Measure for Measure:
How Well Do We Measure Micro-level Conflict Intensity?

Marijke Verpoorten
Working Papers are published under the responsibility of the IOB Thematic Groups, without external review process.
This paper has been vetted by Filip Reyntjens, convenor of the Thematic Group Political Economy of the Great Lakes Region.

Comments on this Working Paper are invited.
Please contact the author at Marijke.verpoorten@ua.ac.be.

Institute of Development Policy and Management
University of Antwerp

Postal address: Visiting address:
Prinsstraat 13 Lange Sint Annastraat 7
B-2000 Antwerp B-2000 Antwerp
Belgium Belgium
Measure for Measure:

How Well Do We Measure Micro-level Conflict Intensity?

Marijke Verpoorten*

September 2011

* Marijke Verpoorten is an assistant professor at the Institute of Development Policy and Management (IOB), University of Antwerp, Research scholar of the Fund for Scientific Research-Flanders; Research associate of LICOS – KULeuven.
Measure for Measure:

How Well Do We Measure Micro-level Conflict Intensity?*

Marijke Verpoorten†

September, 2011

Abstract

Rich measures of micro-level violent conflict intensity are key for successfully providing insight into the legacy of civil war. Yet, the debate on how exactly conflict intensity should be measured has just started. This paper aims to fuel this awakening debate. It is demonstrated how existing and widely available data - population census data - can provide the basis for a useful measure of micro-level conflict intensity: a fine Wartime Excess Mortality Index (WEMI). It is argued that the proposed measure is particularly well suited for studying the legacy of civil wars that are characterized by a large death toll and by different forms of violence. The measure is illustrated for the case of Rwanda and it is shown that, in a straightforward empirical application of the impact of armed conflict on schooling, the estimated impact varies widely across WEMI and a large set of alternative conflict intensity measures for Rwanda. While the conflict intensity measure proposed in this paper requires further study and one probably needs a combination of various methodologies, this finding suggests the need for a careful understanding of what underlies the different measures and methodologies in use.

JEL: C81, 015, C21

Armed Conflict, Micro-level Conflict Measures, Rwanda, Schooling

*I’m grateful to Tilman Brück, Koen Decanecq, Geert Dhaene, Scott Gates, Nils Petter Gleditsch, Romain Houssa, Pablo Rovira Kaltwasser, Håvard Mokleiv Nygård, Pieter Serneels, Håvard Strand, Henrik Urdal, Bruno Versailles and participants at seminars and conferences at universities in Leuven (LICOS seminar), Amsterdam (Jan Tinbergen Conference), Namur (LICOS/CREd seminar), Oxford (CSAE conference), Oslo (PRIO) and Berlin (HiCN & DIW Berlin Conference) for very helpful comments. I owe thanks to the Rwandan National Service of Gacaca Jurisdiction, the Rwandan Geographic Information System Centre, the Rwandan National Census Service and IPUMS International for making available the data used in this study. All errors and opinions expressed remain my own.

†Assistant Professor at IOB - University of Antwerp; Research scholar of the Fund for Scientific Research - Flanders; Research associate of LICOS - KULeuven. e-mail: marijke.verpoorten@ua.ac.be
1 Introduction

The challenge ahead for the micro-empirical literature on the legacy of civil war lies in providing in depth insight into the various underlying mechanisms of the alleged conflict trap. For example, as argued in a recent literature overview by Blattman & Miguel (2010): "The leading question is not whether wars harm human capital stocks, but rather in what ways, how much, for whom, and how persistently". New data is key to successfully embarking on this challenge. Again, in the words of Blattman & Miguel: "A major goal of civil war researchers should be the collection of new data". Or more specifically, in the words of Restrepo et al. (2006): "Conflict researchers should prioritize the construction of more micro datasets that will facilitate detailed studies of conflict intensity and its dynamics". Taking this advice to heart, this paper first reviews commonly used measures of conflict intensity and then demonstrates how existing and widely available data can form the basis of a useful subnational measure of conflict intensity.

The newly proposed measure is not meant to replace existing measures, but is meant to be complementary and is particularly useful for measuring multidimensional conflict characterized by a large death toll (direct or indirect). The basis for this measure is population census data, which is widely available. For example, among the 15 Sub-Saharan African countries experiencing civil war since the 1990s, 12 have had a post-conflict population census and two (Angola and DR Congo) are planning one. Moreover, among the 12 countries with a post-conflict population census, 10 have had a pre-conflict population census, which provides useful information for calculating a geographically disaggregated mortality baseline. The census questionnaires include a set of comparable questions, informing about the respondent’s sex, age, marital status, location and duration of previous and current residence, survival of parents and survival of children. Whereas census definitions of citizenship may be highly politicized (since citizenship defines who may vote), the questions that can be used to assess excess mortality (marital status, survival of children and survival of parents) are not.

Rwanda is taken as an illustration. This country in Africa’s turbulent Great Lakes region experienced several forms of violence in the 1990s, including genocide, civil war, reprisal
killings and (counter)insurgency (i.e. rural guerilla warfare). In order to measure Rwanda’s multidimensional conflict cycle, I develop a spatial index of wartime excess mortality relying on the 1991 and 2002 Rwandan population census. In particular, I subject a number of community level wartime excess mortality proxies (1991-2002 differences in mortality of sons and daughters, widowhood and orphanhood; and 2002 disability due to armed conflict) to principal component analysis (PCA). The first principal component (PC) provides us with a Wartime Excess Mortality Index (\(WEMI \)) on a less to more scale for 145 administrative units ("communes")\(^2\).

The usefulness of the \(WEMI \) as a conflict intensity measure in micro-empirical applications is threefold. First, given the complete coverage of the population in the census, the \(WEMI \) yields a very fine measure, i.e. at the level of small administrative units, which allows to capture within province variation in the intensity of armed conflict. Second, given the wide availability and uniformity of population census data across even the least developed countries, the proposed measure can be applied to other countries that have experienced armed conflict. A third useful characteristic of the \(WEMI \) is its neutrality, i.e. it is relatively neutral towards the cause of excess mortality. In contrast to conflict intensity measures derived from transitional justice records or news reports, the \(WEMI \) gives equal weight to victims belonging to the conquering and defeated party, to victims of large-scale massacres and dispersed killings, to victims in easily accessible locations and remote areas, and to direct and indirect victims of violence. The latter is important since it is estimated that the number of indirect deaths of conflict is six times larger than the number of battle-related direct deaths (Human Security Report, 2010).

There are always two sides to a coin and \(WEMI \) comes with at least two drawbacks. First, \(WEMI \) may suffer from survival bias since it is based on information inferred from the surviving population, more precisely from close relatives of those who died. Hence, \(WEMI \) may be biased downward for communities were many families were entirely exterminated. In the case of Rwanda, survival bias is likely to be present and I will discuss how this bias can be attenuated using information on the location of mass graves. A second potential drawback is that other events unrelated to conflict may explain wartime excess mortality (e.g. a local harvest failure or a region-specific mortality trend). A way to account for this is to revert to Instrumental Variable Estimation (IVE) when using the measure in an

\(^2\)In the 1994 administrative subdivision of Rwanda, "prefectures" were followed by "communes", "sectors" and "cells". In a series of subsequent reforms in 1996 and 2002, prefectures and communes were replaced by provinces and districts, respectively.
econometric application, an approach that has by now become standard in micro-empirical studies on the legacy of violent conflict.

The use of WEMI is illustrated with an empirical application of the impact of armed conflict on schooling attainment in Rwanda. The identification of the impact relies on a difference-in-difference-in-difference (DDD) estimation of years of education of a young and an older age cohort in the 1991 and 2002 population census, with the treated group being the young age cohort in the 2002 census residing in high conflict intensity regions. I find that both the OLS and the IVE results strongly depend on the type of conflict intensity measure used.

The next section gives an overview of the conflict intensity measures used in the micro-empirical literature on the legacy of violent conflict. Then, I outline the method for the newly proposed measure, and illustrate it for the Rwandan conflict cycle. Finally, I provide an application studying the impact of violent conflict on schooling in Rwanda, and compare the results across different conflict intensity measures.

The micro-empirical literature on the legacy of violent conflict: a typology according to the conflict measure used

Below, I give an overview of micro level studies that analyze the impact of civil war on socioeconomic outcomes. Among the studies discussed, three main types are defined according to the measurement of conflict exposure: conflict exposure in time, conflict exposure in space, and household conflict experience. Each type is evaluated on its strengths and weaknesses. Table I summarizes the studies by type.

Insert Table I about here

Type I: conflict exposure in time

The first set of studies measure conflict exposure in time, by combining information on the conflict’s timing with birth dates of the surveyed population, thus identifying the affected age cohort. This method is often feasible because in most cases the conflict’s start and end date are known by reasonable approximation. In addition, commonly executed nationwide surveys

3Civil war is defined as a war between organized groups within a single nation state having more than 1,000 battle deaths in a single year (Gleditsch et al., 2002).
include birth dates of the sampled population. The most convincing results are obtained when scholars can use difference-in-difference (DD) estimates relying on two nationwide surveys, one prior and one after the conflict occurred, with the treated group being the affected age cohort in the post-conflict survey. However, even in those cases, Type-I studies face two drawbacks. First, the outcomes studied are restricted to age-related individual characteristics, e.g. schooling attainment, height-for-age z-scores and fertility. Second, one cannot exclude that the results are driven by another event in the same time span or by a time trend. To control for the latter, type-I studies often use a DDD estimation, relying on variation in conflict intensity across time as well as space.

Examples of type-I studies are Akresh & de Walque (2008), Akresh et al. (2011), Alderman et al. (2006), Bundervoet et al. (2009), Chamarbagwala & Moran (2008), de Walque (2004) and Leon (2010). Among these seven studies, four focus on schooling outcomes, while three look at height-for-age z-scores (see Table I for details). Leon (2010) uses the finest measure of conflict intensity. He estimates the short and long term effects of the Peruvian civil strife on educational achievement using both the conflict’s variation in time and space. The spatial variation is based on the number of human rights violations across 1833 districts, provided by the Peruvian Truth and Reconciliation Commission. de Walque (2004) studies the impact of the Cambodian Khmer Rouge terror regime on population structure, health status as well as schooling levels. In contrast to the other studies, this one does not combine variation of conflict intensity in time with its variation in space. All other studies do so and therefore overlap with studies of type II.

Type II: conflict exposure in space

A first set of studies using spatial variation in conflict intensity relies on event data to construct a dummy variable taking one for provinces, regions or other administrative units heavily affected by violent conflict and zero otherwise. The event data mostly stem from journalists’ or human rights organizations’ reports. It is up to the researcher to interpret the reports, which introduces a degree of arbitrariness. In addition, event data do not systematically cover all areas of a country and are therefore inherently biased. For example, areas that are relatively well accessible or areas in which large scale massacres took place may receive more and better coverage compared to less accessible areas and areas where killings were dispersed. Examples of studies that define a conflict dummy based on event data are two previously mentioned type-I studies (Akresh et al., 2011; Bundervoet et al., 2009) as well as Bundervoet (2007) and Justino & Verwimp (2006).
A second set of type-II studies have constructed richer measures of geographic conflict intensity based on very diverse sources. This set includes three previously mentioned type-I studies (Leon, 2010; Chamarbagwala & Moran, 2008; and Akresh & de Walque, 2008), as well as an additional three studies: Gonzales & Lopez (2007), Miguel & Roland (2011) and Li (2007). Gonzales & Lopez (2007), looking at the effect of political violence in Columbia on farm household efficiency, subject detailed data on human rights violations to principal component analysis. The variables taken into account are homicides, the number of attacks by FARC guerrillas, the number of attacks by ELN guerrillas, kidnappings, and displaced population. The first PC accounts for 43% of the joint variance of the five indicators, and is retained as an index of political violence at the municipal level (Nr=55). Miguel and Roland (2011) use district level army intelligence data (Nr=584) for assessing the long term socioeconomic impact of bombing in Vietnam. Li (2007) uses historic records on damage to 17 railroad lines across China to study the impact of China’s warlord period on investment and economic growth.

Despite the increased attention for developing finer spatial measures of conflict intensity, there is still much room for improvement. In particular, there is a lack of uniformity in the sense that the fine micro-level conflict intensity measures used so far are often based on rather particular country-specific data. A noteworthy effort made for developing a uniform micro-level measure of violent conflict intensity is the Armed Conflict Location and Event Data (ACLED; Raleigh et al., 2010), which provides geo-referenced information on the location of battles and military activity. This information is derived by screening news articles with language recognition software, which on average yields good results. However, in some cases press accounts may be biased and computer news screening may be sensitive to the language in which events are reported. Another drawback, highlighted by Restrepo et al. (2006), is that battle events (e.g. between a rebel group and government troops) may come short in reflecting violence against civilians. These drawbacks can partly be overcome in time by using more sophisticated software programs and by coding different forms of violence.

A final set of type-II studies averages household level information at the community level to obtain a spatial conflict intensity measure (Bellows & Miguel, 2009; Deininger, 2003; Shemyakina, 2011). This set of studies overlaps with the third type.

Type III: Household conflict experience questions

Studies of type III rely on household surveys. A distinction can be made between standard surveys (e.g. the Integrated Household Living Conditions Survey, IHLCS) and surveys that
include a special module on household conflict experience. The standard surveys often include questions on migration status, damage to household dwellings and asset loss, and these questions can be used as proxies for refugee experience and wartime shocks to physical capital. Studies using such information include those that analyze socioeconomic outcomes across refugee and non-refugee households (e.g., Kondylis, 2008; Verwimp & Van Bavel, 2004), as well as one previously mentioned type-I study, Shemyakina (2011), which uses information on damage to household dwellings to study the impact of armed conflict in Tajikistan on schooling outcomes.

The limited number of surveys including a special module on conflict experience inquire about direct confrontations with violence, e.g., as a perpetrator or as a victim. These surveys are often the result of the researchers' own fieldwork, because such questions are rarely included in the usual nationwide surveys that have to pass through government institutions for their approval and implementation. This independence often pays off in detailed information from various conflict experience questions. The drawback of low profile - low budget surveys, is their small number of observations. Examples of type-III studies relying on explicit household conflict experience questions are Bellows & Miguel (2009), Deininger (2003), Verpoorten & Berlage (2007) and Verpoorten (2009). The latter two rely on a small scale survey and analyze the information at the household level while the former two use a nationally representative survey and aggregate the household answers at the community level in order to obtain a spatial measure of conflict intensity.

The concern for developing a uniform measure of conflict intensity has triggered a debate on the inclusion of a conflict module in standard household surveys (Brück et al., 2010). The introduction of such a module would most certainly be a way forward since it would provide detailed and comparable information on diverse conflict experiences at the level of households or individuals for a number of countries. One potential drawback is that, in many post-conflict countries, it would take some time before a survey can be organized upon the restoration of peace, and the longer it takes, the more the data will be prone to recall bias as well as attrition bias which is especially large in post-conflict countries due to excess mortality and population displacement. While this drawback can be overcome with the help of funding, hand-on experience and innovative survey design, there are by now a large number of current post-conflict countries for which too much time will have past between the restoration of peace and the implementation of an ingenious post-conflict household survey.
A new measure of conflict intensity

This section outlines the method for a new spatial measure of conflict exposure, which is constructed in three steps from two rounds of population census data. First, a number of mortality proxies are calculated separately for the pre- and post-war census at the level of the smallest administrative unit that they have in common\(^4\). These proxies may include widowhood (\(\%\)), orphanhood (\(\%\)) and mortality of sons and daughters (\(\%\) of life births).

The pre- and post-war vectors of \(p\) mortality proxies at the level of administrative unit \(j\) can be written as follows:

\[
MP_{\text{pre-war}}^j = [MP_{j1}, MP_{j2}, ..., MP_{jp}],
\]

\[
MP_{\text{post-war}}^j = [MP'_{j1}, MP'_{j2}, ..., MP'_{jp}].
\]

In a second step, the first difference is taken between the post-war and pre-war mortality proxies, yielding \(j\) community level vectors of \(p\) wartime excess mortality proxies (\(WEMP_j\)):

\[
MP_{\text{post-war}}^j - MP_{\text{pre-war}}^j = WEMP_j = [WEMP_{j1}, WEMP_{j2}, ..., WEMP_{jp}].
\]

Third, the set of wartime excess mortality proxies is summarized into an index by taking a weighted sum, with the weights determined by PCA, which has the desirable property of reducing the dimensionality of a variable set while retaining as much as possible of the variation present \(^5\). The first PC will be an appropriate summary of excess mortality on a

\(^4\)Provided that this smallest common administrative unit is large enough in terms of population to reduce the impact of outliers and erroneous data.

\(^5\)From a set of variables, PCA extracts orthogonal linear combinations that capture the common information in the set most successfully. The first principal component (PC) identifies the linear combination of the variables with maximum variance, the second principal component yields a second linear combination of the variables, orthogonal to the first, with maximal remaining variance, and so on.

Formally, suppose that \(x\) is a vector of \(p\) random variables and \(x^*\) is a vector of the standardized \(p\) variables, having zero mean and unit variance, then the first principal component \(PC_1\) is the linear function \(\alpha_1^*x^*\) having maximum variance, where \(\alpha_1\) is a vector of \(p\) constants \(\alpha_{11}, \alpha_{12}, ..., \alpha_{1p}\), and \(t\) denotes transpose.

\[
PC_1 = \alpha_1^*x^* = \alpha_{11}x_1^* + \alpha_{12}x_2^* + ... + \alpha_{1p}x_p^*,
\]

Mathematically, the vector \(\alpha_1\) maximizes \(\text{var}[\alpha_1^*x^*] = \alpha_1^*\Sigma\alpha_1\), with \(\Sigma\) the covariance matrix of \(x^*\), which corresponds to the correlation matrix of the vector \(x\) of the original, unstandardized variables. For the purpose of finding a closed form solution for this maximization problem, a normalization constraint, \(\alpha_1^*\alpha_1 = 1\), is imposed. To maximize \(\alpha_1^*\Sigma\alpha_1\) subject to \(\alpha_1^*\alpha_1 = 1\), the standard approach is to use the technique of Lagrange multipliers. It can be shown that this maximization problem leads to choosing \(\alpha_1\) as the eigenvector of \(\Sigma\) corresponding to the largest eigenvalue of \(\Sigma\), \(\lambda_1\) and \(\text{var}[\alpha_1^*x^*] = \alpha_1^*\Sigma\alpha_1 = \lambda_1\). To interpret the PC in terms of the original variables, each coefficient \(\alpha_{11}\) must be divided by the standard deviation, \(s_i\), of the corresponding variable \(x_i\). For example, a one unit increase in \(x_i\) leads to a change in the 1st PC equal to \(\alpha_{11}/s_i\). For a detailed exposition of principal component analysis I refer to Jolliffe (2002).
less to more scale if it captures a relatively high percentage of the total variance present in
the excess mortality proxies set and the "loadings" of that PC have roughly equal values
(Jolliffe, 2002). The first PC, referred to as the Wartime Excess Mortality Index, can be
written as:

\[WEMI_j = l \times WEMP_j = l \times [WEMP_j1, WEMP_j2, \ldots, WEMP_{jp}] \] (3)

with \(l \) the vector of loadings obtained through PCA.

A number of studies have used PCA for the purpose of aggregating conflict indicators.
Pioneering work by Hibbs (1973) derives indices of "collective protest" and "internal war"
from a 108-nation cross-sectional analysis of six event variables on mass political violence.
Following Hibbs (1973) a large number of cross-country studies have used an index of sociopo-
litical instability as an explanatory variable in regressions in which the dependent variable is
growth, savings or investment (e.g. Venieris & Gupta, 1986; Barro, 1991; Alesina & Perotti,
1996). To the best of our knowledge, only one micro-economic study, Gonzales & Lopez
(2007) - discussed in the previous section, uses PCA to summarize variables into a micro
level index of violent conflict. The main difference between these previous studies and the
measure proposed in this study is that \(WEMI \) relies on population census data instead of
event data or data from transitional justice records.

In the demographic literature, there is a long tradition of studies that infer excess mortal-
ity from characteristics of the surviving population, a method referred to as indirect mortality
estimation (e.g. Hill & Trussel, 1977; Timaeus, 1986). The main difference with the current
approach is that, instead of trying to come up with an absolute number for excess mortality,
which is far more demanding in terms of data requirements and assumptions, the \(WEMI \)
aims at capturing relative excess mortality, i.e. its spatial distribution within a given country
on a less to more scale.

Illustration: measuring the Rwandan conflict cycle

The Rwandan conflict cycle

The Rwandan conflict cycle of the nineties included civil war, genocide, reprisal killings,
(counter)insurgency and a major refugee crisis. While these events all occurred in the
nineties, their geographic location within Rwanda differed, with the 1991-1993 civil war
confined to the northern provinces, the 1994 genocide especially severe in the South of the
country, the 1994 civil war was most intense in and around the capital city and the 1995-1998 (counter)insurgency concentrated in the Northwest (Des Forges, 1999; Davenport & Stam, 2009). This broad spatial pattern is illustrated in Figure I.

Among the events in the Rwandan conflict cycle, the genocide had by far the largest direct death toll, with an estimated 800,000 Tutsi and moderate Hutu killed in a time span of barely 100 days (Des Forges, 1999; Prunier, 1998; Verpoorten, 2005). There is much less accurate information on the death toll of the civil war, but it is likely that tens of thousands of people became victims of the fighting between the RPF and the FAR, or fell victim to reprisal killings by the RPF (Davenport & Stam, 2009; Reyntjens, 2009; the "Gersony report"\(^6\)). Regarding the two latter forms of violence, Davenport & Stam (2009) estimate that, during April-June 1994, the number of individuals killed in zones under RPF control and the zones contested by the RPF and FAR amounted to respectively 80,000 and 90,000.

There is even more uncertainty about the number of indirect deaths of the conflict. Many may have died prematurely following the collapse of health care, social and economic systems. Furthermore, the death toll in refugee camps was very high due to the rapid spread of infectious diseases. For example, the cholera epidemic in Goma (at the border of RD Congo and Rwanda) is believed to have taken around 30,000 lives (Prunier, 1998). The indirect death toll in Gisenyi and Ruhengeri may have been higher than elsewhere because these northwestern provinces did not only serve as the corridor of approximately one million refugees fleeing to Congo in 1994 and back to Rwanda in 1996/1997, but they also experienced a relatively long period of violence as well as important disruptions in economic activities. In this respect, Amnesty International reports that, as part of the counterinsurgency strategy, a scorched earth policy was being carried out in many areas in the Northwest, where homes and fields were being burned. In addition, they report that, in an attempt to cut food supplies to armed opposition groups, the RPF prevented farmers from harvesting and marketing their crops (Amnesty International, 1997).

\(^6\)The "Gersony Report" is the name given to an unpublished report that identified a pattern of massacres by the RPF. The findings in the report were made by a team under Robert Gersony under contract to the United Nations High Commissioner for Refugees. Gersony’s personal conclusion was that between April and August 1994, the RPF had killed "between 25,000 and 45,000 persons, between 5,000 and 10,000 persons each month from April through July and 5,000 for the month of August" (Des Forges, 1999).
The Wartime Excess Mortality Index for Rwanda

For the construction of $WEMI$ for the Rwandan conflict, I rely on a 10% random draw of the 1991 population census (N=742,918 individuals; accessed online from IPUMS International) and the entire 2002 population census (N=8.1 million; received from the Rwandan Government). The 2002 census includes information at the level of the administrative sectors (N=1540), while the smallest available administrative unit in the 1991 population census is the commune (N=145), which is one administrative unit above the sector. Hence, I calculate the excess mortality proxies at the commune level, which still is a fairly small administrative unit of 174 squared km and approximately 55,000 inhabitants on average.

I derive the following five wartime excess mortality proxies ($WEMP$) for 145 communes ($j = 1...145$) in Rwanda:

- $(WEMP_{j1})$ ΔMortality of sons: 2002-1991 difference in total number of boys died/number of boys born (for all women who ever gave birth);

- $(WEMP_{j2})$ ΔMortality of daughters: 2002-1991 difference in total number of girls died/girls born (for all women who ever gave birth);

- $(WEMP_{j3})$ ΔWidowhood: 2002-1991 difference in the proportion of widows (among women > 30 years);

- $(WEMP_{j4})$ ΔDouble orphanhood: 2002-1991 difference in the proportion of double orphans (among children and youngsters <30 years);

- $(WEMP_{j5})$ Disability: the proportion of the 2002 population reporting a handicap due to war or genocide (only applicable in the 2002 census).

For the calculation of widowhood, I set the lower age limit at 30 because it is likely that a considerable share of women aged below 30 in 2002 were not yet married in 1990, the start of the conflict, and those who were married may have remarried upon widowhood, given their young age. For orphans, usually one considers the age groups 0-15 or 0-18. Here, I take the age group 0-30 as a baseline since youngsters aged 18 at the start of the conflict were 30 years old by 2002. Below, I perform a sensitivity analysis with respect to the age limits.

7 It has been demonstrated that the Rwandan census data are very reliable except for the recording of ethnicity. Verpoorten (2005) compares the 1991 Rwandan census data with the 1990 population data from the local administration and finds almost an exact match of numbers of women and men. However, the share of Tutsi in the population was underreported in the national census data, either by the Habyarimana regime to keep their school enrolment and public employment quotas low, either by Tutsi themselves to avoid discrimination.
An important note to make is that the aftermath of the Rwandan conflict was characterized by a huge refugee crisis and considerable internal and external migration. To gauge the impact of displacement on the results, I calculate the 2002 mortality proxies both including and excluding individuals who changed residence over the period 1990-2002. The latter can be derived from the 2002 census by combining individual-level information of current residence, previous residence and duration of current residence. Since the purpose is to retrieve a spatial pattern of wartime excess mortality, the baseline results are calculated excluding individuals who changed residence over the period 1990-2002, which leaves a sample of 7.4 million individuals in the 2002 census (91%). The results including migrants are basically similar (see below).

Table II provides summary statistics for the pre-war and post-war MPs and their first differences. All MPs have higher values in the 2002 population census than in the 1991 population census. The mortality of sons and daughters increased from 20% to 28% and from 18% to 24%, respectively. Widowhood rose from 18% to 31% and orphanhood from 2% to 5%. Disability due to genocide or war was not present in the 1991 census and amounted to 0.3% in 2002.

Subjecting the set \(WEMP_{j1} - WEMP_{j5}\) to PCA results in the following first PC:

\[
WEMI_j = 0.48 \times WEMP_{j1} + 0.43 \times WEMP_{j2} + 0.46 \times WEMP_{j3} + 0.48 \times WEMP_{j4} + 0.38 \times WEMP_{j5},
\]

which explains up to 69% of the total variation of the variable set and has significant positive loadings on all Wartime Excess Mortality Proxies.

Figure II plots the quintiles of \(WEMI_j\) on an administrative map of Rwanda. Many top quintile communes are located in Butare Province, in and around Kigali City, in Gisenyi, in the northwestern corner of Kibungo and in the southwestern corner of Umutara. Smaller local clusters can be found in the West of Ruhengeri and Kibuye and in the Southeast of Gitarama and Gikongoro. Taken together, this map reflects well the spatial pattern of different forms of violence that took place in Rwanda (see Figure I). Moreover, elsewhere, it is demonstrated that the spatial pattern of \(WEMI\) is strongly related to geographical determinants of violence in Rwanda, such as the commune-level share of Tutsi, the number of days that a commune was under RPF control in 1994, the distance to a main road, the distance to a refugee camp (from where the insurgents operated), and alleged human
rights violations during the 1995-1998 (counter)insurgency. This is extensively discussed in Verpoorten (2010), who studies the determinants of the spatial pattern of excess mortality in Rwanda.

Robustness tests

I perform several robustness tests to check the sensitivity of $WEMI$ to different specifications and to possible sources of bias. First, I calculate $WEMI$ based on the full census, i.e. including migrants. Second, I leave out the different wartime excess mortality proxies case by case to assess whether the first component unintentionally overemphasizes some mortality over others. Third, instead of including double orphanhood as a mortality proxy, I include maternal and paternal orphanhood. Fourth, I perform a sensitivity analysis with respect to the age limits for the excess mortality proxies $WEMP_{j3}$ and $WEMP_{j4}$, setting the age limits 5 years lower (at 25) or 5 years higher (at 35)).

Finally, I make a correction for possible survival bias. $WEMI$ may be biased downward in communes where many families were entirely exterminated. In order to attenuate the effect of survival bias, I increase the weight of communes that are close to sites of large-scale massacres. The proximity to a large-scale massacre is taken into account by adding the natural logarithm of the commune level distance to the nearest mass grave to the set of variables subjected to PCA. This distance is calculated in km by overlaying a geo-referenced administrative map with the location of 71 mass graves in Rwanda taken from the Yale Genocide Studies website. The resulting $WEMI$ is given by the following linear combination:

$$WEMI_{s_j} = 0.47 \times WEMP_{j1} + 0.42 \times WEMP_{j2} + 0.45 \times WEMP_{j3} + 0.48 \times WEMP_{j4} + 0.38 \times WEMP_{j5} - 0.15 \times s_j,$$

with s_j "log(distance to mass grave)".

Table AI in Appendix gives an overview of these alternative calculations and lists their
correlation coefficients with the baseline \textit{WEMI}. All correlation coefficients are very close to 1, indicating that the spatial pattern of excess mortality is very robust to how exactly \textit{WEMI} is being calculated. Below I show that these measures also yield basically the same results in an empirical application.

Application: armed conflict and schooling in Rwanda

The aim of this section is to compare the results of an empirical analysis across different conflict measures, including \textit{WEMI}. For this purpose, the application focuses on a well-established impact of armed conflict, i.e. its negative impact on schooling (e.g. Lai, 2007). The section proceeds in four steps. First, I present the data on schooling. Second, I calculate the schooling deficit over time in each of the 145 communes, obtaining a spatial pattern of the 1991-2002 schooling deficit. Third, I combine information on conflict exposure in time with the spatial information embodied in \textit{WEMI} to calculate DDD estimates of the schooling deficit. Finally, I compare these DDD results with those obtained using a large number of alternative conflict intensity measures for the Rwandan conflict.

Schooling data

I use information on the number of years of schooling for individuals aged 6 to 50 in a 10% random draw from the 1991 and 2002 population census8. The individuals are divided across a young and an old cohort. The young age cohort in 2002 represents the group of individuals exposed to the armed conflict at primary schooling age (6-12). The age limits of this age cohort are set at 6 and 22 in 2002 since 6 is the age at which children start primary school and those aged 22 in 2002 were aged 12 at the start of the conflict in 1990 (alternative age categories give qualitatively similar results - not reported)9.

In the 10% random draw of the 1991 and 2002 census, the young age cohort (6-22) counts respectively 305,881 and 347,540 individuals, while the old age cohort (23-50) counts respectively 211,007 and 221,025 individuals. Table III provides summary statistics on the number of years of schooling completed for the young and the old age cohort across 1991 and 2002. The figures show a progress of 0.8 years of schooling for the old age cohort and a drop of 0.2 years for the young age cohort, yielding a DD estimate of one year of schooling.

8I use only 10% of the 2002 census, because the regression analysis - run in STATA - cannot be executed using the entire census (8.1 million observations).

9The alternative age categories used include 8-17 and 6-22 for the young cohort and 18-37 and 23-40 for the old cohort.
or, when taking logged years of schooling as a dependent variable, a 19.3% decrease in the number of years of schooling.

This result is in line with the study of Akresh & de Walque (2008) who study years of education of a young (6-15) and an older (16-35) age cohort in the 1992 and 2000 DHS survey and conclude that children exposed to armed conflict completed close to one-half year less education which corresponds to a 18.3% drop relative to the average educational achievement. The present study uses census data instead of DHS data because the former have a complete geographic coverage and can be combined with commune level measures of conflict intensity (instead of province level measures as is the case for the DHS data).

Given that the data used for this analysis include 1,074,561 individuals divided across 145 communes, we have sufficient observations to calculate commune level DD estimates and identify the spatial pattern of the schooling deficit. The commune level DD are obtained by estimating the following equation for each commune j separately:

$$Y_{ijt} = \alpha_{j0} + \alpha_{j1}(T_t \times young_i) + \alpha_{j2}T_t + \alpha_{j3}young_i + \epsilon_{ijt}$$

with

Y_{ijt} : average years of schooling of individual aged i in commune j at time t

T_t : indicator variable for being in the 2002 census

$young_i$: indicator variable for being in the young age cohort

ϵ_{ijt} : idiosyncratic error

The coefficients α_{j1} give estimates of the 1991-2002 schooling deficit for 145 different communes. It are DD estimates identified from discrete treatment T_t, with the young age cohort the treated and the old age cohort the non-treated group. Figure III plots the quintiles of $\hat{\alpha}_{j1}$ on a map. The spatial pattern shows clusters of large drops in schooling in the Northwest, scattered throughout the centre, the South and East. Since the share of Tutsi in the northwestern provinces was as low as 1.5% (compared to over 10% in the South), the
estimated schooling deficit in the Northwest cannot be attributed to the genocide, but is likely due to other events in the conflict cycle, primarily the 1995-1998 (counter)insurgency and the refugee crisis. Note that this finding stands in contrast with the study of Akresh & de Walque (2008) who implicitly attribute the entire estimated schooling deficit to genocide10.

To determine causality, I take the analysis two steps further. First, I estimate a DDD model in which treatment is defined as being in the young age cohort in the 2002 sample and residing in a geographic unit with high violent conflict intensity. Second, I instrument for conflict intensity.

The DDD estimate corresponds to the coefficient β_1 in the following equation:

$$Y_{ijt} = \beta_0 + \beta_1(T_t \times C_j \times young_i) + \beta_2(T_t \times C_j) + \beta_3(T_t \times young_i) + \beta_4(C_j \times young_i) + \beta_5T_t + \beta_6C_j + \beta_7X_{ijt} + \zeta_i + \eta_j + \epsilon_{ijt}$$

WITH

Y_{ijt}: average years of schooling of individual i in commune j at time t

T_t: indicator variable for being in the 2002 census

C_j: commune level measure of conflict intensity, rescaled to fit the interval $[0, 1]$

$young_i$: indicator variable for being in the young age cohort

X_{ijt}: household and individual level controls11

ζ_i: age fixed effects

η_j: province fixed effects

ϵ_{ijt}: idiosyncratic error

10In an online appendix to this article, I show this more formally. I augment the set of mortality proxies subjected to PCA with a set of genocide-specific proxies, obtaining two indices, one for genocide-related excess mortality (GEMI) and one for other sources of excess mortality (CEMI). It is shown that GEMI can account for less than half of the schooling deficit.

11In an online appendix to this article, I show this more formally. I augment the set of mortality proxies subjected to PCA with a set of genocide-specific proxies, obtaining two indices, one for genocide-related excess mortality (GEMI) and one for other sources of excess mortality (CEMI). It is shown that GEMI can account for less than half of the schooling deficit.
Column 1 of Table IV gives the OLS results with C_j defined as W_{EMI_j}. The estimated coefficient $\hat{\beta}_1$ is negative and highly significant, at -0.59. Since the conflict indices are rescaled to the interval $[0, 1]$, this value can be interpreted as the change in the number of years of education when moving from zero to maximum conflict intensity.

The estimate for β_1 may be biased due to reversed causality, i.e. the intensity of violence may have been higher in those areas where there was a downward trend in education. Alternatively, there may be omitted variable bias, i.e. excess mortality may have increased for another reason besides conflict and this increase may have gone hand in hand with a decrease in education. Both of these sources of endogeneity bias can be remedied for with an instrumental variable approach.

I use the commune level distance to Uganda as a first identifying instrument. At the peak of the civil war and genocide in 1994 the RPF infiltrated from Uganda and gradually moved towards Kigali City engaging in heavy battles with the Rwandan army before eventually taking over the capital. The battle front then moved to other areas of the country, safeguarding the remaining Tutsi from being killed and engaging in reprisal killings on Hutu who allegedly participated in the genocide (Davenport & Stam, 2009)\(^{12}\). The exogenous character of the border stems from colonial history, as it was fixed following a compromise agreement by European nations (Department of State, 1965).

A second identifying instrument for conflict intensity is the commune level distance to Nyanza, a sector located in the northwestern corner of Butare, close to the border with Gikongoro and Gitarama province. Nyanza was the capital of the Tutsi monarchy, which controlled most of the present-day Rwandan territory from as early as the 14th century. Its economic and political importance faded during colonization and abruptly ended with the 1959 revolution and subsequent 1962 independence. The government reorganized Rwanda’s administrative division shortly after independence. The southern and western outskirts of the Nyanza region were attached to what is now the eastern part of Gikongoro, a highland area inhabited largely by Hutu. The aim was to weaken Tutsi influence around the former

\(^{12}\) Previous work on Rwanda and elsewhere has used similar instruments. Miguel & Roland (2011) use the distance to the meridian that distinguishes North from South Vietnam as an instrument for bombing intensity in Vietnam, while Akresh & de Walque (2008) also use distance to Uganda, measured at the level of 11 provinces, as identifying instrument for armed conflict in Rwanda. In this study I use more detailed spatial data, and use the distance of each of the 145 communes to Uganda. The use of this finer instrument should considerably add to its strength.
royal capital Nyanza (Des Forges, 1999). Today nothing is left of Nyanza’s former glory, but the proportion of Tutsi in the communities close to Nyanza was still higher prior to the genocide, which makes it a relevant instrument for the intensity of ethnic violence.

To instrument for the interaction terms that include \(WEMI \), I follow the procedure proposed in Wooldrige (2000, p.236); first constructing predicted values of \(WEMI \) by regressing \(WEMI \) on the included and the excluded instruments (column 3, Table IV); then using the interaction terms between the predicted \(WEMI \), the post-treatment year, and the young age cohort as additional identifying instrument in the first stage of the IVE (columns 4-7). The first stage results demonstrate the relevance of both instruments\(^\text{13}\). Column (2) of Table IV reports the second stage IV results, which are very similar to the OLS results. Table AI in Appendix shows that the results remain basically the same when using different specifications of \(WEMI \).

Different measures, different results

As evident from Table I above, there exist a number of studies on the micro-economic consequences of violence in Rwanda. For the construction of conflict intensity measures, these studies have borrowed from several sources, including event data, the Genodynamics project (Davenport & Stam, 2009), the 1991 Rwandan population census, Yale genocide studies and the records from the Gacaca (the transitional justice system for genocide suspects). I compiled the previously used measures into one database, and constructed a number of additional measures from the same data sources as well as from ACLED (Raleigh et al., 2010). A detailed description of all 14 alternative measures can be consulted in the Appendix. Table V gives an overview.

The 14 measures include four province-level dummies of conflict intensity (C1-C4 in Panel A of Table V); six continuous province-level measures (C5-C10 in Panel B); and four commune-level measures (C11-C14 in Panel C). These measures are not all positively correlated with \(WEMI \). In particular, the province-level genocide dummy (C1), the province-level proportion of Tutsi (C7), and the province-level share of genocide suspects in the population (C10) correlate negatively with \(WEMI \). This finding may be explained by the genocide-specific character of these measures, omitting other forms of violence, or because these measures are defined at the province level and fail to capture important within province variation

\(^{13}\)Distance to Nyanza has the expected negative sign, reflecting high genocide intensity near Nyanza. Distance to Uganda has a positive sign, indicating high conflict intensity further away from the border with Uganda, reflecting the 1994 civil war in the centre and the east, with the battles intensifying as the RPF proceeded.
in conflict intensity. There is some support for the latter explanation, since, when defined
at the commune-level, both the proportion of Tutsi and of genocide suspects correlated
positively (instead of negatively) with WEMI.

Insert Table V about here

The last two columns of Table V list the results of the OLS and IV estimates of the
coefficient β_1 across the 14 different conflict intensity measures. The estimated DDD coe-
cients vary considerably across the measures, with significantly negative coefficient estimates
in four cases, significantly positive estimates in two cases, and insignificant results in the re-
mainling eight cases. Thus, even in a seemingly straightforward application of the impact of
armed conflict on schooling, different micro-level conflict measures yield strikingly different
results. Probably, the source of these differences lies in the different degrees of neutrality
and spatial detail of these measures. This does not imply that some of these measures are
useless, but it does mean that whenever used in an empirical application, one should be clear
about what exactly is measured and what is left out, and how this may affect the results.

Conclusion

Besides a steady increase in the number of micro-empirical studies on the legacy of armed
conflict, there have been considerable improvements in methodology. In particular, schol-
ars have increasingly devoted attention to identifying rich micro-level measures of conflict
intensity (e.g. Restrepo et al., 2006; Raleigh et al., 2010; Brück et al., 2010). This is no
coincidence because the identification of micro-level consequences of armed conflict stands
or falls with the conflict intensity measure used. So, how should we measure micro-level
conflict intensity in order to take a step forward in the study of the legacy of armed conflict?
There is no single answer to this question, as one probably needs a combination of various
methodologies.

This paper demonstrated how widely available data, i.e. population census data, and a
commonly used method, Principal Component Analysis, can result in a fine index of Wartime
Excess Mortality, referred to as $WEMI$. It is argued that the index is well suited in a context
in which different forms of violence took place as well as in the presence of a high direct or
indirect death toll. $WEMI$ is calculated for the case of Rwanda and it is shown that its
spatial pattern corresponds well with three main forms of violence taking place in Rwanda.
in the nineties: civil war, genocide and (counter)insurgency. The findings in the empirical application on schooling in Rwanda suggests that the 1991-2002 schooling deficit in Rwanda can not only be attributed to genocide, but also to other events in the Rwandan conflict cycle, in particular the 1995-1998 counterinsurgency.

Repeating the same empirical exercise with a large number of alternative conflict intensity measures yields very different results, suggesting that empirical applications on the legacy of armed conflict should devote due attention to evaluate the conflict intensity measures used and the underlying methodologies, and - whenever possible - test the robustness of the results against the use of different measures.

\textit{WEMI} can contribute to the micro-economic study of the legacy of different forms of violence in Rwanda. On the one hand, previous studies on health and educational outcomes can be replicated with a larger set of conflict intensity measures, allowing deeper understanding of e.g. the impact of different forms of violence. On the other hand, new issues in the area of technology, institutions and social norms that require fine spatial information on conflict intensity can be addressed.

\textit{WEMI} can be calculated for a set of other post-conflict countries, which may open the perspective for useful comparisons of country case studies. Admittedly, since \textit{WEMI} is a relative rather than an absolute measure, the results of different country case studies need to be interpreted accordingly. In addition, the set of countries for which \textit{WEMI} can be calculated will be a nonrandom subset of post-conflict countries, i.e. countries where violence resulted in high excess mortality and where post-conflict institutions are sufficiently (co)operative to collect and release population census data.
Appendix: Description of 14 alternative conflict intensity measures

This appendix describes 14 conflict intensity measures for Rwanda (denoted C1-C14). These measures are used to produce the results in Table V. Ten (C1-C10) of the 15 measures are at the province level, the remaining four (C11-C14) are at the commune level. The measures rely on six distinct primary data sources.

Event data

C1: '94 genocide dummy
C2: '90-'94 civil war dummy
C3: '94-'98 (counter)insurgency dummy

Justino and Verwimp (2006) rely on event data - in particular news reports and reports of Human Rights Watch - to evaluate the intensity of genocide, civil war and counterinsurgency in Rwanda across provinces. They identify four provinces with high 1994 genocide intensity (Butare, Cyangugu, Kibuye, Gikongoro - C1). The provinces are further categorized in provinces with high 1990-1994 civil war intensity (Kibungo, Rural Kigali, Ruhengeri and Byumba - C2) and high levels of 1995-1998 (counter)insurgency (Ruhengeri and Gisenyi - C3).

The Genodynamics project

C4: '94 death toll dummy
C5: Days with killings in April-July '94

In their study on the impact of armed conflict on schooling, Akresh & de Walque (2008) use a conflict intensity dummy that takes one for Butare, Rural Kigali, and Kibungo, the three provinces with the highest 1994 death toll (C4). In addition, they make use of the province level number of days with killings in the period April-June 1994 (C5). Both measures are taken from the Genodynamics project, which compiled data on 1994 casualties from different sources, including The Ministry of Education in Rwanda, Ministry of Youth, Culture and Sports in Rwanda, IBUKA (an association of Tutsi survivors), African Rights and Human Rights Watch (both international human rights organizations).
ACLED

C6: Number of battle events

The Armed Conflict Location and Event Data (ACLED) records 322 battle events in Rwanda for the period 1990-200214. The precision of the geographical information varies across battle events, with about two thirds identified at the commune level and one third at the province level. Therefore, the information is aggregated at the province level. The ACLED events record battles between the RPF and FAR, and do not capture the violence against civilians taking place during the genocide. Hence, the recorded events are concentrated in the northern provinces, where civil war and (counter)insurgency took place.

The 1991 population census

C7 & C11: Province and commune level proportion of Tutsi in the population

From the 1991 population census, one can derive the proportion of Tutsi both at the province level (C7) and at the commune level (C11). This is useful information because Tutsi were targeted in the genocide and their proportion in the population varies widely across as well as within provinces.

Yale Genocide Studies

C8 & C12: Province and commune level number of mass graves

C9 & C13: Province and commune level distance to nearest mass grave

On the website of Yale Genocide Studies, one can find a map with the location of 71 mass graves in Rwanda. The map was realized by the Rwandan commission of genocide memorial. The number of mass grave sites and memorials per province is used as a third measure of war intensity in the paper of Akresh & De Walque (2008). I construct two related measures, which are defined at the province level (C8-C9) as well as the commune level (C12-C13): the number of mass graves and the distance to the nearest mass grave. The latter is calculated by overlaying a geo-referenced administrative map with the location of 71 mass graves in Rwanda.

14Note that there is also an ACLED dataset recording events for the period 1997-2010 (Raleigh et al., 2010). Here, I use the older version of ACLED since it spans the entire period of civil war in Rwanda.
The gacaca records

C10 & C14: Province and commune level proportion of genocide suspects

Over the period 2005-2007, the transitional Rwandan justice system in charge of judging 1994 genocide suspects, referred to as gacaca, collected information on genocide victims, suspects and survivors (Government of Rwanda, 2005). The sector level numbers of genocide suspects and survivors were made public in the course of 2007. In a study of the impact of propaganda (through radio transmission) on civilian participation in the genocide, Yana-gizawa (2010) makes use of the commune level proportion of genocide suspects to proxy participation (C10 & C14).
References

24

Figure I. Geographical spread of genocide, civil war and (counter-)insurgency

Map taken from shape file of Rwandan provinces; location of different forms of violence based on event data; civil war includes the 1991-1993 and 1994 civil war between the RPF and the FAR; (Counter-)insurgency refers to the 1995-1998 encounters between the RPF and the remains of the FAR and the Interhamwe militia.
Figure II. Map of WEMI quintiles

Top quintile in darkest shade. The map is taken from a shape file of the Rwandan administrative sectors; the quintiles are calculated at the commune level (which is one level above the sector, but for which no shape file exists). The checkered areas are left out of the analysis. They include the national park, forest areas and lakes.
Figure III. Commune level difference-in-difference estimates of the 1991-2002 schooling deficit

Top quintile (= largest schooling deficit) in darkest shade. The map is taken from a shape file of the Rwandan administrative sectors; the quintiles are calculated at the commune level (which is one level above the sector, but for which no shape file exists). The checkered areas are left out of the analysis. They include the national park, forest areas and lakes.
<table>
<thead>
<tr>
<th>Type(s)*</th>
<th>Measurement of conflict exposure</th>
<th>Outcome studied</th>
<th>Country</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Age cohorts</td>
<td>Education & Health</td>
<td>Cambodia</td>
<td>De Walque, 2004</td>
</tr>
<tr>
<td>I, II</td>
<td>Age cohorts & Three different measures of province level conflict intensity measures (Nr=11)</td>
<td>Education</td>
<td>Rwanda</td>
<td>Akresh and De Walque, 2008</td>
</tr>
<tr>
<td>I, II</td>
<td>Age cohorts & Distribution of the number of victims and human rights violations across 22 departments (Nr=22)</td>
<td>Education</td>
<td>Guatemala</td>
<td>Chamarbagwala and Morán, 2011</td>
</tr>
<tr>
<td>I, II</td>
<td>Age cohorts & Rich district level data of the Peruvian Truth and Reconciliation Commission (CVR) (Nr=1833)</td>
<td>Education</td>
<td>Peru</td>
<td>Leon, 2010</td>
</tr>
<tr>
<td>I, II</td>
<td>Age cohorts & Dummy for high conflict intensity provinces (Nr=11)</td>
<td>Height-for-age z-scores</td>
<td>Rwanda</td>
<td>Akresh et al., 2011</td>
</tr>
<tr>
<td>I, II</td>
<td>Age cohorts & Dummy for high conflict intensity provinces (Nr=17)</td>
<td>Height-for-age z-scores</td>
<td>Burundi</td>
<td>Bundervoet et al., 2009</td>
</tr>
<tr>
<td>I, II</td>
<td>Age cohorts & Dummy for child being born in resettlement village (Nhh = 400, Nr=20)</td>
<td>Height-for-age z-scores</td>
<td>Zimbabwe</td>
<td>Alderman et al., 2006</td>
</tr>
<tr>
<td>I, III</td>
<td>Age cohorts & Household damage dwelling reports (Nhh=1580) and district level data on exposure to conflict (Nr=56)</td>
<td>Education</td>
<td>Tajikistan</td>
<td>Shemyakina, 2011</td>
</tr>
<tr>
<td>II</td>
<td>First PC of nr of assassinations, kidnappings, guerrilla attacks and displaced population). (Nr=55)</td>
<td>Household farm efficiency</td>
<td>Colombia</td>
<td>Gonzales and Lopez, 2005</td>
</tr>
<tr>
<td>II</td>
<td>Bombing intensity at the district level (Nr=584)</td>
<td>Socio-economic outcomes</td>
<td>Vietnam</td>
<td>Miguel and Roland, 2010</td>
</tr>
<tr>
<td>II</td>
<td>Railroad line damage (N=17 railroad lines)</td>
<td>Investment</td>
<td>China</td>
<td>Li, 2007</td>
</tr>
<tr>
<td>II</td>
<td>Dummy for high conflict intensity provinces (Nr=17)</td>
<td>Household activity portfolio</td>
<td>Burundi</td>
<td>Bundervoet, 2007</td>
</tr>
<tr>
<td>II</td>
<td>Dummy for high conflict intensity provinces (Nr=11)</td>
<td>Income growth</td>
<td>Rwanda</td>
<td>Justino and Verwimp, 2006</td>
</tr>
<tr>
<td>II, III</td>
<td>The chiefdom average of four household conflict experience questions (Nr=153)</td>
<td>Local institutions</td>
<td>Sierra-Leone</td>
<td>Bellows and Miguel, 2009</td>
</tr>
<tr>
<td>II, III</td>
<td>The community average of the incidence of civil strife, theft and physical attacks (Nr=370)</td>
<td>Non-agricultural enterprise start-ups</td>
<td>Uganda</td>
<td>Deininger, 2003</td>
</tr>
<tr>
<td>III</td>
<td>Five household conflict experience questions (Nhh=256)</td>
<td>Income and asset mobility</td>
<td>Rwanda</td>
<td>Verpoorten & Berlage, 2007</td>
</tr>
<tr>
<td>III</td>
<td>Five household conflict experience questions (Nhh=256)</td>
<td>Cattle sales</td>
<td>Rwanda</td>
<td>Verpoorten, 2009</td>
</tr>
</tbody>
</table>

*Types of identification of impact using (I) conflict exposure in time, (II) conflict exposure in space, (III) household conflict experience questions
(Nr=) Number of geographic entities; (Nhh=) Number of households
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>MP (1991 census)</th>
<th>MP' (2002 census)</th>
<th>WEMP (First difference)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mean</td>
<td>st.dev.</td>
<td>mean</td>
</tr>
<tr>
<td>Panel A: Mortality proxies used in baseline results (excluding migrants)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality of sons</td>
<td>Boys died/number of boys born</td>
<td>0.199 (0.033)</td>
<td>0.284 (0.037)</td>
<td>0.085 (0.031)</td>
</tr>
<tr>
<td>Mortality of daughters</td>
<td>Girls died/number of girls born</td>
<td>0.176 (0.033)</td>
<td>0.244 (0.035)</td>
<td>0.069 (0.030)</td>
</tr>
<tr>
<td>Widowhood</td>
<td>Widows (% women >=30)</td>
<td>0.183 (0.030)</td>
<td>0.306 (0.050)</td>
<td>0.123 (0.054)</td>
</tr>
<tr>
<td>Double orphanhood</td>
<td>Double orphans (% individuals <30)</td>
<td>0.020 (0.007)</td>
<td>0.051 (0.018)</td>
<td>0.030 (0.017)</td>
</tr>
<tr>
<td>Disability</td>
<td>Disabled due to war or genocide (% population)</td>
<td>0.000 (0.000)</td>
<td>0.003 (0.002)</td>
<td>0.003 (0.002)</td>
</tr>
<tr>
<td>Panel B: Two of the mortality proxies used in the robustness checks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal orphanhood</td>
<td>Maternal orphans (% individuals <30)</td>
<td>0.062 (0.015)</td>
<td>0.094 (0.022)</td>
<td>0.032 (0.024)</td>
</tr>
<tr>
<td>Paternal orphanhood</td>
<td>Paternal orphans (% individuals <30)</td>
<td>0.122 (0.025)</td>
<td>0.241 (0.050)</td>
<td>0.119 (0.051)</td>
</tr>
</tbody>
</table>

MP and MP' are vectors of pre-war and post-war mortality proxies resp.; WEMP are Wartime Excess Mortality Proxies, calculated as the first difference of MP' and MP. Other mortality proxies that are used in the robustness checks are described in the text but are not summarized in this Table, for reasons of parsimony, and because their summary statistics are very similar to those of the mortality proxies listed in Panel A.
Table III. Difference-in-Differences comparing pre- and post-conflict schooling for young and old cohorts

<table>
<thead>
<tr>
<th>Years of Schooling</th>
<th>Census 2002</th>
<th>Census 1991</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Cohort</td>
<td>3.727***</td>
<td>2.934***</td>
<td>0.793***</td>
</tr>
<tr>
<td></td>
<td>[0.007]</td>
<td>[0.007]</td>
<td>[0.010]</td>
</tr>
<tr>
<td>Young Cohort</td>
<td>2.651***</td>
<td>2.853***</td>
<td>-0.202***</td>
</tr>
<tr>
<td></td>
<td>[0.004]</td>
<td>[0.005]</td>
<td>[0.007]</td>
</tr>
<tr>
<td>Difference</td>
<td>-1.076***</td>
<td>-0.081***</td>
<td>-0.995***</td>
</tr>
<tr>
<td></td>
<td>[0.009]</td>
<td>[0.009]</td>
<td>[0.012]</td>
</tr>
</tbody>
</table>

*** significant at 1%. St.errors between brackets. The DD is obtained by estimating Equation (5) for the full sample of individuals. Young cohort = 6-22; old cohort = 23-50; In the 10% random draw of the 1991 and 2002 census, the young age cohort (6-22) counts respectively 305,881 and 347,540 individuals, while the old age cohort (23-50) counts respectively 211,007 and 221,025 individuals.
Table IV. Difference-in-Difference-in-Differences measuring the impact of armed conflict on years of schooling (OLS&IV)

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>OLS</th>
<th>IV 2nd stage</th>
<th>IV 1st stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Years of Schooling</td>
<td>Years of Schooling</td>
<td>WEMI</td>
</tr>
<tr>
<td>WEMI * (Young Cohort * CS 2002)</td>
<td>-0.588***</td>
<td>-0.657***</td>
<td>(0.117)</td>
</tr>
<tr>
<td>WEMI*CS2002</td>
<td>0.311***</td>
<td>0.384***</td>
<td>(0.090)</td>
</tr>
<tr>
<td>WEMI*Young cohort</td>
<td>-0.276</td>
<td>-0.508*</td>
<td>(0.224)</td>
</tr>
<tr>
<td>WEMI</td>
<td>0.258*</td>
<td>0.386*</td>
<td>(0.154)</td>
</tr>
<tr>
<td>Young Cohort * CS 2002</td>
<td>-0.922***</td>
<td>-0.757***</td>
<td>(0.049)</td>
</tr>
<tr>
<td>CS 2002</td>
<td>0.528***</td>
<td>0.423***</td>
<td>(0.037)</td>
</tr>
<tr>
<td>log(distance to Nyanza)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.088***</td>
<td>0.088***</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.030)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>log(distance to Uganda)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.065***</td>
<td>-0.065***</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.025)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>predicted WEMI * (Young Cohort * CS 2002)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>0.511***</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.047)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>predicted WEMI*CS2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>-0.001</td>
<td>0.507***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.002)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>predicted WEMI*Young cohort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.002</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Individual & Household Level Controls?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Child Age Fixed Effects?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Province Fixed Effects?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Commune level clusters</td>
<td>145</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>R²</td>
<td>0.395</td>
<td>0.395</td>
<td>0.463</td>
</tr>
<tr>
<td>F-stat of excl. instrument</td>
<td>9.7</td>
<td>9.53</td>
<td>58.94</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Sargan overidentification test</td>
<td>0.199</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.655)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cragg-Donald statistic</td>
<td>25747</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1,074,561</td>
<td>1,074,561</td>
<td>1,074,563</td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.1. The unit of observation is an individual. The robust standard errors are adjusted for clustering within communes and are reported between brackets. The control variables include indicator variables for being female, being non-poor and living in a rural area, the age of the household head, the highest years of education of any adult household member and the number of children aged 5 or less. The interaction terms are instrumented as suggested by Wooldrige (2000, p.236); first constructing predicted values of WEMI by regressing WEMI on the included and the excluded instruments (column 3); then using the interaction terms between the predicted WEMI, the post-treatment year and the young age cohort as additional identifying instrument in the first stage of the IVE (columns 4-7).
Table V. Overview of conflict intensity measures for Rwanda and the corresponding DDD estimates

<table>
<thead>
<tr>
<th>Panel A: province-level dummies</th>
<th>Data source</th>
<th>Used in</th>
<th>Mean</th>
<th>St. dev.</th>
<th>Correlation with WEMI²</th>
<th>Estimated DDD Impact³</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 Genocide dummy</td>
<td>Even data</td>
<td>Justino & Verwimp, 2006</td>
<td>0.35</td>
<td>0.48</td>
<td>-0.37***</td>
<td>0.168*** 0.180***</td>
</tr>
<tr>
<td>C2 '90-'94 civil war dummy</td>
<td>Even data</td>
<td>Justino & Verwimp, 2006</td>
<td>0.44</td>
<td>0.50</td>
<td>0.21***</td>
<td>-0.135** -0.134**</td>
</tr>
<tr>
<td>C3 '94-'98 (Counter-)insurgency dummy</td>
<td>Even data</td>
<td>Justino & Verwimp, 2006</td>
<td>0.20</td>
<td>0.40</td>
<td>0.26***</td>
<td>-0.119** -0.121**</td>
</tr>
<tr>
<td>C4 '94 death toll dummy</td>
<td>Genodynamics project</td>
<td>Akresh & de Walque, 2008</td>
<td>0.32</td>
<td>0.46</td>
<td>0.28***</td>
<td>-0.139** -0.082</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: province-level continuous measures</th>
<th>Used in</th>
<th>Mean</th>
<th>St. dev.</th>
<th>Correlation with WEMI²</th>
<th>Estimated DDD Impact³</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5 Days with killings in April-July '94</td>
<td>Genodynamics project</td>
<td>Akresh & de Walque, 2008</td>
<td>24.22</td>
<td>20.39</td>
<td>-0.01</td>
</tr>
<tr>
<td>C6 Number of battle events</td>
<td>ACLED</td>
<td>N.A.</td>
<td>30.87</td>
<td>18.11</td>
<td>0.07</td>
</tr>
<tr>
<td>C7 Proportion of Tutsi</td>
<td>1991 population census</td>
<td>Akresh & de Walque, 2008</td>
<td>0.08</td>
<td>0.06</td>
<td>-0.10***</td>
</tr>
<tr>
<td>C8 Number of mass graves</td>
<td>Yale genocide studies</td>
<td>Akresh & de Walque, 2008</td>
<td>6.28</td>
<td>4.88</td>
<td>0.05***</td>
</tr>
<tr>
<td>C9 Distance to mass grave</td>
<td>Yale genocide studies</td>
<td>N.A.</td>
<td>12.29</td>
<td>7.81</td>
<td>-0.13***</td>
</tr>
<tr>
<td>C10 Genocide suspects(%)</td>
<td>Gacaca records</td>
<td>N.A.</td>
<td>0.07</td>
<td>0.04</td>
<td>-0.06***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C: commune-level measures</th>
<th>Used in</th>
<th>Mean</th>
<th>St. dev.</th>
<th>Correlation with WEMI²</th>
<th>Estimated DDD Impact³</th>
</tr>
</thead>
<tbody>
<tr>
<td>C11 Proportion of Tutsi</td>
<td>1991 population census</td>
<td>N.A.</td>
<td>0.12</td>
<td>0.14</td>
<td>0.18***</td>
</tr>
<tr>
<td>C12 Mass grave</td>
<td>Yale genocide studies</td>
<td>N.A.</td>
<td>0.47</td>
<td>0.81</td>
<td>0.20***</td>
</tr>
<tr>
<td>C13 Distance to mass grave</td>
<td>Yale genocide studies</td>
<td>N.A.</td>
<td>12.29</td>
<td>10.17</td>
<td>-0.22***</td>
</tr>
<tr>
<td>C14 Genocide suspects (%)</td>
<td>Gacaca records</td>
<td>Yanagizawa, mimeo¹</td>
<td>0.07</td>
<td>0.05</td>
<td>0.10***</td>
</tr>
</tbody>
</table>

¹ Yanagizawa uses the share of genocide suspects in the population as a dependent variable rather than as an explanatory variable; ² the correlation coefficients are calculated from the individual-level dataset, but they are similar when calculated at the commune level (although significance decreases); ³ The OLS and IV DDD effects are calculated using the same specification as in Table 4, replacing WEMI with the different alternative measures.
Table A1. Robustness checks for WEMI and the DDD estimates

<table>
<thead>
<tr>
<th>Wartime Excess Mortality Index</th>
<th>Correlation coefficient with WEMI</th>
<th>Estimated DDD Impact (OLS)</th>
<th>IV 2nd stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline WEMI</td>
<td>1</td>
<td>-0.588***</td>
<td>-0.657***</td>
</tr>
<tr>
<td>Adding distance to mass grave</td>
<td>0.997</td>
<td>-0.596***</td>
<td>-0.664***</td>
</tr>
<tr>
<td>Including migrants</td>
<td>0.998</td>
<td>-0.563***</td>
<td>-0.643***</td>
</tr>
<tr>
<td>Age limit: 25 instead of 30</td>
<td>0.998</td>
<td>-0.576***</td>
<td>-0.647***</td>
</tr>
<tr>
<td>Age limit: 35 instead of 30</td>
<td>0.998</td>
<td>-0.604***</td>
<td>-0.650***</td>
</tr>
<tr>
<td>Maternal orphanhood instead of double orphanhood</td>
<td>0.993</td>
<td>-0.582***</td>
<td>-0.626***</td>
</tr>
<tr>
<td>Paternal orphanhood instead of double orphanhood</td>
<td>0.991</td>
<td>-0.522***</td>
<td>-0.568***</td>
</tr>
<tr>
<td>Drop mortality sons</td>
<td>0.987</td>
<td>-0.602***</td>
<td>-0.708***</td>
</tr>
<tr>
<td>Drop mortality daughters</td>
<td>0.985</td>
<td>-0.587***</td>
<td>-0.703***</td>
</tr>
<tr>
<td>Drop widowhood</td>
<td>0.986</td>
<td>-0.595***</td>
<td>-0.661***</td>
</tr>
<tr>
<td>Drop double orphanhood</td>
<td>0.988</td>
<td>-0.495***</td>
<td>-0.584***</td>
</tr>
<tr>
<td>Drop disability due to war/genocide</td>
<td>0.986</td>
<td>-0.588***</td>
<td>-0.631***</td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.1. The unit of observation is an individual. The robust standard errors are adjusted for clustering within communes and are reported between brackets. The regressors are the same as those included in the regression model underlying the results in Table 4. The estimated DDD effect corresponds with the estimated coefficient on the interaction term WEMI * (Young Cohort * CS 2002).