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Abstract

Why don’t agents cooperate when they both stand to gain? This ques-
tion ranks among the most fundamental in the social sciences.  Explanations 
abound. Among the most compelling are various configurations of the pris-
oner’s dilemma (PD), or public goods problem. Payoffs in PD’s are specified 
in one of two ways: as primitive cardinal payoffs or as ordinal final utility.  
However, as final utility is objectively unobservable, only the primitive pay-
off games are ever observed.  This paper explores mappings from primitive 
payoff to utility payoff games and demonstrates that though an observable 
game is a PD there are broad classes of utility functions for which there exists 
no associated utility PD.  In particular we show that even small amounts of 
either altruism or enmity may disrupt the mapping from primitive payoff to 
utility PD. We then examine some implications of these results. 

JEL C7, D6, H4

Keywords: Prisoners Dilemmas, Game Theory, Non-Cooperative Games
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Résumé

Pourquoi des gens ne coopèrent-ils pas alors qu’ils auraient tous les deux 
à y gagner? Cette question se range parmi les plus fondamentales au sein des 
sciences sociales. Les explications abondent. Parmi les plus convaincantes se 
trouvent les diverses présentations du dilemme du prisonnier, ou le problème 
du bien public. Ceux qui paient dans le dilemme du prisonnier sont désignés 
de deux manières: comme des payeurs cardinaux primitifs ou comme visant 
une utilité finale ordinale. Cependant, comme l’utilité finale n’est pas observ-
able de façon objective, seuls les jeux à payeurs primitifs au payeur d’utilité 
et démontre que, quoique le dilemme du prisonnier soit un jeu observable, il y 
a un grand nombre de fonctions d’utilité pour lesquelles il n’existe pas de di-
lemme du prisonnier d’utilité qui y soit associé. En particulier, nous montrons 
que même de petites doses d’altruisme ou d’inimité peuvent venir rompre 
la cartographie du payeur primitif au dilemme du prisonnier d’utilité. Nous 
examinons alors quelques implications de ces résultats.
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1. Introduction
  Prisoner dilemmas (PDs) have been employed across the social 

and business sciences, philosophy, and biology as prime examples of the ten-
sion between individual and collective rationality.1  They constitute powerful 
illustrations of the gains foregone when strategic structure precludes coopera-
tion as an equilibrium strategy.   

The payoffs in PD’s have two forms.  First, they may be cardinal 
observable payoffs (e.g., years in prison, nuclear warheads, or advertising 
budgets).  We refer to such games as Primitive Prisoner’s Dilemmas (PPDs).  
Alternatively, payoffs may be specified as final utility, which is inherently un-
observable.  We refer to these games as Utility Prisoner’s Dilemmas (UPDs).  
In either case there is an implicit mapping between observable payoff and 
final utility that has received scant attention in the literature.  Though this ne-
glect may be innocuous for some mappings we show that when a player has 
amicable or adversarial inclination towards the other player there are broad 
classes of utility functions for which it is impossible for a PPD to map into a 
UPD.  We identify classes of utility functions under which games that are not 
prisoners dilemmas in observable payoffs are, in fact, prisoner’s dilemmas in 
the unobserved utility game.  

 Why our focus on amicable and adversarial preferences?  First, there 
exists a large body of experimental evidence (see Fehr and Gachter 2000 for 
a survey) that casts doubt on the indifference of players with regard to the 
payoffs of other players.  We will demonstrate that only in the case of truly 
indifferent players will a game that is a PD in observable payoffs necessarily 
be a PD in the unobserved utility game.  In fact, the body of experimental 
evidence cited above indicates unambiguously that pure neutrality towards 
the welfare of the other players is the exception, rather the rule. Beyond the 
experimental literature, the potential for altruism in strategic environments 
has long been recognized. For example, strategic frameworks are frequently 
employed to model intra-household interactions (see Browning and Chiaporri 
1998).  Moreover, intra-household and kin altruism is implied by evolutionary 
biology.   

Adversarial relationships, in the sense of competition, arise in virtually 
all economic environments.  However in the typical strategic setting adver-
sarial incentives are inherent in the payoff-structure rather than embodied in 
preferences. Thus, the incentive to adopt a particular strategy is typically gov-
erned by own payoff maximization rather than explicit consideration of rivals’ 
payoff.2  In contrast, we consider strategic behavior when a player’s utility is 
decreasing in the other player’s cardinal payoff.  Such preferences may cor-
respond to conventional notions of envy or malice.  These terms, “envy” and 

“malice,” have precise economic meanings (see Hammond 1987 and Brennan 
1973), and though the related literature addresses issues tangentially related 
to this paper, it never discusses the implications of such utility mappings on 
the existence of the PD.   

 For those who remain skeptical of amicability or enmity in preferenc-
es per-se, there exists an alternative motivation that is also entirely consistent 
with the model and results.  Namely, if the observable payoff of one player 

1 A nice survey of economic ap-
plications of the PD can be found 
in Rapoport (1987). In political 
science, Brams’ (1994) “Theory of 
Moves” provides a novel analysis of 
the Prisoner’s Dilemma (PD) and 
argues that mutual cooperation will 
typically emerge. 

2 In zero sum games these objec-
tives would be equivalent. But as 
noted, our analysis does not con-
cern zero-sum games. 
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yields an externality (in utils) to others, the analysis is identical.  Formally, 
these externalities would create a wedge between the observable payoff game 
and the unobservable “welfare” game that is formally equivalent to either 
amicable or adversarial preferences.3  Such an interpretation opens a plethora 
of applications in economics as well as political science.  

The remainder of the paper is organized as follows.  Section 2 intro-
duces notation and definitions necessary to analyze PDs with neutral, ami-
cable, and adversarial players. Section 3 presents our most general existence 
results and specific congruence results for amicable, adversarial, indifferent, 
and asymmetric players. A Cobb-Douglas example is also provided in Section 
3.  Section 4 is somewhat of a digression on the possibilities of the approach, 
while Section 5 concludes. 

2. Notation and Definitions
  
 The Game
  Consider a two-player game and call the players A and B and their 

cardinal (observable) payoffs α and β respectively.  Each player has two strat-
egies. Denote the players’ strategy sets and strategy choice as respectively: 
Sp = {1, 2} and sp for p = A, B.   So the joint strategy space has four elements 
and denote the associated observable primitive (cardinal) payoff vectors as 
πij = [αij, βij] where i = sA

 and j = sB with the payoff space denoted as Π ⊂ R2.   
Let rp(s) denote the best response of player p to strategy s by the other player.  
Without loss of generality, payoffs are non-negative and when the clarity con-
straint permits we suppress the subscripts on α and β.  The one-stage game 
defined by the above triplet Γ = [P, S, Π] will be called the primitive game. All 
its elements are observable and fully known by both players.

 A primitive prisoner’s dilemma (PPD) occurs when the Nash Equi-
librium of the primitive game yields a payoff (π) that is vector dominated by 
some non-equilibrium payoff.4 Without loss of generality let sp = 1 for (p = A, 
B) be the strategies that map to the vector dominated primitive payoff and sp = 
2 for (p = A, B) the strategies that map to the vector dominant payoff.  Using 
the notation introduced above the payoff vectors are: π22 > π11, where a vector 
inequality indicates vector dominance.  

 Each player has unobservable preferences over the primitive payoff 
space that are complete, transitive, and reflexive.  In a slight (but innocuous) 
abuse of notation that yields considerable notational economy we denote the 
unobservable utility functions as: A(α, β), B(α, β).  Let Uij= [A(πij), B(πij)] be 
the vector of final utility payoffs when player A plays strategy i and B plays 
strategy j (where i may equal j ). The functions A(πij) and  B(πij) may map 
non-monotonically, for each respective player, from primitive-payoff vectors 
π=(α, β) to final own-utility due to either amicable or adversarial preferences.  
For a given U every Primitive Game maps to an associated Utility Game (UG) 
and we define the associated UG as V(Γ) = [P, S, U(Π)].  If U does not order 
payoffs as in the observable primitive game, V will be a weakly better predic-
tor of players’ strategic behavior than Γ.  For expositional convenience we 

3 Yet another motivation is a game 
where joint strategies map into two-
good payoffs with one of the primi-
tive payoffs is a “good” and other 
is a “bad” for one player, while the 
second player has reverse prefer-
ences towards the payoffs.  For ex-
ample, we can imagine roommates 
who have contradictory preferenc-
es towards classical and rock music.  
For one roommate classical is a 
good and rock is a bad, while the 
reverse holds for the other room-
mate.  Joint strategies yield quanti-
ties of both goods, and it is easy to 
construct a PD (i.e., Pareto Inferior 
equilibrium) in this environment.  

4  For ease of exposition we con-
sider Prisoners Dilemmas where 
the equilibrium is strictly inferior 
for both players.  Naturally, the 
definition Pareto inferior would al-
low only one player to be worse 
off, while all other players might be 
indifferent.  Focusing on strict PDs 
considerably streamlines the paper.  
However, it is critical to note that 
versions of all propositions and 
results can be obtained with the 
weaker PD definition – though at a 
considerable cost in tedium.   
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will assume henceforth that the utility functions are differentiable. Extension 
to well-behaved non-differentiable utility functions is straightforward for vir-
tually the entire analysis.

 A number of indifference curves will have special significance in our 
analysis and we employ the following notation:  Aij = { π ∈  Π: π ~ πij) for 
player A, while analogously Bij denotes player B’s indifference set with πij 
where i, j = 1, 2.  So A11 is the set of all joint payoffs that A finds indifferent 
to π11.  We use strong versions of the upper and lower contour sets of πij for 
player p, defining them respectively as follows: 

= {π ∈  Π: π f πij , for player p}    ,  = {π ∈  Π: π p  πij , 
for player p}.  Again, all propositions hold with weak forms of the upper and 
lower contour sets, though the exposition is more tedious.  The required modi-
fication of the proofs with weak contour sets is indicated subsequently. 

Payoff Space Partitions 
The following payoff space partitions are central to our analysis.  We 

will subsequently provide graphically illustrations of these sets for amicable, 
adversarial, and indifferent players.  Note that all sets are subsets of the primi-
tive joint payoff space.  

   
(1) Superior Set (S) 
  S =  

(2) Far Set (F)
  F =     

(3) Central Set (C)
  C = 
 
(4) Dominant Set of player p  (Dp)
  , where – p indicates player “not p.”

(5) Central Set of player p  (Cp)
  

(6) Far Set of player p (Fp)
   
  
Payoff Partitions When Both Players are Indifferent
Since players’ subjective amicable, adversarial, or indifferent attitude 

towards one another are not directly observable the standard assumption is 
one of indifference – that is, each player’s strategy choices are governed by 
their own cardinal payoffs alone.  Of course, it is also possible that such indif-
ference is in fact a player’s true preference towards others. Letting subscripts 
denote partials the indifferent player’s preferences are: Aα > 0,  Aβ = 0,  Bβ > 
0,  Bα = 0,  and indifference curves are linear in the joint-payoff space.  Figure 
1 below illustrates the payoff-space partition for indifferent players.  These 
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sets have different topology for amicable or adversarial players and we will 
rigorously characterize the relationship between them under the various pref-
erences in the following section.  

Figure 1  The Payoff Partition – Indifferent Players

  Payoff Partitions When Both Players are Amicable
We say player A is amicable at π, if Aα(π) > 0  and  Aβ(π) > 0  and a 

globally amicable if the inequalities hold at all π.  A similar definition applies 
for player B.  An extreme form of amicability is altruism.  Player A is an altru-
ist at π if and only if  ∂lnA(π)/∂lnβ > ∂lnA(π)/∂lnα and a global altruist if the 
condition holds at all π.  When comparing preferences A°(π) and A*(π) we 
say that A° is more amicable than A* at π  if -A°α / A°β > -A*α / A*β.  Given 
our definitions an amicable player’s indifference curves of are downward 
sloping in the joint payoff-space.  Figure 2 illustrates a payoff-space parti-
tion for amicable players, with indifferent players’ partitions indicated by the 
dashed lines. 

Figure 2  The Payoff Partition – Amicable Players
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The juxtaposition of Figures 2 and 1 provides a striking illustration 
of the distortions of the payoff-partitions vis-à-vis the indifferent player. 
We will demonstrate that this non-congruence has critical implication for 
the interpretation and existence of PDs in the unobserved utility game.  

Payoff Partitions When Both Players are Adversarial
We say player A is an adversary (or has enmity) at π if Aα(π) > 0  

and  Aβ(π) < 0  and a global adversary if the inequalities hold at all π.  In-
difference curves of a player with enmity are upward sloping (with finite 
slope) in the joint payoff space. We say that player A has strong enmity 
for the other player at π  if:  ⎜∂lnA(π)/∂lnβ⎥ > ∂lnA(π)/∂lnα, and that pref-
erences A° display less enmity than A* at π  if -A°α / A°β > -A*α / A*β at 
π. Figure 3 below illustrates a payoff-space partition for adversaries, with 
indifferent players’ partitions again in the background. 

Figure 3  The Payoff Partition – Adversaries

 As in the case of amicable preferences, Figure 3 reveals dramatic 
“distortions” in the payoff-space partitions – though they are markedly 
different.  Note that for these adversaries, as opposed to indifferent and 
amicable players, the Far Sets (F, FA, FB) are now bounded.  Also note 
that the Central Set (C) has remained bounded in all scenarios, though, 
together with the two other players’ central sets, it is not connect any 
more.  We now move to consideration of the existence of PD under these 
various preferences. 
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3. Prisoners Dilemmas under Alternative Preferences 

3.1 Necessary and Sufficient Conditions for Prisoners
 Dilemmas in the Utility Game
  
  We are now in a position to connect the existence of PDs with the 

payoff-space partitions.  We begin by defining two forms of PDs: Strong and 
Weak.

• Strong Prisoners Dilemma (SPD)
 A game is a SPD if the strategy yielding the Pareto Inferior payoff is  

  a dominant strategy for both players. 

• Weak Prisoners Dilemma (WPD)
 A game is a WPD if the strategy yielding the Pareto Inferior payoff  

  is a dominant strategy for only one player.
 
The following Propositions provide the necessary and sufficient condi-

tions for the various forms of PDs, for multiple equilibrium, and for no equi-
librium in our framework.  We note that Propositions 1-5 hold for any types of 
attitudes between the players: amicable, adversarial, and indifferent.  

Proposition 1.  Given any π11 and π22 ∈ S: 
πij ∈ DA  and πji ∈ DB  are necessary and sufficient conditions for the  

 unique Nash Equilibrium to be a SPD. 

Proof:  Sufficiency: First consider player A’s best responses. Given  
 the above conditions: π12 ∈   and π21 ∈ , therefore sA = 1  
 is a dominant strategy for A.  An analogous argument holds for B.  

Necessity:  Again first consider player A.  Suppose the conditions of  
 the Proposition are not satisfied.  If π12 

∉ AD  then either π12 ∉   
 or π12 ∉  .  If π12 ∉  , π12 ∈  (recall our strong   
definitions of UCS and LCS) and rA(2) = 2 so that sA = 1 is no longer   
a  dominant strategy. If π12 ∉  , π12 ∈  so that rB(1) =2   
and sB=1 is no longer a dominant strategy.  A similar argument holds

for π21 
∉  BD ∴

   
Theorem 1:  Given any π11 and π22 ∈ S, a necessary and sufficient con- 

 dition for the possibility of existing a SPD (WPD) is that (at least one  
 of the following hold) 

B11 ∩  A22 ≠ φ and B22 ∩  A11 ≠ φ.  

Proof:  Necessity: Suppose that, given preferences A and B, a utility  
 game is exhibited in which a unique Nash WPD takes place. The

result  is then immediate as, given Proposition 1, if B11 ∩  A22 = φ, A
VD   

 is empty.  
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Sufficiency: Let preferences A and B be given and suppose the intersec-
tions occur. We work out first the B11, A22 case. Call π* the intersection point 
and let O be an open ball centred in π*. The Jordan Curve Theorem (JCT) and 
the fact that π* lies on both curves allow to write that:

  O = OBl + OBu + O ∩ B11     and 
  O = OAl + OAu + O ∩ A22          ; 
where OBl and OBu are, respectively, the intersections of player B’s low-

er and upper contour sets at π* (which, by the JCT, curve B11 subdivides two-
dimensional space) with O; sets OAl and OAu having a similar definition with 
respect to A22. As the curves are supposed not to have a segment in common, 
the above identities imply that

O = OBl ∩ OAl + OBl ∩ OAu + OBu ∩ OAl + OBu ∩ OAu + {π*} + 
                        + OBl ∩ A22 + OBu ∩ A22 + OAl ∩ B11 + OAu ∩ B11          
none of the above subsets being the null set. This means that ∃ π° ∈ OBl 

∩ OAu , but set OBl ∩ OAu is contained in the (utility) dominant set for the first 
player, which, thus, results non-empty. Working, in a similar way, around the 
intersection of A11 and B22 , a corresponding point can be found in the second 
player’s utility dominant set. As both dominant sets are non void, it is possible 
to choose off-diagonal payoffs in them that would give way to utility games 
with a SPD.

 
Proposition 2:  Given any π11 and a π22 ∈ SV, a sufficient condition for 

a unique Nash Equilibrium which is a WPD is: πij ∈
pD and πji ∈

pC −  for i, 
j = 1, 2 where i≠j .  

Proof: First consider the case where π12 ∈
AD and π21 ∈

BC . Then 
π12 ∈   and π21 ∈ , therefore sA = 1 is a dominant 
strategy for A.  For player B, π12 ∈  so  rB(1) = 1 and 
π21 ∈  so  rB(2) = 2. So B has no dominant strategy and s = {1,1}  

 is the unique Nash Equilibrium.  An analogous argument holds for the  
 case of π21 ∈

BD  and π12 ∈
AC , in which case player B is the one  

 with the dominant strategy.  

Proposition 3: Given any π11 and a π22 ∈ SV if πij ∈ pD and πji ∈
BF   

 i≠j , i,j = 1, 2, then (j, i) is the unique Nash equilibrium of the game.

Proof:  First consider the case where π12 ∈
AD  and π21 ∈

BF . Then  
 π12 ∈   and π21 ∈ , so rA(2) = 1 and rA(1) = 2.  For

player B, π12 ∈  so  rB(1) = 1 and π21 ∈  so  rB(2) = 1.  
 So B has a dominant strategy and s = {2,1} is the unique Nash Equi-

librium – which is not a PD.  An analogous argument holds for the   
 case of π21 ∈

BD  and π12 ∈
AF , in which case player A has the

dominant strategy. 

Proposition 4:  Given any π11 and a π22 ∈ SV if πij ∈
pD and 

πji ∈C i≠j , i,j = 1, 2 then the game has no Nash equilibrium.
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Proof: First consider the case where π12 ∈
AD  and π21 ∈  C. Then π12 

∈   and π21 ∈ , so rA(2) = 1 and rA(1) = 2.  For player B, π12 ∈ 
 so  rB(1) = 1 and π21 ∈  so  rB(2) = 1. So there is no Nash Equi-

librium.  An analogous argument holds for the case of π21 ∈
BD  and π12 ∈C.

Proposition 5:  Given any π11 and a π22 ∈ SV, both s= {1, 1}and s’= {2, 
2} are equilibrium if: π12 ∈

AC  and π21 ∈
BC . 

Proof:  π12 ∈  so rA(2) = 2 and π21 ∈  so rA(1) = 1. 
For player B π12 ∈  so rB(1) = 1 and π21 ∈  so rB(1) = 1  

 and rB(2) = 2 ∴   

Discussion
Propositions 1 through 5 make clear that it is the membership of the πij 

payoffs in the various partitions of the joint-payoff space that determine the 
nature of the equilibrium, or lack thereof.  Theorem 1 is a fundamental result, 
whose relevance is linked to the cases of non-indifferent players. They all 
show that of critical relevance to the existence of Prisoner’s Dilemmas is the 
membership of at least one of the πij payoffs in a player’s Dominant Set.  The 
Figures in Section 2 suggest that under amicable or adversarial preferences 
the Players’ Dominant Sets contract and expand respectively.  An immediate 
implication is that though the observable payoff structure of a game suggests 
a Prisoners Dilemma equilibrium, unobserved amicable or adversarial atti-
tudes of the players may transform the utility game to one with a different 
equilibrium.  The mechanism of this transformation is the “migration” of πij 
payoffs between Payoff-space Partitions as we move from the primitive game, 
with the implied indifference of players, to a utility game with amicable or 
adversarial preferences. Only in the case of truly indifferent player can we be 
certain that the Dominant Sets in the observable game and utility games are 
congruent. 

3.2 Payoff-Space Partition Congruence with
 non-Indifferent Players
  The Figures in Section 2 were merely suggestive of the types of 

Payoff-space Set transformation that may occur when non-indifferent play-
ers are present.  We now formally characterize these transformations.  Note 
that in the prior and proceeding analysis, multiple-crossing of an indifference 
curve of an amicable player with a particular indifference curve of another 
amicable player would complicate the analysis.  To keep the paper of man-
ageable length we focus on single crossing indifference curves of amicable 
players and note that the results would be modified in fairly obvious ways 
in the presence of multiple crossing curves.  To facilitate presentation of the 
next results we introduce the following additional notation:  for each set of 
the payoff-space partition let the subscripts Γ or V indicate respectively the 
primitive or utility game partition.  For example, pDΓ  is player p’s Dominant 
Set in observable payoffs while p

VD is player p’s Dominant Set in the utility 
game.
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Both Players are Adversaries
Proposition 6.  With adversarial preferences a player’s Primitive
Dominant Set is a strict sub-set of their Utility Dominant Set:  pDΓ  ⊂  p

VD .
Proof.  Consider the point  π’ = (α22, β11). With adversarial preferences  

 π’ ∈  and π’ ∈ , so π’ ∈ A
VD .  With regard to the primi- 

 tive game π’∉  ADΓ , since π’ ∈ A22 and π’ ∈ B11. A similar argument  
 holds for player B. To see that every element of iDΓ  must be an element  
 of i

VD simply note that because of the finite upward slope of indiffer- 
 ence curves with adversarial preferences∀ π ∈  ADΓ ,  π ∈  and  
 π ∈ ∴  

Note that even if the upper and lower contour sets were defined weakly  
 we could find a point in an open ball centered on π’ that is an element of

i
VD  but not iDΓ .  This general argument holds for all subsequent propo- 

 sitions, and will not be repeated.  

Proposition 7.  If both players have adversarial preferences the Utility  
 Central Set is a strict sub-set of the Primitive Central Set:  CV ⊂  CΓ 

Proof: CΓ is the quadrilateral defined by {π |  π11 < π < π22}.  Given  
 that B11 and A22 have finite positive slopes and pass through π11 and π22  
 respectively, they must intersect in the interior of CΓ since B11

cannot intersect B22 which also passes through π22.  .  Likewise for
A11 and B22.  Therefore CV ⊂  CΓ ∴

Proposition 8.  With adversarial preferences the Superior Set of the  
 utility game is a strict sub-set of the primitive Superior Set:  SV ⊂  SΓ.  

Proof. SΓ is the quadrant defined by π > π11.  Since adversarial indif- 
 ference curves have finite positive upward slope A11 and B11 are con- 
 tained in SΓ for all π > π11. The intersection of the upper contour sets  
 for π > π11 must therefore be empty or contained in SΓ.  So every ele- 
 ment of SV must also be an element of SΓ.   To see that not every ele- 
 ment of SΓ  is an element of SV let )'(πc

eB  be a closed ball of radius e
centered on π’ ∈ A11 for some π' > π11, where we choose e such that

)'(πc
eB  ⊂  SΓ. By the Jordan Curve Theorem the indifference curve  

 through π’ divides the ball into two distinct domains, one a subset of
 and the other a subset of  where by definition if

π’’ ∈ )'(πc
eB and π’’ ∈ , π’’∉  SV∴  

We can make the following stronger characterization of SV when both  
 players are strong adversaries.

 
Proposition 9. SV is either empty or bounded if players are strong glo- 

 bal adversaries.
Proof: With α. on the ordinate and β. the abscissa, as in Figure 3, A’s  

 and B’s indifference curves are respectively convex and concave with  
 positive finite slope.  

(i). If the indifference curves are tangent at π11 the intersection of the  
 upper contour sets is empty.
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 (ii). If the slope of A11 exceeds that of B11 at π11 the intersection of the  
 upper contour sets must lie to the southwest of π11 and is contained in  
 the bounded set: {π : α < α11,  β < β11 }. 

(iii.) If the slope of B11 exceeds that of A11 at π11 the indifference curves
must intersect again (since B11 is strictly concave and A11 strictly   

 convex).  Call this intersection π’.  In this case the contour sets inter- 
 section must lie to the southwest of π’: in the bounded set

{π : α < α’ and  β < β’}∴ 

Corollary to Proposition 9.  If players are strong adversaries FV is
either  empty or bounded.
Proof:  Simply repeat the above proof substituting π22 for π11, A22 
for A11, and B22 for B11.  

The following very strong proposition is the principal non-existence  
 results of our analysis.

Theorem 2. If players are strong adversaries at π11 a game which is PD
 in observable payoffs can never be a PD in the utility game.
Proof: Suppose the existence of a game which is a PD in cardinal 
payoffs and is also a PD in the utility game. Then π22 ∈ SV, and
A(π22) > A(π11) and B(π11) <B(π22). As both preference functions   

 are continuously differentiable, there exists an open ball Be(π11), and  
 a π’ = (α11+dα, β11+dβ) ∈  Be(π11),  with dα, dβ > 0, such that

Aα(π11) dα + Aβ(π11) dβ > 0   and   Bα(π11) dα + Bβ(π11) dβ > 0.
Taking into account the signs of the partial derivatives these inequali- 

 ties yield: Aα(π11) / Aβ(π11) < Bα(π11) / Bβ(π11). By the definition of   
 strong adversaries at π11, however, Aα(π11) / Aβ(π11) > Bα(π11) / Bβ(π11),  
 a contradiction∴

Theorem 2 extends an important implication of Proposition 9. That is, 
when players are global strong adversaries a primitive Prisoner’s Dilemma 
can never be a UPD.  It also provides a dramatic example of a more general 
result which holds for all forms of adversarial preferences.  Namely, adver-
sarial behaviour reduces from an infinite to a finite (Lebesgue) measure the set 
of primitive payoffs that could possibly be associated with a utility prisoner’s 
dilemma.  Moreover, in the strong adversary case of Theorem 2, the bounded 
set FV will never include π22.  Since all prisoners dilemmas (primitive or util-
ity) require a Pareto dominant payoff, the non-existence of the utility prison-
ers dilemma follows.  This non-congruence of the observable primitive game 
and the inherently unobservable utility game has profound implications for 
the interpretation of a wide range of economic applications – including the 
public goods problem. 
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Both Players are Amicable
Proposition 10.  If both players are amicable the Dominant Sets of the  

 utility game (if they exist) are strict sub-sets of their primitive game  
 Dominant Sets: i

VD ⊂ iDΓ .  
Proof. Since both A22 and B11 have negative finite slope their intersec-
tion must occur in ADΓ , if at all.  Thus every element of A

VD  is also  
 an element of ADΓ .  By Corollary 1 A22 and B11 must intersect for A

VD   
 to be non-empty.  If it occurs call the intersection point π’ ∈ ADΓ .

Now consider an e>0 such that the closed ball )'(πc
eB ⊂ ADΓ , and A11

 partitions )'(πc
eB  into distinct domains one of which contains 

elements of , which are not members of A
VD  but are elements  

 of ADΓ ∴

Proposition 11.  If both players have amicable preferences the
Primitive Central Set is a strict sub-set of the Utility Central Set: 
CΓ

⊂  CV.
Proof: CΓ is the quadrilateral defined by {π |  π11 < π < π22}.  Given  

 that B11 and A22 have finite negative slopes and pass through π11 and 
π22 respectively, they must intersect in the interior of DΓ, if at all.
Likewise for A11 and B22.  Therefore CΓ 

⊂  CV ∴

Proposition 12.  With amicable preferences the Superior Set of the  
 primitive game is a strict sub-set of the Superior Set of the utility   
 game: SΓ

⊂  SV.  
Proof. Immediate.  With amicable preferences the indifference curves  

 A11 and Bll are support functions for SΓ∴

Figure 4 provides a summary of the principal results of this sub-section.  

Note that the likelihood of a PPD having an associated UPD is reduced 
in different ways for adversaries and amicable players.  In the case of adver-
saries the likelihood that the Pareto Superior payoff in the primitive game is 
also Pareto Superior in the utility game is reduced. For amicable players the 
likelihood that the “off diagonal” payoff provides defection incentive from the 
Pareto Superior payoff is reduced. 
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Asymmetric Attitudes and the Central Set as a Measure of
Amicability
Asymmetric attitudes across players generate a rich set of possibilities.  

In this sub-section we briefly explore congruence properties of the Central Set 
when players have asymmetric attitudes. We focus on the Central Set since its 
boundedness properties and sensitivity to alternative preferences render it a 
good measure of general amicability.

Proposition 13. Suppose player B is neutral. If player A is amicable
CΓ

⊂ CV while if player A is an adversary: CV ⊂  CΓ.
Proof. Immediate given slight adaptations of Propositions 7 and 11.
As attitudes move from indifference to amicability, the defection incen- 

 tive that gives rise to the PPD is attenuated and the potential for no- 
 equilibrium increases. By Propositions 7 and 11 the Central Set expan- 
 sion comes at the expense of the Dominant Sets.  The following result,  
 which combines amicable and adversarial players, is also immediate:

Proposition 14. Suppose player A is amicable and B adversarial.
Ceteris paribus,
 i). the larger the ratio -Bα / Bβ on the interval  [α11, α22 ],
  the smaller CV.
 ii). the smaller the ratio -Aα / Aβ on the interval  [α11, α22 ],
  the smaller CV.

Proof. Again immediate given slight modifications to Propositions 7  
 and 11. 

 
Together Propositions 7, 11, 13, and 14 suggest that the area of the 

Central Set is an intriguing metric of the aggregate “friendliness” of the play-
ers. Recall that the Central Set is always bounded when both players are in-
different or adversarial.  As preferences move from adversarial to indiffer-
ence to amicability the area of Central Set increases monotonically.  When at 
least one player is amicable, the Central Set is no longer necessarily bounded, 
though it remains bounded under many well behaved utility functions and its 
area increases uniformly with increasing amicability as defined earlier.  The 
Cobb-Douglas example of the following sub-section will further illustrate this 
property.  

3.3.  A Cobb-Douglas Example
We begin with amicable preferences and to simplify exposition express 

B’s preferences in terms of primitive payoffs “a” for player A and “b” for own 
primitive payoff.  The utility functions are then:

(1) A (α, β) =  αx β1-x 
  B (a, b) =  a1-y by,                                                      

where x and y are non-negative. Note that if x ∈ (0,1), Player A is ami-
cable, and is an altruist if x ∈ (0,1/2).
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 By Theorem 1, A22 and B11 must intersect for DA to exist and mem-
bership of a π12 in DA is a necessary condition for the existence of a SPD.  Let 

 and be the utility levels associated with indifference curves B11 and 
A22.  For an arbitrary α = a, b ≠ β, the ordinates in these indifference sets will 
be different, except for a point of intersection.  Considering an arbitrary α=a, 
substituting α for “a” in (1), defining ≡=ab α

β
|  R(α; x, y), and rearranging (1) 

yields: 

(2) R(α; x, y) = ( / ) α1-(x+y).                                       
       
Proposition 15. The Dominant Sets are non-empty if either: i). both  

 players are amicable but not altruists; ii). one is an altruist and one   
 merely amicable, with x+y > 1. 

Proof: For either i) or ii) above at α = α11, β > b so R(α11; x, y) >1.   
 Moreover if either i) or ii) are satisfied x + y >1 and

lim α↑∞ R(α; x, y) = 0 so the indifference curves cross at some α, with  
 the intersection obtained by solving R(α; x, y) = 1  ∴

Proposition 16.   The Dominant Sets are empty if either: i). both play- 
 ers are altruists; ii).  one is an altruist and the other merely amicable,  
 with x+y < 1; iii). players are amicable with x+y = 1.

Proof: Reasoning similar to the previous proof implies for i) and ii)  
 the curves never intercept at α > α11.  If x+y = 1, the β is independent  
 of α, and lim α↑∞ R(α; x, y) = lim α↓0 R(α; x, y) = / , a con-  
 stant.  Thus the curves are either parallel or coincide, but never cross.

These Propositions indicate that when both players are amicable and at 
least one is sufficiently altruistic, a utility Prisoner’s Dilemma will never oc-
cur.  With these explicit utility functions we can also compute the “gains and 
losses” in the Dominant Set from different attitudes. For example, for simplic-
ity letting x=y we can derive a lower bound for the reduction in the dominant 
sets when both players are amicable. Using (8) the intersection occurs at: α* = 
( ) x / 1-2x ( ) 1-x / 1-2x.  Recalling that A22 and B22 pass through π22 one can 
also write:

(3) α22 = (  ) 
x / 1-2x ( ) 1-x / 1-2x,   so that

  
  α* / α22 = (  / ) 1-x / 1-2x  > 1     .

Therefore player A’s utility dominant set relative to primitive dominant 
set, is reduced by at least the area: β11 . α22 [ ( / ) 1-x / 2x-1 – 1] . To this 
it must be added the area beyond point α* and below the indifference curve 
A22. Computing this integral yields:

(4) ( )1 / 1-x (1-x  / 2x-1) α* 1-2x / 1-x =
  
  (1-x  / 2x-1)( )1 / 1-x( / ) α22

1-2x / 1-x    .
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In spite of curve B11 going to zero, Player’s A utility dominant set (which 
remains unbounded) does not have finite measure. A more precise bound may 
be obtained by computing the area outside the UDS between B11 and the verti-
cal line passing through π11 until an α’>α*. We shall not pursue this computa-
tion here.  The above results suggest the following proposition.

Proposition 17. If x=y and 2x > 1, the lower bound to the reduction  
 in Player’s A utility dominant set is increasing with the ratio

rB = B22 / B11  whenever  rB > (A22)
1 / 1-x (1 /β11) (α22)

 1-x / 1-2x  and
decreasing if the reverse occurs.
Proof. The increasing result is immediate. For the decreasing it
suffices to compute the derivative, w.r.t. rB, of the combined area.    

The main importance of Proposition 17 is to emphasize that it is the  
 normalized utility values at points π11 and π22 that are crucial in

determining the distortions in the relevant PD sets.
 
Adversarial Preferences
For adversaries additional flexibility is obtained if we re-specify the 

Cobb-Douglas utility functions as follows:

(5) A (α, β) = αx β-y 
  B (α, β) = aw bz ,                                                       

with all exponents non-negative and x and z less than 1. Note that if 
y>x  and  w>z both players have strong global enmity. In this case all indif-
ference curves emanate from origin and have a single-crossing property. If 
x>y and w<z, the concavities of indifference curves are reversed, though all 
indifference curves still emanate from the origin.  Finally, if x>y and w>z, or 
x<y and w<z, multiple crossing of indifference curves are possible and a set 
of complex possibilities arise.

 Now return to the strong global enmity case (y>x  and  w>z).   Propo-
sition 9 states that FV is either empty or bounded. It follows that the area of F 
can be obtained.

Proposition 18. With strong global enmity the area of FV shrinks from  
 an infinite (Lebesgue-measure) value to α22 . β22 [ (wy – zx)/(w+z)(x+y) ].

Proof : The A22 and B22 curves intercept at (0, 0) and (α22, β22).
With α on the ordinate A22 is “below” B22 on the interval (0;α22) and  

 we have the function: F(α) = ( )-1/y αx/y - ( )1/z αw/z .   Integrating
this function on the interval and recalling that: ( )-1/y α22

x/y = β22 =
 ( )1/z α22

w/z, one arrives at the result. Notice that the relationship  
 between the exponents ensures that  wy – zx > 0 .  
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4. A discussion on the scope of the results.
 
  We think that, in practice, three important consequences can be 

drawn from our approach. The first, of a global nature, is that consideration of 
the primitive game is not enough to understand PD outcomes in real life – a 
point also present at the origin of the Theory of Moves. 

Development and growth policy, as well as trade negotiations, are 
two areas where PD settings usually take place. Cost-benefit analyses, CGE 
(computable general equilibrium) or partial equilibrium modelling, as well as 
economic-ecological welfare measurements are common tools for supplying 
negotiators and policy makers, i.e. players, with reasonably good evaluations 
of the different pay-offs. The nowadays widespread use of such techniques 
qualifies them nearly as common knowledge. Together with the ever widening 
information society devices and possibilities, all this makes for admitting that 
a unique, common agreed pay-off matrix is a highly acceptable assumption in 
the majority of situations. However, if this matrix fits into our definitions, it 
will be far from bringing out a socially desirable outcome.   

 Indeed, in real-life, even if both players are apparently better off 
through co-operation, the temptation of defection often precludes the co-op-
erative equilibrium. One way society found to avoid this dilemma was by 
creating institutions that can support the Pareto-superior pay-offs. In the 
trade negotiations arena, Kyle and Bagwell (2002), among others, explain 
the raison d’être of the WTO exactly via this line. However, though we also 
observe other situations where such institutions, once created, do allow the 
gains from co-operation to be realised, we also see instances where the very 
institutions – apparently well conceived and designed – do not work at all, 
and players keep on reaping inefficiently low returns. The Kyoto Protocol, the 
2003 “WTO Cancun Meeting”, and so many unsuccessful development aid 
programmes could be examples of events close to this kind of outcome. Our 
framework proposes a new explanation for such phenomena: either the joint-
strategy Pareto-superior utility pay-offs do not in fact exist, or the institution’s 
format, instead of reducing, enhanced the possibility of UPDs. On the flip side, 
equilibriums which appear Pareto optimal in primitive pay-offs may in fact be 
UPDs in the preferences game. Anyhow, the key to tackling the dilemma lies 
in the interaction between the players, as we formally showed.

Moreover, contrary to the co-operative games approach, avoiding or 
lowering the probability of a Nash solution does not necessarily require that 
both players co-operate with each other. In fact, as exemplified in the previ-
ous section, the “negative” effect of an aggressive, competitive player can be 
counterbalanced by a friendly – or rather tolerant – attitude from the other 
player. This is a strong call for a careful understanding of the opponent’s tac-
tics and way of playing together with a judicious choice of one’s own behav-
iour, given the circumstances and possibilities available. Responsible, tough 
and experienced players have been keenly aware of this. Many US Trade 
Representatives, for instance, are (or were) well-known for going to important 
meetings only after having had a thorough briefing on the other negotiator(s)’s 
likes and dislikes, i.e., preferences. Still in the trade negotiations context, key 
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developing countries, like India or Brazil, are known for usually being, in 
spite of respectable negotiators, friendlier to the “three big ones” (Japan, the 
EU and the US) than these are to them. As powerful economies are naturally 
more aggressive, without a friendlier stance at the other side of the table, the 
number of existing trade agreements would be much inferior. Unfortunately, 
this “care with the opponent” seems less frequent in the design of develop-
ment strategies. On the other hand, ironically, the fact that both players behave 
like foes does not necessarily exclude avoiding the PD. In other words, tough 
behaviour in the face of a tough opponent is riskier, but may pay. 

 This last point adds also extra support to experimental economics ef-
forts in game theory. In forums like the WTO, an international development 
agency, or in a sectoral negotiation involving government officials and class 
representatives, players can many times amass – in an as-scientific-as-pos-
sible way – previous evidences on the other’s behaviour in order to make an 
educated guess on his utility function. From this they can, in a stepwise man-
ner, and drawing from experimental economics results, build up their optimal 
(utility) behaviour.

The third point has to do with an old, well-known saying, that has ap-
peared in different versions through time, a popular one being “it takes two to 
tango”. Even in the event of a very aggressive opponent, one can display such 
an altruistic behaviour that will rule out completely the possibility of a PD. In 
the language of our Theorem 1 (section 3), this means that the altruistic player 
will dispose his (highest and lowest) iso-utilities curves in pay-off space in 
such a way that the (inversely) corresponding ones from his opponent will 
never be able to cross them. Actually, as in practice pay-off space is a bounded 
set, it suffices that the intersections take place at points, in the first quadrant, 

“outside” pay-off space.
In modern history, a major example of this kind of behaviour is Gandhi’s 

non-violence campaign against the British Government, for the independence 
of India. Though not without sacrifice, Gandhi – through his “an angry answer 
to an angry action only heightens the level of anger” - eventually managed to 
avoid the Pareto-inferior outcome and get India’s independence. In a different 
field, religion, one finds in nearly every creed the story of the altruistic and pa-
cific fellow, who answered with generosity and love to his savage foes. In the 
Catholic tradition, for instance, St Francis is the emblematic representative of 
such behaviour. Avoiding the risk to get into areas and considerations which, 
beyond their complexity, would be entirely outside the scope of our paper, we 
stop this digression calling attention to the fact that our proposal incorporates 
in the formal framework of economic theory this kind of behaviour, usually 
grounded on (much more) subjective or moral arguments. A wider scope of its 
application, in sheer economic instances, seems to be waiting ahead.
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5. Conclusion.
 
  Prisoner’s dilemmas provide a fundamental paradigm of the ten-

sion between individual and collective rationality.  Analysis of their structure 
and operation has provided insight into issues ranging from the public goods 
problem to arms races.  Yet the predictive power of the paradigm depends crit-
ically on implicit assumptions on the nature of the mapping from observable 
primitive payoff to unobservable final utility.  When unobservable final utility 
depends only on own-primitive-payoff the equilibrium of a primitive-payoff-
game and the associated utility-games are identical.  Under this circumstance, 
the specific properties of the unobservable utility function are immaterial for 
predictions of strategy choice and a primitive game with a PD equilibrium is 
a perfect proxy for the unobservable final utility game.  However, when link-
ages exist between the primitive payoff of one player and the utility of another, 
PD equilibrium in the observable game may not correspond to equilibrium in 
the utility game.  Moreover, as discussed previously, a large body of experi-
mental evidence is generally inconsistent with pure indifference of players to 
the payoffs of others.

 This paper explored the implications of two types of linkages between 
the players’ final utility and the other player’s primitive payoff: adversarial and 
amicable preferences.  We demonstrated that such non-indifference generates 
specific non-congruencies of the “primitive-dominant-set” and “utility-domi-
nant-sets,” which has the consequence of mapping apparent PD’s into other 
(non-PD) equilibrium.  On the other hand, utility PDs may arise in games that 
do not exhibit PD structure in primitive payoffs.  

To appreciate the implications of this non-congruence consider a stand-
ard two-person PD in observable payoffs. Both players are apparently better 
off through cooperation than competition, though the temptation of defection 
precludes cooperation as a non-cooperative equilibrium. It would therefore 
seem that players have incentive to create institutions that can support the 
Pareto-superior payoffs. Indeed, there exist many instances where institutions 
supporting the Pareto Superior outcome are created and the gains from co-
operation can be realized.  However, as said in the previous section, we also 
observe many situations where such institutions do not emerge and ineffi-
ciency prevails.  This paper proposes a new explanation for such phenomenon.  
Namely, that the joint-strategy Pareto superior utility-payoffs do not in fact 
exist.  Also, equilibrium that appears Pareto optimal in primitive payoffs may 
in fact be PDs in utility payoffs.  Ongoing research will apply this theory to 
the successes and failures of a variety of trade and development situations. 
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