ωk
2
Q̂k + i

1√
2ωk

P̂−k (2.34)

⇒ b̂†k =

r
ωk
2
Q̂−k − i

1√
2ωk

P̂k (2.35)

The labeling with k’s was not in your single oscillator problem, now it
complicates matter a little. That’s why we go through this part in more detail...
We’ve again used that taking the hermitean conjugate of Q̂’s and P̂ ’s is the same
as changing the sign of k. The inverse transformation is given by

Q̂k =
1√
2ωk

(b̂†−k + b̂k), (2.36)

P̂k = i

r
ωk
2
(b̂†k − b̂−k). (2.37)

With this convention we get the nice property that if the position and
momentum operators satisfy the canonical commutation relation, then the b̂’s
satisfy bosonic commutation relations:

[Q̂k, P̂k0 ] = iδk,k0 ⇔ [b̂†k, b̂k0 ] = δk,k0 (2.38)

This is easy to prove by substitution. The direction ⇐ is shown by

[Q̂k, P̂k0 ] = i
1

2
[b̂†−k + b̂k, b̂

†
k0 − b̂−k0 ]

= i
1

2

³
[b̂†−k, b̂−k0 ]− [b̂k, b̂

†
k0 ]
´
= iδk,k0 . (2.39)

4There are other choices possible, but this particular one will link k to the wave number.
If you think of phonons, you’d like the Fourier transform of Q̂k with respect to k to be such
that Q̂r gives the displacement of the oscillating atom located at r for a the phonon with wave
length k. More gory details can be found in J.M. Ziman’s old book "Electrons and Phonons".
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and the direction ⇒ is

[b̂†k, b̂k0 ] =

∙r
ωk
2
Q̂−k − i

1√
2ωk

P̂k,

r
ωk
2
Q̂k0 + i

1√
2ωk

P̂−k0

¸
=

i

2

h
Q̂−k, P̂−k0

i
− i

2

h
P̂k, Q̂k0

i
= iδk,k0 . (2.40)

The harmonic oscillator Hamiltonians are rewritten in the second quantized
operators as

Ĥosc =
X
k

ωk

³
b̂†kb̂k + 1/2

´
(2.41)

Indeed, a simple substitutions shows that

Ĥosc =
X
k

ωk

∙µr
ωk
2
Q̂†k − i

1√
2ωk

P̂k

¶µr
ωk
2
Q̂k + i

1√
2ωk

P̂ †k

¶
+
1

2

¸
=
X
k

ωk

∙
P̂kP̂

†
k + ωkQ̂

†
kQ̂k −

1

2
i
³
Q̂−kP̂−k − P̂kQ̂k

´
+
1

2

¸
=
1

2

µ¯̄̄
P̂k

¯̄̄2
+ ω2k

¯̄̄
Q̂k

¯̄̄2¶
(2.42)

This wonderful result shows that

The Hamiltonian for a set of harmonic oscillators is
equivalent to the Hamiltonian of a Bose field. Vice
versa, quantized oscillations (such as phonons or photons
or gravitons) therefore always correspond to bosonic
particles.

2.3.3 Bogoliubov excitations in helium

We can use this to diagonalise the fluctuation part of our Hamiltonian (2.29),

Ĥfluct =
X
q6=0

∙
0
q â
†
qâq +

N0Vq
2

¡
â†q + â−q

¢ ³
â†−q + âq

´¸
(2.43)

explicitly (note that we dropped out the zero-point energy, the 1/2 term in the
first term between square brackets). In our case

Q̂q =
1q
2 0

q

(â†q + â−q), (2.44)

P̂q = i

r
0
q

2
(â†q − â−q). (2.45)

It is here that the convention (or mess, if you prefer to see it that way) with q’s
and −q’s pays off: in the interaction term we get¡

â†q + â−q
¢ ³

â†−q + âq

´
= 2 0

qQ̂qQ̂−q = 2
0
qQ̂qQ̂

†
q. (2.46)
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This makes the fluctuation Hamiltonian particularly simple, since we can
combine the first termX

q 6=0

0
qâ
†
qâq →

X
q 6=0

1

2

³
P̂qP̂

†
q +

0
qQ̂qQ̂

†
q

´
, (2.47)

with the interaction to get

Ĥfluct =
X
q 6=0

1

2

h
P̂qP̂

†
q +

³¡
0
q

¢2
+ 2 0

qN0Vq

´
Q̂qQ̂

†
q

i
. (2.48)

We see that the (only) effect of the interaction is to shift the frequencies of the
oscillators to a new value,

q =
q

0
q

¡
0
q + 2N0Vq

¢
. (2.49)

This is the Bogoliubov dispersion for a general interaction potential ! Do we
still get the same result as before if we specify the interaction potential to
be a delta function V (r) = gδ(r) ? Well, the Fourier transform of the delta
function is just a constant, independent of q: we get Vq = g/V with V the

volume. Plugging this into our general formula yields
q

0
q

¡
0
q + 2gnc

¢
, exactly

the result that we found in the previous chapter. Physicists who are familiar
with the equivalence between Bose fields and harmonic oscillators can derive the
Bogoliubov dispersion in a few lines on the back of an envelope. We also get the
Bogoliubov operators for free, by re-introducing second quantization operators
for the frequency-shifted harmonic oscillators:

α̂q =

r
q

2
Q̂q + i

1p
2 q

P̂−q (2.50)

α̂†q =

r
q

2
Q̂−q − i

1p
2 q

P̂q (2.51)

With this, we can rewrite the fluctuation Hamiltonian as

Ĥfluct =
X
q 6=0

qα̂
†
qα̂q (2.52)

(again we leave out the zero-point energy, or if you feel better about it, we place
the zero of energy at the q = 0 energy level). The full Hamiltonian also includes
the condensate part, so we get

Ĥ = EGPB +
X
q 6=0

qα̂
†
qα̂q. (2.53)

We have completed our program of rewriting the interacting, non-condensed
(thermal) atoms as an ideal gas of Bogoliubov quasiparticles, created by α̂†q, and
with dispersion relation q. As mentioned in the chapter on dilute gases, we can
now calculate all thermodynamic quantities (specific heat, internal energy,...)
from q using basic statistical mechanics tools. The Bogoliubov excitations form
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the normal component of the superfluid, whereas the superfluid component is
linked to the condensate. It is now easy to calculate the number of excitations:

ρn = mNexc/V with (2.54)

Nexc =
X
q 6=0

1

e− q/(kBT ) − 1 (2.55)

This grows as temperature increases. In a number-conserving theory, ρs = ρ−ρn
will then decrease. However, the Bogoliubov theory as set up here assumes that
ρn is small: we dropped all terms in the Hamiltonian with more than two
fluctuation operators. We can extend the region of validity to temperatures
closer to Tλ if we include also the terms with three fluctuation operators. These
terms are called Beliaev terms, after the physicist who first studied them. They
represent interactions in which a thermal atoms kicks an additional atom out
of the condensate, and interactions in which two thermal atoms scatter off
each other such that one of the two joins the condensate. These terms lead
to damping of the condensate modes. Another aspect of the theory that we’d
need to worry about when getting closer to Tλ is the conservation of the total
number of atoms, i.e. precisely the relation ρs = ρ− ρn as ρs becomes smaller

5.
However, in any theory there is room for improvement, and the Bogoliubov
result that we have is already extremely powerful to understand helium-II and
to underpin the two-fluid model.

2.3.4 The phonon-roton spectrum

For dilute gases, the Bogoliubov dispersion contained phonons (first sound)
and single-particle excitations. What will it be for helium? We no longer
have a dilute system, and the atoms are close enough to one another to feel
the details of the interaction potential. Typically, an interatomic interaction
potential is weakly attractive when atoms are far apart, and strongly repulsive
when the atoms are pushed closely together. This means the interatomic
interaction potential has a minimum, usually at a distance of a few ångstrom.
A (wide/narrow) dip in the real-space potential at position r0 will lead to
a (narrow/wide) dip in Vq near q0 = 1/r0. From the Bogoliubov formula

q =
q

0
q

¡
0
q + 2N0Vq

¢
with 0

q = (~q)
2
/(2m) it is clear that this dip will also

appear in q. Another aspect that is evident is that, if Vq→0 6= 0 the Bogoliubov
dispersion will start off ∝

q
0
q, that is ∝ q. The lowest-q behavior will again be

(first) sound.
The dispersion relation, and the condensate fraction, can be measured

experimentally with neutron scatting. This envolves shooting a neutron into
He-II, and recording how much energy and momentum was transferred from
the neutron to the helium. If there is a Bogoliubov excitation with matching q
and q, the scattering process is resonantly enhanced, and a peak in the neutron
scattering is detected. The result of such experiments is shown in figure 2.10.

5There are lot of contemporary theory papers out there studying these questions, and
even for dilute gases where the interaction is “easy” the finite temperature theory closer to
Tλ remains not fully solved. Check out the book “Quantum gases: finite temperature and
non-equilibrium dynamics” (ed. Proukakis et al., Imperial College Press, 2013) for a review.
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Figure 2.10: The excitation spectrum of He-II, measured with neutron
scattering, as reported by Henshaw and Woods (Physical Review, vol. 121).

It is seen that the dispersion indeed starts linearly, with a phonon mode,

phonon(q) = ~cq (2.56)

and first sound velocity of c = 239 m/s. Then it bend back (the excitations at
the local maximum are called...maxons), and has a minimum near 2 inverse
ångstroms. The Bogoliubov excitations with these wave lengths, i.e. the
excitations associated to this minimum, are called rotons. Near the minimum,
the roton dispersion looks parabolic, i.e.

roton(q) = ∆+
~2(q − q0)

2

2mrot
, (2.57)

These Bogoliubov quasiparticles are not the single thermal helium atoms! They
are still quite different, even if the dispersion looks like that of a particle with
mass. The parameters are:

∆ = 8.65 K, (2.58)

q0 = 19.1 nm−1, (2.59)

mrot = 0.16 mHe . (2.60)

In fact, rotons are intermediate between truly collective, long-wavelength modes
such as phonons, and single-particle excitations that we would have at high wave
numbers. The rotons envolve a group of atoms, forming an atomically small
“smoke ring” moving through the liquid, as illustrated in figure 2.11
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Figure 2.11: Artist’s impression of a roton, which is often modeled as an
atomically small vortex ring (right figure). This shuffles the atoms about as
indicated in the left figure. With this sense of rotation the “smoke ring” moves
to the right, displacing atoms to the left.

Starting at temperature zero, we have no phonons or rotons. The lowest
energy excitations are phonons. Calculating the specific heat or the internal
energy shows that until about 1 K, the thermodynamic properties are dominated
by the phonons, and no rotons are present in thermal equilibrium. Indeed,
writing down the formula for the number of rotons,

Nroton =
X
q6=0

1

exp
n
−
h
∆+ ~2(q−q0)2

2mrot

i
1

kBT

o
− 1

,

it is clear that their number is suppressed by the gap, e−∆/(kBT ). This type
of excitation has an “activation energy”, and starts to kick in in appreciable
numbers only at temperatures above 1 K. Above this temperature, the
thermodynamics is dominated by rotons, and the phonons matter less, relatively.

The superfluid fraction behaves like a temperature zero condensate. At finite
temperatures, Bogoliubov excitations are generated, that act like a free gas of
phonons and rotons, from which we can derive the thermodynamic properties.
Going to higher temperature can be modeled by including interactions between
the rotons and the phonons. We get a remarkable “universe” in which the
vacuum is a superfluid through which we can move without dissipation, and
this space is populated by “massive” particles called rotons, interacting through
“massless” force carriers called phonons. An alien particle physicist living in
very cold temperatures in the helium-II filled world might make a “standard
model” of his/her universe using just phonons and rotons, oblivious to the
condensate that is everywhere. She/he might then apply her standard model
to “high-energy physics”, meaning for her/him about 10 Kelvin. But at this
scale, the theory would break down! Unaware that at 10K, the system is a
gas of helium atoms for which a description based on phonons and rotons is
meaningless, the high-energy theory would fail dramatically, and strange stuff
like extra dimensions and strings would be introduced. This is the topic of an
interesting book “the universe in a helium droplet” by Grigory Volovik.
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2.4 The Landau criterion for frictionless flow
So, are phonons and rotons —or Bogoliubov excitations in general— really
unimportant at temperature zero? Not necessarily, most interesting situations
do not correspond to the thermal equilibrium. We might consider an object,
such as a submarine, to be moving through the liquid helium. Now we need to
examine whether it is really true that the submarine can move without friction
through the liquid if we include the possibility to create Bogoliubov excitations,
even at temperature zero. This would happen by converting some of the kinetic
energy of the submarine to make excitations such as rotons that wander off into
the helium-II sea. Such a process would take away a bit of the kinetic energy of
the submarine, slowing it down.
Let’s take the submarine to have a velocity v.We can consider two frames of

reference: a frame of reference at rest with respect to the helium-II sea, and the
frame of reference of the submarine. From the point of view of the helium-II
sea, if there are no excitations, it has the condensate at energy EGPB. The
submarine captain sees the condensate in motion: the entire sea (with massM)
seems to be moving with velocity −v, so its energy should be

Esubmarine
no exc = EGPB +

1

2
Mv2 (2.61)

Now, we kick an atom out of the condensate, and give it momentum p. It
has excitation energy 0

p = p2/(2m) from the point of view of the condensate.
Again, the captain of the submarine sees it differently (though connected by a
galileo transform), for him the thermal atom has a momentum p − mv, and
the helium sea is also still moving −v. Well, the sea is moving with one atom
less, so the total mass of the condensate sea is M −m. Hence, in the submarine
reference frame the total energy becomes

Esubmarine
total = EGPB +

1

2
(M −m)v2 +

(p−mv)2

2m
(2.62)

It’s easy to work this out,

Esubmarine
total = EGPB +

1

2
Mv2 +

p2

2m
− p · v (2.63)

Hence, to the submarine captain the energy of the excitation is

0,submarine
p = Esubmarine

total −Esubmarine
no exc

=
p2

2m
− p · v = 0

p − p · v. (2.64)

This Galilei transform also holds when there is an interaction shift in the
excitation energies, i.e. for the Bogoliubov spectrum 0

p → q. Then we get

submarine
q = q − (~q) · v. (2.65)

Under what circumstances will the submarine slow down? When it can make
excitations in the He-II sea! And it can only do so if these excitations do
not cost any energy, from the point of view of the submarine. That is, when
submarine
q 6 0. From expression (2.65) it is clear that it can make submarine

q
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Figure 2.12: An object moving at a velocity larger than vc, the critical velocity
for frictionless flow, can spontaneously create excitations: ~q · v > q for at
least some q. In the example above, this is for q ∈ [q1, q2]. Lowering v lowers
the slope of the ~q · v line, and below the critical velocity, the object can no
longer transfer its kinetic energy to excitations of the system, and so it no longer
experiences friction.

negative if it just goes fast enough, if v is large enough. There is a critical
velocity

vq =
q

~q
(2.66)

needed to be able to emit an excitation with wave length q, it will then be
emitted in the direction of v. The smallest value of this,

vc = min
q>0

∙
q

~q

¸
(2.67)

gives the Landau critical velocity. Any object that moves faster than this
through the superfluid, will be able to send out some excitations and hence feel
friction. So, our property of frictionless flow that we associate with a superfluid
is only valid if the objects move relative to the superfluid at a velocity that is
small enough.
If the critical velocity becomes zero, this means there is always friction, no

matter how slow the submarine goes. Hence,

vc > 0

is the Landau criterion for superfluidity. That’s the historical name. By now you
should know better and call this more accurately the “Landau criterion for
frictionless flow”. Indeed, this criterion doesn’t tell you anything about the
quantization of circulation, the irrotational nature of the flow, or the appearance
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of singly quantized vortices upon rotation. All these properties are in turn not
related to the dispersion relation, but they are derived from the fact that the
superfluid velocity can be written as the gradient of the phase of a macroscopic
wave function. In helium, frictionless flow and the phenomena related to
vorticity appear together, so they were confusingly all brough together under
the umbrella concept “superfluidity”. They should be distinguished! Indeed,
an ideal Bose gas will still have a macroscopic wave function |Ψ(r)| eiS(r) such
that vs ∝ ∇S, but it will have zero critical velocity and objects moving through
it will always feel friction. Indeed the Bogoliubov excitations should also be
taken into the picture when thinking about friction, and for an ideal gas we get
q =

0
q = (~q)

2
/(2m), for which

videal Bose gasc = min
q>0

"
(~q)2 /(2m)

~q

#
=

~
2m

×min
q>0

[q] = 0 (2.68)

The critical velocity can be found graphically, from a plot of the dispersion
relation q. Draw a straight line from the origin, representing the line ~qv. The
slope of this line is determined by v, for large velocities the line will be more
steep. For example, consider the blue line labeled v > vc in figure 2.12. In
the reference frame of the submarine captain, the energy needed to make an
excitation (in the direction of v) is q−~qv, so the captain measures the energy
with this line as the zero-energy baseline. This means that when the dispersion
relation dips below this line, it is energetically advantageous for the submarine
to emit Bogoliubov excitations. The shaded region, between q1 and q2 in 2.12,
indicates which excitations can be emitted. The submarine feels friction as it
moves through the liquid. Now reduce v, i.e. reduce the slope of the ~qv line.
You see that for the phonon-roton spectrum, there is a minimum velocity below
which no part of the dispersion relation falls under the ~qv line. For the green
line, labeled v < vc, there is no possibility to emit excitations, so a submarine
cruising at that velocity feels no friction. The critical velocity is the slope of the
red line: it touches the dispersion relation at a point where the tangent line to
the dispersion relation goes through the origin. For the phonon-roton spectrum,
this point is {q3, q3} in figure 2.12; in this point the red line is also the tangent
to the dispersion relation. Applying our graphical approach to the case of the
ideal Bose gas, we see that the only point on the 0

q = (~q)2/(2m) parabola
where the tangent to the curve goes through the origin is q = 0. This tangent
lies horizontal, so vc = 0.

When interatomic interactions are present,

q =
~q
2m

q
(~q)2 + 4mN0Vq (2.69)

and as long as Vq goes to zero slower than q in the limit q → 0 (which is satisfied
for interatomic potentials), we find that the long wavelength excitations are
always phonons. For phonons,

vphononsc = min
q>0

∙
~cq
~q

¸
= c, (2.70)
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the critical velocity is the speed of sound. The critical velocity can be smaller
than the speed of sound, for example if we look at rotons

vrotonsc = min
q>0

∙
1

~q

µ
∆+

~2(q − q0)
2

2mrot

¶¸
=

Ãµ
hq0
m

¶2
+
2∆

m

!
− hq0

m
. (2.71)

This would go to zero only if the roton gap ∆ goes to zero. But this would
imply that phonons are not the only low-energy excitations. Feynman was able
to show, using another reasoning6, that phonons are the only low(est)-energy
excitations of an Bose gas with interatomic interactions. This ensures that there
is a range of velocities where frictionless flow exists in an atomic Bose gas or
liquid, even if it doesn’t say what the critical velocity is. As is the case in
helium, vc could be smaller than the speed of sound7.

6This is a very beautiful resoning, reported by Feynman in a paper with nearly no formulae,
“Atomic Theory of Liquid Helium Near Absolute Zero”, Physical Review 91, 1301 (1953).

7The true critical velocity of He-II is still lower than vrotonsc . It turns out that the
submarine will emit large vortex rings when it moves too fast: emitting rotons (atomically
small vortex rings) is not the favoured process. The shape of the submarine is also important
in determining its ability to emit certain excitations.



Chapter 3

Superconductivity

3.1 Phenomenology of superconductors

3.1.1 Perfect conduction and Meissner effect

Superconductivity was discovered by Kamerlingh Onnes in 1911. The Onnes
laboratory in Leiden was the only place where helium could be liquified, and
materiaals cooled down to about one degree Kelvin. As metals are cooled down,
the resistivity decreases. There was a debate on how the resistivity of materials
would behave at the lowest temperatures. One theory claimed that it would
saturate to a value determined by the level of impurities. The competing theory
claimed that resistivity would go up as the electrons would freeze into a crystal
and become immobile. Experiment1 proved both theories wrong: surprisingly,
some materials lost their electrical resistance completely! This was first observed
in mercury: there is a sharp transition between the normal resistive state and
the “superconducting” state below a critical temperature Tc, as can be seen in
Onnes’ graph, figure 3.1.
In the superconducting state, the material moreover expells the magnetic

flux, as illustrated in figure 3.2. This effect was discovered by Meissner
and Ochsenfeld2 in 1933 and is called the Meisser effect. Poor Ochsenfeld,
I don’t know what he did wrong. The effect could also be called “perfect
diamagnetism”: an external field H results in a magnetization M = −H
inside the material, giving B = μ(M + H) = 0 However, as the external
magnetic field H is increased, at some critical magnetic field eventually the
magnetic field will penetrate the superconductor.Then, two possible scenario’s
are possible3. The first possibility is that the piece of material becomes normal
again, allowing the magnetic field to penetrate completely. Materials exhibiting
this behavior are called “Type I” materials. The second possibility is that
the block of superconductor allows magnetic flux to penetrate in thin tubes
piercing the material. As the magnetic field is increased further, more and more

1H. Kamerlingh Onnes, "Further experiments with liquid helium.", Comm. Phys. Lab.
Univ. Leiden; No. 120b (1911).

2W. Meissner, R. Ochsenfeld, "Ein neuer Effekt bei Eintritt der Supraleitfähigkeit".
Naturwissenschaften 21, 787—788 (1933).

3Recently, a third possibility was found: the magnetisation jumps down at the critical field
as in the type I materials, but not completely to zero. After the jump it decreases as in the
type II materials. This is sometimes called a type 1.5 material.

85
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Figure 3.1: Resistivity as a function of temperature. Left: the “historical” figure
by Onnes.

Figure 3.2: Below the critical temperature, the superconductor expells the
magnetic flux.

flux tubes pierce the superconductor, untill at a second critical magnetic field
the material turns normal. These materials are called Type II superconductors.
The magnetic response of type I and type II superconductors is illustrated in
figure 3.3 and we will come back to this remarkable difference.
Besides the critical temperature and the critical magnetic field, there is still

a third critical parameter: there is a maximum current density that can be
pushed through a superconductor before it becomes normal. This is connected
to the critical magnetic field: currents generate their own magnetic fields. The
three parameters, current density J, magnetic field H and temperature T , set
up a phase diagram, as shown in figure 3.4

3.1.2 The non-classical nature of superconductivity

The two defining properties, perfect conductivity and perfect diamagnetism,
cannot both be explained by classical (non-quantummechanical) physics! For a
perfect conductor, ρ→ 0, and Ohm’s law dictates that the electric field E = ρJ
should be zero. Then Maxwell’s law ∇ × E = −∂B/∂t in turn implies that
∂B/∂t = 0. In a perfect conductor, the magnetic flux is “frozen in”. Plasma’s
are pretty good conductors, and they trap magnetic flux. Some of the highest
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Figure 3.3: Magnetization versus applied external magnetic field, for type I and
type II superconductors (top row) and for the intermediate behavior, exemplified
in recently discovered “type 1.5 superconductors” [V. Moshchalkov et al., Phys.
Rev. Lett. 102, 2010].

Figure 3.4: Phase diagram for (type II) superconductors, the magnetic
field indicated is the second critical field for a ring. The high-temperature
superconducting ring, made of YBCO, has much better parameters [figure
reproduced from: Michael Tinkham, Introduction to Superconductivity (New
York: McGraw-Hill].
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magnetic flux densities on earth are created by freezing in flux in a plasma and
then compressing the plasma (in the famous “z-pinch” machine).
So, if you start without magnetic field penetrating the material, and then

you cool it untill it becomes superconducting, it will keep the magnetic flux
out. So far, no problem. But consider the field-cooling experiment: first bring
the magnetic field in the material, and then cool it down until it becomes
superconductor. Classical physics dictates that the magnetic flux is frozen in,
but Meissner observed that reality is very different: it is expelled from the
superconductor. This means ∂B/∂t 6= 0 and something is wrong.

3.1.3 The London equations and the penetration depth

The brothers Fritz and Heinz London considered how to adapt the laws
of electrodynamics so that they would explain the Meissner effect, also in
field-cooling. What has to give way is not the Maxwell equations (they remain
valid), but Ohm’s law. They were looking for a more quantum-mechanical
version — and that was quite controversial at the time. The London’s posited
that charge carriers in the superconducting state behaves like a quantum
mechanical wave function, which have hp̂i = 0 in the ground state. For charge
carriers of mass M and charge Q, the canonical momentum p is given by

p =Mv +QA(r). (3.1)

“Canonical momentum” is the variable conjugate to the position (i.e. the
canonical momentum is defined by ∂L/∂ẋ where L is the Lagrangian). This
is difference from the “kinematic momentum” Mv with v = dx/dt. Currents
are related to the kinematic momentum, not the canonical momentum. Hence,
if hp̂i = 0 we get

M hv̂si = −QA(r̂) (3.2)

and the current density Js = nQ hv̂si becomes

Js = nQ hv̂si = −
nQ2

M
A (3.3)

where n is the density of charge carriers. This rather handwaving arguments
were the inspiration to propose4 the London law:

A = − M

nQ2
J (3.4)

In other words, it is not the electric field which is proportional to the current
(Ohm), but the vector potential. The Londons did not know about Cooper pairs
as the charge carriers, so they did not know M or Q. So why two parameters if
they always occur in the same combination? It’s better to combine them into a
length scale

λL =

s
M

μvnQ
2
, (3.5)

4F. London, H. London, "The Electromagnetic Equations of the Supraconductor".
Proceedings of the Royal Society A149, 866 (March 1935).
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Figure 3.5: A magnetic field H = B/μ applied parallel to the surface of the
superconductor cannot penetrate deeply into it: it decays exponentially with a
length scale λL of 10-100 nm.

called the London penetration depth. To get the correct units, we need to
include also the permeability (we use the vacuum permeability, μv = 4π × 107
N/A2 in SI units). With it, we express the London law as

μvJ = −
1

λ2L
A (3.6)

This also means

E = −∂A
∂t

= μvλ
2
L

∂J

∂t
(3.7)

B = ∇×A = −μvλ2L∇× J (3.8)

In hindsight, we now know that the charge carriers are Cooper pairs, and we
can estimate M = 2me en Q = −2e. For the density we take a typical electron
density of order n = 1022 cm−3. With these values we get λL = 10− 100 nm,
and that is precisely what is found experimentally.

Let’s see how the Meissner effect follows from this. Take a half-space of
superconducting material, situated at x > 0. There’s vacuum at x < 0. The
magnetic flux density B is directed along the z-axis, as is shown in figure 3.5,
so B = B(x)ez. We want to find a solution for B(x) in the superconductor. We
start from the Maxwell equation (in SI units):

∇×B = μvJ+ μvεv
∂E

∂t
(3.9)

We assume that there is no time dependence in the problem (so ∂E/∂t = 0), as
we look for the stationary solution. Taking the curl of this equation gives

∇× (∇×B) = μv∇× J (3.10)

The left hand side can be simplified using the well known identity from vector
calculus

∇× (∇×B) =∇(∇ ·B)| {z }
0

−∇2B (3.11)
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where we use another Maxwell equation, ∇ ·B = 0. The right hand side can be
simplified using equation (3.8), and we find

−∇2B = −λ−2L B (3.12)

⇒ ∂2B(x)

∂x2
= λ−2L B(x) (3.13)

What are the appropriate boundary conditions for the case depicted in figure
3.5? We have B(x = 0) = Ba en B(x → ∞) = 0. The solution of (3.13) with
these boundary conditions should be obvious to you:

B(x) =

½
B0 exp(−x/λL) for x > 0
B0 for x 6 0

(3.14)

The magnetic flux density decays exponentially fast inside the material. It
cannot penetrate deeper than a layer of typical thickness λL (that’s why λL is
called the penetration depth). Remembering that λL is typically 10− 100 nm,
we see that unless the sample is nanoscopically small, the magnetic flux cannot
permeate it.
It costs an energy per volume V

E

V
=

μvH
2

2
(3.15)

in order to expell a magnetic flux density B0 = μvH fully from a block of
material. As the external field is made larger, it costs more energy. The
critical field Hc determines how much energy is available per unit volume of
superconductor to expell magnetic field. This energy is gained from becoming
superconducting; it is the energy difference ∆Es−n between the normal and the
superconducting state,

∆Es−n =
μvH

2
c

2
V (3.16)

3.1.4 Superconducting films

The London penetration depth was determined experimentally using thin
superconducting films. Suppose we have a superconducting layer confined in
−d/2 < x < d/2, and vacuum outside. Again, we apply a magnetic field
B = B(x)ez parallel to the surface. We have the same equation (3.13) to solve,
but now with boundary conditions B(−d/2) = B0 = B(d/2). The solution now
becomes

B(x) =

⎧⎨⎩ B0
cosh (x/λL)

cosh [d/(2λL)]
for − d/2 < x < d/2

B0 elsewhere
(3.17)

The magnetization M(x) = [B(x)−B0] /μv at an externally applied field H =
μvB0 is given by

M(x,H) =

⎧⎨⎩ H

µ
cosh (x/λL)

cosh [d/(2λL)]
− 1
¶
for − d/2 < x < d/2

0
(3.18)
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Figure 3.6: Structure of the intermediate state (in between superconducting and
normal) in a disc-shaped Pb single crystal at 5 K obtained by magneto-optical
imaging. A light color correponds to the normal state, a dark color to the
superconducting state. Left column: increasing magnetic field after cooling in
zero field. Right column: decreasing field [sources: R. Prozorov, Phys. Rev.
Lett. 98, 257001 (2007); R. Prozorov, A.F. Fidler, J.R. Hoberg et al., Nature
Physics 4, 327 (2008)].



92 CHAPTER 3. SUPERCONDUCTIVITY

When the film thickness is compareable to the London penetration depth, then
the magnetic flux doesn’t go all the way to zero in the thin film! It’s minimum
value in the film is at the center: B0/ cosh [d/(2λL)]. Let’s calculate the energy
required to magnetise the film by ramping up the applied magnetic field from
H = 0 to H = Ha :

E

V
= −μ

BaZ
0

M(H)dH (3.19)

The magnetisation depends also on position, and we need to sum all the pieces
of material. The energy per volume V becomes

E

V
= −1

d

d/2Z
−d/2

dx

HaZ
0

M(x,H)dH (3.20)

Now we can plug in our result for the magnetization, and get

E

V
= − 1

μvd

d/2Z
−d/2

dx

µ
cosh (x/λL)

cosh [d/(2λL)]
− 1
¶ HaZ
0

HdH

=
μvH

2
a

2

µ
1− tanh [d/(2λL)]

d/(2λL)

¶
(3.21)

The superconductor still has an energy ∆Es−n/V = μvH
2
c /2 to spend on the

expulsion of magnetic flux. For a thin film, it doens’t need to expell the magnetic
flux as thoroughly as for bulk, so the available energy lasts longer, and the
critical magnetic field for a film is larger than for bulk:

Hfilm
c =

Hbulk
cs

tanh [d/(2λL)]

d/(2λL)
− 1

. (3.22)

This result was used to determine the London penetration depth experimentally
from measurements of the critical magnetic field for thin films of given thickness
d. It also shows that reducing superconductors to the nanoscale can enhance
their critical parameters, in this case the critical magnetic field.
The situation is much more complicated when we apply the magnetic field

perpendicular to the film. It becomes very difficult, even for a type-I material, to
push the magnetic flux all the way to the side of the sample when the magnetic
field becomes more intense. Rather, magnetic domains can appear, in which the
flux penetrates. These domains are interleaved with regions that remain fully
superconducting. The domain structure of the so-called “intermediate” state is
shown in figure 3.6 for a Pb (type I) disk. This behavior is again very different
from the type-II materials: upon increasing the field above the first critical field,
magnetic flux starts to enter the sample in the form of superconducting vortices
carrying flux quanta, as shown in figure 3.7 We’ll explore this in more detail
later in the chapter.
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Figure 3.7: In a type-II material, the magnetic field (for strengths above the
first critical field) penetrates in thin tubes (visible as black dots) each carrying
a flux quantum. The magnetic flux is made visible by a technique similar to
sprinkling iron filings on the sample and looking where they stick [U. Essmann
H. Trauble, Physics Letters 24A, 526 (1967)].

3.1.5 The Pippard correlation length

Nowadays experimenters have more sophisticated methods to determine the
penetration depth: they can map the magnetic flux density inside the material
directly! This is done using muon spin resonance. Muons with a given energy
are injected into a superconductor. The energy of the muon determines precisely
how deep under the surface it will end up. The muon spin will feel the magnetic
field at that precise depth inside the superconductor. Measuring the zeeman
splitting by spin-resonance allows to determine this magnetic field. The result
of such an experiment is a precise profile of the magnetic field as a function
of depth beneath the superconducting surface, is shown in figure 3.8. The
experimental results (dots and squares) correspond quite well to the exponential
decay predicted by the London equations. Note that on the logarithmic scale the
exponential law corresponds to a straight line. However, upon closer inspection
there is a clear systematic deviation.

The Londons assumed that the charge carriers are point particles, and their
theory is local, just like Ohm’s law. “Local” means that the current density in
a point r depends only on the vector potential (or electric field, for Ohm) at the
same a point r. This does not need to be the case, and if the size of the charge
carriers is compareable to the penetration depth, deviations from London’s laws
are to be expected. In that case, the charge carrier will respond to the vector
potential over an extended region, and as a result current density in r depends
on the vector potential in a region around r. Such a theory is called non-local.

There also exists a non-local extension to good old Ohm’s law. This is known
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Figure 3.8: Magnetic flux density as a function of the depth under the surface
of the superconductor, measured by muon spin resonance [from: Suter et
al., Phys.Rev. B 72, 024506 (2005)]. The dots represent the experimental
measurements, the dashed curves are the results from London theory and the
full curves are those from Pippard theory.

as Chambers’s law:

J =
1

ρ
× 3

4π

Z
R(R ·E(r0))

R4
e−R/ d3r0. (3.23)

Here R = r − r0. The integral averages out the electric field over an area of
size . For Chambers this was the length that an electron could travel before
getting scattered. Pippard5 used the analogy between the London equations
and Ohm’s law to propose

J =

µ
− 1

μvλ
2
L

¶
× 3

4πξP

Z
R(R ·A(r0))

R4
e−R/ξP d3r0. (3.24)

This is known as Pippard’s equation. It is now the vector potential that is
being averaged out over a region ξP , called the Pippard correlation length.
The full curves in figure 3.8 show the result of Pippard’s equation, and you can
see that it matches the experiment perfectly, removing the (small) deviations
that were present when we use just the London equations.
How large is the area over which we need to average out the vector potential?

This should correspond to the size of the superconducting charge carrier.
Pippard assumed that only electron states within a range kBTc around the

5A.B. Pippard "Trapped Flux in Superconductors", Philosophical Transactions of the Royal
Society A248, 97—129 (1955).
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Fermi energy could contribute to the construction of superconducting charge
carriers. Since p =

√
2mE, we get that only states withp
2m (EF + kBTc) > p >

p
2m (EF − kBTc) (3.25)

contribute to the wave function of the superconducting charge carriers. The
width of this interval is

∆p =
p
2m (EF + kBTc)−

p
2m (EF − kBTc)

≈
p
2mEF

kBTc
EF

(3.26)

where we expanded in kBTc/EF ¿ 1. Since the Fermi velocity vF =p
m/(2EF ) we get that∆p = 2kBTc/vF . According to Heisenberg’s uncertainty

relation, the “size” of the wave function of the superconducting charge carrier
consequently has to be larger than

∆x =
~vF
kBTc

(3.27)

which is typically of the order of 100 nm, since vF ≈ 106 − 107 m/s and Tc ≈ 1
K. This is indeed compareable to the penetration depth, so that we expect
non-local effects to be present. Pippard chose his correlation length to be of the
similar magnitude as this ∆x, and sets

ξP = a
~vF
kBTc

(3.28)

with a a constant of order 1. This allowed to improve the correspondence
between theory and experiment (cf. figure 3.8), and it was also possible to
include the effects of impurities in the superconductor. These lead to an effective
decrease in the correlation length, determined by

ξ−1P,impure = ξ−1P,pure +
−1 (3.29)

where is the free path length (determined by the impurity density and type).

λL (nm) ξP (nm) κ = λL/ξ

Sn 34 230 0.15
Al 16 1600 0.01
Pb 37 83 0.45
Cd 110 760 0.14
Nb 39 38 1.03

(3.30)

The table above shows the results for several materials, for our two fundamental
length scales for superconductors. For condensates, we only had one
fundamental length scale, ξ, which we will see is related to Pippard’s correlation
length although it is not completely the same. The presence of charge, and the
magnetic response, leads to the second fundamental length scale λL. The ratio
between the two length scales determines whether a material behaves more as
type I (for κ = λL/ξ ¿ 1) or more as type II (for κÀ 1). With Pippard’s theory
we have completed the phenomenological survey of superconductivity and we
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Figure 3.9: The absorption (or AC resistance) remains zero up to a frequency
in the microwave domain (10 μeV - 1 meV).

have the most complete phenomenological theory of the electromagnetism of
superconductors. It’s now time to turn to the microscopic fundaments.

Summary: Superconductivity exists below a critical
temperature, a critical external magnetic field, and a critical
current density. The defining property of superconductivity
is the joint occurrence of perfect conduction and perfect
diamagnetism. This can be modeled by replacing Ohm’s law by the
London equation setting the vector potential proportional to
the current density. The proportionality constant defines the
first important length scale, the penetration depth. A second
important length scale was introduced by Pippard, the correlation
length, and this relates to the size of the superconducting charge
carrier.

3.2 Key experiments

In the 1950’s a series of experiments revealed new properties of superconducting
materials. These experiments also provided the crucial clues to understanding
the microscopic mechanism that underpins superconductivity.

3.2.1 Microwave absorption / AC resistivity

The DC resistivity is zero: this is the perfect conductivity observed by Onnes.
How about the AC resistivity (as a function of frequency ω?) This is shown in
figure 3.9. The AC drive can be generated by an electric circuit, or by shining
in light. As soon as the incoming photons have an energy larger than a certain
treshold, they will be absorbed. This sounds very similar to what happens in a
semiconductor: shine in photons with an energy larger than the bandgap, and
they will be absorbed by exciting a charge carrier accross the gap.The difference
here is that the bandgap for the superconductor is very small, typically ten
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Figure 3.10: Flux quantisation through a superconducting ring [from B.S.
Deaver, W.M. Fairbank, Phys. Rev. Lett. 7, 43 (1961)].

thousand times smaller than that for semiconductors. Remarkably, the bandgap
is of similar magnitude as kBTc.

3.2.2 Flux quantization

When a particle is translated in space over a distance ∆r, its wave function
acquires a phase shift exp {ip·∆r/~}, where p is the canonical momentum. In
group theoretical jargon, one says that the canonical momentum is the generator
of the Lie group of translations.
When a particles is moved around in a loop and comes back to its original

position, the wave function should go back to its original value (i.e. the total
phase shift should be an integer multiple of 2π). This works when you add up
all the phase shifts, as in this example for a small square loop:

ψ shift+∆x−−−−−−−→ ψeipx∆x/~

shift +∆y ↑ ↓shift −∆y
ψei(−py∆y)/~ shift−∆x←−−−−−−− ψei(px∆x−py∆y)/~

(3.31)

For a general loop C, we must tally up all the exp{ip · d /~} contibutions along
the curve, and our previous result generalizes to

exp

⎧⎨⎩ im

~

I
C

v · d

⎫⎬⎭ = 1. (3.32)

Things become a bit more complicated when a magnetic field is present and the
particle has charge q. We know that in that case, the canonical momentum is
given by p = mv + qA, and we obtain an additional phase shift

exp

⎧⎨⎩ i

~

I
C

(mv+ qA) · d

⎫⎬⎭ = exp

⎧⎨⎩ im

~

I
C

v · d

⎫⎬⎭| {z }
=1 as before

exp

⎧⎨⎩ iq

~

I
C

A · d

⎫⎬⎭ (3.33)

The additional phase picked up by a charged particle as it moves in a loop in a
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magnetic field is called a geometric phase or Berry phase. It is equal to

exp

⎧⎨⎩ iq

~

I
C

A · d

⎫⎬⎭ = exp

⎧⎨⎩ iq

~

Z
S

∇×A · dS

⎫⎬⎭
= exp

⎧⎨⎩ iq

~

Z
S

B · dS

⎫⎬⎭ = exp

½
iq

~
Φ

¾
. (3.34)

Here Φ is the total magnetic flux going through the loop. We have used Stokes
theorem to convert the contour integral into an integral over a surface bounded
by the contour. The combination h/q also has units of flux, and is called the
flux quantum Φ0 = h/q. So, when a charged particle goes around in a loop we
get

ψ → ψe2πiΦ/Φ0 . (3.35)

Since the wave function should be single-valued in any point (i.e. it has to
go back to the same value after we’ve translated our frame of reference in a
loop), the total flux through the loop should be an integer multiple of the flux
quantum,

Φ = nΦ0. (3.36)

If the London brothers are right, and the superconducting state can only be
characterized by a quantummechanical wavefunction without classical analogue,
then this must lead to flux quantization. Experimenters set out to measure
this, using superconducting rings placed in external magnetic fields. The result
is shown in figure 3.10: there is indeed flux quantization. However, the steps
in the flux are consistent with a flux quantum h/Q where the charge is twice
the electron charge: Q = −2e. This suggests that the superconducting charge
carriers are built from pairs of electrons.
Moreover, if we combine this insight with the band gap discussed in the

previous subsection, we can infer that these electron pairs are bound with a
very small energy (equal to the gap, i.e. 10-100 μeV, of something of the order
of GHz). Irradiating the pairs with photons that have enough energy can break
them up and suppress the superconductivity.

3.2.3 Specific heat anomaly

In a metal, we know that the electronic contribution to the specific heat is linear
in temperature, and the phononic contribution is going to zero as T 3 so it is
very small below 100 K. Hence, at temperatures below 100 K, the specific heat
is usually plotted as CV /T . This should be a constant (of order NkB where N
is the number of electrons). For a superconductor, this doesn’t look constant at
all, as you can see from figure 3.11. As the temperature drops below Tc, there
is a jump, after which the specific heat drops faster than T to zero.
Sounds familiar? That is exactly what we discussed for Bose gases below Tc,

where now Tc was the temperature for Bose-Einstein condensation. Fermions
ought not to do Bose condense! But keeping in mind the previous two key
experiments, we know that the electrons are bound up in pairs. These pairs
can behave as a boson, and undergo Bose-Einstein condensation, as the specific
heat shape seems to suggest. This means that the microscopic picture of a
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Figure 3.11: Specific heat anomaly in vanadium as a function of temperature
[from W. S. Korak, et al., Phys. Rev. 102, 656 (1956)].

superconductor is that of a charged Bose-Einstein condensate, or rather, a
charged superfluid. Up till now we’ve only looked at neutral superfluids,
so we’ll have to extend our theory.
But first we need to clear up a mystery. Why do electrons pair up? Electrons

repel eachother through the Coulomb interaction, so something else should be
providing the glue that binds the electrons together

3.2.4 Isotope effect

The final experimental clue came from the isotope effect. Mercury, the element
in which superconductivity was first observed, has a large variety of stable
isotopes. If the mechansims of superconductivity is purely due to the electrons,
or the types of chemical bonds between the atoms and the band structure arising
from these, then there should be no difference between isotopes of the same
material, such as 203Hg en 199Hg. Isotopes only differ in the number of neutrons
per atom and do not change orbital structure or chemical bonds or number of
conduction electrons. And yet, there turns out to be a dependence of the critical
temperature on isotope mass, as can be seen in figure 3.12.
The particular dependence, Tc ∝ 1/

√
A with A the isotope mass, is a tell-tale

sign that phonons are involved. Firstly, phonons are the only other relevant
excitation that depends on the isotope mass. Secondly, the phonon frequency,
just like a spring frequency, depends on the isotope mass as ω ∝ 1/

√
A too. This

means that the critical temperature is proportional to the phonon frequency,
which in turn leads us to hypothesize that the glue that binds the electrons
together comes from phonons.
Fröhlich6 has shown that phonons can indeed constitute a glue that leads

to effective attraction between electrons. He was well placed, as he had already
developed a theory for the electron-phonon interaction, showing that electrons
locally deform the lattice around them. When the electrons move, they trail this

6H. Fröhlich, Phys. Rev. 79, 845 (1950).
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Figure 3.12: The critical temperature of mercury as a function of the isotope
mass. Circles: experiment of E. Maxwell, Phys. Rev. 78, 477 (1950), squares:
C.A. Reynolds et al., Phys. Rev. 78, 487 (1950).

lattice deformation behind them, as the lattice ions are heavier and thus respond
more slowly. As a result the moving electron has a comet tail of induced positive
charge behind it, that not only holds back the electron (giving it a larger effective
mass), but that also attracts other electrons. Bardeen and Pines7 showed that
this attraction is strong enough even to overcome the Coulomb repulsion.
The comet tail of induced positive charge density can attract another

electron, and the semi-classical picture emerges of two electrons running around
in a circle, each attracted to the polarization left behing by the other electron.
Quantum mechanics tells us that this picture needs to be refined, and we will
come back to that in great detail further on in this chapter. Nevertheless, the
idea survives: as Cooper has shown8, electron-phonon interaction can leads to
the formation of a “molecule” of electrons, called a Cooper pair.

Summary: What we learn from the experimental clues is
the following: the electrons in a superconductor pair up into
“Cooper pairs”, that act like bosonic molecules in the sense
that they can undergo Bose-Einstein condensation. This charged
condensate will lead to superfluidity of the charge carriers:
their frictionless flow explains the disappearance of resistivity,
and the possibility to have persistent shielding currents allows
for perfect diamagnetism.

3.3 Penrose-Onsager-Yang criterion

First, we’ll look at what “a condensate of pairs” means, irrespective of the
particular glue that is used to make pairs. This part of the chapter is rather
technical, and in a first reading you can skip to the next section, on the

7J. Bardeen, D. Pines, Phys. Rev. 99, 1140 (1955).
8L.N. Cooper, Phys. Rev. 104, 1189 (1956).
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Ginzburg-Landau equations. Remember that for bosons we derived a criterion
for condensation — the goal here is to extend this criterion to a fermi gas where
pairing is possible. This in turn will provide a microscopic justification of the
Ginzburg-Landau theory that we’ll explore in the next section.

3.3.1 Density matrices

In second quantization, we can write the Hamiltonian of an interacting Fermi
gas with field operators as follows:

Ĥ =

Z
dr ψ̂

†
(r)H0(r)ψ̂(r) +

1

2

Z
dr

Z
dr0 ψ̂

†
(r)ψ̂

†
(r0)V (r− r0)ψ̂(r0)ψ̂(r).

(3.37)

Here ψ̂
†
(r) (and ψ̂(r)) create (respectively annihilate) an electron in a localized

state |ri. Note that we don’t write down the spin degrees of freedom explicitly,

we could do that by writing ψ̂
†
(r, σ) that creates an electron with spin σ in at

position |ri. In the above Hamiltonian V is the effective two-particle interaction
potential (including any “glue” that is present) and

H0(r) = −
~2

2m
∇2r + V1(r)− μ (3.38)

is the single-particle part of the Hamiltonian — V1(r) can be a trapping potential
or an external field. The chemical potential μ will be used to fix the total number
of particles.
The many-body quantum states are described by a many-body wave function

Ψ(r1, ..., rN ), or alternatively, the density matrix that we have also defined and
used in the first chapter:

ρ(r1, .., rN ; r
0
1, .., r

0
N ) = Ψ

∗(r1, ..., rN )Ψ(r
0
1, ..., r

0
N ). (3.39)

We’ll need both the first-order and now also the second-order reduced density
matrices, and their representation with field operators:

ρ1(r; r
0) =

Z
dr2

Z
drN Ψ

∗(r, r2, ..., rN )Ψ(r
0, r02, ..., r

0
N ) =

D
ψ̂
+
(r)ψ̂(r0)

E
,

(3.40)
and

ρ2(x,y;y
0,x0) =

Z
dr3

Z
drN Ψ

∗(x,y, r2, ..., rN )Ψ(y
0,x0, r02, ..., r

0
N)

=
D
ψ̂
+
(x)ψ̂

+
(y)ψ̂(y0)ψ̂(x0)

E
. (3.41)

The knowledge of these two reduced density matrices suffice to calculate the
expectation value of the Hamiltonian,D

Ĥ
E
=

Z
dr H0(r)ρ1(r; r

0)|r0=r+
1

2

Z
dr

Z
dr0 V (r− r0)ρ2(r, r0; r0, r). (3.42)

That’s nice: we don’t need to know a function of 1023 position coordinates,
functions of at most four positions turn out to be enough.
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But how would you find these density matrices? What equation must they
satisfy? Their time dependence (in the Heisenberg picture) must be given by

the Heisenberg equation of motion for ψ̂
+
(r)ψ̂(r0) :

i~
dρ1(r; r

0)

dt
=

¿
i~

d

dt

h
ψ̂
+
(r)ψ̂(r0)

iÀ
=

Dh
ψ̂
+
(r)ψ̂(r0), Ĥ

iE
(3.43)

Plugging in the Hamiltonian, and using the anticommutation relations between
the fermionic field operators, results in:

i~
dρ1(r; r

0)

dt
= [H0(r)−H0(r

0)] ρ1(r; r
0)

+

Z
dx [V (x− r)− V (x− r0)] ρ2(r,x;x, r0) (3.44)

As you can see, the equation for ρ1 depends on ρ2. If you now go and set up
the equation for ρ2, you’ll find that this depends on ρ3, etc. The result is a
hierarchy of equations (like the BBGKY hierarchy), that you’ll need to break
off at some point if you want to close the set of equations. On the other hand,
if you have ρn you can find all the lower-order reduced density matrices from it.
Indeed, if you know ρ2, you can also simply trace out a variable, and find

ρ1(x;x
0) =

Z
dy

1

2
[ρ2(x,y;x

0,y)± ρ2(y,x;y,x
0)] (3.45)

The upper sign is for bosons, the lowe sign for fermions (the present case).

3.3.2 Pair condensation of fermions

The Penrose-Onsager criterion for Bose-Einstein condensation (in interacting
Bose gases) stated that BEC occurs if and only if one of the eigenvalues
of ρ1 becomes macroscopically large (i.e. compareable to the total number
of particles). Since these eigenvalues turn out to be the occupation of the
Hartree-Fock states (the best suited single-particle states), and fermions cannot
be with more than one in the same single-particle state, it is clear that for
fermions all eigenvalues of ρ1 should be less than or equal to one. So, according
to Penrose-Onsager (and common sense) fermions cannot undergo Bose-Einstein
condensation.
But many bosons, such as 4He, are composite objects rather than point

bosons. They are built up from a bunch of fermions (protons, neutrons, electrons
are all fermions). Another example are molecules. Take a fermionic atom such
as deuterium D (1 proton+1 neutron+1 electron = an odd number of fermionic
building blocks = a fermion). Molecules of D2 will obey Bose statistics, as
long as you work at energy scales that are small compared to the binding
energy. Clearly, we need to extend the Penrose-Onsager criterium to allow
for the condensation of even clusters of fermions.
This extension was formulated by C.N. Yang9, who defined it in analogy

with the Penrose-Onsager criterion as follows:
9C. N. Yang, Concept of Off-Diagonal Long-Range Order and the quantum phases of liquid

He and superconductors, Rev. Mod Phys. 34, 694-704 (1962).
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Pair condensation (in a Fermi system) occurs if and only if
the second order reduced density matrix has an eigenvalue
that becomes macroscopically large (i.e. compareable to
the number of fermions N).

The second-order reduced density matrix is Hermitian, and thus can be
diagonalized with real eigenvalues

ρ2(r1, r2; r
0
1, r

0
2) =

X
i

νiχi(r1, r2)χ
∗
k(r

0
1, r

0
2). (3.46)

where for fermions the eigenfunctions need to be antisymmetric, χk(r1, r2) =
−χk(r2, r1). The eigenvalues must satisfyX

i

νi = N(N − 1) (3.47)

where N is the number of particles. Yang showed that for fermions these must
satisfy νi 6 N . Intuitively these eigenvalues vk can be interpreted as the number
of atomic pairs that occupy the two-particle state χk(r1, r2). This is similar
to the interpretion of the eigenvalues of the first-order reduced density matrix
as the number of atoms having the corresponding eigenfunction for effective
single-particle state. In order to classify the possible two-particle states10, we
introduce the center of mass coordinate and the relative coordinate,

r = (r1 + r2)/2

x = r2 − r1

and make the assumption that the two-particle wave functions can be factorized
in a center-of-mass piece and a wave function for the relative coordinate,

χi(r1, r2) = Ψi(r)φi(x). (3.48)

Certainly, if you look at hydrogen atoms (built out of two fermions: a proton
+ an electron), this is very familiar. It is in fact the very first thing you do
when solving the Schrödinger equation for the hydrogen atom: you factorize
out the center of mass coordinate. The wave function of the internal coordinate
is then solved and depends on the glue between the proton and the electron (in
casu: the Coulomb potential between them). The wave function of the internal
coordinate is what you know as all the orbitals of the hydrogen atom, and you
tend to forget about the center of mass piece, assuming that it is a plane wave
or a free particle.
When the system (and thus ρ2) have translational invariance, we indeed

must have Ψi(r) = exp{iK · r} with K the center of mass momentum. Then we
can divide the eigenfunctions χi into three classes, depending on the value of K,
and on whether or not φi(x) is bounded. By bounded, we mean mathematically
that |χi|

2 decays faster than 1/x2 as x → ∞. When φi(x) is bounded, the
relative coordinate wavefunction is localized in space, meaning that the two
particles stay closely together. The three classes are:
10For the classification of the eigenfunctions, I follow “The BEC—BCS Crossover: Some

History and Some General Observations” by A.J. Leggett and S. Zhang (chapter 2 in the
book “The BCS—BEC Crossover and the Unitary Fermi Gas” edited by W. Zwerger (publ.
Springer-Verlag, 2012)).
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• “scattering state” pair wavefunctions: φ unbound and K can be
anything. We always have of the order of N2 of these, and they have
eigenvalue ≈ 1. For a non-interacting fermi gas, all the eigenfunctions are
of this type since we just have plane waves for all electrons, χi(r1, r2) =
eik1·r1eik2·r2 . It is also clear that we have of order N2 of these in the
limit of tightly bound molecules, simply because if you pick two fermions
at random, it is highly likely that these fermions will belong to different
molecules and thus be uncorrelated.

• “preformed pairs”: φ bound, K 6= 0.

• “condensed pairs”: φ bound, K = 0.

The classes of preformed pairs and condensed pairs taken together intuitively
describe any bound pairs that occur in the system. Such bound pairs are
expected to occur when there is an attractive interaction present. The number
of relevant (i.e. with non-negligible eigenvalues) eigenfunctions in these two
classes can be at most N , because the sum rule (3.47) must hold and we already
have N2 scattering pair states.
The onset of pairing (for example with decreasing temperature) can be

thought of as the point at which the sum of eigenvalues for preformed and
condensed pair wave functions becomes of order N . These pairs (or molecules,
for strong binding) are not necessarily condensed, that is why we refer to most
of these states are “preformed pairs”. The onset of pair condensation is the
point at which the number of condensed pairs becomes of order N , i.e. one gets
back to the simple BEC picture and only one relevant bound pair wave function
χ0(r1, r2) = φ0(r2 − r1),

ρ2(r1, r2; r
0
1, r

0
2) ≈ v0χ0(r1, r2)χ

∗
0(r

0
1, r

0
2) + ρfluct2 (3.49)

We see that ρ2 only has non-negligible contributions for r1 ≈ r01, r2 ≈ r02, or
r1 ≈ r02, r2 ≈ r01 or r1 ≈ r2, r01 ≈ r02, where it is dominated by the first term.
Just as we did for the Bose gas, we can then use this to estimate the energy
as a function of χ0(r1, r2), in order to try and find an equation that χ0 has to
satisfy. This is our road to generalize the Gross-Pitaevskii equation to the case
of fermion pairs.

3.3.3 Energy of the pair condensate

The energy can be written via
D
Ĥ
E
= Tr[ρ̂Ĥ] as

E =

Z
dr1

Z
dr2

1

2m

³
[−i~∇r1 − qA(r1)]

2

+[−i~∇r2 − qA(r2)]
2
´
ρ2(r1, r2; r

0
1, r

0
2)
¯̄̄
r01=r1,r

0
2=r2

+
1

2

Z
dr1

Z
dr2V (r2 − r1)ρ2(r1, r2; r2, r1) (3.50)

Here we have included the electromagnetic effects, assuming that our fermions
have a charge q and there is a vector potential A. It is the canonical momentum



3.3. PENROSE-ONSAGER-YANG CRITERION 105

p = mv + qA that gets “quantized” to −i~∇, rather than the kinematical
momentum mv, so that we need to write the kinetic energy as mv2/2 = (p −
qA)2/(2m). For 6Li atoms, q = 0, for electrons q = −e = −1.6× 10−19 C.

We’ll now plug in our ρ2(r1, r2; r
0
1, r

0
2) for pair condensation. To do this, we

decompose the pair wavefunctions in center of mass and relative coordinate as
before. For the condensed pair we write

√
v0χ0(r1, r2) = Ψ(r)φ0(x) (3.51)

This incorporates the
√
v0 factor into the center of mass wavefunction,

renormalizing it like in the ordinary Penrose-Onsager case to Ψ(r) =
√
v0Ψ0(r).

For identical fermions, the antisymmetry condition implies φ(−x) = −φ(x), and
Ψ(−r) = Ψ(r). It is in this sense that we can claim that the pairs condensate
wave function Ψ(r) behaves “bosonically”. The fermionic nature is relegated to
the internal clockwork of the composite particle.

We need to rewrite (3.50) into relative coordinate and center-of-mass
coordinate, using

r1,2 = r± x/2, and ∇ r1,2 =
1

2
∇r ±∇x (3.52)

from which

∇2
r1 +∇

2
r2 =

1

2
∇2
r + 2∇2

x. (3.53)

We get (in the transverse gauge):

2X
j=1

∙
− ~

2

2m
∇2

rj + 2i~qA(rj)∇rj + q2A2(rj)

¸
(3.54)

= − ~
2

2m

µ
1

2
∇2
r + 2∇2

x

¶
+ q2

h
A2
³
r− x

2

´
+A2

³
r− x

2

´i
−i~q

h
A
³
r− x

2

´
+A

³
r+

x

2

´i
∇r + 2i~q

h
A
³
r+

x

2

´
−A

³
r− x

2

´i
∇x

You see that this simplifies a lot when A is smooth over the distance of the
Cooper pair. If we keep effects up to order ∇2A (as this is related to currents,
from the Maxwell equations), we get

2X
j=1

∙
− ~

2

2m
∇2

rj + 2i~qA(rj)∇rj + q2A2(rj)

¸
χ0(r1, r2) (3.55)

=
[−i~∇r −QA(r)]2

2M
− ~2

2m
∇2
x − q

¡
∇2A(r)

¢
[x · (i~∇r − qA(r))]

with Q = 2q and M = 2m. With this we can write

E =

Z
dr Ψ∗(r)

(
[−i~∇r −QA(r)]

2

2M

)
Ψ(r) +Eφ[Ψ] (3.56)
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with

Eφ[Ψ] =

Z
dx φ0(x)

½
− ~

2

2m
∇2
x + V (x) (3.57)

−q
Z

dr Ψ∗(r)
¡
∇2A(r)

¢
[x · (i~∇r − qA(r))]Ψ(r)

¾
φ∗0(x)

The contribution Eφ[Ψ] is almost the binding energy that we’d calculate with
for the relative coordinate problem. Sometimes, the terms mixing Ψ(r) and
φ0(x) are small. This occurs when the gradients of Ψ(r) and/or the magnetic
field is small over the size of the pair. Then the problem separates nicely into
internal degrees of freedom and external degrees of freedom (as for the hydrogen
atom). But, as we know from Pippard’s result, this is not the case for Cooper
pairs. We need to be more careful! The energy of the pair condensate depends
on Ψ(r), and we can expand it as a function of |Ψ(r)|2

Eφ[Ψ(r)] = a+
b

2
|Ψ(r)|2 + .... (3.58)

Indeed, as long as Ψ(r) does not have a phase oscillating many times over the
size of the pair, a reasonable assumption, Eφ will be a function of |Ψ(r)|2 as can
be seen from (3.57). This is the basis for the Ginzburg-Landau theory, which
we will explore in the next subsection.

Summary: The eigenfunctions of the second order reduced
density matrix can be classified as scattering states, preformed
pairs and condensed pairs. When the summed eigenvalues of pair
states becomes of order N, we have pair formation in the Fermi
system. When the eigenvalue of one particular pair state becomes
of order N, we have Bose-Einstein condensation of fermion pairs.
Factoring the condensed pair wave function in center of mass and
relative coordinate, we obtain the center of mass wave function
that takes on the role of the condensate wave function.

3.4 Ginzburg-Landau formalism

3.4.1 Ginzburg-Landau energy functional

First, we consider the case without magnetic field. The discussion of the previous
section encourage us to claim that there will again be a macroscopic wave
function, which we can treat as the order parameter of the superconducting
state. This means that near the critical temperature, the free energy Fs of the
superconducting state can be expanded as a function of this order parameter
since it is small:

Fs(T, V ) = Fn(T, V ) + V

µ
a(T ) |Ψ|2 + b(T )

2
|Ψ|4 + ...

¶
(3.59)

We use the free energy rather than the internal energy since the former is a
function of temperature whereas the latter is a function of entropy, and we
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prefer calculating properties at a given temperature to calculating them at a
fixed entropy. We also define our expansion constants for the free energy per
unit volume, which is why the volume appears explicitly and a bit clumsily here.
When the order parameter turns to zero |Ψ|2 → 0, we recover the free energy

of the normal state, Fn(T ). From the previous section, we also know that when
Ψ is position dependent, there should be a gradient term, expressing the kinetic
energy contribution to the total free energy, so let’s add this:

Fs(T, V ) = Fn(T, V ) +

Z
dr

(
Ψ∗(r)

[−i~∇r −QA(r)]2

2M
Ψ(r)

+a(T ) |Ψ(r)|2 + b(T )

2
|Ψ(r)|4

¾
. (3.60)

When Ψ(r) = |Ψ| is constant, this expression reverts to (3.59). In the
kinetic energy term, we have included the effects of an external magnetic field
(characterized by the corresponding vector potential) on the pair condensate11.
Placing a superconductor in a magnetic field will induce shielding currents for
the Meissner effect. But these in turn affect the magnetic field distribution near
the superconductor! That is why we also want to keep track of the change in
the energy of the magnetic field itself:Z

dr
μH2(r)

2
=

Z
dr
B2(r)

2μ
=

Z
dr
1

2μ
(∇×A(r))2 (3.61)

Including this term in the free energy gives:

Fs(T, V ) = Fn(T, V ) +

Z
dr

(
Ψ∗(r)

[−i~∇r −QA(r)]
2

2M
Ψ(r)

+a(T ) |Ψ(r)|2 + b(T )

2
|Ψ(r)|4 + 1

2μ
(∇×A(r))2

¾
. (3.62)

This is known as the Ginzburg-Landau free energy12. It is derived as
an expansion in small |Ψ(r)|, so in principle it is only valid near Tc. In
practice, its region of validity extends well below Tc. This is different from
the Gross-Pitaevskii equation, which is derived at T = 0 (and for a neutral
superfluid), and becomes less accurate as the temperature is increased.

3.4.2 Ginzburg-Landau equations

The GL free energy can be used as a variational energy functional, minimized
by the true pair wave function Ψ(r),

δFs
δΨ∗(r)

= 0. (3.63)

11We don’t include effects linked with a scalar potential φ in the superconductor, since the
perfect conduction nullifies any electric potential differences in the superconductor. Note that
in some cases, φ might occur (as when we are moving vortices around), and then we’d need to
include it. So, in essence, in this chapter we are restricting ourselves to steady state situations
with magnetic fields only. Check out the books in the bibliography to open up the wider world
of Ginzburg-Landau equations.
12V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).
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Performing the functional derivative yields the first Ginzburg-Landau
equation:

− ~
2

2M

∙
∇r −

iQ

~
A(r)

¸2
Ψ(r) + a(T )Ψ(r) + b(T ) |Ψ(r)|2Ψ(r) = 0 (3.64)

This looks very similar to the Gross-Pitaevskii equation: again we find a
non-linear Schrödinger-type equation. The mass appearing here is now the mass
of the Cooper pair (twice the electron mass), and Cooper pair charge Q is −2e
with e = 1.602...× 10−19 C the elementary charge. Note that many handbooks
give the formula CGS units.
As mentioned above, the vector potential is not just an external parameter,

it is also affected by Ψ(r). To find the correct vector potential we use Maxwell’s
equation in its variational form:

Js = −
δFs
δA(r)

. (3.65)

which results in an expression for the supercurrent density:

Js =
iQ~
2M

[Ψ(r)∇rΨ
∗(r)−Ψ∗(r)∇rΨ(r)]−

Q2

M
|Ψ(r)|2A(r). (3.66)

The first term is familiar from our study of superfluid currents: gradients in
the order parameter’s phase will lead to a flow of Cooper pairs. Indeed, with
Ψ(r) = |Ψ(r)| eiθ(r) we could rewrite the first term as:

Js = Q |Ψ(r)|2 ~
2M
∇θ − Q2

M
|Ψ(r)|2A(r). (3.67)

This can be case in the usual expression for the current, Js = qnvs, where
n = |Ψ(r)|2 is the density of charge carriers, q their charge and

vs =
~
2M

∙
∇θ − Q

~
A(r)

¸
(3.68)

the superfluid velocity. The second term is the London term. When Ψ(r) = |Ψ|
is constant, this is the only term, and we get the London equation, with

Js = −
Q2

M
|Ψ(r)|2A(r) = − 1

μλ2L
A⇔ λL =

s
M

μQ2 |Ψ|2
(3.69)

Now flip back a few pages to equation (3.5)... These supercurrent adds to
any externally applied currents Jext, and generate the total magnetic induction
field in accordance with ∇×B = μv (Js + Jext). This leads us to the second
Ginzburg-Landau equation:

1

μ
∇× (∇×A) = iQ~

2M
[Ψ(r)∇rΨ

∗(r)−Ψ∗(r)∇rΨ(r)]−
Q2

M
|Ψ(r)|2A(r) + jext

(3.70)
The two Ginzburg-Landau (“GL”) equations (3.64) and (3.70) are coupled. The
first one can be thought of as the equation for the order parameter, influenced
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by the vector potential, and the second one can be thought of as the equation
for the vector potential, brought about both by external influenced and by the
supercurrents. In general, they need to be solved simultaneously. The usual
electromagnetic boundary conditions apply for the second equation, and for the
first equation we require that there is no current of Cooper pairs going outside
the superconductor:

(−i~∇r −QA)Ψ(r)|edge = 0.

This is suitable when the superconductor is bounded by vacuum or an insulator.
De Gennes13 found that for a metal the boundary condition

(−i~∇r −QA)Ψ(r)|edge = iΨ(redge)/γ

is more appropriate, with a constant γ that depends on the metal (γ →∞ for
an insulator, and γ → 0 for a magnetic metal).

3.4.3 Empirical determination of the GL parameters

The GL parameters a(T ) and b(T ) are still undetermined... We could look
at the microscopic theory, and derive them from that. However, it is very
difficult to do so (although Gor’kov managed14). Moreover, for whole classes of
superconductors (the cuprates or high-Tc superconductors, we don’t even have
a microscopic theory of the glue that binds the electrons. So, our best option
there is to link these parameters to measurable quantities.
Let’s first turn our attention to the case of a uniform bulk piece of

superconductor, and no magnetic field. In the ground state for this uniform
system, we do not expect any gradients in the order parameter, so Ψ(r) = |Ψ|
is constant. In that case, the free energy

Fs(T, V ) = Fn(T, V ) + V ×
µ
a(T ) |Ψ|2 + b(T )

2
|Ψ|4

¶
(3.71)

is minimized for
∂Fs

∂ |Ψ|2
= 0⇔ |Ψ|2 = −a

b
(3.72)

The free energy difference between the normal state and the superconducting
state is

Fs − Fn = −
a2

2b
V (3.73)

We have a way to find the free energy difference: turn the magnetic field
to its critical value. At the critical field, the energy μH2

c /2 spent expelling
the magnetic field is precisely equal to the energy gained from becoming
superconductor, so we have

μH2
c

2
− a2

2b
= 0. (3.74)

13P.G. De Gennes, Superconductivity Of Metals And Alloys (Westview Press, 1999, ISBN
0813345847).
14L.P. Gorkov, “Microscopic derivation of the Ginzburg-Landau equations in the theory of

superconductivity”, Soviet Physics JETP 36, 1364 (1959).
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We need another equation relating the unknowns a, b to measurable properties.
This turns out to be expression (3.69) for the London penetration depth

λL =

s
M

μQ2 |Ψ|2
⇒ M

μλ2LQ
2
= −a

b
(3.75)

Expressions (3.74),(3.75) allow to solve for a, b as a function of Hc and λL :

a = −2 (μe)
2

me
λ2LH

2
c , (3.76)

b =
4μ3e4

m2
e

λ4LH
2
c . (3.77)

Here, we’ve also used Q = −2e and M = 2me. For some common
superconductors, this gives

λL (nm) Hc (G) −a (μeV) b (μeV·nm3) ns (nm−3)
Sn 34 309 0.36 0.22 12
Al 16 105 0.0074 0.013 55
Pb 37 803 2.77 0.61 10
Cd 110 90 0.036 0.19 1.2
Nb 39 1980 13 1.38 9.3

Note that the results are expressed in μeV for energy and nm for lengths
— Joules and metres would give tiny numbers. It is no coincidence that a
has the same energy scale as the superconducting gap! From our study of
Penrose-Onsager-Yang criterion, we obtained that the binding energy of the
pairs Eφ[Ψ(r)] ≈ a, if we keep only the first term in the expansion (3.58).
From these numbers, we can also get the density of superconducting charge

carriers, ns = −a/b, shown in the last column. This shows that the density
of superconducting charge carriers is compareable to the density of conduction
electrons (also of order 1022 cm−3, or 10 nm−3). Keep in mind that the electron
band mass in the material may be different from the bare electron mass that
was used in computing the numbers for this table. In view of Pippard’s insight —
that the size of the Cooper pair, the Pippard correlation length — can be as large
as one micron, we get a remarkable picture: the Cooper pairs must overlap in
real space. In that sense Cooper pair condensates are very different from Bose
condensates of molecules, where the size of the internal (relative-coordinate) part
of the atom’s wave function remains much smaller than the distance calculated
from the density.

The temperature dependence of the critical magnetic field,

Hc(T ) = Hc(0)

"
1−

µ
T

Tc

¶2#
(3.78)

and of the London penetration depth,

1

λ2L
∝ 1−

µ
T

Tc

¶4
(3.79)
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can be used to determine the temperature dependence of the GL parameters.
Near the critical temperature (T ≈ Tc) we find

a(T ) = a(0)

∙
1−

³
T
Tc

´2¸2
1−

³
T
Tc

´4
⇒ a(T ) ≈ − |a(0)|

∙
1− T

Tc

¸
(3.80)

and

b(T ) = b(0)
1∙

1 +
³
T
Tc

´2¸2
⇒ b ≈ constant (3.81)

The behavior of a is not altogether unexpected. Indeed, if a can intuitively
be related to the pair binding energy, then it should go from negative (bound
pairs) below Tc to positive above Tc. The other coefficient, b, also has an
intuitive interpretation coming from a comparison of the GL equation and the
Gross-Pitaevskii equation. It can be though of as an interaction amplitude
for the interaction between Cooper pairs. This is relatively temperature
independent. Finally, note that the “small parameter expansion” is based on
the order parameter |Ψ|2 = −a/b, which grows proportional to 1 − T/Tc as T
is lowered away from Tc.

Summary: Independently of the glue that binds the pairs, the
pair condensate can always be described by a macroscopic wave
function. This wave function obeys the Ginzburg-Landau equations
valid near Tc, which now include the interaction of the charged
superfluid with magnetic fields. The two parameters, a and b,
appearing in this theory can be calculated from critical magnetic
field and penetration depth, and relate to the pair binding energy
(a) and pair interaction amplitude (b).

3.5 Type I and type II superconductivity

3.5.1 Coherence length

First, we look at an interface between a superconductor (x > 0) and vacuum
(x < 0), in the absence of magnetic fields. Then we only need the first GL
equation

− ~
2

2M
∇2rΨ(r) + a(T )Ψ(r) + b(T ) |Ψ(r)|2Ψ(r) = 0. (3.82)

Since we don’t want currents (no magnetic fields), Ψ(r) should have a constant
phase, so we can choose Ψ(r) real. The derivation follows closely the derivation
of the healing length for neutral condensates. That is, we set Ψ(r) = f(x)Ψbulk
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with Ψ2bulk = −a/b = ns the bulk density of cooper pairs. After this
substitution, the GL equation becomes

− ~
2

2M

∂f

∂x
+ af + b

µ
−a
b
f2
¶
f = 0,

⇔ ~2

2M |a|
∂f

∂x
+ f − f3 = 0. (3.83)

(keep in mind that a < 0). This makes it clear that the characteristic length
scale for the variations in f is

ξ =

s
~2

2M |a| , (3.84)

the analogue of the healing length that we saw for Bose condensates. Here it is
usually not called a healing length, but a coherence length. It is the smallest
length scale over which the pair condensate wave function can vary.
There is a link with Pippard’s correlation length ξP = ~vF / (kBTc) that we

also denoted with the Greek letter xi. Remember that the Pippard correlation
length is the size of the Cooper pair, or the extent of the relative-coordinate
part of the pair wave function. If we confine a particle of mass M to an area of
size ξP then its ground state (T = 0) energy can be estimated as

Eφ ≈
~2

2Mξ2P
. (3.85)

Since we also identified the GL parameter a with this binding energy, Eφ ≈ a,
it is clear that ξ ≈ ξP at temperature zero. However, the coherence length ξ
depends strongly on temperature, through a(T ). It even diverges at Tc, as

ξ(T ) ∝ |a|−1/2 ∝ 1p
1− (T/Tc)

. (3.86)

The pair condensate becomes very fragile near Tc. By rewriting Tc as a function
Hc (using the BCS microscopic theory that we’ll see later on), it is possible to
express the ratio of the coherence length to the Pippard correlation length as

ξ

ξP
=

π

2
√
3

Hc(0)λL(0)

Hc(T )λL(T )
(3.87)

This in turn allows to write the coherence length more precisely as

ξ(T ) ≈ 0.74 ξP
(1− T/Tc)1/2

(3.88)

The prefactor depends on the purity of the superconductor (as we’ve seen when
discussion the correlation length, this matters).

3.5.2 Superconductivity at interfaces

Again we consider our interface between a superconductor (x > 0) and a vacuum
(x < 0). In fact, as far as the magnetic field and the order parameter are
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concerned, the vacuum could just as well be the (non-magnetic) normal state.
We will again look for solutions of the form Ψ(r) = f(x)Ψbulk. For the vector
potential, we look for solutions of the form A = A(x)ey so that the magnetic
field points along the z-axis. Then the first GL equation is

− 1
ξ2

∂2f(x)

∂x2
+

Q2

~2ξ2
A2(x)f(x) + f(x)− f3(x) = 0, (3.89)

and the second is
∂2A(x)

∂x2
− f(x)

λ2L
A(x) = 0. (3.90)

Note how ξ, the coherence length, determines the fundamental length scale of
the first GL equation, the one for the order parameter. The fundamental length
scale of the second equation, the one for the vector potential, is determined by
λL, the London penetration depth. Both equations have to be solved jointly,
and with boundary equations

A(x = 0) = Aext,
∂f(x)

∂x

¯̄̄̄
x=0

= 0 (3.91)

These can only be solved numerically, for general ξ and λL. However, for ξ À λL
or for λL À ξ, the equations tend to decouple. In the first case ξ À λL, the
magnetic field drops very quickly to zero, so we obtain again equation (3.83)
for GL1, and since f(x) cannot vary much over a scale much smaller than ξ, we
get simple exponential decay for A(x) in GL2. In the other extreme, λL À ξ,
the condensate heals very rapidly, and we again obtain the ordinary London
equation for GL2, whereas we have just a constant A in the first GL equation.
This means that in both cases, A(x) decays roughly from its bulk value to

zero on a scale λL and Ψ(x) grows roughly on a scale ξ. Numerical solutions
show that this general statement always holds. The top row in figure (3.13)
shows examples for ξ À λL (left) and λL À ξ (right).
How much energy does it cost to create a superconductor-normal interface?

Firstly, near the interface we have to destroy the Cooper pair condensate. We
already know that this costs an energy (Fs − Fn) /V = μH2

c /2 per unit volume.
At a certain depth x, the pair condensate density is a fraction f2(x) of its bulk
value. So the energy per unit surface that we loose from broken up pairs in the
layer between x and x+ dx is

C(x) = −
μH2

c

2

£
1− f2(x)

¤
dx. (3.92)

This is indicated as the grey shaded areas in the bottom row in figure (3.13).
We don’t know the precise shape of f(x), so we’ll approximate by using the fact
that the pair condensate is destroyed up to a depth ξ. In that case, the total
energy per unit surface lost to breaking up pairs is

EC ≈ −
μH2

c

2
ξ (3.93)

Secondly, near the interface we can allow some magnetic flux to enter the
superconductor. The magnetic energy gained per unit surface, at a depth
x, x + dx will be B(x) ∝ A2(x)dx. Again, we do not know the precise shape
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Figure 3.13: The top row shows the magnetic field profile (red) and the order
parameter profile (black) as a function of position in a superconductor (x > 0) -
vacuum (x < 0) interface. Left column is for type I, right column is for type II.
The bottom row illustrates the balancing between the energy needed to expell
the magnetic field ( B, red), and the energy required to break up cooper pairs
( C , black) in the interface region [my thanks go to Bart Raes for making this
figure].

of A(x), but we know it decays over a length scale λL — as illustrated in figure
(3.13). So, the total magnetic energy per unit surface that we gain from allowing
the flux to seep in is

EB ≈ +
μH2

2
λL (3.94)

The net energy gain per unit surface, from having a normal-superconducting
interface, is

γ ≈ μH2

2
λL −

μH2
c

2
ξ (3.95)

Near the critical magnetic field, H ≈ Hc, this energy gain becomes

γ ≈ μH2
c

2
(λL − ξ) (3.96)

This is negative for ξ À λL: in that case the system doesn’t like interfaces
between normal and superconducting state. It will prefer to be either fully
normal or fully superconducting. This is the characteristic behavior of a type
I superconductor. However, γ is positive for λL À ξ — so in that case the
systems prefers to have a lot of normal-superconducting interfaces, and it
will spontaneously generate them. What configuration would guarantee the
maximum amount of normal-superconducting interface, keeping in mind that
the interface has a “thickness” max(λL, ξ) ? One could imagine it stacks
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interfaces, alternating stripes of normal and superconducting state. That pijama
motif sure has a lot of interface length. But you could now also make stripes in
the orthogonal direction, having squares, with even more interface length. The
true pattern will be a vortex lattice, as shown by Abrikosov. Vortices are the
topic of our next section.
The typology of superconductors is often represented using the ratio of

penetration depth to coherence length:

κ = λL/ξ (3.97)

From a more precise calculation with the Ginzburg-Landau equations one finds
that κ = 1/

√
2 is the dividing point (sometimes called “Bogomolny” point).

For κ < 1/
√
2 the normal-superconducting interface costs energy, and we

get type I behavior, whereas for κ > 1/
√
2 making interfaces is energetically

advantageous, and we get type II behavior. However, nature is not so tidy, and
many compounds with κ close to 1/

√
2 show “intermediate” behavior15 near

H = Hc1 , such as the intricate patterns of superconductor and normal state
shown in figure 3.6, leading to magnetizations that look more like the bottom
panel of figure 3.3.

Summary: Coherence Length and Penetration Depth are
the typical length scales over which the superconducting pair
condensate and the magnetic flux vary, respectively. Their ratio,
κ = λL/ξ determines whether the material behaves as type I (for κ
small) or type II (for κ large).

3.5.3 Superconducting Vortices

The fluxoid

In neutral (Bose-Einstein) condensates, we have encountered vortices. These
were lines around which circular superflow took place, such that the phase
changed an integer number of times 2π as we go around. The condensate density
had to go to zero at the vortex core. We only had a single length scale for all
of this to happen, namely the healing length ξ.
In superconductors, vortices will also occur, but now the two length scales ξ

and λL matter. We will study vortices in a strongly type II material, so ξ ¿ λL.
We know from the previous section that vortices can become important for those
materials. Let’s take a closer look at the supercurrent circling the vortex line,
using expression (3.67). Substituting Q = −2e, M = 2me, and Ψ(r) =

√
nse

iθ

we get

Js = −2ens ×
~
2m

∙
∇rθ +

2e

~
A(r)

¸
(3.98)

⇒ vs =
~
2m

∙
∇rθ +

2e

~
A(r)

¸
(3.99)

15Keep in mind that also type II materials display perfect diamagnetism (Meissner state)
below H < Hc1 — we assumed H ≈ Hc in our estimation of γ, and this corresponds to the
first critical field of type II materials.
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Figure 3.14: The spatial structure of a vortex in a type II material is shown
here. On the left, the current density is seen to decay on the same length scale
λL as the vector potential, with a dip in the middle, of size ξ, due to the fact
that the pair condensate is destroyed in the eye of the “hurricane” that the
vortex is. The right figure shows the Cooper pair density |Ψ|2 (where |Ψ0|2 is
the bulk value) and the magnetic flux density B. [my thanks go to Bart Raes
for making this figure].

The vector potential acts like an additional phase gradient. This is not
surprising, since gauge transformations result in a shift of the phase of wave
functions. The prefactor 2e/~ is also 2π/φ0 with the superconducting flux
quantum,

φ0 =
h

2e
= 2.067 mT μm2 = 2.067× 10−7 gauss cm2 . (3.100)

The quantization of circulation around a loop C now becomesI
C

vs · d =
~
2m

½I
C

∇rθ · d + 2π
φ

φ0

¾
(3.101)

with

φ =

Z
B · dS =

I
C

A(r) · d (3.102)

the total flux. Using the fact that the macroscopic wave function is single valued,
so its phase must have a change ∆θ = 2πn with n ∈ Z, we simplify (3.101) toI

C

vs · d =
~
2m
2π

µ
n+

φ

φ0

¶
. (3.103)

So, the total flux φ going through the loop that encircles the vortex is

φ = nφ0 +
2m

h

I
C

vs · d with n ∈ Z. (3.104)
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London referred to the quantity φ is referred to as the “fluxoid”: on top of the
flux quanta it contains a contribution from phase gradients in the macroscopic
wave function. The fluxoid formula (3.104) has two important consequences:

• If the flux through a superconducting ring is not precisely an integer
number times the flux quantum, then a supercurrent must develop in
the ring (vs 6= 0 ⇒ Js = nQvs 6= 0) to compensate and make equation
(3.104) hold.

• For a vortex bulk, we can take a loop with radius much larger than λL,
and since Js (like A) drops down to zero at a typical distance λL, we find
φ = nφ0. Superconducting vortices carry an integer number of
flux quanta.

Structure of the vortex

Next, we turn to the structure of a superconducting vortex, where the vortex
line lies along the z-axis. We use the Ginzburg-Landau equations as we did to
study interfaces, only now we will use cylindrical coordinates {r, z} = {r, ϕ, z}.
With (3.98) the second GL equation, ∇×B = μJs, takes the form

∇×B = −2μe |Ψ(r)|2 ~
2m

∙
∇θ + 2e

~
A(r)

¸
(3.105)

Substitute |Ψ(r)| = f(r) |Ψbulk| (with r the distance vector to the vortex line,
in the plane perpendicular to the vortex), and take the curl of equation (3.105):

−∇2B = −μ (2e)
2 |Ψbulk|2

2m
∇×

∙
~
2e
f2(r)∇θ + f2(r)A(r)

¸
(3.106)

Now, the assumption ξ ¿ λL means that the pair condensate will have healed to
its bulk value at a very short distance from the vortex center, and the variations
of the vector potential take place over a much longer scale. Hence, we can set.
f(r) = 1 for r 6= 0 and get

−∇2B = − μ (2e)2 |Ψbulk|2

2m
∇×A(r)

⇔ λ2L∇2B−B = 0 for r 6= 0 (3.107)

This is just the London equation. We have to be a bit more careful for r = 0.
There, the rapid variation in f(r) will result in a delta-function contribution.
The strength of the delta function has units of flux density, We know that the
vortex carries a flux quantum, so the strength of the delta function cannot be
anything else but the flux carried by the vortex,

λ2L∇2B−B = φδ(r)ez (3.108)

Using cylindrical coordinates and substituting B = B(r)ez we find

λ2L
1

r

∂

∂r

µ
r
∂

∂r
B(r)

¶
−B(r) = φ

δ(r)

2π
(3.109)
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The solution of this equation is

B(r) =
φ

2πλ2L
K0(r/λL) (3.110)

with K0 the (zeroeth order) modified Bessel function of the second kind. For a
singly-quantized vortex, φ = φ0. The flux density B is of the order of φ0/(πλL),
confirming that the flux quantum spreads out in space over an area of size λL.
This analytical solution, valid in the extreme type II limit (κÀ 1) is also known
as the London vortex. The corresponding supercurrent density is

Js(r) = −
1

μ

∂B

∂r
eϕ =

φ

2πμλ3L
K1(r/λL)eϕ (3.111)

A more precise result (also valid in the region r < ξ) was obtained by Clem16:

B(r) =
φ

2πλ2L

K0

³p
r2 + ξ2/λL

´
(ξ/λL)K1(ξ/λL)

(3.112)

This result, along with the corresponding current profile, is shown in figure 3.14.
Outside of the vortex core region (r < ξ) the exponential decay —through the
modified Bessel function) of both current density and flux density can be seen.
Remark: we looked at vortices in bulk superconductors. For smaller lengths

of vortices, in thin films, the boundary conditions are seen to influence the
solution, and the flux is not as tightly confined (to a tube of size λL) as in
bulk. Pearl17 has shown that one gets a good approximation to the solution by
replacing the penetration depth with an effective length scale

Λ = 2λ2L/d, (3.113)

which of course is only valid for film thicknesses d < λL. This means that as far
as vortex properties are concerned, thin films of type I material act like type II
materials: indeed κ = Λ/ξ grows as d becomes smaller.

Intervortex interactions and Abrikosov lattice

In type I superconductors, where ξ À λL, the interaction between two vortices is
determined by the overlap of their huge cores rather than the small region inside
the core where the magnetic field can penetrate. It is energetically advantageous
to put the two “holes” in the pair condensate on top of each other, and merge
the vortices. That way, less pair condensate is destroyed. Indeed, we know that
type I materials prefer to be either completely superconducting or completely
normal.
However, in type II superconductors with λL À ξ, the region where the pair

condensate is depleted is small and the magnetic field reaches much further.
There, the interaction is dominated by the magnetic energy, thus by the

16 J.R. Clem, Simple model for the vortex core in a type II superconductor, J. Low. Temp.
Phys. 18, 427 (1975).
17 J. Pearl. “Current distribution in superconducting films carrying quantized fluxoids”,

Applied Physics Letters 5, 65 (1964).
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Figure 3.15: An Abrikosov lattice of superconducting vortices [source: V.
Moshchalkov and J. Fritzsche, Nanostructured superconductors. World
Scientific Publ. Co., Inc., 2011]

supercurrents circling the vortex. In neutral condensates, the superfluid flow
pattern around the vortices determined the intervortex interaction, and led
to vortex repulsion. Also here, the supercurrents (and the magnetic energy)
is reduced in the region between two vortices, so nature strives to make this
region as large as possible, and same-circulation vortices experience a mutual
repulsion. The repulsion potential is derived from Ginzburg-Landau theory in
more detail in the appendix.
The result of this intervortex repulsion in type-II materials is twofold:

• Doubly quantized vortices will prefer to break up into two singly quantized
vortices that move as far apart from each other as they can.

• When increasing the magnetic field, as more singly quantized vortices come
into the material, they will arrange themselves in a triangular lattice, the
Abrikosov lattice, so as to sit as far as possible from eachother.

The Abrikosov lattice is illustrated in figure 3.15. In a type II superconductor
placed in an external magnetic flux density B, the intervortex distance in this
lattice is

av =

s
2√
3

φ0
B
,

as can be checked with simple geometry. Vortices are pushed closer together
as the magnetic flux density is increased. Finally, as av becomes of a size
compareable to ξ, the vortex core regions will start to overlap, and the entire
superconductor will turn to the normal state. Hence, the second critical field is
given by

μHc2 ≈
2√
3

φ0
ξ2

, (3.114)

which can become very large as ξ gets very small. Finally, note that when κ ≈
1/
√
2 the situation is again much more complex, and the interaction potential

between vortices may acquire both attractive and repulsive parts.
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Figure 3.16: Vortices (red circles with flux lines pointing out) subject to a
current I will move transverse to the current due to the Lorentz force, and
generate an electromotive force in the voltmeter circuit.

Pinning and dissipation

Vortices (of length L) carry a quantum of magnetic flux. This means that they
will feel the Lorentz force when subject to an electric current desity J. The
Lorentz Force is given by

F =

Z
dr (J×B) . (3.115)

Each vortex carries a flux φ0, and has a corresponding flux density of the order
of φ0/λ

2
L. So, in a current J, vortices will be pulled in a direction perpendicular

to J and perpendicular to the vortex line, as illustrated in figure ??. Vortice
move transversally to the applied current.
Now consider a voltmeter, whose probes we place in a and b as in figure

??. In the Meissner state, there should be no voltage drop between these
points, because the superconductor has zero resistivity. However, when vortices
are present (for H > Hc1) the situation is different. Indeed, when a vortex
crosses the line ab, this means that a flux φ0 has entered the closed circuit
a-b-voltmeter-a. A changing flux leads to an electromotive force according to
Faraday’s law,

V = −dφ
dt

(3.116)

If N vortices cross the line per unit time, the voltage drop will be V = −Nφ0.
However, this means we have both a voltage drop along the line ab, and a current
along that line. So, there is a nonzero resistivity! Moving vortices lead to energy
dissipation, and the reappearance of resistivity.
This is bad news when you want to make a strong electromagnet with a

superconductor. When vortices occur and move around, the associated rise in
resistivity heats up the material, so it may turn to the normal state, with an
even larger resistivity, and the whole electromagnet melts or explodes. In order
to avoid this, it is important that the vortices do not move. Luckily there is
a trick to achieve this: pinning. The presence of defects or impurities in the
superconductor pins vortices. There is no pair condensate density anyway in an
impurity, so when threading the vortex line through the impurity, there is no
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cost to making the hole in the condensate. It is energetically advantageous to
keep the vortex pinned on the impurity. However, as the current is increased,
the increased Lorentz force may unpin the vortices, so the maximum current
will be limited not by the critical current, but by the unpinning current.

3.6 BCS theory

The Ginzburg-Landau theory describes the pair condensate’s order parameter,
independently of the glue that binds the fermions into pairs. For the
conventional superconductors, we know the glue (indeed we’re going to
describe the pairing in detail in this chapter). For the cuprates, and more
recently the iron pnictides, the nature of the glue is unknown. Nevertheless,
Ginzburg-Landau theory works just as well for the conventional superconductors
such as tin or mercury, as for the high-temperature classes of superconductors
such as cuprates. For the conventional superconductors, we can derive the GL
parameters from the microscopic theory, for the other classes we need to pin the
GL parameters from experimental measurements.
So, the GL theory doesn’t tell us anything about the nature of the pairs, or

the nature of the excitations. Certainly, we expect some new excitations such as
the breaking up of pairs. Moreover, GL theory is formulated so it is valid near
the critical temperature, where an expansion in powers of the order parameter
makes sense. If we want to go beyond these inherent limitations of GL theory,
we need to set up the microscopic theory that describes pair formation. That is
what we will do in the present chapter — to put it colloquially, with GL theory
we looked at the center-of-mass factor in the pair wave function, now we’ll look
at the relative-coordinate factor of the pair wave function.

3.6.1 BCS Hamiltonian

From the key experiments discussed in section 2 of this chapter, we posited that
electrons form bound pairs. The isotope effect in particular indicates that it is
the electron-phonon interaction that leads to the effective attraction between
electrons. Which electrons will feel this attractive interaction the strongest? We
have three criteria:

• Firstly, only the electrons in an energy band D = [EF − ~ωD, EF + ~ωD]
can scatter phonons that have a typical energy ~ωD, the Debye energy.
This is because electrons on energy levels deeper than ~ωD below the Fermi
energy do not have unoccupied states to scatter to. Typically EF is on
the order of 10 eV, and ~ωD is about 10-100 meV, so we have ~ωD ¿ EF .

• Secondly, electrons with opposite momentum will form pairs with the
lowest kinetic energy, with total momentum zero. In a homogeneous
system, we expect the total momentum-zero state to be the lowest one
for the pairs, and the natural state in which to form a pair condensate.

• Thirdly, the glue will be strongest between electrons with opposite spin.
The Pauli exclusion principle tells us that two electrons with the same
spin cannot be found at the same place. The spatial overlap between
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single-electron wave functions of electrons with opposite spin can therefore
be made bigger than that for same-spin electrons, leading to a stronger
pair binding energy.

These three features are the essence of the model Hamiltonian suggested by
Bardeen, Cooper and Schrieffer to describe superconductivity. They were
not looking for a complete description of the electron-phonon system, rather
they were trying to distill the essence of superconductivity by searching for
the simplest type of Hamiltonian that could exhibit superconductivity. Their
“minimal model of superconductivity” is given by the BCS Hamiltonian18:

ĤBCS =
X
k,σ

εkĉ
†
k,σ ĉk,σ − U

X
k∈D

X
k0∈D

ĉ†k,↑ĉ
†
−k,↓ĉ−k0,↓ĉk0,↑. (3.117)

Here we wrote down the Hamiltonian in second quantization, where ĉ†k,σ is
a fermionic creation operator that creates an electron with spin σ =↑, ↓ in a
plane-wave state with wave number k. The operator ĉk,σ is the corresponding
annihilation operator. A deeper introduction on these operators, and the second
quantization formalism, can be found in the UA course on advanced quantum
mechanics, and their application to condensed matter systems is described
in the UA course on advanced solid state physics. We have already used
bosonic creation and annihilation operators in our discussion of the Bogoliubov
excitations, the fermionic ones anticommute:n

ĉ†k,σ, ĉk0,σ0
o
:= ĉ†k,σ ĉk0,σ0 + ĉk0,σ0 ĉ

†
k,σ = δ(k− k0)δσσ0 (3.118)

The first term in the BCS Hamiltonian is the energy of the non-interacting Fermi
gas where εk = (~k)2/(2m) − μ is the single-particle energy corresponding to
the plane wave state with momentum ~k. Energies are measured from the
Fermi level, μ = EF (at temperature zero). At finite temperatures we’d need to
calculate treat the chemical potential as a Lagrange multiplier fixing the number
of particles, but as long as Tc ¿ TF we can keep it fixed at EF .
The second term describes the interactions. Normally you would find here

the Coulomb interaction, to which a phonon-mediated interaction is added.
In the BCS model this difficult interaction potential, envolving all electrons,
is replaced by a constant-strength attractive potential acting only between
electrons of opposite spin and opposite momentum, and within the Debye
window D. It describes the scattering of a pair of states with k,−k into a pair
with k0,−k0, and assigns a constant scattering amplitude U to this process.

Step 1 — Mean field assumption. With such a strong simplification you
would think the model is analytically solvable. But this is not yet the case, and
we will look for a mean-field solution. This tinkers with the interaction term by
replacing the product of four operators by a product of two operators and the
expectation value of the product of the two others. Several different choices are
possible for which two operators we keep, but we are not interested in the direct

18Subsequent researchers have been adding layers of complexity to make the model more
realistic, such as k-dependent interactions, or anisotropic Fermi surfaces, phonon density of
states,... This can improve quantitatively the result for specific materials, but all of the
qualitative results and a fair quantitative agreement is already obtained with the BCS model
for all conventional superconductors.
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and exchange contributions. The latter is not present by construction (opposite
spins) and the former is not expected to change appreciable as we cross into the
BCS regime. Indeed we can assume that the direct contribution contributes an
interaction shift to the energies εk that does not vary much as we dip below Tc.
There is a third channel for decomposing:X

k∈D

X
k0∈D

ĉ†k,↑ĉ
†
−k,↓ĉ−k0,↓ĉk0,↑ ≈X

k∈D

X
k0∈D

nD
ĉ†k,↑ĉ

†
−k,↓

E
ĉ−k0,↓ĉk0,↑ + ĉ†k,↑ĉ

†
−k,↓ hĉ−k0,↓ĉk0,↑i

−
D
ĉ†k,↑ĉ

†
−k,↓

E
hĉ−k0,↓ĉk0,↑i

o
(3.119)

This is at first sight a strange way to perform a mean-field approximation.
Expectation values of a product of two creation operators, or two annihilation
operators are usually zero. “Usually” here means that the wave function with
respect to which we take the expectation value tends to be a number state, i.e.
it has a fixed, given number of electrons. Only when we have superpositions of

different number states expectation values such as
D
ĉ†k,↑ĉ

†
−k,↓

E
can be different

from zero. This is precisely what occurs when Cooper pairing is present. You
could think of a Cooper pair being created by an operator

b̂† =
X
k∈D

ĉ†k,↑ĉ
†
−k,↓ (3.120)

When these pairs form a Bose-Einstein condensate, we can use the Bogoliubov
shift. Indeed we used in the chapters on BEC that

BEC⇒ b̂† ≈ b̂ ≈
D
b̂†
E
≈
D
b̂
E
≈
p
Nc (3.121)

where Nc is the number of condensed bosons. This is the motivation to
introduce the mean fields

D
ĉ†−k,↓ĉ−k0,↓

E
and hĉ−k0,↓ĉk0,↑i! There is of course a

big difference to keep in mind with “point” bosons: the operators b̂, b̂† introduced
by (3.120) do not satisfy Bose commutation relations. So the usefulness of doing
the mean-field decomposition as in (3.119) remains to be seen.

Step 2 — introduce the self-consistent gap variable. Typically for
mean-field treatments, we keep the mean-field as an auxiliary variable, solving
the problem for arbitrary vale of the mean-field and then later calculating the
value that we need from self-consistency equations. This is the path we will
follow here. In fact, we will also absorb the interaction strength constant U in
the self-constistent mean field, and introduce

∆ = −U
X
k0∈D

hĉ−k0,↓ĉk0,↑i (3.122)

This allows to write the mean-field approximation (3.119) as

−U
X
k∈D

X
k0∈D

ĉ†k,↑ĉ
†
−k,↓ĉ−k0,↓ĉk0,↑

≈
X
k∈D

³
∆∗ĉ−k,↓ĉk,↑ + ĉ†k,↑ĉ

†
−k,↓∆

´
+
|∆|2

U
. (3.123)
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The last term looks a bit odd, but it is necessary to avoid double-counting
when we take the expectation value of the product of the four operators
ĉ†k,↑ĉ

†
−k,↓ĉ−k0,↓ĉk0,↑. This last term is not an operator and will not influence

the diagonalisation of the BCS Hamiltonian. However, it is of importance to
keep the zero of energy at the same place (EF ) during the calculation of the
energy.
Whereas the direct contribution to the interaction energy is not expected to

vary much as we dip below Tc, it is clear that ∆ will be affected strongly. We
expect it to be zero above Tc, where the ground state is a Landau liquid — a Fermi
gas with effective energy levels ξk (lying closely to εk but shifted a bit due to the
direct interaction). Below Tc, we hope to find pairs and ∆ 6= 0. Therefore we
can use ∆ as a (complex) order parameter of the BCS superconducting state19.
This step has brought us to the following mean-field form of the BCS

Hamiltonian:

Ĥmf
BCS =

X
k,σ

ξkĉ
†
k,σ ĉk,σ +

X
k∈D

³
∆∗ĉ−k,↓ĉk,↑ + ĉ†k,↑ĉ

†
−k,↓∆

´
+
|∆|2

U
(3.124)

Where I’ve written ξk rather than εk to remind us that we have swept direct
interactions under the rug and focus in pairs. This Hamiltonian is now quadratic
in the creation and annihilation operators and thus it can be diagonalised
exactly.

Step 3 — Nambu spinor notation. To perform the diagonalisation,
Nambu rewrites the mean-field BCS Hamiltonian in matrix notation. This is
done by introducing the spinors

c̄k =

µ
ĉk,↑
ĉ†−k,↓

¶
(3.125)

→ c̄†k =
³

ĉ†k,↑ ĉ−k,↓

´
(3.126)

These allow to write the Hamiltonian (3.124) as

Ĥmf
BCS =

X
k/∈D,σ

ξkĉ
†
k,σ ĉk,σ +

X
k∈D

³
c̄†k ·Hk · c̄k + ξk

´
+
|∆|2

U
(3.127)

It is easy to check that when

Hk =

µ
ξk ∆
∆∗ −ξ−k

¶
(3.128)

is substituted, this expession is identical to (3.124). Indeed the matrix product
becomes ³

ĉ†k,↑ ĉ−k,↓

´
·
µ

ξk ∆
∆∗ −ξ−k

¶
·
µ

ĉk,↑
ĉ†−k,↓

¶
=

³
ĉ†k,↑ ĉ−k,↓

´
·
Ã

ξkĉk,↑ +∆ĉ
†
−k,↓

∆∗ĉk,↑ − ξ−kĉ
†
−k,↓

!
(3.129)

19We can relate ∆ to the pair condensate wave function that we introduced before,
expression (3.51),

√
v0χ0(r1, r2) = Ψ(r)φ0(x). Now we study a homogeneous gas, with pair

momenta k+ (−k) = 0, so |χ0(r1, r2)|→ ∆ as |r2 − r1|→∞.
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so that

c̄†k ·Hk · c̄k = ξkĉ
†
k,↑ĉk,↑ − ξ−kĉ−k,↓ĉ

†
−k,↓ +∆ĉ

†
k,↑ĉ

†
−k,↓ +∆

∗ĉ−k,↓ĉk,↑

= ξkĉ
†
k,↑ĉk,↑ − ξ−k + ξ−kĉ

†
−k,↓ĉ−k,↓ +∆ĉ

†
k,↑ĉ

†
−k,↓ +∆

∗ĉ−k,↓ĉk,↑.

The order of fermionic operators matters, and the minus sign disappears because

ĉ−k,↓ĉ
†
−k,↓ = 1− ĉ†−k,↓ĉ−k,↓

The “1” gives rise to the additional term ξk in (3.127). This Hamiltonian
contains a lot of jetsam from the transformations, bookkeeping entries without
operator character, keeping the zero of energy where it should be:

Ĥmf
BCS =

X
k/∈D,σ

ξkĉ
†
k,σ ĉk,σ +

X
k∈D

c̄†k ·Hk · c̄k +
X
k∈D

ξk +
|∆|2

U
(3.130)

The first term is the total energy of fermions in the Fermi deap-sea, those
electrons that cannot participate in electron-phonon scattering. They must
contribute exactly the same energy in the normal state as in the superconducting
state, and are unimportant for comparing the energies of those two states.
Let’s indicate this term with Edeap sea. Only the second term still needs to
be diagonalied.

3.6.2 Bogoliubov transformation

Step 4 — Diagonalisation. We look for a unitary transformation Bk that
diagonalises the matrix Hk. Unitarity means that B

†
kBk = I with I the identity

operator (unit matrix). First, we find the eigenvalues of Hk :¯̄̄̄
ξk − λ ∆
∆∗ −ξ−k − λ

¯̄̄̄
= 0

⇔ −(ξk − λ)(ξk + λ)− |∆|2 = 0
⇔ −ξ2k + λ2 − |∆|2 = 0

⇔ λ = ±
q
ξ2k + |∆|

2 (3.131)

Here we assumed that ξk only depends on the magnitude of k, not its direction.
Most metals do not have a nice isotropic Fermi surface, but remember that
BCS is looking for the simplest Hamiltonian that exhibits superconductivity,
in an attempt to capture its essence, free of all superfluous baroque. For our
standard treatment ξk = (~k)2/2m−μ so this is OK. The eigenvalues represent
the Bogoliubov spectrum for superconductors:

Ek =

s∙
(~k)2
2m

− μ

¸2
+ |∆|2 (3.132)

There are two branches, λ = ±Ek, that correspond to particle-like (+)
and hole-like (-) excitations. Then, from the corresponding (normalized)
eigenvectors we find the unitary matrices Bk :

Bk =
1√
2Ek

µ p
Ek + ξk

p
Ek − ξk

−
p
Ek − ξk

p
Ek + ξk

¶
. (3.133)
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This transformation is called the Bogoliubov. Simple matrix multiplication
and

|∆| =
p
(Ek + ξk) (Ek − ξk) (3.134)

allows to show that this matrix is unitary, and that she transforms the
Hamiltonian into:

Bk ·Hk ·B†
k =

µ
Ek 0
0 −Ek

¶
(3.135)

This allows to rewrite the reduced Hamiltonian asX
k∈D

c̄†k ·Hk · c̄k =
X
k∈D

c̄†k · (B
†
kBk) ·Hk · (B†

kBk) · c̄k (3.136)

=
X
k∈D

³
c̄†kB

†
k

´
·
³
BkHkB

†
k

´
· (Bkc̄k)

=
X
k∈D

³
α̂†k,↑ α̂−k,↓

´
·
µ

Ek 0
0 −Ek

¶
·
µ

α̂k,↑
α̂†−k,↓

¶
Here we used (3.135) and introduced the transformed (Bogoliubov) operators:µ

α̂k,↑
α̂†−k,↓

¶
= Bkc̄k (3.137)

=
1√
2Ek

µ p
Ek + ξk

p
Ek − ξk

−
p
Ek − ξk

p
Ek + ξk

¶µ
ĉk,↑
ĉ†−k,↓

¶
Traditionally these are written as

α̂k,↑ = u∗k ĉk,↑ + vk ĉ
†
−k,↓ (3.138)

α̂†−k,↓ = −v∗k ĉk,↑ + ukĉ
†
−k,↓ (3.139)

with

uk =

r
Ek + ξk
2Ek

(3.140)

vk =

r
Ek − ξk
2Ek

(3.141)

You’re encouraged to investigate the analogy with (1.175)-(1.176) for the bosonic
case. These notations are found in many handbooks following a different
derivation of the BCS theory (the derivation also followed in our advanced solid
state physics course). Although derived after BCS found their solution, the
matrix formulation is very insightful and lends itself for generalizations, and we
keep using it here. With the Bogoliubov operators, the BCS Hamiltonian is
given: X

k∈D
c̄†k ·Hk · c̄k =

X
k∈D

³
Ekα̂

†
k,↑α̂k,↑ − Ekα̂−k,↓α̂

†
−k,↓

´
(3.142)

Direct substitution allows you to check that the new operators, the α’s, also
obey fermionic anticommutation relations, so thatX

k∈D
c̄†k ·Hk · c̄k =

X
k∈D,σ

Ekα̂
†
k,σα̂k,σ −

X
k∈D

Ek (3.143)
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The last sum no longer has operator character, and can be added into our
growing list of jetsam that consitutes the ground state energy level. What is
left, is a diagonalized Hamiltonian, describing fermionic quasi particles, created
and annihilated by α̂†k,σ and α̂k,σ respectively. These quasi particle excitations
contribute an energy Ek > 0, so the ground state of the system is the vacuum
of the quasi-particles. The final, diagonalized mean-field Hamiltonian is

Ĥmf
BCS =

"
Edeap sea +

X
k∈D

(ξk −Ek) +
|∆|2

U

#
+
X
k∈D,σ

Ekα̂
†
k,σα̂k,σ (3.144)

The terms between square brackets in (3.144) represent the energy of the
α-vacuum, i.e. the ground state energy of the superconducting system, measured
from the Fermi level. The next term, with the α-operators, describes the
Bogoliubov excitations. This is analogous to the microscopic picture that we
developed for superfluids, where we have a superfluid condensate and a gas of
normal-state excitations carrying entropy and viscosity. The excitations of this
normal-state are no longer free particles, they have a new dispersion spectrum
Ek, that can lead to frictionless flow if the Landau criterion is satisfied. This is
what we explore next.

3.6.3 BCS ground state, gap and excitation spectrum

The central result of the BCS theory is summarized in the mean-field result
(3.144). We see that for k /∈ D, in the Fermi deap sea, nothing is changed.
In a thin “Debye” window around the Fermi surface, k ∈ D, the dispersion is
changed into a new dispersion relation Ek. Only if we take the limit |∆| → 0
we retrieve the Fermi sphere, since

lim
∆→0

Ek = |ξk| (3.145)

We have ξk = (~k)2/(2m) − μ, so that ξk is positive for k > kF , and negative
for k < kF . So, from (3.140) and (3.141) we find:

lim
∆→0

uk =

½
0 voor k < kF
1 voor k > kF

(3.146)

lim
∆→0

vk =

½
1 voor k < kF
0 voor k > kF

(3.147)

This means that in the limit∆→ 0 the α-operators just become the creation and
annihilation operators for the electrons when k > kF , and for holes when k < kF .
For ∆ 6= 0 these operators will no longer create electrons (or holes) in plane
wave states, but they result in quasiparticles. For helium we the Bogoliubov
quasiparticles forming the normal fluid on top of the superfluid condensate were
interpreted as phonons and rotons. In the BCS model these quasi-particles are
interpreted as broken cooper pairs. The smallest possible excitation energy
(at k = kF ) is min(Ek) = |∆|. Hence we can interpret that gap |∆| as a
binding energy for a Cooper pair. Moreover, we can interpret |∆| /(~kF ) as
the superfluid critical velocity according to the Landau criterion. As long as
∆ 6= 0 there is a nonzero Landau critical velocity and hence a nonzero
critical current!
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Figure 3.17: The Bogoliubov spectrum for a BCS superconductor.

In figure 3.17 Bogoliubov spectra are plotted for different values of |∆|. In
practice |∆| ¿ ~ωD ¿ EF , so the values of |∆| are exaggerated for the sake
of clarity in this figure. For wave vectors larger than the Fermi wave vector,
the excitations are particle like, whereas for wave vectors below kF we have
hole-like excitations, with energy μ − (~k)2/(2m) = |ξk|. Right at the fermi
surface, in the normal state we can create excitations with no cost in energy at
all. However, when |∆| differs from zero, a bandgap appears! A strictly positive
minimum energy needs to be invested in order to make an excitation. In the key
experiments we have seen that the spectroscopic band gap is of the order of a few
100 μeV (so |∆| /EF is of the order 10−4−10−5). Note that the spectroscopic
band gap equals 2 |∆| rather than |∆|, since we need a photon that bridges
the gap between the +Ek and −Ek branches, and at kF the distance between
these two branches is 2 |∆|. Note also that since |∆| / (~ωD) is of the order of
10−2− 10−3, the dispersion relation is only changed in a very small piece of the
Debye window — although all the electrons in the Debye window can potentially
contribute to the superconducting energy, in practice only a small fraction of
them actually do.

3.6.4 Critical magnetic field and density of states

The α-vacuum (=the BCS ground state=the pair condensate), has a lower
energy than the normal state (=the Fermi sphere). We can calculate this energy
from (3.144) by using that in the α-vacuum*

α-vac

¯̄̄̄
¯̄ X
k∈D,σ

Ekα̂
†
k,σα̂k,σ

¯̄̄̄
¯̄α-vac

+
= 0 (3.148)

so that
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Figure 3.18: The energy difference between the superconducting state (with
∆ 6= 0) and the normal state (∆ = 0) is shown, relative to the Fermi energy
and in units of the Fermi energy. The parameters for this plot are U = 10 EF

and ~ωD = 0.3 EF , bot quite unrealistically large for the sake of clarity.

EBCS(∆) = Edeap sea +
X
k∈D

(ξk −Ek) +
|∆|2

U
. (3.149)

Let’s check again that the limit |∆|→ 0 is indeed the energy of the filled Fermi
sphere:

EBCS(|∆| → 0) = Edeap sea +
X
k∈D

(ξk − |ξk|)

= Edeap sea + 2
X

k∈D, k<kF

ξk

= 2
X
k<kF

ξk

= Efermi sphere

Note that we measure the energies from EF , i.e. we put the zero of energy
for individual particles at EF and for the collective N -particle system at NEF .
So with this choice of the zero of energy, we have Efermi sphere = (3/5)NEF −
NEF = −(2/5)NEF . We plot

δE = EBCS(∆)−Efermi sphere

in figure ??, using equation (3.149). From this plot, it is clear that the minimum
in energy is not reached at |∆| = 0 but in a state with |∆| > 0. The
superconducting state has the lowest energy, and below Tc the Fermi sphere
is unstable with respect to the superconducting state.
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To find the value of this minimum, we plug in the Bogoliubov spectrum:

δE =
X
k∈D

µ
ξk −

q
ξ2k + |∆|

2

¶
+
|∆|2

U
− 2

X
k∈D, k<kF

ξk (3.150)

and replace the sums by integrals over the energy

X
k∈D

F (ξk) =

+~ωDZ
−~ωD

dξ N (ξ)F (ξ) (3.151)

introducing the density of (normal) states N (ξ), calculated from the (normal)
dispersion ξk = (~k)

2 /(2m)− μ. Near the Fermi surface, it is nearly constant,
and we can replace it by the density of (normal) states at the Fermi surface

N (0) = 3

2

N

EF

so we get

δE = N (0)
+~ωDZ
−~ωD

µ
ξ −

q
ξ2 + |∆|2

¶
dξ +

|∆|2

U
− 2N (0)

0Z
−~ωD

ξdξ

= 2N (0)
+~ωDZ
0

µ
ξ −

q
ξ2 + |∆|2

¶
dξ +

|∆|2

U
(3.152)

Let’s introduce
x = |∆| / (~ωD) (3.153)

and substitute u = ξ/ |∆| in the integral so we get

δE

(~ωD)2N (0)
=

x2

N (0)U − 2x
2

1/xZ
0

³p
u2 + 1− u

´
du (3.154)

This simplifies to

δE

(~ωD)2N (0)
=

x2

N (0)U − x2 arcsinh (1/x)−
p
x2 + 1 + 1

1/xZ
0

³p
u2 + 1− u

´
du

(3.155)
This is actually the function plotted in figure ??. It has extrema at

∂ (δE)

∂x
= 0⇔

⎧⎨⎩ x = 0

x =
1

sinh [1/ (N (0)U)]
(3.156)

The x = 0 solution is the normal state, and the other solution is the normal state.
The other solution depends on the combination λ = N (0)U which characterizes
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the electron-phonon coupling strength. Since we know |∆| / (~ωD) ¿ 1 in
practice, we obtain approximately

|∆| = 2~ωD exp
½
− 1

N (0)U

¾
(3.157)

This beautiful result explains two things: firstly, the isotope effect is present
since the gap scales with the phonon frequency (we’ll later see that the gap
and the critical temperature are proportional), and secondly, all perturbation
expansions for small U fail. Indeed, |∆| has an essential singularity at U = 0.
So, treating the interactions perturbatively and setting up a series for small U
is bound to fail, and this is why it took such a long time to find a theory for
superconductivity!
Plugging the result for |∆| back into the energy, we get

δE = −1
2
(~ωD)2N (0)

1

sinh2 [1/ (N (0)U)]
= −1

2
N (0) |∆|2 (3.158)

The superfluid state is lower in energy, by an amount −N (0) |∆|2 /2. This
immediately gives us access to the critical magnetic field at zero temperature
since we can equate the magnetic energy of expelling the critical field to the
available energy from forming superconducting pairs:

μH2
c

2
=
1

2

N (0)
V

|∆|2 (3.159)

where V is the volume of the system so that N (0)/V= (3n)/(2EF ) with n the
(normal state) density of electrons in the metal.
We can get this result in a more intuitive way by studying the density of

states (DOS) in the superconducting state, Ns(E). This will be different from
the normal state DOS that we used before, N (ξ). The DOS will only be changed
in a region very near to EF , since for energies more than a few |∆| away from
EF , the Bogoliubov spectrum reverts to ξk. To find the DOS, we use the fact
that in k-space the density of states is fixed, V/(2π)3, so that

Ns(E)dE = N (0)dξ (3.160)

Here we again replaced N (ξ) by N (0), the density of states at the Fermi surface.
The Bogoliobov spectrum leads to dξ/dE = E/

q
E2 − |∆|2 so that we get

Ns(E) = N (0)
Eq

E2 − |∆|2
for |E| > |∆| (3.161)

and Ns(E) = 0 for |E| < |∆|. This is shown in figure 3.19. In the band
gap there are no states, as is obvious from the dispersion relation. Where the
dispersion relation has a horizontal tangent, we have a Van Hove singularity.
This occurs at |E| = |∆|. To excite a particle from the occupied bottom piece
of the DOS to above the bandgap, we need to provide enough energy to cross
the spectroscopic band gap 2 |∆|. These are the values measured by the AC
conductivity key experiment mentioned before. The theoretical DOS, obtained
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Figure 3.19: The density of states is shown (in units of the normal density
of states at the Fermi surface), for both the normal state (left) and the
superconducting state (right). Occupied states are shaded dark, unoccupied
are light gray. Note the band gap in the superconducting DOS.

Figure 3.20: The signal from a scanning tunneling microscope is proportional
to the density of states. This figure shows the measured superconducting DOS
in which a (fairly large) gap is clearly visible. The gap closes down as the
temperature increases, as shown in the inset.
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from the BCS model, agrees very nicely with the experimentally determined
DOS, as can be seen in figure 3.20. The Van Hove singularities in this figure
are smoothed by the experimental energy resolution.
Finally, note that an amount N (0) |∆| of occupied states has been lowered in

energy. These occupied states have dropped down to the Van Hove singularity,
representing on average a lowering in energy of |∆| /2. From this we can estimate
the energy difference between superconducting and normal states as N (0) |∆|×
|∆| /2, in agreement with our result (3.158).

3.6.5 Gap equation

Remember that we introduced ∆ as a mean field, through equation (3.122).
Subsequently we forgot about that definition and we treated ∆ as a variable
that could take on any value, and obtained the value that minimizes the energy.
Now we need to check the self-consistency of our approach: if we are succesfull,
we should obtain the same value of ∆ when we calculate it through

∆ = −U
X
k0∈D

hĉ−k0,↓ĉk0,↑i .

This comes down to calculating the expectation value hĉ−k,↓ĉk,↑i with respect
to the superconducting state, i.e. the α-vacuum. To do this, we first rewrite
this as a product of Nambu spinors:

∆ = −U
X
k∈D

¿³
ĉ†k,↑ ĉ−k,↓

´
·
µ
0 0
1 0

¶
·
µ

ĉk,↑
ĉ†−k,↓

¶À
= −U

X
k∈D

¿
c̄†k ·

µ
0 0
1 0

¶
· c̄k
À
. (3.162)

Then we apply the Bogoliubov transformation, using its unitarity:

∆ = −U
X
k∈D

¿
c̄†k · (B

†
kBk) ·

µ
0 0
1 0

¶
· (B†

kBk) · c̄k
À

= −U
X
k∈D

¿
(c̄†kB

†
k) ·Bk

µ
0 0
1 0

¶
B†
k · (Bkc̄k)

À
.

Here Bk is still given by (3.133), and matrix multiplication results in

Bk

µ
0 0
1 0

¶
B†
k =

1

2Ek

µ
|∆| ξk −Ek

ξk +Ek − |∆|

¶
, (3.163)

so that

∆ = −U
X
k∈D

¿
1

2Ek

³
α̂†k,↑ α̂−k,↓

´
·
µ

|∆| ξk −Ek

ξk +Ek − |∆|

¶
·
µ

α̂k,↑
α̂†−k,↓

¶À
. (3.164)
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At temperature zero the superconductor is in its ground state, and we know that

this is the α-vacuum Therefore the only non-zero expectation is
D
α̂−k,↓α̂

†
−k,↓

E
=

1 and we obtain

∆ = U
X
k∈D

|∆|
2Ek

(3.165)

Since the right-hand side is real, the left hand side will be real too and we can
drop the absolute value in |∆|. We get

∆ = U
X
k∈D

∆

2
q
∆2 + ξ2k

(3.166)

This is the temperature zero gap equation. There is always a solution with
∆ = 0, being the normal state. A solution representing the superconducting
state (∆ 6= 0) exists when the following equation can be satisfied:

1 = U
X
k∈D

1

2
q
∆2 + ξ2k

(3.167)

As we did before, expression (3.151), we replace the sum over k-states by an
integral over the (normal) energy ξ times the (normal) density of states:

1

U
= N (0)

+~ωDZ
−~ωD

1

2
p
∆2 + ξ2

dξ (3.168)

The (normal) density of states is nearly constant in the small window ξ ∈
[−~ωD,+~ωD] and we can set it equal to N (0), the density of states at the
Fermi surface. The integral is a textbook one, for the hyperbolic arc sine:

1

N (0)U = arcsinh

µ
~ωD
∆

¶
(3.169)

⇔ ∆ =
~ωD

sinh (1/[N (0)U ]) ≈ 2~ωD exp
½
− 1

N (0)U

¾
(3.170)

This is indeed the result that we had before, expression (3.157).

3.6.6 Critical temperature

To find the critical temperature, we return to the gap equation (3.164). We
know that the α-operators satisfy fermionic anti-commutation rules, so at
thermal equilibrium the (particle-and hole-like) quasiparticles created by them
will satisfy Fermi-Dirac statistics:D

α̂†k,↑α̂k,↑
E

= np(k) =
1

1 + exp{−Ek/(kBT )}
(3.171)D

α̂−k,↓α̂
†
−k,↓

E
= nh(k) = 1−

1

1 + exp{−Ek/(kBT )}
(3.172)
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Figure 3.21: Temperature dependence of the gap, as calculated with the BCS
theory (full line) and compared to experimental results for niobium, tantalum
and tin. The gap ∆(T ) is scaled to the zero-temperature gap ∆(0) on the y-axis.

We still find
D
α̂†k,↑α̂

†
−k,↓

E
= 0 = hα̂−k,↓α̂k,↑i, since the Hamiltonian (3.130)

commutes with the number operator for the quasiparticles. As the temperature
increases, more and more Cooper pairs are broken up: the number of excitations
increases. Note that we treat the Cooper pair condensate as an inexhaustible
reservoir for thermal excitations, since we do not fix the number of electrons.
This feature is common to the Bogoliubov treatment of helium and of bosonic
condensates. Here, we can extend the results to Tc since the pair-breaking
excitations are protected by a gap. As long as the gap is not much smaller than
kBTc, the number of excitations will remain suppressed until very close to Tc.
We can use the expectation values (3.171),(3.172) to simplify the gap

equation (??) to

∆ = U
X
k∈D

|∆|
2Ek

µ
2

1 + exp{−Ek/(kBT )}
− 1
¶

= U
X
k∈D

|∆|
2Ek

tanh [Ek/(2kBT )] , (3.173)

This yields the finite-temperature gap equation

1 = U
X
k∈D

tanh [Ek/(2kBT )]

2Ek
. (3.174)

from which ∆(T ) can be calculated numerically. The result is shown in figure
3.21 and it is seen to compare very well to the experimental measurements.
It also allows to calculate the critical temperature, as the temperature for
which ∆ → 0+. Taking the limit for ∆ going to zero we find that the critical
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Figure 3.22: BCS theory predicts that the ratio of the spectroscopic band
gap (2∆) and the critical temperature (kBTc) is nearly 7/2. The conventional
superconductors obey this relation well.

temperature has to satisfy

1 = U
X
k∈D

tanh [|ξk| /(2kBTc)]
2 |ξk|

. (3.175)

Indeed, we have already seen that lim∆→0+ Ek = |ξk|. This expression of course
only holds when approaching the BCS-normal phase transition from within the
superconducing phase. Again we transform the sum over wavenumbers into an
integral over the (normal) density of energy states:

1

N (0)U = −
+~ωDZ
0

tanh[ξ/(2kBTc)]

ξ
dξ

= −
~ωD/(2kBTc)Z

0

tanh(x)

x
dx (3.176)

≈ − log
∙
~ωD
2kBTc

¸
. (3.177)

Here we have used ~ωD/(2kBTc)À 1. Working with more precision we find

kBTc ≈ 1.13~ωD exp
½
− 1

N (0)U

¾
. (3.178)

Both the expression for the band gap and for the critical temperature depend on
the combination λ = N (0)U representing the electron-phonon coupling strength
at the Fermi surface. However, if we take the ratio of the two numbers, we get
a constant:

2∆

kBTc
≈ 3.52. (3.179)
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This no longer contains any adaptable model parameters, and can be directly
compared to experiment. As can be seen from figure 3.22 and from the table
below, the comparison is amazingly good for such a crude model:

Supergeleider 2∆/(kBTc)
Aluminium 3.37± 0.1
Cadmium 3.20± 0.1
Mercury 4.60± 0.1
Indium 3.63± 0.1
Niobium 3.83± 0.06
Lead 4.29± 0.04
Tin 3.46± 0.1

Note that the critical temperature is also proportional to ~ωD, so the theory
predicts the isotope effect.

3.6.7 Results and challenges for BCS theory

With their “minimal model” for superconductivity, Bardeen, Cooper and
Schrieffer managed to explain a wide array of superconducting phenomena well!
Their theory has a single fitting parameter λ = N (0)U . Let’s put the main
results together:

∆(T = 0) = 2~ωDe−1/λ, (3.180)

Hc(T = 0) =

r
μv

3n

2EF
∆(T = 0), (3.181)

Tc = 1.13~ωDe−1/λ. (3.182)

This links the isotope effect, the spectroscopic gap from AC conductivity, and
the Meissner effect. Frictionless (=zero resistance) flow follows from the Landau

criterion applied to the Bogoliubov spectrum E(k) =
q
ξ2k +∆

2, with a critical
current proportional to the Landau critical velocity:

Jc ≈ N (0) |∆| × e× |∆|
~kF

(3.183)

The temperature dependence ∆(T ) is given by the solution of

1/λ =

~ωDZ
0

1q
ξ2 +∆2(T )

tanh

⎛⎝
q
ξ2 +∆2(T )

2kBT

⎞⎠ dξ. (3.184)

The energy is given by

δE

N (0) = 2
+~ωDZ
0

µ
ξ −

q
ξ2 + |∆|2

¶
dξ + λ |∆|2 . (3.185)

Finally, note that also the peak in the specific heat is explained in the BCS
model. Indeed, we can estimate the (Shannon) entropy from the particle-like
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Figure 3.23: Timeline of superconducting materials (source: Hiroki Takahashi).

and hole-like quasiparticle occupations (3.171)-(3.172) as

S = kB
X
k∈D

{np(k) log [np(k)] + nh(k) log [nh(k)]} . (3.186)

The specific heat follows straightforwardly from the entropy.
It seems the BCS model explains it all! The impressive list of results following

from the BCS Hamiltonian gave it immediate recognition, and its creators were
awarded the Nobel prize in 1972. The minimal Hamiltonian goes a long way, and
improvements thought up by the theorists like Migdal, Eliashberg, Kirghnitz,...
can give the final touch to remove even the small discrepancies. But the story is
not over. In figure 3.23 different superconducting materials are plotted according
to the year in which their superconducting nature was discovered, and their
critical temperature. The blue circles, roughly on a (blue) line that starts with
mercury and ending in MgB2, represent the “conventional” superconductors
for which BCS theory holds. In the normal state, most are metals. The
maximum temperature for these BCS superconductors is until now about 40
K, with magnesium diboride holding the record. In the late ’80s however, it was
found that copper oxide perovskites could also exhibit superconductivity. These
are indicated with red squared in figure 3.23. Other families of superconductors
were discovered before, such as the organics based on doped fullerenes, and
the heavy-fermion family of metals. But the copper oxides were much more
remarkable.
Not only was it remarkable that these materials are non-metallic in the

undoped state (they are insulating ceramics, like porcelain), but even more
impressive is that they quickly held the record critical temperatures and even
broke through the liquid nitrogen barrier (77 K). Electron-phonon interaction
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as the glue cannot explain these high critical temperatures, and other key
experiments give very different results. For example, the isotope effect, while
present for some of the atom species in the compound, is not scaling with the
phonon frequency... Up till this day, we do not know the glue that binds the
electrons in pairs (pairs are present, as seen by flux quantization), and BCS
theory fails to explain these materials completely. We’re back to using the
Ginzburg-Landau theory with experimentally determined parameters. Recently,
yet another family of superconducting materials have been discovered. The
story becomes even weirder: these marials are iron based (iron with arsenic or
selenium), and iron is magnetic! Nobody foresaw iron based superconductivity,
as magnetism was believed to be always antagonistic to superconductivity. Also
these materials still represent a mystery.
As long as these alternative glues for electron pairs are not understood, we

will not be able to design a room temperature superconductor. This is the “holy
grail” of superconductivity research, as it would greatly facilitate technological
application of superconductivity to make lossless powerlines and to story energy
in persistent current loops. Both of these applications are crucial in order to
implement solar power or wind power on a large scale: typically these renewables
cannot generate electricity continuously or in any location. Lossless storage and
transport of electricity are then a requirement for these types of energy source to
take over non-renewable sources. I hope that this course has provided you with
the means and to pursue research and to understand the future developments
in the fascinating field of superfluidity and superconductivity.
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Appendix A

Thermodynamics of
magnetism

You’re used to thinking of the first law of thermodynamics as dU = TdS−pdV .
Including magnetic energy in this picture may not be familiar to you, and since
we need this to get a deeper understanding of superconductors I included this
appendix to clarify the link between thermodynamic potentials and magnetism.

A.1 Gibbs versus Helmholtz
The first law tells us how the energy changes when there is a small (infinitesimal)
change in entropy or volume. However, it will also change when there is a
small change in magnetic field, for example by cranking up the current through
some external coil. We know from classical electromagnetism (see for example
Jackson’s book) that the change in magnetic energy density is given by

H · dB (A.1)

where H is the magnetic field, and B is the flux density. In vacuum, we have
B = μH with μ the vacuum permeability. In a material the situation is more
complicated: microscopic currents can be induced by the external magnetic
field and lead to a magnetization M of the sample. We take this into account
through B = μ (H+M). With this we can rewrite the change in magnetic
energy density in the presence of a magnetizable sample as

μH · dM+μH · dH (A.2)

The first term, μH · dM is the magnetic work done on the sample, and the
second term μH · dH, is the work per unit volume that would have been done
even if there is no sample. This is usually not taken into account, since we are
interested in the internal energy change of the subsystem. So, the first law of
thermodynamics, including magnetics, becomes

dU = TdS − pdV + μV H · dM (A.3)

The internal energy U(S, V,M) is a function of the magnetization — an extensive
variable. Indeed the internal energy, being itself extensive, should be a
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homogeneous function of extensive variables. The magnetic field H is an
intensive variable. Of course, we can construct other thermodynamic potentials,
such as the usual free energy

F (T, V,M) = U(S, V,M)− TS (A.4)

where we have used a Legendre transform to replace the S-dependence by a
T -dependence. Why am I stressing all these thermodynamiccy details? Because
very often we don’t want to work with a thermodynamic potential that is a
function of the magnetization, we want to work out properties at a given external
magnetic field!
Consider the following example: you want to find the specific heat

c = T
∂S

∂T
= −T ∂2F

∂T 2
, (A.5)

so you need to take derivatives of the temperature. It is important to know what
you keep constant while taking the partial derivative. For example, you have
to specify whether your experiment takes place at constant volume (cV ) or at
constant pressure (cP 6= cV ). Similarly, you need to specify whether you want
the specific heat at constant magnetization or at constant external magnetic
field! Now, most experiments on superconductors happen with a constant
volume of superconducting material, and in a constant external magnetic field,
so you want

cV,H = −T
∂2F

∂T 2

¯̄̄̄
V,H

(A.6)

If you stick to F (T, V,M) calculating this quantity is too complicated: how will
you keep H constant while the temperature changes? This constraint is difficult
to express using a function Fs(T, V,M) that is not an explicit function of H.
To find a function that makes the constraint easier to take into account, we

perform a Legendre transform that brings us from theM dependence to the H
dependence. This introduces yet another thermodynamic potential,

G(T, V,H) = F (T, V,M)− μV H ·M (A.7)

so that
dG = −SdT − pdV − μVM · dH (A.8)

This is sometimes called the Gibbs free energy (where F is the Helmholtz free
energy). But this is confusing, since other textbooks call F + pV the Gibbs
free energy! It is less confusing when you remember that we are looking for
particular energy differences, such as the total change in energy as the external
magnetic field is ramped up from 0 to its final value Ha, while temperature and
volume are kept constant. The words in italic make it clear that we need a
function of T, V and H, i.e. the G(T, V,H) introduced above:

∆G = G(T, V,H)−G(T, V,0) = −μV
HaZ
0

M · dH (A.9)

For the Meissner effect, we know that M(H) = −H, and from this then we
immediately get μH2

c /2 as before.
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A.2 Ginzburg-Landau Gibbs energy
Let’s now move on to the next difficulty. We set up the GL free energy

Fs(T, V,M) = Fn(T, V ) +

Z
dr

1

2μ
B2 (A.10)

+

Z
dr

(
Ψ∗(r)

[−i~∇r −QA(r)]
2

2M
Ψ(r) + a(T ) |Ψ(r)|2 + b(T )

2
|Ψ(r)|4

)
.

by adding B2/(2μ) to the free energy, as prescribed by Maxwell’s theory, and
in accordance with J = −δF/δA. But if we look for the energy change as we
switch on an external field H from 0 to Ha at fixed temperature and volume,
we again prefer working with the Gibbs free energy, so we need to perform the
−μVM ·H Legendre transform as above

Gs(T, V,H) = Gn(T, V ) +

Z
dr

½
1

2μ
B2 − μM ·H

¾
(A.11)

+

Z
dr

(
Ψ∗(r)

[−i~∇r −QA(r)]2

2M
Ψ(r) + a(T ) |Ψ(r)|2 + b(T )

2
|Ψ(r)|4

)
.

Note that we didn’t take any of the magnetic effects into acount in the normal
state, whereM = 0, so Fn(T, V ) = Gn(T, V ). We assume that if the material is
in the normal state it has vacuum permittivity, so it is as if there is no sample
at all as far as the magnetic field is concerned. But this does not mean that the
energy won’t change whenH is switched on! Even without sample, the magnetic
energy will increase as μH2/2. Let’s take this part out of the magnetic field
energy, and place it into Gn(T, V,H) = Gn(T, V ) + μH2/2. Then we get

Gs(T, V,H) = Gn(T, V,H) +

Z
dr

½
1

2μ
B2 − μM ·H− μH2

2

¾
(A.12)

+

Z
dr

(
Ψ∗(r)

[−i~∇r −QA(r)]
2

2M
Ψ(r) + a(T ) |Ψ(r)|2 + b(T )

2
|Ψ(r)|4

)
.

This is just a reshuffling of terms. Now use μM = B− μH to rewrite

1

2μ
B2 − μM ·H− μH2

2
=

1

2μ
B2 − μB ·H+ μH2

2

=
1

2μ
(∇×A−μH)2 (A.13)

Hence, we find that the Gibbs free energy, at an externally applied field Ha is
given by

Gs(T, V,Ha) = Gn(T, V,Ha) +

Z
dr

(
Ψ∗(r)

[−i~∇r −QA(r)]
2

2M
Ψ(r)

+a(T ) |Ψ(r)|2 + b(T )

2
|Ψ(r)|4 + 1

2μ
[∇×A(r)−μHa]

2

¾
.

Tinkham writes the last term as μ(h−H)2/2 — actually, he also writes this in
CGS, so you replace μ by 4π to obtain the result from his book.
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A.3 Vortex energy and potential

As mentioned before, it’s not always the case that we really want to work at
fixed external magnetic field. An example is the calculation of the energy of a
singly quantized London vortex inside an infinitely large type II superconductor.
There, we want to work for a fixed magnetization of the bulk sample, keeping
it everywhere fixed except in near the vortex core (which is an infinitesimal
fraction of the infinite block of bulk superconductor). Indeed, we compare the
free energy with and without vortex, but with the magnetization kept the same
everywhere in the bulk away from the vortex.

In the extreme type II case we put Ψ(r)→ |Ψbulk| almost everywhere, since
ξ ¿ λL. To be more careful, we put

Ψ(r)→
½
|Ψbulk| for r > ξ,
0 for r < ξ,

where r is the distance to the vortex line. Substituting this in the
Ginzburg-Landau free energy functional (3.62) , and we find

Fs(T, V,M) = Gn(T, V,M) + V

µ
a |Ψbulk|2 +

b

2
|Ψbulk|4

¶
+ |Ψbulk|2

Z
r>ξ

dr

∙
Q2

2M
A2 +

1

2μ
(∇×A)2

¸
(A.14)

Remember that M is the total magnetization. The first line just gives us the
energy lowering due to pair formation in the superconductor (neglecting the fact
that the pair condensate is reduced inside the tiny cores in the extreme type
II limit). The second line is the magnetic energy contribution that we’re after.
We set The difference in free energy with a vortex (A 6= 0) and without vortex
(A = 0) at fixed temperature, volume, and bulk sample magnetization, is

∆Fmagn =
1

2μ

Z
r>ξ

dr

∙
1

λ2L
A2 + (∇×A)2

¸
(A.15)

We have used λ−2L = μQ2 |Ψbulk|2 /M . This can be rewritten in another way
using μJ = −λ−2L A :

∆Fmagn =
1

2μ

Z
r>ξ

dr
h
λ2L (μJ)

2
+ (∇×A)2

i
(A.16)

Finally, we use ∇×B = μJ and ∇×A = B to get

∆Fmagn =
1

2μ

Z
r>ξ

dr
h
λ2L (∇×B)2 + (B)2

i
(A.17)

Yet anoter expression of the same result is obtained by using μJ = −λ−2L A in
the rotor part of (A.16):

∆Fmagn =
μλ2L
2

Z
r>ξ

dr
h
J2 + λ2L (∇× J)2

i
(A.18)
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For an isolated, singly quantized London vortex along the z-axis, we can use
our result (3.110):

B(r) =
φ

2πλ2L
K0(r/λL)ez (A.19)

∇×B = −∂Bz

∂r
eϕ = −

φ

2πλ3L
K1(r/λL) (A.20)

expressed in cylindrical coordinates {r, ϕ, z}, and get

∆Fmagn =
1

2μ

µ
φ

2πλ2L

¶2 Z
r>ξ

dr
£
K2
1(r/λL) +K2

0(r/λL)
¤

(A.21)

Per unit length L of vortex line, we get

∆Fmagn

L
=

φ2

4πμλ2L

∞Z
ξ/λL

x
£
K2
1 (x) +K2

0(x)
¤
dx (A.22)

The integral can be evaluated analytically and written with Meijer functions,
which for small ξ/λL is well approximated by ln(λL/ξ) such that

∆Fmagn

L
=

φ2

4πμλ2L
ln(λL/ξ) (A.23)

This is the free energy cost to make the vortex. To have N singly quantized
vortices in the sample of volume V (and area A), the total cost in free energy
per unit volume is

∆Fmagn

V
=

N

A

φ20
4πμλ2L

ln(λL/ξ) (A.24)

However, whenN vortices enters the sample, we must also gain some free energy,
since there is an infinitesimal change in magnetization, and

∆F

V
= μH ·∆M = H

Nφ0
A

(A.25)

For the first equality it is again important that we use the Helmholtz free energy,
and not the Gibbs free energy. Balancing the cost and the gain of free energy
allows to derive the value of the first critical magnetic field,

Hc1 =
φ0

4πμλ2L
ln(λL/ξ) (A.26)

For two singly-quantized London vortices at a distance a, we simply add up
their individual contributions,

B(r− a/2) +B(r+ a/2) (A.27)

and plug this into the formula. This gives us the “interaction potential” Uint(a).
It is defined such that the change in interaction potential equals the change in
free energy of the two-vortex state as a function of intervortex distance, while
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keeping temperature, volume, and bulk magnetization constant. After a bit of
work and integrations, approximating aÀ λL À ξ, this gives

Uint(a)

L
=

φ20
2πμλ2L

K0(a/λL) (A.28)

The repulsion will keep vortices at a maximum distance from eachother, but
in order to match a flux density B, there must be a B/(Aφ0) vortices where
A is the area of the sample. Hence the intervortex distance at triangular close

packing is av =
q
2φ0/(

√
3B). The second critical field is reached when this

distance becomes compareable to ξ, so for Hc2 ≈ 2φ0/(
√
3ξ2). The ratio

Hc2

Hc1

∝ κ2

ln(κ)
(A.29)

can be very large in the extreme type II limit that we studied here.



Appendix B

Superfluidity in Helium-3

All the order parameters that we introduced to describe the superfluid or
superconducting state were complex scalars. However, nature is not confined to
scalars, and some systems reveal superfluid or superconducting order parameters
that are higher-order tensors. In this appendix I outline the most famous
example: superfluid helium-3. This example also provides you with a system
where the glue between the fermions is not the electron-phonon interaction: here
it is simply the interatomic potential.

B.1 BCS description of helium-3

The helium-3 atom is one neutron short of its bosonic brother, helium-4. Having
two electrons in the 1s orbital, its orbital angular momentum is J = 0. The
nucleus contains two protons and a single neutron, accounting for nuclear
angular momentum I = 1/2, and resulting in total angular momentum F = 1/2.
Thus, the helium-3 atom is a spin 1/2 fermion. The only way that this is going
to be superfluid is if these atoms pair up.
The pair wavefunctions

χ0(r1σ1, r2σ2) = hr1σ1, r2σ2|χ0i (B.1)

will consist out of a spatial part and a spin part that we factorize:

hr1σ1, r2σ2| = hr1, r2|⊗ hσ1σ2| , (B.2)

|χ0i =
¯̄
χspace

®
⊗
¯̄
ηspin

®
, (B.3)

⇒ χ0(r1σ1, r2σ2) = χspace(r1, r2)

σ1σ2|ηspin

®
. (B.4)

When the atoms are far apart, the spin basis |σ1σ2i ∈ {|↑↑i , |↑↓i , |↓↑i , |↓↓i}
is appropriate. However, when the atoms are close together, the system’s
Hamiltonian is likely to commute with the total spin having triplet eigenstates

|1, 1i = |↑↑i (B.5)

|1, 0i =
1√
2
(|↑↓i+ |↓↑i) (B.6)

|1,−1i = |↓↓i (B.7)
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and a singlet eigenstate

|0, 0i = 1√
2
(|↑↓i− |↓↑i) (B.8)

Note that the triplet eigenstates are even with respect to interchanging the two
fermions and the singlet eigenstate is odd. So, if

¯̄
ηspin

®
belongs to a triplet

state, the spatial part of the wavefunction, χspace(r1, r2) must be odd in order
to satisfy the overall symmetry of the fermionic pair wavefunction. If

¯̄
ηspin

®
is the singlet state, then χspace(r1, r2) must be even. The potential energy,
calculated as an expectation value of the interatomic interaction potential with
respect to χspace(r1, r2) will therefore depend on whether we have a triplet or a
singlet state. Indeed, we note for the interaction part V̂ of the Hamiltonian

V̂ (|r1, r2i⊗ |0, 0i) = Vs(r1 − r2) |r1, r2i⊗ |0, 0i (B.9)

V̂ (|r1, r2i⊗ |1,mi) = Vt(r1 − r2) |r1, r2i⊗ |1,mi (B.10)

where Vs represents the singlet potential, and Vt represents the triplet potential
and is assumed independent of m = +1, 0,−1.
This distinction between singlet and triplet is important when setting up a

BCS-type model for Helium-3:

ĤBCS =
X
k,σ

ξkĉ
†
k,σ ĉk,σ (B.11)

−
X

k,k0∈D

X
σ1σ2;σ01σ

0
2

Uσ1σ2;σ01σ02(k− k
0)ĉ†k,σ1 ĉ

†
−k,σ2 ĉ−k0,σ01 ĉk0,σ02 .

In the original BCS treatment of superconductors, we assumed that the pairs
had opposite spin. This was necessary in order to avoid exchange contributions
weakening the phonon-mediated electron-electron interaction, but in the case of
helium we are working with interatomic potentials and pairs do not necessarily
have opposite spin! We need to take all the spin combinations into account à
priori.
It is also important to note that in our Hamiltonian we have to keep a

k-dependence in U . We didn’t do that in the BCS treatment, but at least for
the triplet potential Vt(k− k0) we are forced to take the wave vector dependence
into account. That is because the triplet potential depends on the direction of
k− k0 with respect to the (z-axis of the) intrinsic angular momentum = 1 of
the triplet pair! Indeed, if plan to throw a spinning Ninja star at an enemy, it
makes a big difference whether the axis of spinning of the blades is parallel to
the face of your enemy, or perpendicular to it.
The matrix elements can be related to the triplet and singlet potentials. For

example,

U↑↓;↓↑ = h↑↓| V̂ |↓↑i

=
1

2
(h1, 0|+ h0, 0|) V̂ (|1, 0i− |0, 0i)

=
1

2
(Vt − Vs) (B.12)
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We can calculate all matrix elements of U in this way, resulting in

Uσ1σ2;σ01σ02 =

⎛⎜⎜⎝
Vt 0 0 0
0 1

2 (Vt + Vs)
1
2 (Vt − Vs) 0

0 1
2 (Vt − Vs)

1
2 (Vt + Vs) 0

0 0 0 Vt

⎞⎟⎟⎠ (B.13)

We’ve used the ordering {|↑↑i , |↑↓i , |↓↑i , |↓↓i} = {1, 2, 3, 4} of the basis states
to determine row and column numbers 1, 2, 3, 4 in this matrix.

B.2 Singlet and triplet order parameter
Now we get a nice exercise going through the steps of our mean-field BCS
treatment, as outlined in chapter 3, sections 3.6.1-3.6.2. Steps 1 and 2 consist in
making a mean field approximation and introducing the self-consistent auxiliary
variables

∆αβ(k) = −
X
k0∈D

X
γ,δ

Uαβ;γδ(k− k0) hĉ−k0,γ ĉk0,δi . (B.14)

This transforms the Hamiltonian into

Ĥmf
BCS =

X
k,σ

ξkĉ
†
k,σ ĉk,σ +

X
k,αβ

h
ĉ†k,αĉ

†
−k,β∆αβ(k) +∆

∗
αβ(k)ĉ−k,αĉk,β

i
−
X
k,αβ

X
k0,γδ

∆∗αβ(k)U
−1
αβ;γδ(k− k

0)∆γδ(k
0). (B.15)

This is the generalization of expression (3.124). Note that the order parameter
now carries two spin indices, as we can in principle make pairs of fermions of
any spin combination. It also inherits the k-dependence from the interaction
potential.
The next step is rewriting the second term in Nambu spinor notation, so we

get

Ĥmf
BCS =

X
k,σ

ξkĉ
†
k,σ ĉk,σ −

X
k,αβ

X
k0,γδ

∆∗αβ(k)U
−1
αβ;γδ(k− k

0)∆γδ(k
0)

+
X
k

c̄†k ·Hk · c̄k + 2
X
k,σ

ξk (B.16)

This is the analogue of expression (3.127). However, this time we need a
4-component spinor since we cannot use the spin symmetry:

c̄k =

⎛⎜⎜⎝
ĉk,↑
ĉ−k,↓
ĉ†−k,↓
ĉ†k,↑

⎞⎟⎟⎠ (B.17)

We get for the Hamiltonian matrix

Hk =

⎛⎜⎜⎝
ξk 0 ∆↑↑(k) ∆↑↓(k)
0 ξk ∆↓↑(k) ∆↓↓(k)

∆∗↑↑(k) ∆∗↓↑(k) −ξk 0

∆∗↑↓(k) ∆∗↓↓(k) 0 −ξk

⎞⎟⎟⎠ (B.18)
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This is similar to expression (3.128), where each entry has been replaced by a 2
by 2 matrix, taking into account the 4 possible spin combinations. Hermitean 2
by 2 matrices can be decomposed in Pauli matrices and the unit matrix, so let’s
see where that brings us if we apply it to the ∆-matrix. We simply rewrite the
four unknown functions ∆αβ(k) by linear combinations of four other unknown
functions ∆, dx(k), dy(k), dz(k). You can always find four of these functions so
thatµ

∆↑↑(k) ∆↑↓(k)
∆↓↑(k) ∆↓↓(k)

¶
=

µ
−dx(k) + idy(k) ∆+ dz(k)
−∆+ dz(k) dx(k) + idy(k)

¶
(B.19)

exactly holds. From the notation you can already suspect that we intend to
associate ∆ with the unit matrix and singlet pairing, and d(k) with the pauli
matrices and triplet pairing. This becomes more clear if we decompose the
matrix as followsµ

∆↑↑(k) ∆↑↓(k)
∆↓↑(k) ∆↓↓(k)

¶
=

∙
∆

µ
1 0
0 1

¶
+ d(k) · σ

¸
· iσy (B.20)

where σ = σxex + σyex + σzex with σx, σy, σz the Pauli matrices.
From the definition (B.14) it’s not hard to show that for potentials with

inversion symmetry
∆αβ(k) = −∆βα(−k) (B.21)

From (B.19) it follows thatµ
−∆↑↑(−k) −∆↓↑(−k)
−∆↑↓(−k) −∆↓↓(−k)

¶
=

µ
dx(−k)− idy(−k) ∆− dz(−k)
−∆− dz(−k) −dx(−k)− idy(−k)

¶
(B.22)

Since (B.21) holds, the matrices on the right hand sides of (B.19) and (B.22)
must be the equal. Hence we find that upon swapping k to −k, ∆ is not affected
(even if we’d kept a k-dependence) whereas

d(k) = −d(−k) (B.23)

This means that ∆ is even when two particles are swapped (in momentum
space, and hence in position space). Thus, the spin part associated with this
order parameter must be odd, it must be the singlet. Indeed, ∆ is the order
parameter of singlet pairing. This is the same ∆ as the one we found in
the BCS theory of metals. However, d(k) acquires a minus sign when swapping
the two particles in momentum space — it is odd in the spatial sector of the
pair wavefunction and thus it must be even in the spin sector. The vectorial
order parameter d(k) is associated with triplet pairing.
In 3He, it turns out that the triplet potential is more strongly attractive than

the singlet potential! So, in stead of having singlet Cooper pairs of helium-3
atoms, we obtain the more complicated triplet pairing as the ground state.

B.3 A and B phases of superfluid helium-3
Even though we can see from the interatomic potential that the triplet pairing
is the ground state, this does completely fix the superfluid order! We now have
a vectorial order parameter, and this offers more possibilities and hence more
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Figure B.1: Phase diagram of 3He. The superfluid phase is related to triplet
pairing of helium atoms, and characterized by a vectorial order parameter d(k).
The vectorial character allows for many different phases, of which two can be
the ground state at given temperatures, pressues and magnetic fields. These are
denoted by the A and B phases. Image source: Lounasmaa laboratory, Aalto
University, Finland.

possible phases than a scalar order parameter. Not only can we play with the
magnitude of d(k), but also with its direction relative to k.
Just as for the usual BCS case, let’s fix the magnitude of k to be the Fermi

wave vector. This means that we consider only helium-3 atoms at or very near
to the Fermi surface as contributing to pairing. That will be in line with the
experiment, showing that the critical temperature for superfluidity in helium-3
is very low (Tc ¿ TF , just like for superconductors. In 1970, David Lee, Doug
Osheroff and Bob Richardson found this transition to be at about 2.5 mK, and
this earned them the 1996
So the only thing we still need to worry about is the relative direction

of d with respect to k. Decomposing k in spherical coordinates, with k =
{kF , θk, φk}, we can write⎛⎝ dx

dy
dz

⎞⎠ =

r
3

4π

⎛⎝ ηxx ηxy ηxz
ηyx ηyy ηyz
ηzx ηzy ηzz

⎞⎠ ·
⎛⎝ sin (θk) cos (φk)
sin (θk) sin (φk)

cos (θk)

⎞⎠ (B.24)

The only unknowns that we have to find now are the η’s, and these are
independent of k. We’ll be able to set up gap equations to determine these
constants if we plug in these solutions into (B.19), and this into (B.18), and then
diagonalize that matrix, and use the diagonalisation to calculate the expectation
value for the self-consistent variables (B.14). That’s a heck of a long calculation,
and we won’t do it here. Tony Legget did it, and got the Nobel prize for it in
2003.
To complete this appendix, I’ll just list the two phases of helium-3 that make
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Figure B.2: The vectorial order parameter d(k) in the A and B phase is shown
by the full arrows starting on the Fermi sphere.

it as a ground state in bulk. These are both solutions of the gap equations.
Already in the very first experiments, it was found that helium-3 had two
different phases when cooled down, and these were called the A phase and the B
phase. Not very poetic, but accidentally these were described first by Anderson,
Brinkman and Morel (for the A phase) and by Balain and Werthamer (for the
B phase). The phase diagram for these A and B phases is shown in figure B.1.
The A phase is characterized by

ηij ∝

⎛⎝ 1 i 0
0 0 0
0 0 0

⎞⎠ (B.25)

and an excitation spectrum

Ek =

q
ξ2k + kd(k)k

2 ± kd(k)× d∗(k)k (B.26)

The form of η means that d only has an x-component, so the direction of d is
locked and independent of k. It’s magnitude varies as sin(θk) so that the gap
will vanish at the north and south poles of the Fermi spheres, as shown in the
left panel of figure B.2. This phase will be favoured when there is an external
magnetic field. Indeed dx = (∆↑↑ −∆↓↓) /2, which tells us that the triplet pairs
will align their spins, and this reduced the energy in an external magnetic field.
So, the direction of the vectorial order parameter here is locked to the external
field.
In the B phase we have

ηij ∝

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ (B.27)

and

Ek =

q
ξ2k + kd(k)k

2 (B.28)

Now the direction of d is locked to k. This means that the angle between d and
the angular momentum L of the pair is fixed. Above the critical temperature,
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both the total spin of any two atoms and their total angular momentum are
independent, but below the critical temperature, the directions of the spin
and the angular momentum are locked to eachother. This is the nature of
the superfluid phase transition as conceived by Leggett. It is illustrated in the
right hand side of figure B.2. The excitation spectrum is not gapped. When no
magnetic field is present, this phase dominates the superfluid part of the phase
diagram (apart from a small region at high pressure).
It turns out that we have way more solutions that just these two (and the

normal state with d = 0 everywhere). There exist many different superfluid
phases that may become the ground state under some exotic conditions such
as strong confinement. The zoo of solutions are catalogued in a book by
Dieter Vollhardt and Peter Wölfle, The Superfluid Phases of Helium 3 (Dover
Publications, 2013). This zoo itself generates an even bigger zoo of quasiparticles
and excitations and types of vortices, half-vortices, skyrmions, ...
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