Novel *mgrB* variants identified in colistinresistant Klebsiella pneumoniae

Basil Britto Xavier¹, Nienke Plantinga², Christine Lammens¹, Laurent Poirel^{3,4}, Patrice Nordmann^{3,4}, Marc Bonten², Herman Goossens¹, Surbhi Malhotra-Kumar¹

¹Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium; ²Department of Medical Microbiology and Epidemiology of Infectious Diseases, Julius Center for Health Sciences & Primary Care, UMC Utrecht, The Netherlands; ³Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland; ⁴INSERM U914 Emerging Resistance to Antibiotics, Faculté de Médecine et Université Paris Sud, Le Kremlin-Bicêtre, France

Klebsiella pneumoniae (KPN)

- *K. pneumoniae* causes, urinary tract, respiratory tract and blood stream infections
- Increase of multi-drug resistance in *K. pneumoniae* is a public health concern in Europe and worldwide
- Resistance to carbapenems in *K. pneumoniae* in Europe significantly increased over the last four years
- Countries with already high percentages of carbapenem resistance also report large numbers of isolates with polymyxin resistance → an indication of the further loss of effective treatment options for Gram-negative bacterial infections

K. pneumoniae: percentage of invasive isolates with resistance to carbapenems

Action of colistin (CL) on Gram negative bacterial cell membrane

Martis et al., 2014

Activation of lipopolysaccharide-modifying genes involved in polymyxin resistance in Gram-negative bacteria

5

Known CL resistance mechanisms in *K. pneumoniae*

Genes	Modifications implicated to Colistin resistance	Mechanism	References
	L24H, C28Y, G37S, Inactivation of phop/phoQ		Cannatelli et al. 2013, Wright MS et al. 2015, Poirel L et al. 2015
тgrв	IS element interruption (IS1F, IS4,	negative feedback regulator	Poirel L et al. 2015.
	IS5, ISKpn13, ISKpn14, ISEcp1) loss of gene and fragments		Zowawi MH et al. 2015
nhoP	G385S		Olaitan et al.2014
phor	L26Q		
	L96P	Activation of LPS-modifying	
phoQ	L348Q	operon by mutations	
	S174N		Choi & Ko, 2014
	D434N	N	Wright MS et al. 2015
pmrA	G53C		Olaitan et al. 2014
	L82R		Cannatelli et al. 2014
	Т157Р		Jayol et al. 2014
	S85R	Activation of LDS modifying	Olaitan et al. 2014
nmrB	T140P	Activation of LPS-modifying	
ртть	ΔR14	operon by mutations	Choi and Ko, 2014
	ΔΥ209		
	Т157Р		
	S208N		
pmrC		Modification of the lipidA	Kim et al. 2006
crrAB	L94M	Induces expression of the	
	Q10L	glycosyltransferase-like protein which transfers an as-yet- unidentified sugar to lipid A	Wright MS et al. 2015

Known CL resistance mechanisms in *K. pneumoniae* (cont.)

Genes	Modifications implicated to Colistin resistance	Mechanism	References	
arnBCADTEF operon and pmrE	ΝΑ	Modification of the lipidA or Kdo	Helander et al. 1996	
acrAB and kpnEF	NA	Efflux pump	Padilla et al. 2010, Srinivasan and Rajamohan 2013	
NA	NA	Trapping of polymyxin by capsule	Campos et al. 2004	
lpxM	ΝΑ	Increased aceylation of lipid A enhancing its modification with aminoarabinose	Velkov et al 2013	
mcr-1	NA	Modification of lipid A, resulting in reduction of polymyxin affinity through plasmid mediated gene	Liu et al. 2015	

The transmembrane protein mgrB

- Negative feedback regulator of PhoQ/PhoP signalling system
- Short transmembrane protein (47 aa long) and conserved among Enterobactericea
- *mgrB = yobG*, hypothetical protein, membrane protein, putative inner membrane protein
- Automated annotations fail to annotate this gene

mgrB conservation among Enterobacteriaceae

In-vitro generations of CL-R strain from a clinical CL-S KPN

Comparison of MICs to colistin by E-test, micro- and macrobroth dilution

Strain	MIC (E-test)	MIC (micro broth)	MIC (macro broth)	Strain	MIC (E- test)	MIC (micro broth)	MIC (macro broth)
1	0.75	32	32	16	8	64	ND
2	2	>128	32	17	8	64	ND
3	2	64	32	18	8	128	ND
4	3	32	16	19	12	128	ND
5	3	32	16	20	12	128	ND
6	4	32	32	21	12	256	ND
7	4	64	ND	22	16	64	ND
8	4	64	ND	23	16	128	ND
9	4	64	ND	24	24	128	ND
10	4	64	ND	25	24	128	ND
11	4	64	ND	26	24	256	ND
12	4	64	ND	27	24	256	ND
13	6	32	ND	28	32	>128	ND
14	6	32	ND	29	32	32	ND
15	6	128	ND				

Comparison of colistin MIC results

- Of the 29/35 strains screened and 29 strains confirmed as CL-R by broth micro dilution (addition with tween 80)
- However, there were 4 to 100 fold differences between MIC values of the E-test and broth micro dilution
- Interestingly, 3 strains were identified as sensitive by E-test and confirmed as resistant by broth micro and macro dilution

Alignment of mgrB variants

mgrB interruption by IS elements

mgrB variants identified in present study

No of strains (n)	MLST	MIC	Modification in mgrB	Changes in the gene
n=10	ST323, ST101,ST3 07, ST512	8-64	No modification	No
n=2	Novel ST, ST101	64	7^{th} position \rightarrow A to T \rightarrow 3K*	Truncation
n=1	ST709	32	117 th position \rightarrow C to A \rightarrow C39*	Truncation
n=1	ST101	256	88 th position \rightarrow C to T \rightarrow Q30*	Truncation
n=6	ST512	256	124 th position \rightarrow TA insertion	Elongation
n=2	ST101	64	Deletion of gene from 103 rd to 115 th (13 bases)	Elongation
n=1	Novel ST	64	ISEc16 interruption at 48 th position	Truncation
n=2	ST101	64	IS1X2 interruption close to promoter region	No
n=2	ST101	64	ISIR interruption close to promoter region	No
n=1	ST409	128	IS1R interruption at 108 th position	Truncation
n=1	ST11	128	ISKpn26 interruption at 75 th position	Truncation

Diversity of mgrB disruptions among studied strains

ISKpn14 transposes into *mgrB* promoter under CL pressure

In vivo KPN Sensitive (MIC 2)

ybo ISKpn14: IS1 family Tn that transposed (and duplicated) into intergenic region between promoter and start codon of *mqrB*

Xavier et al., unpublished data

Conclusions

- 10 different *mgrB* variants were identified of which four are novel variants
- Variations were not clonally specific
 - Eight different MLST types among them 2 novel STs
- Colistin pressure selects for tranposition events
- Strains with non-modified *mgrB* also did not show any other modifications in known CL-R genes such as *pmrB*, *pmrA*
- mcr-1 gene was absent in our strains

Acknowledgements

Funding

DOCPRO-BOF 2012-27450 (Research Grants)

