What is the target population for lung cancer screening ?

Antwerpen, oktober 2012

Rob van Klaveren

ACCP and ASCO guidelines

- (former)-smokers age 55-74
- > 30 PY's
- Quit < 15
- 3 annual screening rounds
- Remark 4: quality metrics should be developed such as those in use for mammography screening which could enhance the benefits and minimize the harms

Gaps in our knowledge

- What will be the effect of CT screening as compared to an anti-smoking policy
- Concern about generizability of the NLST results (minorities)
- · What is the optimal target populaton
- What is the optimal number of screening rounds and the length of the interval

Gaps in our knowledge

• Only data from a single US study (NLST):

- DANTE no mortality reduction after 3-yrs of FU.
- DLCST: no mortality reduction or stage shift, suggestion for overdiagnosis !
- EU data (NELSON) awaited
- PLCO data (n=154.901) CXR=Usual care ! Oken MW et al JAMA 2011

The effect of CT screening as compared to anti-smoking policy

- Lung Cancer Policy model: Tobacco control versus screening
- Age 30-84 yrs, 1975-2000, annual CT
 - Complete elimination: -28% mortality LC
 - Complete elimination + annual CT screening: -39% mortility LC
 - Conclusion: focus on smoking cessation !

McMahon P et al. Risk analysis vol 32 , 2012

Generalizability of the trial results

- Compared with similar US population, NLST cohort has similar gender distribution and smoking exposure
- · However, NLST participants were
 - Younger
 - Better educated
 - Less likely to be current smokers
 - Less minorities

Comparing NLST with US census population

	NLST	US Census
Married	66.6	60.9
Education		
< HS	6.1	21.3
≥ College	31.5	14.4
Current smoker	48.2	57.1
Median pack vrs	48.0	47.0

Lynch DA et al. In press, J Natl Cancer Inst

Comparing NLST with eligible US census population

53,454 participants	NLST	US Census
Male (%)	59.0	58.5
Age		
55-59 (%)	42.8	35.2
60-64 (%)	30.6	29.3
65-69 (%)	17.8	20.8
70-74 (%)	8.8	14.7
Race Ethnicity		
Black (%)	4.4	5.5
Hispanic (%)	1.7	2.4

Lynch DA et al. In press, J Natl Cancer Inst

Generizability of the NLST results

- Cultural factors: knowledge, beliefs, attitudes about the disease / screen process, fatalistic beliefs, mistrust healthcare system, financial burden of screening (lack of insurance), anxiety related to irradiation
- Especially in lower economic status / minorities underutilization of (CT) screening

Jonnalagadda et al. Lung Cancer 2012

Commonly used definition of a high-risk smoker

• A Lung Cancer incidence > 300/100.000

	Age at inc	Age at incidence (death-5 years)							
	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74
,				42	114	258	360	560	725
-19				101	103	192	360	859	574
			43	83	200	(297)	652	854	1372
-39			25	114	218	442	510	1042	1326
			57	159	254	507	836	1244	1525
+		53	141	220	335	499	999	1469	4067
1	6	10	41	115	206	361	582	909	1118

Int. J. Cancer: 120, 868-874 (2006) © 2006 Wiley-Liss. Inc.

Risk-based selection from the general population in a screening trial: Selection criteria, recruitment and power for the Dutch-Belgian randomised lung cancer multi-slice CT screening trial (NELSON)

Carola A. van Iersel^{1,2,9}, Harry J. de Koning¹, Gerrit Draisma¹, Willem P.T.M. Mali³, Ernst Th. Scholten⁴, Kristiaan Nackaerts⁶, Mathias Prokop³, J.Dik.F. Habbema¹, Mathijs Oudkerk⁶ and Rob J. van Klaveren²

Number of cigarettes smoked per day Duration of smoking Duration of cessation Age 50-75

Co-variates and lung cancer risk [9,10] Relative risk factors for lung cancer Tobacco exposure Variable Tobacco exposure (asbestos) 3 Genetic factors Uncertain Genetic factors Uncertain Genetic factors Variable Dir Variable Ariable Variable Anily history 2.5

Stratification of the high risk population

LLP Multivariate model

Variable		OR	95% CI	p-value
Cigarette smoker	1-19 years	2.07	1.17 – 3.64	0.01
	20-39 years	4.07	2.51 - 6.56	<0.001
	40-59 years	11.67	7.11 – 19.16	<0.001
	≥60 years	14.56	5.48 - 38.64	<0.001
Family history	≤60 years old	2.02	1.18 – 3.45	0.01
	≥60 years old	1.18	0.79 – 1.77	0.41
Pneumonia		1.83	1.26 – 2.64	<0.01
Previous malignancy		1.96	1.22 – 3.14	<0.01
Asbestos exposure		1.89	1.35 – 2.62	<0.001

LLP-Risk Model Specific examples

- A man aged 64, 42 years smoking, history of other malignancy, relative with lung cancer aged over 60 at diagnosis,
 5-year risk=9.5%- qualifies

- Woman aged 68, 26 years smoking, no other risk factors,
 5-year risk = 1.5% does not qualify
- Man aged 67, never-smoker, relative with lung cancer aged <60 at diagnosis, history of other malignancy and asbestos exposure,
- 5-year risk=3.2% qualifies

Multivariable Risk Models fo	r Lung Cancer
Never smokers (330 cases/379 controls)	Odds Ratio
 Family History of cancer 	2.00
 Environmental tobacco smoke (ETS) 	1.80
Former smokers (784 cases/884 controls	2)
 Emphysema 	2.65
 Family History of cancer 	
 Dust Exposures 	1.59
 Age at smoking cessation –3rd tertile 	1.50
 No Hay fever 	
Current smokers (737 cases/738 controls)
Emphysema	2.13
 Pack- years – 4th quartile 	1.85
 Asbestos Exposure 	1.51
 No Hay fever 	1.49
 Family history (smoking-related cancers) 	1.47
Dust Exposures	1.36

Discriminatory Power of Extended Genetic Model (n = 1016 cases, 1111 controls)							
Model Baseline *+ SNP's	AUC 0.661 0.673	95% CI 0.64-0.68 0.65-0.70	P-valu — 0.023	ie*			
baseline + chr 15 and 5 SNP's							
Poor		Modera	ite Good	Excellent			
0		60	80 90	100			

H. Pass, Biomarkers Where are we?

- Technologies are approaching 90% specificity and sensitivity for early detection markers in *training sets*Technologies vary in complexity, expense and comprehensiveness

- > 2,000 papers on biomarkers
- >99.9% not validated !
- Only biomarkers which can be validated in large cohorts in blinded investigations at designated centers deserve to move towards clinical decision making in high risk cohorts or patients with lung cancer

The Pro's of upfront stratification

- Provides better cancer risk-estimates than on smoking history alone
- Helps smokers to understand the true nature of their risk and put it into a proper perspective
- Could help to assist counseling smokers to participate in LC screening program
- Will limit LC screening to certain high-risk subgroups

- Cost-effective way to use public health resources

The Con's

- In general, screening is controversial
 - Screening of certain high risk subgroups is even more controversial Gail model for breast cancer screening has been developed for women who underwent 1 screening round and considered to nativinate in additional rounds

 - Participation claims based on RCT results
 - Biomarker(s) with a very high sensitivity required
 - Not for the near future Not yet validated Public education required

The Pro's

- all high risk smokers and former smoker invited to undergo at least 1 CT screening round
- Those who are test negative have a very high NPV of 99.7% (95%CI: 99.6-99.8%) and need no rescanning for at least 2-years
- Work-ups limited to test-positives (2%) which is manageable
- Is more "acceptable" than upfront stratification
- Information from 1st screening round can be incorporated into LC risk model

Lung Cancer Risk Prediction to select smokers for screening CT – a model based on the Italian Cosmos Trial

Massonneuve P et al. Cancer Prev Res Nov 2011

Based on 1st CT scan

- Presence of emphysema on CT
- Nodule type (NS>PS>S)
- Size of the largest NCN
- Strongest predictors of subsequent lung cancer risk
- AUC = 0.744 (moderate)

Results

- 40% of population heavy smokers had < 0.3% annual risk of lung cancer
- During 3-yrs of FU only 10% of LC's diagnosed
- This population screen interval 3 yrs ?
- Saved 4000 CT scans, avoided surgery for benign nodules in 7, delayed surgery for lung cancer in 10