#O588

Effective use of antibiotic resistance gene databases for whole genome and metagenomic sequencing data

Anupam J Das, Basil Britto Xavier, Guy Cochrane, Sandra de Ganck, Samir Kumar-Singh, Frank Moller Aarestrup, Herman Goossens, Surbhi Malhotra-Kumar

Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, Universiteit Antwerpen, Antwerpen, Belgium

Laboratory of Medical Microbiology Vaccine & Infectious Disease Institute University of Antwerp

Horizon 2020 COMPARE (http://www.compare-europe.eu/)

Evolution of Resistance to Antibiotics

- physical and biological forces cause widespread dissemination of resistance genes throughout many environments
- resistance genes exist naturally in the environment owing to a range of selective pressures in nature
- first β-lactamase was identified in *E coli* prior to the release of penicillin-use in medical practices¹
- overuse of antibiotics has led to rampant spread of these genes, resulting in emergence of multidrug resistant species

Antibiotic Resistance Gene Databases

- provide a centralized compendium of information on antibiotic resistance, manually curated
- facilitate consistent annotation of resistance information in newly sequenced organisms
- facilitate identification and characterization of new genes
- platform to integrate informatics tool to bridge antibiotic resistance concerns in health care, agriculture, and the environment

Subset of AR Gene Data Resources

Include all possible AR genes

- both acquired and chromosomal gene databases
- major antibiotic classes
- virulence factors
- Reliability of results?

Assessment and Validation of Databases

- for the benefit of the microbiology research community, assessment was performed on the AR data resources to identify their limitations, and to propose potential solutions

Assessment

- availability of resources
- consistency and accuracy of information variations across different databases

Popular Databases

Validation and assessment of the databases

Center for Genomic Epidemiology

Data used for the assessment

Sequence Data	Background	DDBJ/EMBL/GenBank databases - Accession numbers	Reference
Metagenomic	fecal samples - SDD treatment	PRJEB3977	Buelow et al, 2014
Whole genome	MRSA strains clinically relevant	EMRSA -15 (CP007659) JDK6008 (CP002120) UAS391(CP007690)	Sabirova et al, 2014 Howden et al, 2010 Sabirova et al, 2014
Single gene	Verona imipenemase metallo-beta-lactamase bla _{VIM}	bla_{VIM-1} (KT124311) bla_{VIM-2} (KR337992.1) bla_{VIM-4} (AJ585042.1), bla_{VIM-19} (KT124310) bla_{IM-35} (JX982634.1)	
	New Delhi metallo-beta- lactamase bla _{NDM}	bla_{NDM-1} (KP770030.1) bla_{NDM-2} (JF703135.1) bla_{NDM-4} (KP772213) bla_{NDM-6} (KJ872581.1) bla_{NDM-8} (NG_036906.1)	
Latest updates	Colistin resistance gene	mcr-1	Liu et al, 2015

VAXINFECTIO Vaccine & Infectious Disease Institute University of Antwerp

Results - Metagenomic Data

VAXINFECTIO Vaccine & Infectious Disease Institute University of Antwerp

Results - Whole Genome Sequencing Data

Results - Single gene sequences

- No records
 Incorrect records
 Correct hits
- 3 (bla_{VIM-1} , bla_{VIM-2} , and bla_{VIM-4}) correctly identified by all of the 4 databases
- ARDB and CBMAR returned several nonspecific hits
- bla_{VIM-19} and bla_{VIM-35} were incorrectly detected by ARDB and CBMAR
- *bla*_{NDM} genes ARDB and CBMAR returned no hits
- CARD and Resfinder found to consistently return correct hits

Overview of results

Database	Last update*	Metagenomic Sequences	Whole genome sequences	Single gene Sequences
ARDB	07/2009	4	-NA-	3
CARD	03/2016	11	16	10
RESFINDER	03/2016	2	8	10
CBMAR	09/2014	0	2	3

* As of 30 March, 2016

Summary

Database	Merits	Demerits
ARDB	1. First database introduced	1. Limited scope due to lack of regular updates
CARD	 Detects all AR genes Up to date (<i>mcr-1</i> gene records) Accurate predictions No limitations on size or type of data 	
RESFINDER	 Detects acquired mutations Up to date (mcr-1 gene records) Accurate predictions No limitations on size or type of data 	1. Ignores chromosomal mutations
CBMAR	 Repository updated with all carbapenamase genes 	 Webtools need to be updated Latest information unavailable (<i>mcr-1</i> records missing)

Main findings

While we have noted the value of the AR related data resources, we have also noted a number of limitations

- gaps

- inconsistent results of searches against different resources with the same query data
- lack of up-to-date reference data

Two step approach

Approach 1

- Simpler to lay out in practical terms

- we do not seek to fill gaps where they exist in AR data resource services, nor to benchmark precision and reliability, but rather seek to create a landscape of transparent and tractable elements that can contribute to many different current and future analytical infrastructures

- Establishing best practice around the open sharing of richly and systematically described reference data - sequences, annotations, alignments and models

- Will reduce redundant effort in discovering source data for analysis and curation in specialist resources and will maximise opportunities to fill gaps

- Systematic descriptions of computational methods and query services offered by specialist AR data resources will aid in users' selection of appropriate tools for their analyses and minimise risk of misinterpretation

Approach 2 Requiring significant conceptual planning before practical work Broad community engagement required -Both generalist and AR specialist, should move forward to fill gaps in coverage, to provide consistency between query tools that are intended to serve the same function

- To remove redundant data processing, curation and software development steps to maximise overall productivity to guide consumers in making informed analyses

Collaborators

Guy Cochrane EMBL-EBI, UK

Frank Moller Aarestrup

DTU, Denmark

Horizon 2020 COMPARE (http://www.compare-europe.eu/)

https://www.uantwerpen.be/en/rg/lab-of-medical-microbiology/

LMM@uantwerpen.be

https://www.uantwerpen.be/en/rg/vaxinfectio/