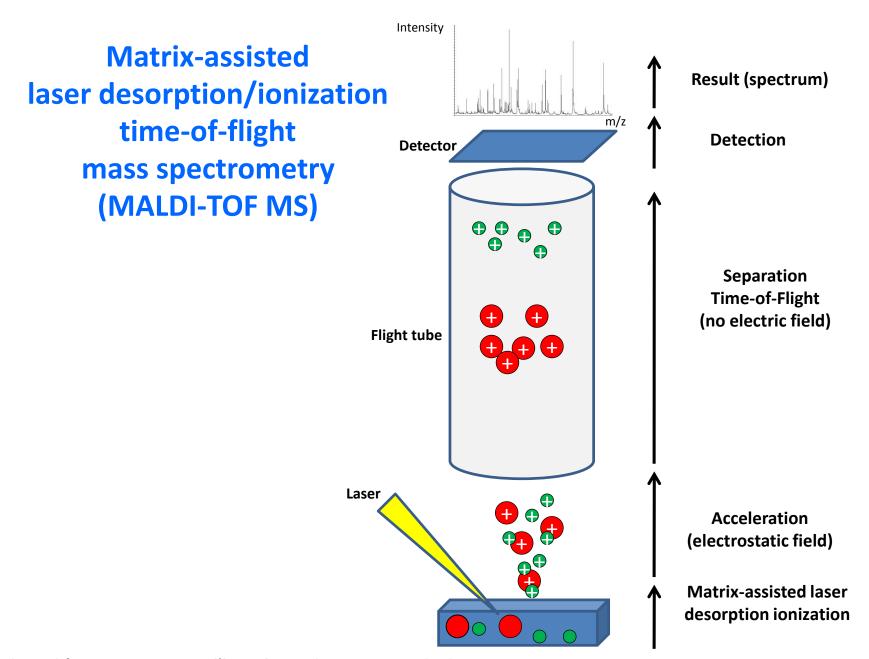
Diagnostics-based Infection Control

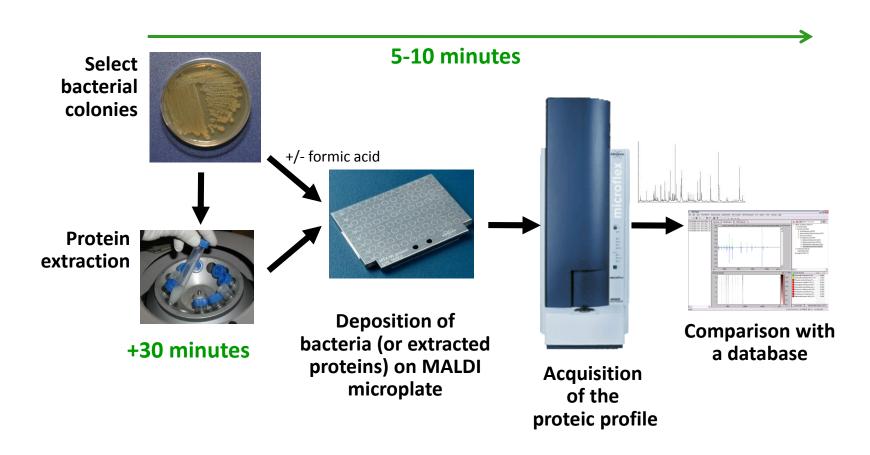
Herman Goossens
Laboratory of Medical Microbiology
VAXINFECTIO
University of Antwerp

Rapid Microbial Detection Technologies

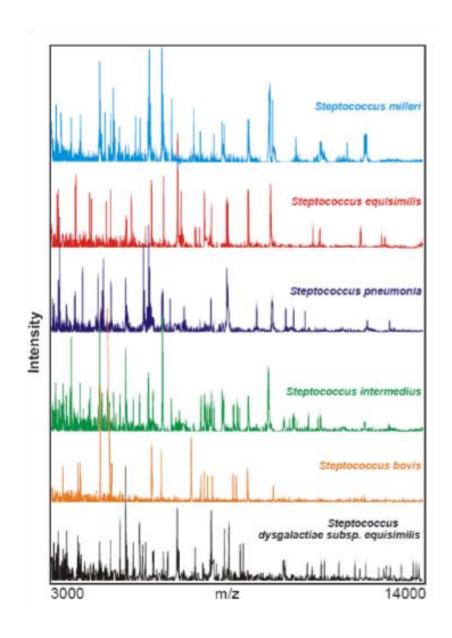
Antigen detection


ELISA, IF, immuno-chromatography,....

Nucleic acid detection


PCR, real-time PCR, PCR-hybridization, DNA-microarray, PCR-sequencing,...

Agenda

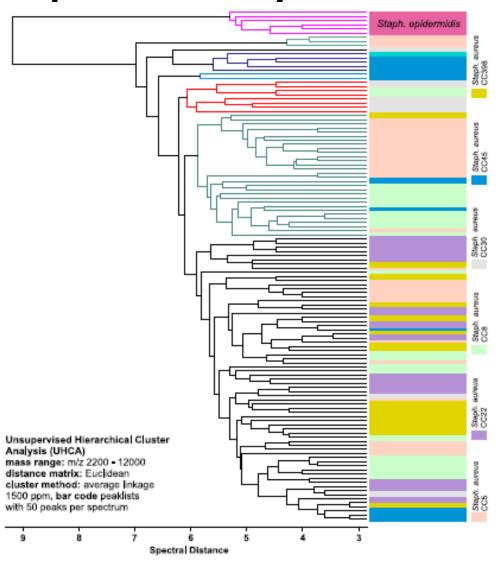

- MALDI-TOF
- Whole-Genome Sequencing
- Microbiome
- Resistome
- Future

MALDI-TOF Procedure

MALDI-TOF for Identification

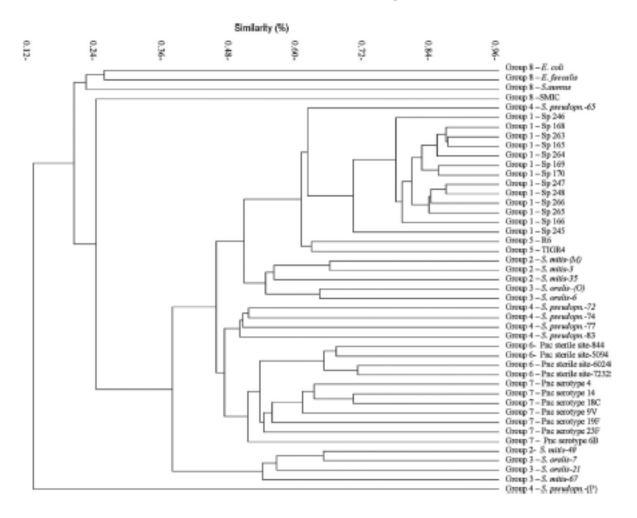
- Mass range 2,000-15,
 000 Da
- 50-70% ribosomal proteins
- Obtained spectra compared with database

MALDI-TOF for Typing

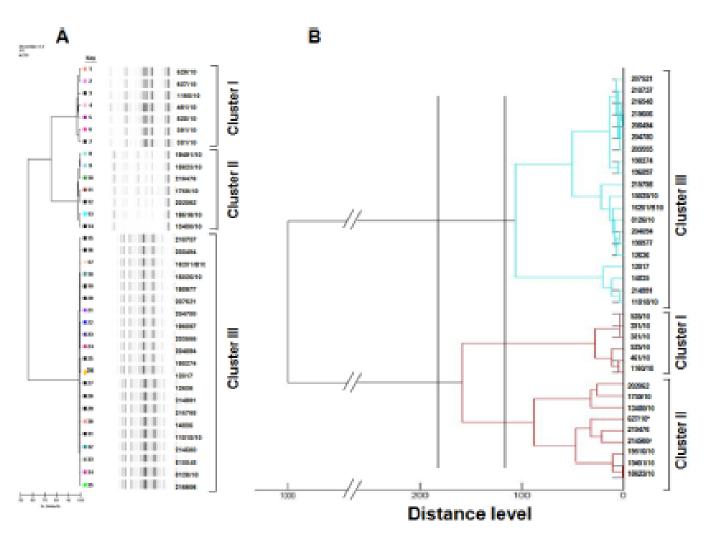

- Staphylococci
- Streptococcus pneumoniae
- Acinetobacter
- Escherichia coli

Distribution of Peak Shifts of *S. aureus* and Sensitivity and Specificity of the Markers

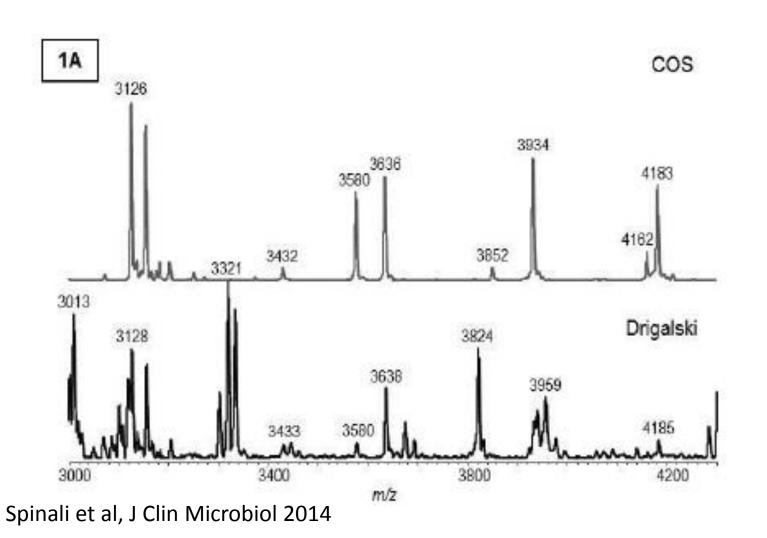
		Biomarker for				No. of MRSA
m/z	ORF	CC	Example(s)	Sensitivity	Specificity	strains tested
2,636	PSMα3					
2,685	PSMα3	30	Sanger 252	0.308	1.000	13
3,007	Delta-toxin (formylated)					
3,037	Delta-toxin (formylated)	1	t127 (MW2, Sanger 476)	0.250	1.000	8
3,875	SA2420.1					
3,891	SA2420.1	5, 25	ST5, ST225, ST228, USA100, Mu50, N315	0.978	0.988	92
4,511	SAR1012	30, 45, 398, ST88	Berlin, LA-MRSA, CA-MRSA, Cowan	0.983	0.990	58
4,485	SAR1012			Peaks often not observed	Peaks often not observed	
4,497	SAR1012	(72, ST80)		Peaks often not observed	Peaks often not observed	
5,032	graF (SAS030)					
5,002	graF (SAS030)	22 (t032, t608)	Barnim EMRSA15	0.750	1.000	60
5,525	SAS049					
5,507	SAS049	30	Cowan	0.846	1.000	13
5,551	SAS049	(MSSA)				
5,539	SAS049	25, 72, 12, MSSA	Reynolds			1
6,423	rpmD (SA2030)					
6,397	rpmD (SA2030)	t032	Subgroup of CC22 strains	0.167	1.000	60
6,552	SA1452					
6,592	SA1452	8	USA300, ST247, COL (ST250)	0.889	0.996	27
6,580	SA1452	130	t843	1.000	0.992	2
6,613	graC (SAS044)					
6,627	graC (SAS044)	ST88	CA-MRSA t609	1.000	0.988	2
3,825	Truncation: no signal	45	Subgroup of CC45 strains	0.438	0.987	32


Josten et al, J Clin Microbiol 2013; 51: 1809-17

Hierarchical Clustering of *S. aureus* and *S. epidermidis* by MALDI-TOF



Lasch et al, J Microbiological Methods 2014; 100: 58-69


Hierarchical Clustering of *S. pneumoniae*Conjunctivitis Outbreak Isolates and Nonconjunctival Bacterial Controls by MALDI-TOF

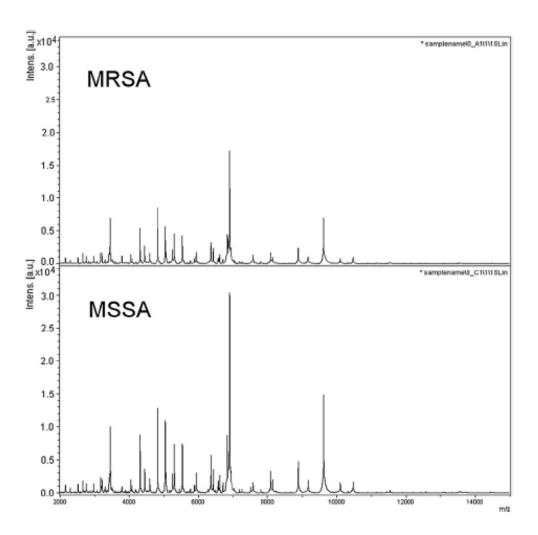
Hierarchical Clustering of *Acinetobacter* baumanii by rep-PCR and MALDI-TOF

MS Spectra of *E. coli* Grown on Columbia 5% Sheep Blood Agar and Drigalski Agar

Conclusions

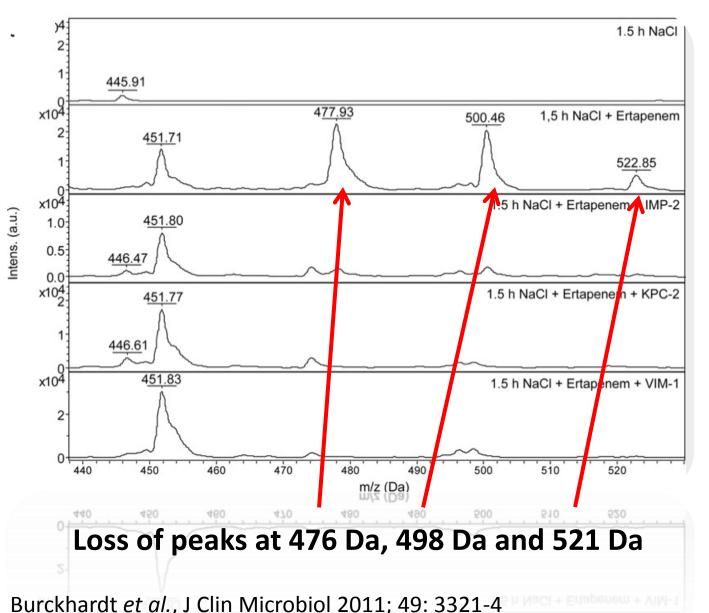
• Limitations:

- MALDI-TOF has insufficient discriminatory power for typing of strains
- Although discriminatory potential may depend on bacterial species
- Lack of clear guidelines for data interpretation
- Variation in spectra due to culture conditions, spotting techniques
- Spectra subject to variation in protein expression and post-translational modifications and regulations


Expectations:

No great future of using MS for strain typing

MALDI-TOF for Detection of Antibiotic Resistance


- Detection of proteins:
 - Methicillin-resistant Staphylococci
- Beta-Lactam degradation:
 - Carbapenem-resistant Gram-negative bacteria

MS Spectra of Isogenic Strains of *S. aureus* (SCC*mec*- and PBP2a harboring MRSA or lacking MSSA)

Szabados et al, J Infection 2012; 65: 400-5

Detection of Carbapenamases

NaCl

NaCl + ertapenem

IMP-2

KPC-2

VIM-1

Burckhardt et al., J Clin Microbiol 2011; 49: 3321-4

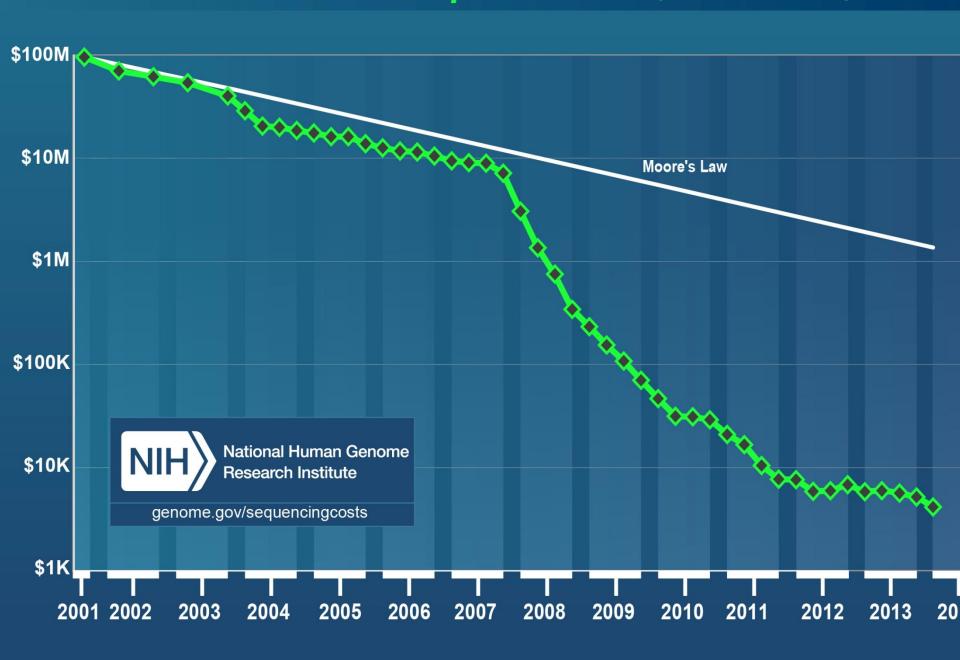
Carbapenem Susceptibility Profile and Time in Days for Detection of Carbapenemase-Producing Isolates by MALDI-TOF MS

MIC range (mg/L)

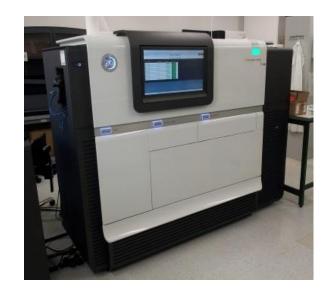
Isolates detected as carbapenemase producers by MALDI-TOF MS (no.)

	Microorganism (no.)	Phoenix system		agar dilution		day 1ª		day 2 ^b			
Enzyme		ETP	IPM	MEM	ETP	IPM	MEM	2 h	4 h	2 h	4 h
KPC-2	K. pneumoniae (15)	>4	≤1 to >8	≤1 to >8	2 to >256	1-128	1-128	13	15	15	15
KPC-2	E. cloacae (2)	>4	>8	>8	>256	64-128	128	2	2	2	2
SPM-1	P. aeruginosa (1)	_	>8	>8	64	32	16	1	1	1	1
OXA-23	A. baumannii (10)	_	>8	>8	32-256	8-128	8-64	0	2	9	10
OXA-72	A. baumannii (1)	_	>8	>8	>256	64	128	1	1	1	1

ETP, ertapenem; IPM, imipenem; MEM, meropenem.


^aDay 1, direct from positive blood culture vials.

Day 2, direct from bacterial colony.


Agenda

- MALDI-TOF
- Whole-Genome Sequencing
- Microbiome
- Resistome
- Future

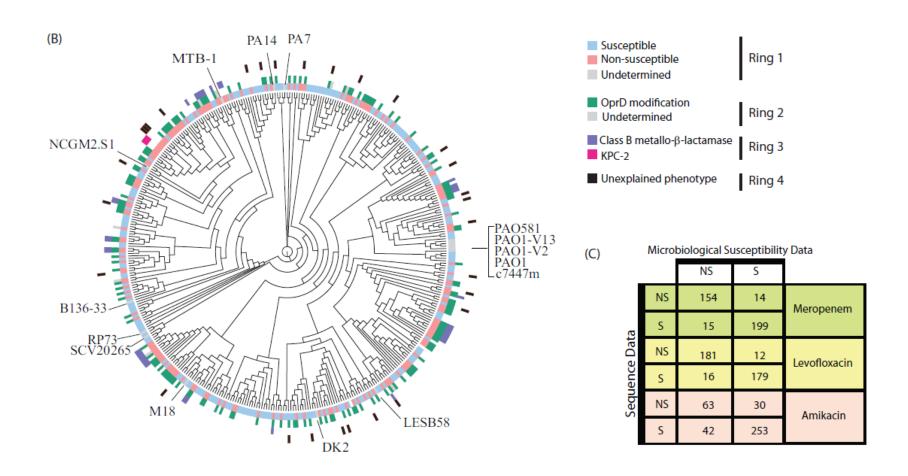
Cost per Genome (Human size)

NEXT GENERATION SEQUENCING

Whole-Genome Sequencing

- Detection of resistance
 - S. aureus
 - P. aeruginosa
- Typing
 - Mycobacterium tuberculosis
 - MRSA
 - K. pneumoniae
 - A. baumannii

WGS for S. aureus genetic resistance


- WGS: 992 strains collected in Brighton and Oxford
- Catalogue of known resistance genes and mutations in housekeeping genes assoc with resistance:
 - Pubmed → Genbank
 - 12 antibiotics
- Phenotypic resistance ("gold standard")
 - VITEK, disk diffusion
 - Discrepancies: E-test

BLINDED VALIDATION STUDY OF RESISTANCE PREDICTION FROM WGS STAPHYLOCOCCUS AUREUS

Derivation set of 501 and validation set of 491; here the final results of validation set after resolving discrepant results on 487 isolates

	Phenotype: resistant		Phenotype: susceptible		Error Rates	
	Genotype Genotype		ME	VME		
Antimicrobial	Susceptible	Resistant	Susceptible	Resistant	(%)	(%)
Penicillin	2	398	84	3	3.4	0.5
Methicillin	0	55	432	0	0.0	0.0
Ciprofloxacin	2	64	421	0	0.0	3.0
Erythromycin	1	80	404	2	0.5	1.2
Clindamycin	1	76	2	0	0.0	1.3
Tetracycline	0	18	467	2	0.4	0.0
Vancomycin	0	0	491	0	0.0	n/a
Fusidic acid	1	39	445	0	0.0	2.6
Trimethoprim	0	2	200	1	0.5	0.0
Gentamicin	1	2	484	0	0.0	33.3
Mupirocin	0	2	485	0	0.0	0.0
Rifampicin	0	5	482	0	0.0	0.0
Total	8	741	4397	8	0.2	1.1

Comparison of the Phenotypic Susceptibility Profile with the Genetic Determinants that Classify *P. aeruginosa* Isolates as Susceptible or Non-Susceptible

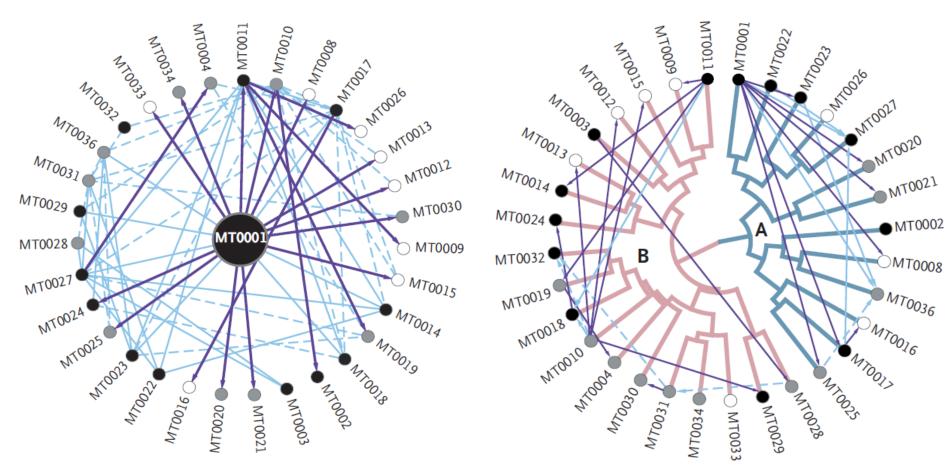
Conclusions of WGS for Detection of Resistance

Limitations:

- Gene may be present, but not expressed due to unidentified alterations in regulatory region
- Alternative resistance mechanisms cannot be detected
- Complex mechanims of resistance may be difficult to detect

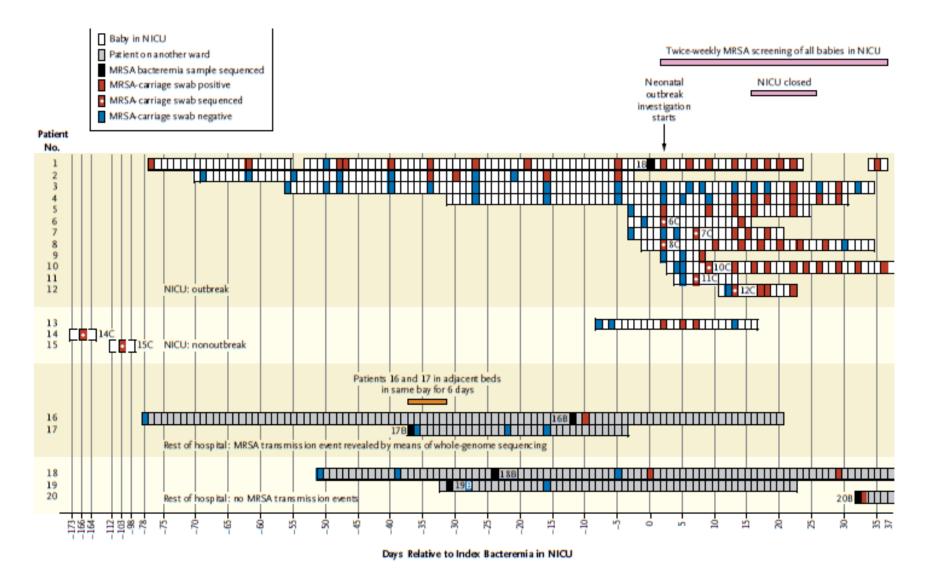
Expectations:

- Cost and turnaround time will further decrease
- WGS will replace majority of phenotypic and genotypic susceptibility tests as more genetic information becomes available

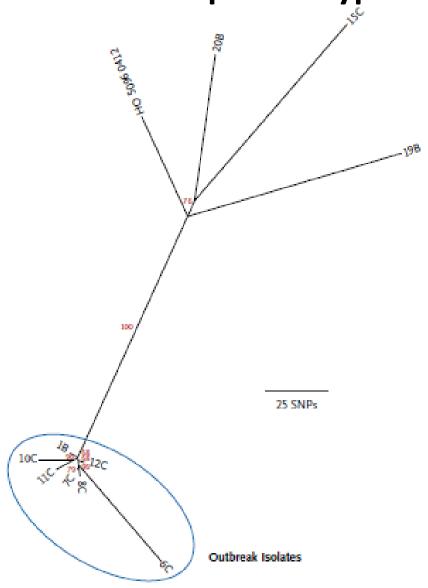

Whole-Genome Sequencing

- Detection of resistance
 - S. aureus
 - P. aeruginosa
- Typing
 - Mycobacterium tuberculosis
 - MRSA
 - K. pneumoniae
 - A. baumannii

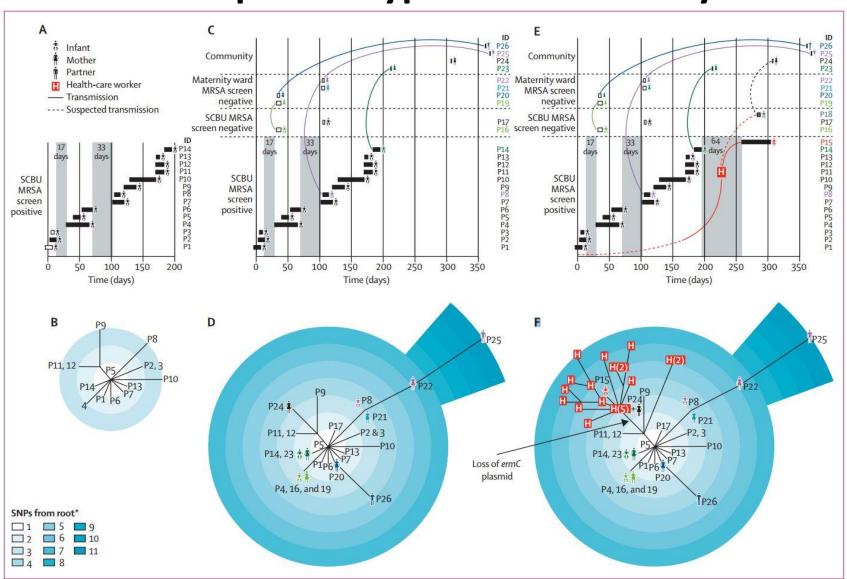
Putative Transmission Networks Constructed from Genotyped Data versus Whole-Genome Data of 32 Tuberculosis Patients



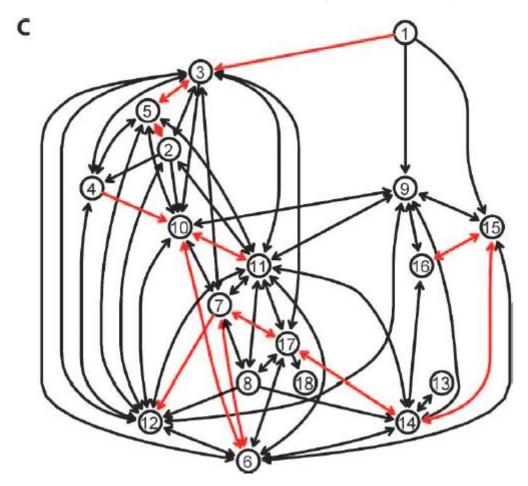
B Whole-Genome Sequencing and Social-Network Analysis


Gardy et al, NEJM 2011; 364:730-9

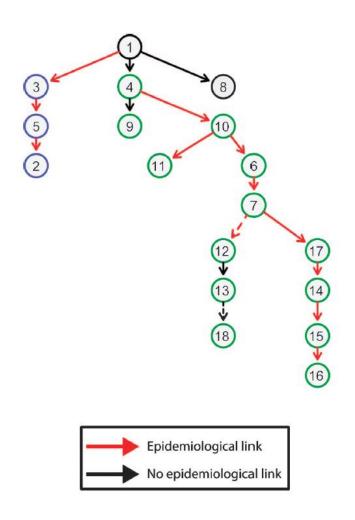
Timeline of the Neonatal ICU MRSA Outbreak and MRSA Bacteremia Cases on Other Wards


Köser et al, NEJM 2012; 366: 2267-75

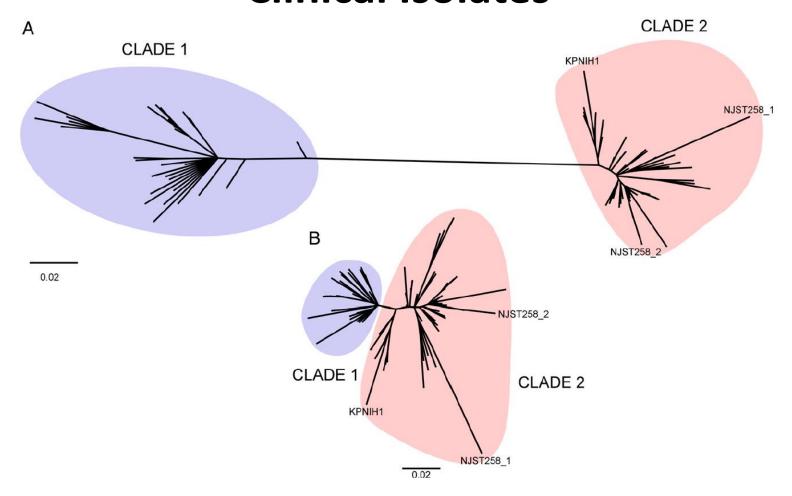
Results of the Phylogenetic Analysis of the 10 MRSA Isolates of Sequence Type 22


Köser et al, NEJM 2012; 366: 2267-75

Epidemiology and Phylogeny of an Outbreak of MRSA Sequence Type 2371 at a Baby Unit



Harris LID 2013; 13: 130-36


Graph of Possible Transmission Links among Patients Infected with Carbapenem-Resistant Klebsiella pneumoniae during a Hospital Outbreak

Putative Map of *K. pneumoniae* Transmission Routes during an Outbreak Based on WGS and Patient Data

SNP-Based Phylogenetic Analysis of Carbapenem-Resistant *K. pneumoniae* ST258 Clinical Isolates

Microscale Evolution of A. baumannii within the Host

TABLE 1 Comparison of mutations between LY6 and LY7 and LY6 and LY8

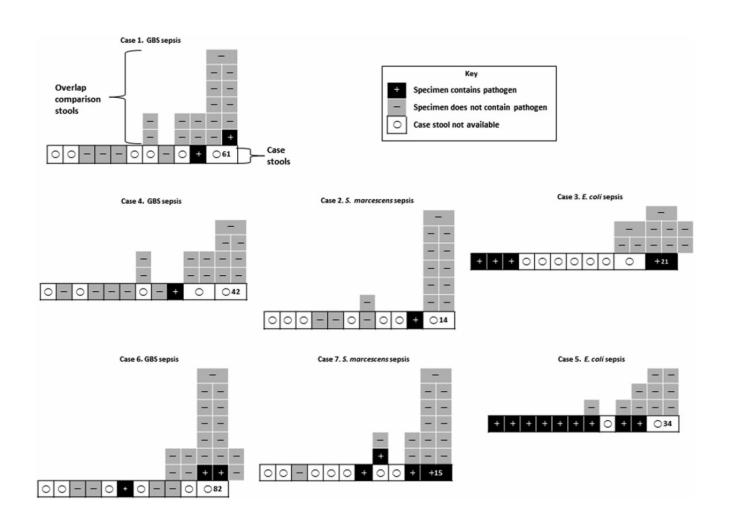
CP000863 (CDS)		CP000863 (CDS)	
(LY6 and LY7*)	Coding region change(s)	(LY6 and LY8)	Coding region change(s)
ACICU 00073	ACC\$5385.1×.675A>T	ACICU_00073	ACC\$5385,1x,675A>T
ACICU 00087	ACC\$5399.1:c.87A>T	ACICU 00087	ACC55399.1:x.87A.>T
ACICU_00087	ACCSS399.1:e:104G>+C	ACICU 00087	ACCSS399.1:e.65_66delCTimaAG
ACICU 00088	ACC\$5400.1:e.202A>C	ACICU 00866	ACCS6178.1:e.119 120delGCinsCT
ACICU 00219	ACCSSS31.1:c.236_237delGCtmsCT	ACICU 00219	ACC55531.1x.236_237delGCtmsCT
ACICU 00219	ACCSSS31.1xc.231_232delCAtmsTC	ACICU_00219	ACC55531.1x.231_232delCAtmiTC
ACICU_01053	ACCS6365.1:c.288_289deffGtmsGA	ACICU_01053	ACC56365.1x:288_289defTGtmsGA
ACICU_01053	ACC56365.1:c.291G>A	ACICU_01053	ACC56365.1x.291G>A
ACICU_01053	ACC\$6365.1 x; 298G>T	ACICU_01053	ACC\$6365.1x.298G>T
ACICU_01053	ACCS6365.1:c.303_304delAAtmsGG	ACICU_01053	ACC56365.1x:303_304delAAtm/GG
ACICU_01053	ACC56365.1:c.315_316defTAtmsCC	ACICU_01053	ACC56365.1x:315_316deffAtm/CC
ACICU_01053	ACC56365.1:c.318_319delAAtmsGC	ACICU_01053	ACC56365.1:c.318_319dcIAAtmsGC
ACICU_01060	ACC56372.1:±3414G>C	ACICU_01060	ACC56372.1:e.3429_3430deff'GinsCA
ACICU_01060	ACC56372.1:c.107T>-A	ACICU_01060	ACC56372.1x.107T>-A
ACICU_01061	ACCS6373.1:::367T>-G		
ACICU_02165	ACCS7477.1:E5938A5=C		
ACICU_02178	ACC57490.1:e.1333T>-A		
ACICU_02178	ACCS7490.1:c.93A>T	ACICU_02178	ACC57490.1:x.93A:>T
ACICU_02180	ACCS7492.1:e.181T>-A		
ACICU_02180	ACCS7492.1:e.172C>T		
ACICU_02215	ACC57527.1:c.145C>A	ACICU_02215	ACC57527.1x.145C>A
ACICU_02223	ACCS7S3S.1:e.19_20delAAimsGG		
ACICU_02244	ACCS7556.1:e.503C>+G		
ACICU_02711	ACCS8023.1x.285_288delACAAtmsCTTG	ACICU_02711	ACCS8023.1x.285_288delACAAtmsCTTG
ACICU_02711	ACC58023.1 x.127C>T	ACICU_02711	ACC58023.1x.127C>T
ACICU_02711	ACC\$8023.1:c.165A>T	ACICU_02711	ACCS8023.1sc.145_147delGGTimsAAC
ACICU_02711	ACCS8023.1:c.162_163delTGinsAA	ACICU_02711	ACCS8023.1:c.140_141delCTim/TC
ACICU_02711	ACC\$8023.1:e.160G>A	ACICU_02711	ACC58023.1:e.206A>-G
ACICU_02712	ACCS8024.1:c.525_526deffTimeCG		
ACICU_02712	ACC58024.1:::-420C>-A		
ACICU_02712	ACC58024.1::::526G>*T		
ACICU_02938	ACCS8250.1 :c.8delA	ACICU_02938	ACC58250.1x.8delA
ACICU_02945	ACC58257.1:c.201_211insC	ACICU_02945	ACCS8257.1x.201_211tm/C
ACICU_03412	ACCS8722.1:c.897_898defTGimAC		
ACICU_03412	ACC58722.1::::881C5+G		
ACICU_03412	AOC58722.1::::873A>T		
ACICU_03412	ACCS8722.1:c.213_215delACGmsTTT		
ACICU_03412	ACC58722.1:::206T>-A	ACICU_03437	ACC58746.1:e:388T>=C
ACICU_03412	ACC58722.1::::191G>=C	ACICU_03563	ACC58872.1:c.2853T>A
ACICU_03453	ACC58762.1:c.450T:>G	ACICU_03453	ACC58762.1±.450T>+G
ACICU_03575	ACC\$884.1×.132T>G	ACICU_03575	ACC58884.1×.132T>-G
ACICU_03575	ACC\$884.1:c.125T:>C	ACICU_03575	ACC58884.1x.125T>-C

[&]quot;The same mutations in two pairs are highlighted in bold type. CDS, coding sequence.

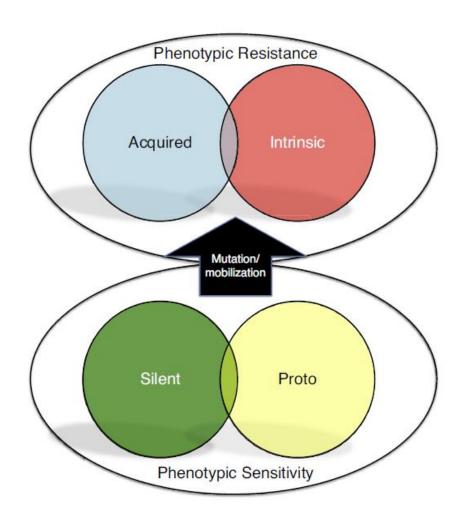
Conclusions of WGS for Typing

- WGS can allow for the identification of (unexpected) modes of transmission
- WGS may distinguish between alternative transmission scenarios which may be critical for controlling the outbreak
- WGS can link to environmental isolates which may provide insight as to how and when contamination occurred
- WGS can provide insight into how bacterial populations respond to treatments and the evolution of resistance
- WGS can help to understand or predict host response

Expectations of WGS for Typing

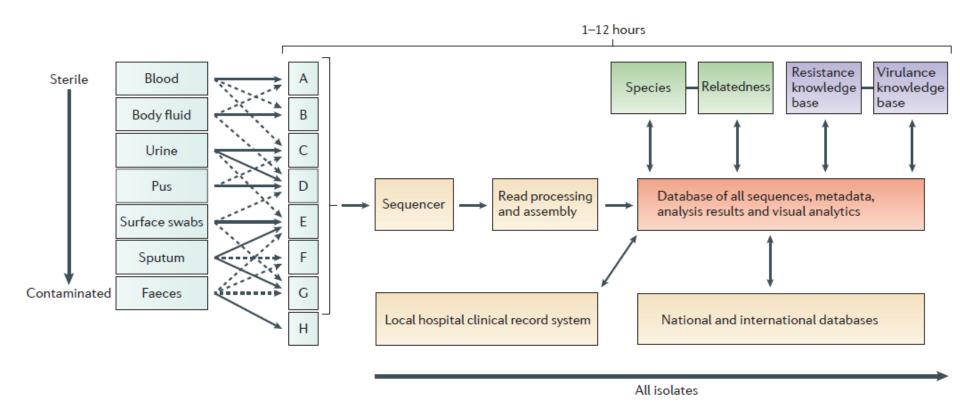

WGS will transform healthcare epidemiology and public health provided that:

- WGS data is validated versus current methods
- Data are provided real-time
- At affordable cost
- Solutions for processing and storage of data
- Clinically relevant information is provided
- Data Interpretation is fully automated and can be done without specialist knowledge


Agenda

- MALDI-TOF
- Whole-Genome Sequencing
- Microbiome
- Resistome
- Future

Gut Microbiome Predicts Bacteremia and Helps Preventing Spread of Organisms



The Antibiotic Resistome

Future Practice

IN ONE STEP GENERATE THE COMPLETE DIAGNOSTIC, TYPING AND SURVEILLANCE INFORMATION

Thank You

Single Nucleotide Variants Identified in *K.*pneumoniae Genomes from Different Patients and Body Sites

Single nucleotide variants