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During the evolutionary transition from fish to tetrapods, a shift from

uni- to bidirectional suction feeding systems followed a reduction in the gill

apparatus. Such a shift can still be observed during metamorphosis of salaman-

ders, although many adult salamanders retain their aquatic lifestyle and feed

by high-performance suction. Unfortunately, little is known about the interplay

between jaws and hyobranchial motions to generate bidirectional suction

flows. Here, we study the cranial morphology, as well as kinematic and hydro-

dynamic aspects related to prey capture in the Chinese giant salamander

(Andrias davidianus). Compared with fish and previously studied amphibians,

A. davidianus uses an alternative suction mechanism that mainly relies on accel-

erating water by separating the ‘plates’ formed by the long and broad upper

and lower jaw surfaces. Computational fluid dynamics simulations, based

on three-dimensional morphology and kinematical data from high-speed

videos, indicate that the viscerocranial elements mainly serve to accommodate

the water that was given a sufficient anterior-to-posterior impulse beforehand

by powerful jaw separation. We hypothesize that this modified way of generat-

ing suction is primitive for salamanders, and that this behaviour could have

played an important role in the evolution of terrestrial life in vertebrates by

releasing mechanical constraints on the hyobranchial system.
1. Introduction
A key component of aquatic prey capture in most vertebrates is an explosive

expansion of the oropharyngeal cavity by a series of coordinated movements

of head parts. Owing to the incompressibility of water, this expansion causes

prey and surrounding water to be drawn into the open mouth [1], a behaviour

referred to as suction feeding. The widespread use of suction feeding among

aquatic vertebrates proves that it is a very effective way to capture a wide

range of prey [2–10]. Most suction feeding fish species use a fast motion of

the hyoid and abduction of the gill cover as the main contributor to suction gen-

eration by oropharyngeal expansion [1–3,11]. Such an expansion causes the

prey and surrounding water to accelerate into the gaping mouth, and the

engulfed water is then expelled through the gill slits [11]. Obviously, such a uni-

directional suction flow is restricted to animals with gills and gill slits, such as

fishes or larval amphibians [1–3,6,7,9,11–18].

Metamorphosed amphibians and other tetrapods with reduced gills and

closed gill slits evolved a bidirectional suction flow system where the inflowing

water is first stored in the expanded pharyngo-esophageal cavity and then

slowly released through the slightly opened mouth again [6,8,10–18]. While
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Figure 1. Landmarks used in the kinematic analysis: 1, upper jaw tip; 2,
lower jaw tip; 3, jaw joint; 4, hyobranchium; 5, nape; 6, estimated centre
of mass of prey.
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many well-conceived studies have been conducted on uni-

directional suction flow systems, both in fishes [1–3,19–22]

and larval salamanders [12–18], our biomechanical knowl-

edge on bidirectional systems, although used by a great

variety of aquatic tetrapods [4–6,8,10,23–25], is lagging

behind. The dynamics and water flow patterns of bidirec-

tional suction feeding in salamanders, for example, have

not been quantified yet. Nevertheless, the change from a uni-

directional to a bidirectional feeding system is considered a

key innovation behind the fish–tetrapod transition during

terrestrial evolution of vertebrates.

Previous research suggested that the feeding system of one

of the most primitive groups, the Cryptobranchidae or giant

salamanders, is significantly distinct from other aquatic sala-

mander groups [26]. This multi-variate comparative analysis

of feeding kinematics and morphology placed Cryptobranchus
alleganiensis, which is one of the three extant species of giant

salamanders, separate from five more derived salamander

groups. In Cryptobranchus, a considerable delay was observed

in the onset of the depression of the hyoid [26], generally a

key component for generating suction by expanding the

oropharyngeal cavity [11,21]. However, the functional conse-

quences of this altered feeding pattern remain unknown. This

calls for a more detailed analysis to unravel the biomechanical

roles of the oral jaws and hyobranchial elements during suction

generation in giant salamanders.

Also from an evolutionary point of view, Cryptobranchi-

dae are of particular interest. As these extant salamanders

are considered one of the groups with the most ancestral

characteristics [27–30] and with an origin dating back to

over 161 Myr [30], they may allow us to gain insights into

the ancestral aquatic feeding system of urodeles. Further-

more, since the early rise of amphibians is characterized by

large, salamander-like aquatic predators with large, flat and

broad skulls (similar to the extant giant salamanders),

extant cryptobranchids are ideal candidates to infer function

and behaviour of early amphibians [31,32].

The aim of this study was to elucidate how the largest

giant salamander, the Chinese giant salamander Andrias
davidianus, captures its aquatic prey. We will initially focus

on the functional morphology of the jaws and hyobran-

chium, as these are considered essential elements in suction

generation. Given the extensively ossified hyobranchium

in other aquatic salamander taxa [6], we expect a well-

developed and strongly mineralized hyobranchium also to

occur in the permanently aquatic A. davidianus. We further

predict that the large overall body size, along with the rela-

tively large, broad and flat head characteristic for giant

salamanders, will have a strong impact on the way suction

is generated. More specifically, we want to find out whether

the previously observed kinematic pattern of the jaw and

hyoid of Cryptobranchus alleganiensis [26] is also present in

A. davidianus, how this relates to the species’ morphology,

and what the functional implications are in terms of hydro-

dynamics. The purpose of the hydrodynamic analysis is to

evaluate the impact of a separation of this species’ long and

broad jaws on the fluid mechanics of suction feeding.
2. Material and methods
The Chinese giant salamander, A. davidianus, is the largest living

amphibian. It reaches a maximum length of over 160 cm and a
weight of 50 kg, and lives in rivers and streams of central and

eastern China where it feeds on elusive prey such as fish and

crayfish [33]. Andrias davidianus develops from a gill-bearing

larva that undergoes metamorphosis where gills are reduced

and gill slits closed.
2.1. Computed tomography
To analyse the in situ three-dimensional morphology of skull and

hyobranchial skeleton, a computed tomography (CT) scan was

performed on a freeze-dried specimen (127 cm total length),

kindly provided by the Zoological Collection of the Department

of Theoretical Biology, University of Vienna (stock no. 1/2009).

The specimen was scanned by a Somatom emotion multi-slice

scanner (Siemens AG, Germany) using 130 kV, 100 mA and

0.6 mm thick axial slices. For three-dimensional reconstruction

and visualization, the resulting greyscale image stacks were

imported into AMIRA v. 4.1 software (Mercury Computer Sys-

tems, Chelmsford, MA, USA). Surfaces of the bony structures

were created with the IsoSurface tool of AMIRA. The cartilaginous

parts of the hyoid as well as muscles were surface reconstructed

by labelling them manually, followed by the generation of a sur-

face. Surface optimizations were performed by iterated steps of

triangle reduction and smoothing. Snapshots of the reconstructions

were taken with the AMIRA software.
2.2. High-speed video recordings and kinematics
Two postmetamorphic A. davidianus were provided by the Zoo

Vienna (62 cm and 114 cm total length), and one (118 cm total

length) by the Aqua Terra Zoo Vienna. The animals were

filmed in their home aquaria in the zoo facilities in lateral

view. To facilitate lateral filming, hiding structures (big plastic

tubes or artificial rocks) were placed parallel to the front win-

dows. Whole or halved dead roach (Rutilus rutilus), or trout

pieces (Oncorhynchus mykiss) of comparable size (all prey items

ranged from 8 to 14 cm length), suspended from a thin cotton

thread, were offered to the giant salamanders approximately

40 cm in front of their hiding structures and 3–5 cm above

ground. The suction strike was recorded with a Photron

Fastcam-X 1024 PCI (Photron Limited, Tokyo, Japan) digital

high-speed camera at 2000–6000 Hz with two dedocool spot-

lights (Dedo Weigert Film, GmbH, Munich, Germany) as the

light source. From a total of 41 recordings, 24 (eight recordings

for each individual) were chosen based on their strict lateral

view for kinematical analysis. The horizontal (x-axis) and vertical

(y-axis) coordinates of previously defined landmarks (shown in

figure 1) were tracked frame by frame using SIMI-MATCHIX soft-

ware (SIMI Reality Motion Systems, Germany). Our landmarks

were based on those used by other studies on salamander prey

capture [15,34–38] to allow direct comparisons of kinematics.

According to the two-dimensional displacements of the land-

marks, we calculated the following movements: jaw movement
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(distance between the tips of the upper and the lower jaw from

start of mouth opening until mouth closing); hyoid depression

(distance between neck and throat where maximum depres-

sion occurs); movement of the prey towards the salamander

mouth (change of x-value of prey landmark from the start of

prey movement until it enters the mouth); angle displacements

of skull (head elevation from start of mouth opening until maxi-

mum gape) and lower jaw (lower jaw depression from start

of mouth opening until maximum gape) as well as mean and

maximum velocities and accelerations of each movement.

In order to account for variability of the prey capture behaviour

between the three individuals, and according to previous research

on prey capture biomechanics in salamanders [15,34–36], we

selected 11 variables obtained from the kinematic analysis that

best described the whole prey capture event: maximum gape

distance, maximum hyoid depression, duration mouth opening,

duration mouth closing, duration gape cycle, time of hyoid

depression start (equal to the delay of hyoid depression relative to

start of mouth opening), duration hyoid depression, mean velocity

of mouth opening, mean velocity of mouth closing, mean velocity

of hyoid depression and mean velocity induced to the prey through

suction. After calculating descriptive statistics for each variable and

individual, we checked for normal distribution of their residuals

and as they were normally distributed, we performed a multi-

variate analysis (MANOVA). The individual was treated as the

fixed factor and the variables as random factors. In order to account

for repeated measurements, simultaneous Bonferroni correction

was used to adjust significance levels to p � 0.0046. Furthermore,

we tested for a correlation between the timings of mouth opening

and hyoid depression. All statistical analyses were performed on

a PC with the SPSS STATISTICS v. 20 software package (IBM, USA).

In order to account for strike-to-strike variability and to avoid

the potential confounding effects of kinematic means, the time

axis of each prey capture sequence was scaled to the maximum

gape (mouth opening) value in the kinematic graphs. Given

that one of the three individuals was significantly smaller and

its values differed significantly from both the larger individuals

(as shown in the corresponding results part), it was not included

in the kinematic profile shown in the results.

To calculate the amount of sucked water volume, the head of

one salamander (114 cm total length), from snout tip to the pectoral

girdle, was approximated by a series of elliptical cylinders. The

lengths of the major and minor axes of the ellipses correspond to

head height and width, respectively. The amount of sucked water

volume was considered as the difference between head volume

just before suction (before mouth opening started) and just after

mouth closure when the buccal cavity was maximally expanded.

No significant lateral expansion of the oropharynx was assumed.

2.3. Computational fluid dynamics
For the computational fluid dynamics (CFD) simulation, we used a

giant salamander head model based on the CT scan (outer and

inner surfaces; figure 2a). These CT scan surfaces were first con-

verted into a single watertight surface using GEOMAGIC QUALIFY

v. 10 software (Geomagic, NC, USA), and transformed into non-

uniform rational B spline surfaces (separating functional units

such as interior and exterior surfaces of the lower and upper

jaws, and a narrow middle zone in between; figure 2b) using

VRMESH STUDIO v. 5.0 (VirtualGrid, Seattle, WA, USA). Next, the

salamander head model was centred in a spherical flow domain

boundary with a radius of 1.5 m, and the space surrounding the

head was meshed with 4 858 032 tetrahedral cells (size of 2.5 mm

at the head surface and 0.25 m at the outer domain boundary

and a growth rate of 1.2 between the two; figure 2c), using the

patch independent algorithm in ANSYS MESHING v. 14.0 (ANSYS,

Canonburg, PA, USA). The model was solved for unsteady, lami-

nar flow in ANSYS FLUENT v. 14.0 with a time step of 1 ms. As

transition to turbulent flow is very unlikely to occur because of
the short duration and high accelerations of the water during suc-

tion feeding [20], a laminar flow model was chosen. The motion

and deformation of the mesh was included by a user-defined func-

tion. The simulated movements of the head were based on the data

obtained from our high-speed videos (i.e. angular velocities of the

neurocranium and lower jaw), of which the profiles were accurately

fitted with sixth-order polynomial functions (figure 2d). For a

smooth deformation of the grid generated around the head,

values of polynomial fits were multiplied by a factor ranging

from 1 to 0 (shown in figure 2e). Changes in the mesh surrounding

the head over time were automatically performed by ANSYS

FLUENT, using spring-based smoothing and re-meshing algorithms.

A grid-convergence test indicated that a further refinement of our

mesh would have introduced a large computational cost, but

would not change the results by more than 5 per cent. For example,

refining from 1 to 2 million cells resulted in a change by 5 per cent in

both the calculated peak velocity and peak pressure, whereas a

further refinement from 2 to 4.5 million cells only resulted in a

1.7 per cent lower peak velocity and a 2.9 per cent lower peak

sub-ambient pressure magnitude. During this final refinement,

the timing of the peak negative value and the zero-crossing of

pressure remained unchanged. Also, time-step size convergence

was confirmed: smoothed replicas of the velocity and pressure pro-

files of a simulation using 2 ms as time-step size were calculated

with the used time steps of 1 ms. The results were post-processed

using ANSYS CFD-POST v. 14.0.
3. Results
3.1. Morphology
The skull of A. davidianus is very broad and flat. The upper jaw

consists of the premaxilla, maxilla and vomer (figure 3a–c).

The premaxilla and the maxilla bear a continuous, nearly

hemispherical row of teeth that is followed posteriorly by the

second row of vomerine teeth. Dorsally, behind the premaxilla,

lie the paired nasal, frontal and parietal bones that build up

the roof of the braincase. The braincase is enclosed posteriorly

by the exoccipitals, which bear the occipital condyles that

articulate with the first vertebra, the atlas. The floor of the

braincase is formed by the large parasphenoid that lies

posterior to the vomer and runs posteriorly to the exoccipitals.

Amphilateral to the parasphenoid lie both flattened pterygoids

that build up the lateral roof of the oropharyngeal cavity.

The pterygoids attach posteriorly to the squamosal and

quadrate, and these three elements together assemble the sus-

pensorium. The suspensorium articulates with the articular

element of the mandible that is attached anteriorly to the

tooth bearing dentary.

The hyobranchial apparatus in postmetamorphic

A. davidianus lies in the oropharyngeal floor and broadly

covers the space between both dentaries of the lower jaw

(figure 3b). It is built up by the hyoid arch and the first

two branchial arches, which remain mainly cartilaginous.

Only elements of the second branchial arch are minerali-

zed. The anterior-most elements of the hyobranchium, the

hypohyals, show a bow-like shape and are medially fused

together. Posterior to the medial fusion lies the small and

(from the ventral view) oval basihyal. Posterior to the distal

tips of the hypohyals lie the large flat ceratohyals that

extent posteriorly beyond the jaw joint. Between the anterior

portions of the ceratohyals, and posterior to the small

basihyal lies the broad and remarkably flat basibranchial

that is followed posteriorly by the elongated hypobran-

chial 1, fused with the ceratobranchial 1, and the only

http://rsif.royalsocietypublishing.org/
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Figure 2. Different steps of CFD modelling. (a) The external and intra-oral surface of the head was generated by a CT scan of a freeze-dried Chinese giant sal-
amander. Through reverse engineering software, this surface was segmented and fitted with a series of spline (NURBS) surfaces (b) onto which a surface grid was
generated. (c) The salamander head model was centred in a spherical flow domain, an unstructured, tetrahedral mesh was created, boundary conditions were set
(boundary sphere, pressure outlet; salamander surface, no-slip wall), and imported into the CFD solver. (d ) Rotations of the neurocranium upper jaw and lower jaw
were programmed as grid-deformation scripts that included polynomial fits (red curves) of the smoothed kinematic data (blue curves). (e) To allow smooth move-
ment of the grid without grid intersections, transitional zones were defined where the grid deformed by assigning a motion factor ranging from 1 (completely
following the rotation of neurocranium upper jaw or lower jaw) to 0 (grid nodes stay at their initial place).
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mineralized elements found in the hyobranchial skeleton of

A. davidianus: hypobranchial 2 that articulates with a distinct

ceratobranchial 2.

The main muscles involved in the prey capture event are

shown in figure 4, and are briefly described below. The

M. depressor mandibulae consists of two distinct parts:

M. depressor mandibulae posterior, and M. depressor mandi-

bulae anterior. The M. depressor mandibulae posterior
originates from the dorsal fasciae of the epaxialis musculature,

and its fibres run ventrally to insert on the articular. The

larger portion of the depressor system, the M. depressor man-

dibulae anterior, originates mainly from the os squamosum

of the skull, runs ventrally and inserts slightly anterior to

the insertion site of the M. depressor mandibulae posterior

on the articular. The adductor system consists of two parts,

the M. adductor mandibulae externus and the M. adductor

http://rsif.royalsocietypublishing.org/
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mandibulae internus. The M. adductor mandibulae externus

lies just anterior to the M. depressor mandibulae posterior.

It originates from the anterior squamosum, runs ventrally

and inserts on the coronoid part of the lower jaw. The

M. adductor mandibulae internus has a rather complex

arrangement including further subdivisions. The M. adductor

mandibulae internus complex originates from the fasciae of

the epaxialis musculature and more anteriorly from the parie-

tale of the skull roof. Its fibres run ventrally to insert slightly

anterior to the insertion site of the M. adductor mandibulae

externus on the lower jaw. The M. depressor mandibulae

complex inserts posterior and the M. adductor complex

anterior to the jaw joint. The M. geniohyoideus originates

medially on the dentary bone, close to the symphysis, and

runs posteriorly to insert on the fasciae of the M. rectus cervicis.

The M. rectus cervicis directly originates from the M. rectus

abdominis (hypaxialis musculature) and runs anteriorly to

insert on the proximal parts of hypobranchials 1 and 2 and

on the median basibranchial part.
3.2. Kinematics
Once detected, prey was slowly approached and then sucked

in by a very fast and powerful suction strike. The strike

started with mouth opening, caused by both dorsal skull

rotation and ventral lower jaw rotation, followed by hyoid

depression (figure 5).
Significant differences were found between individuals on

11 variables that best described the whole feeding event

(MANOVA Wilks’ lambda F ¼ 9.226; p � 0.001). The sub-

sequent series of ANOVAs revealed differences regarding the

following distance and time variables: maximum gape distance

(F ¼ 26.9; p , 0.001), maximum hyoid depression (F ¼ 23.8;

p , 0.001), duration of mouth opening (F ¼ 44.1; p , 0.001),

duration of gape cycle (F ¼ 17.7; p , 0.001) and delay of

hyoid depression (F ¼ 23.4; p , 0.001). No significant differ-

ences were detected between duration of mouth closing (F ¼
6.0; p ¼ 0.008), duration of hyoid depression (F ¼ 2.9; p ¼
0.071) and between all four velocity variables: velocity of

mouth opening (F ¼ 0.4; p ¼ 0.705), velocity of mouth closing

(F ¼ 0.4; p ¼ 0.7), velocity of hyoid depression (F ¼ 1.8; p ¼
0.188) and velocity induced to the prey (F ¼ 3.5; p ¼ 0.048).

A subsequently performed post hoc test (Tukey’s honestly sig-

nificant difference) further revealed that the smaller individual

differed significantly (significance level, p � 0.0046) from both

other individuals in terms of maximum gape distance, dur-

ation of mouth opening, duration of gape cycle, delay of

hyoid depression and maximum hyoid depression. By contrast,

individuals 1 and 2 showed no significant differences concern-

ing any of the variables tested. In other words, the difference

between individuals detected by the MANOVA and the

subsequent series of ANOVAs was mainly based on the differ-

ences in the prey strike between the smaller individual

compared with the two larger ones.
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Accordingly, the two larger individuals on the one hand,

and the smaller one, on the other hand, have to be treated

separately in the following descriptive kinematics. In the

two larger animals, a mean maximum gape distance of

62.8 mm + 8.53 (mean + s.d.) was reached after 70.1 +
7.3 ms, with a mean velocity of 0.91 + 0.18 m s21, immedi-

ately thereafter mouth closing started until the jaw plates

met—or if prey was not completely engulfed and enclosed

the prey item (figure 5a–e). The mouth closing movement

was slightly slower than mouth opening, and lasted 84.6 +
20.3 ms with a mean velocity of 0.78 + 0.2 m s21.

The duration of the whole gape cycle took 154.7 +
22.4 ms and its averaged kinematical profile described a

bell-shaped curve (figure 5e). The amount of angular rotation

of the skull and lower jaw, and therefore their contribution to

the mouth opening distance, varied strongly between suction

strikes (figure 5f,g). The sum of both rotations, however,

formed more stereotypical gape cycle profiles (figure 5e),

resulting in linear maximum jaw displacement velocities of

1.3 + 0.18 m s21. Hyoid depression started with an average

delay of 50.9 + 9.64 ms after the start of mouth opening,

and reached a maximum ventral deflection of 42.3 +
9.1 mm at 85 + 21.9 ms, with a mean velocity of 0.54 +
0.21 m s21. The suction strike induced a mean velocity to

the prey of 0.95 + 0.3 m s21. Hyoid adduction started several

seconds later and was very slow.
The movement of the prey towards the salamander’s

mouth started 15.5 + 8.4 ms after initial mouth opening and

was sucked completely into the mouth within 57.2 + 9.5 ms.

The suction mechanism of the two larger animals indu-

ced maximum prey accelerations towards the salamander

of 40–50 m s22, resulting in maximum prey speeds of

1.4 + 0.5 m s21. The total engulfed water volume, calculated

for one adult specimen, was over 1.2 l.

The kinematical profile of the prey strike of the smaller

salamander (62 cm total length) was very similar to that of

the two larger ones (114 and 118 cm total length) described ear-

lier, but due to the smaller size, maximum gape distance

(40.5 + 4.6 mm), duration of mouth opening (43.5 + 4.1),

duration of gape cycle (101.8 + 20.3), delay of hyoid

depression (25.7 + 4.8) and maximum hyoid depression

(26.3 + 2.7) were significantly smaller. On the other hand,

the two temporal variables, duration of mouth closing and dur-

ation of hyoid depression, as well as all four velocity variables,

showed no significant differences to the two larger individuals.

All three animals, however, showed a highly significant

correlation between the delay of hyoid depression (delay rela-

tive to start of mouth opening) and duration of mouth

opening (r22 ¼ 0.772; p , 0.001).

3.3. Hydrodynamics
Our CFD models calculated the three-dimensional unsteady

flow in and around the salamander’s mouth during four suc-

tion strikes. Note that the simulated flows were only the

result of the upper and lower jaw movements: no ventral

depression of the skin out of the plane between the lower jaw

rami by action of the hyobranchium was included. Because

such hyobranchium depression starts at 51 + 9.6 ms after

mouth opening, the model will only give a realistic image

during the initial phase (i.e. time , 51 ms).

Anterior-to-posterior flow velocities increased quickly after

mouth opening started (figures 6a–e and 7a) and reached peak

velocities after 31 + 7 ms (figure 6b). We calculated peak flow

velocities in the sagittal plane of 1.34 + 0.07 m s21 central in

the mouth aperture, which slowly decreased towards the end

of the mouth opening phase (figures 6a–e and 5a). Negative

intra-oral flow velocities (i.e. posterior-to-anterior flow) were

detected only close to the external surfaces of upper and

lower jaws at the final instants of the jaw expansion. Water

flows into the mouth from the sides at equal speed compared

with from directly in front of the mouth, as shown by the absol-

ute flow velocity plots in the midfrontal plane (figure 6a0 –e0).
Instantaneous pressure acting on the oral surfaces during

mouth opening was also quantified (figure 6a00 –e00). Only

11 + 6 ms after mouth opening started, intra-oral pressure

dropped below 24.0 + 0.3 kPa (figure 6a00), but soon

increased again after reaching this negative peak. The

pressure on the intra-oral surface between the left and right

lower jaw bars, for example, became positive at 44 + 8 ms,

and reached its positive peak 84 + 10 ms after the onset of

mouth opening (figure 7b). Pressure changes on the external

surfaces of the salamander during the simulated motion were

negligible (figure 6a00 –e00).
4. Discussion
Suction feeding evolved early in vertebrate history and is still

widespread among aquatic predators: it is found in fishes

http://rsif.royalsocietypublishing.org/
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[1–3,11,19–22], amphibians [6,7,9,12–18,25,38,39] turtles

[4,5,23] and mammals [8,10,24]. Despite dramatic morphologi-

cal and physiological differences among these groups, some

general movement patterns to create rapid intra-oral pressure

drop seem to be similar: the mouth is opened and hyobran-

chial depression creates oropharyngeal volume expansion

that, due to the principle of continuity, results in a flow into

the mouth. It is broadly accepted that such similarities are

mainly the result of biophysical constraints to create a suction

flow into the mouth rather than that of homologies. This

becomes more evident if we consider that turtles and mammals,
for example, independently evolved aquatic forms with suction

feeding systems [8,40]. In contrast to these analogies, many fea-

tures of the feeding mechanism of amphibians are ancestral

characteristics that are retained from their sarcopterygian fish

ancestors [41]. Most larval salamanders maintain the basic mor-

phological configuration of the fish feeding mechanism with

well-developed hyobranchium and associated muscles, as well

as a large number of functional similarities in motor patterns

and kinematics [41]. Even transformed (postmetamorphic) sal-

amanders show a large number of ancestral features though

their morphology has changed considerably [41,42].
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The transition from larval to postmetamorphic salamanders

includes, among other things, reduction and modification of the

viscerocranium and the loss of gills and gill slits, and therefore a

shift from a unidirectional to a bidirectional flow system when

suction feeding [12–18]. The shift from a unidirectional to a

bidirectional flow system (with all the associated morphological

and functional changes) was shown to result in a drop in

aquatic feeding performance in some salamander groups

[14,16,17]. On the other hand, Miller & Larsen [39] reported

high-performance aquatic prey capture by suction feeding in

other species that—even after metamorphosis—retain a fully

aquatic lifestyle. These species do have a modified (from their

larval condition) hyobranchial system that is secondarily
mineralized, with large hyobranchial elements compared

with closely related terrestrial species [6]. This is consistent

with previous assumptions that the salamander feeding

system fundamentally relies on hyobranchial form and

function [6,14,41], and a large, robust hyobranchium is advan-

tageous for rapid hyoid depression as the main contributor to

suction generation.

Our anatomical reconstruction showed that A. davidianus
has a remarkably large, flattened skull and a broad snout.

The lower jaw articulates with the quadrate far posteriorly

at the level of the first cervical vertebra (figure 3), which high-

lights the dominant appearance of the lower jaw within the

cranial system. The wide space between the lower jaws is
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covered ventrally by the hyobranchium. Interestingly, the

hyobranchial skeleton is poorly ossified and mainly cartilagi-

nous. This was surprising because we expected a stiff, bony

hyobranchial skeleton, as it was generally assumed to be a

prerequisite for most suction feeding metamorphosed sala-

manders where fast movements of the hyobranchium are

the main contributor to suction generation [6,14,41].

In A. davidianus, a large fraction of the total cranial and

post-cranial musculature can be recruited to power jaw open-

ing. Ventral rotation of the lower jaw can be powered by

contraction of the well-developed pair of mandibular depres-

sor muscles, and might further be supported by contraction

of the geniohyoideus muscle (figure 4). Additionally, the

rectus cervicis muscle can have an indirect role in lower jaw

depression, as its fasciae might offer stable insertion sites

for the geniohyoideus muscle. However, because it is a

direct extension of the rectus abdominis musculature (hypax-

ialis musculature) and inserts on the hyobranchial apparatus,

its main function is probably posteroventral hyoid rotation.

Dorsal skull rotation, the second contributor to jaw opening,

is empowered by contraction of the massively developed

epaxialis musculature that runs dorsally along the whole

body and attaches to the occiput of the skull.

The motion analyses showed that during a suction strike

in A. davidianus, the prey starts to move towards the salaman-

der a few milliseconds after the beginning of mouth opening,

and disappears into the mouth near the instant when the

mouth reaches its maximum opening. Hyobranchial depres-

sion starts much later, only shortly before the prey passes the

mouth corners. These results confirm the findings described for
Cryptobranchus alleganiensis [26], suggesting that the consider-

able delay in hyobranchial depression is a general pattern for

cryptobranchid salamanders. Because of the considerable

prey motion during the phase in which only upper and

lower jaw motion was observed, our kinematic data suggest

that the rapid separation of the large and broad upper and

lower jaw surfaces is solely responsible for the acceleration of

the prey into the mouth. To test this hypothesis, we quantified

the hydrodynamics resulting from the observed upper and

lower jaw motion by CFD.

The CFD simulations showed that water between upper

and lower jaw tips is accelerated into the mouth shortly

after mouth opening started, reaching backwards velocities

easily exceeding 1 m s21. These flow velocity magnitudes

are comparable to the values measured for high-performance

unidirectional suction feeders [43–45] that, in contrast to our

model, use considerable ventral depression of the hyoid

elements much earlier in the expansive phase of suction.

The values calculated from our CFD model are very similar

to prey velocities measured on the original high-speed

films. This validates the CFD model, and proves that high

accelerations are induced to the prey by rapid jaw displace-

ment, before motion in the hyobranchial region out of the

plane of the lower jaw could be measured.

The positive intra-oral pressures at the time of onset of the

balloon-like expansion of the ventral skin (figure 7b) strongly

suggest that the water pushes these surfaces into expansion.

Our model showed that pressure on the intra-oral surface

between the left and right lower jaw bars becomes positive

relatively early (44 + 8 ms after the onset of mouth opening),

which precedes the onset of ventral depression in the hyo-

branchial region (51 + 9.6 ms). This means that at this

instant, hyobranchial motion is assisted by decelerating water

that pushes the oropharyngeal surfaces into expansion. In

other words, the late expansion observed in the hyobranchial

region is probably driven in part by a decreasing momentum

of the sucked water when impacting these surfaces.

If the depression in the hyobranchial region out of the lower

jaw plane were significantly empowered by contraction of the

hypaxialis musculature, then a second peak of negative intra-

oral pressure would be formed from 51 ms after mouth

opening. This is highly unlikely since a double-peaked intra-

oral pressure profile has never been observed in the numerous

studies that measured pressures by implanted transducers in

a wide variety of suction feeding vertebrates [3,10,14,21,

22,25,41,46,47]. In addition, it is doubtful whether a functional

advantage exists in an intermittent acceleration of a prey, as

this would result in slower prey capture times compared

with a single, continuous prey acceleration. Consequently,

this reasoning gives indirect support that the expansions

observed late in the suction phase (figure 5) are not only

driven by hyobranchial retractor muscles (as observed in

other suction feeding vertebrates), but to a large degree by

the momentum of the water flow.

However, during the first stage of mouth opening by

A. davidianus, the broad intra-mandibular coverage of the hyo-

branchium can play an important role in preventing the inward

bending of the skin between left and right lower jaws, when

the upper and lower jaw ‘plates’ separate to cause sub-ambient

suction pressures of below 24 kPa. Without any skeletal

support, intra-mandibular tissues (intra-mandibular muscles

and skin) would probably be stretched towards the upper

jaw, which will prevent further suction from being produced.

http://rsif.royalsocietypublishing.org/
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Our videos show a very limited amount of dorsal motion of

the intra-mandibular tissues with respect to the lower jaw

(figure 5b; just anterior of the mouth).

Generating suction by separation of two parallel surfaces

in close apposition is not unique to the giant salamanders,

as physical analogues can be found elsewhere in nature

(figure 8). The ‘clap-and-fling’ of the wings of insects [48]

relies on a similar fluid mechanical principle to generate

additional lift during flight. During the fling, the dorsally

clapped wings (acting essentially as rigid plates) will pronate

about their trailing edge, creating a growing gap as the lead-

ing edges pull apart [49,50]. During this phase, a flow of air is

‘sucked’ downwards in between the separating wings and

is accompanied by a body-lifting suction reaction force on

the insect (owing to negative pressures) on the dorsally

oriented wing surfaces. A second example shows that surface

separation must not necessarily act between two body parts:

benthic stingrays generate a strong, sustained suction flow by

rapidly moving their flat rostrums upwards from the substrate

to manipulate and capture prey [51,52] (figure 8). These

examples show that suction can be generated effectively in

other ways than the classical example of a radial expansion

of a fluid-filled cavity as observed in suction feeding fishes [2].

We hypothesize that the function of the hyobranchial

system, as described here for A. davidianus, has shifted during

evolution. In primitive actinopterygian and sarcopterygian

fishes, the hyoid apparatus plays a dominant role in producing

suction pressure and is also involved in a biomechanical
pathway to depress the mandible [53,54]. In A. davidianus, we

found that it supports the medial surface in between the

depressing mandible to function together as one of the two sep-

arating ‘plates’ that cause the acceleration of water and prey

into the mouth. Afterwards, ventral motion of the hyobran-

chium serves to continue the flow of water into the

buccopharyngeal cavity. The observation of a relative timing

of hyobranchium depression showing a remarkably high

stereotypy with respect to mouth opening in A. davidianus is

in accordance with such a mechanism. Instead of a predomi-

nantly hyoid-powered suction mechanism as in fish, A.
davidianus thus makes use of a jaw-powered suction system.

Given the overall morphological similarity with Cryptobranchus
alleganiensis, which also has a relatively small amount of hyo-

branchial ossification in a rather larval-like hyobranchium,

and clear kinematic similarity during prey capture [26,38,55],

a similar function of the feeding system can be expected for

this species. The observed pattern is thus probably a general

characteristic of giant salamanders (Cryptobranchidae).

Elwood & Cundall [55] described the ability for asymme-

trical movements of jaws and hyobranchium during suction

strikes in C. alleganiensis. In our study, food was always

offered in front of the animals, and no asymmetrical move-

ments were observed. However, from the morphological

data obtained (more specifically, the cartilaginous mandi-

bular symphysis and mainly cartilaginous hyobranchium

with narrow symphyses), we deduce that A. davidianus
might be capable, to a certain degree, of asymmetrical jaw

and hyobranchial movements. Elwood & Cundall [55] used

different prey types in their study and observed a high varia-

bility in suction movements. We fed only dead whole or

halved fishes (roaches and trouts) and the salamanders

showed symmetrical suction movements.

Because giant salamanders are one of the lineages retain-

ing the most ancestral features among living tetrapods

[27–30], the current analysis of their feeding biomechanics

might shed new light on the feeding biology of early tetra-

pods [31,56]. Large, broad and dorsoventrally flattened

skulls were characteristic for many Late Devonian tetrapod

lineages, as well as for later branches [28]. Just like our

model species, these early tetrapods were aquatic predators

and their lifestyle was comparable to today’s giant salaman-

ders. Although some derived cranial features are present in

giant salamanders compared with early tetrapods, these are

outweighed by the striking overall morphological simi-

larities. Consequently, it is not unlikely that rapid jaw

displacement also played a central role in suction generation

of early tetrapods.

More specifically, our data indicate that broad-skulled

aquatic predators with large lower jaws can release the hyo-

branchium from its primitive suction-powering function

during prey capture by using rapid jaw displacement to pro-

duce suction. In turn, in some branches, this may have

allowed a further modification of the hyobranchial systems

into a hyolingual system that can be used for terrestrial feed-

ing purposes without losing performance in aquatic prey

capture. Consequently, jaw-powered suction feeding might

have been a potential key innovation in the transition to a ter-

restrial feeding lifestyle by allowing further development of a

muscular, movable tongue. Furthermore, jaw-based suction

feeding could also explain the large, broad and flattened

‘spade-shaped’ heads typically found in early amphibians

[28] as a result of adaptive evolution.
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In conclusion, our data suggest that A. davidianus uses a

modified mechanism to generate suction compared with

other lower vertebrates. Rapid displacement of the broad

upper and lower jaws creates a quick drop in intra-oral pressure

and an accelerating flow of water into the mouth. The inertia of

the inflowing parcel of water assists a relatively late depression

of the floor of the mouth by movement of the broad and carti-

laginous hyobranchial apparatus. The latter movement helps

to maintain the flow of water within the oral cavity, rather

than generating the power stroke for prey capture. We hypoth-

esize that such a biomechanical shift in the way that suction is

powered (from hyobranchial- to jaw-powered suction) can be

a key innovation in the fish–tetrapod transition: by releasing

biomechanical constraints on the hyobranchial system, this
may have opened the path for further modifications (e.g. the

evolution of a fleshy tongue) without losing performance as

aquatic predators.
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