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Chapter 4

Interaction of Photons and

Electrons

4.1 The interaction Hamiltonian

4.1.1 Strategy

The aim of this work is to develop a version of quantum electrodynamics in
which all shortcomings of the standard approach are avoided. A first modifi-
cation is the use of a reducible representation of the canonical commutation
and anti-commutation relations. The main visible consequence is that many
integrations over wave vectors disappear from the defining expressions of key
quantities. As a consequence, there is no immediate need for an ultraviolet
cutoff. However, this does not mean necessarily that the problem of ultravi-
olet divergences is solved, only that it is delayed to the moment of evaluation
of quantum expectations.

The next intervention concerns the number of degrees of freedom of the
electromagnetic field. The free electromagnetic field has two degrees of free-
dom corresponding with two independent choices of polarization. It is tra-
dition to describe the interacting quantized electromagnetic field by 4 in-
dependent vector potentials Aµ, µ = 0, · · · , 3. This allows for an easy in-
corporation of Coulomb forces. A further advantage is manifestly Lorentz
covariance. However, problems arise because in a quantum field theory it is
not obvious how to eliminate spurious degrees of freedom.

The present theory restricts the degrees of freedom to the two transverse
polarizations of the free field, treated in the transverse gauge. In this way
the difficulties with elimination of degrees of freedom do not occur. The
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82 CHAPTER 4. INTERACTION OF PHOTONS AND ELECTRONS

drawback is that the explicit evaluation of Lorentz boosts requires tedious
calculations. In addition, it is not immediately clear how Coulomb forces
emerge. The latter point is discussed further on in the text.

The interaction between photons and electrons can be implemented in
more than one way. The choice made here is to use the Dirac equation only
for the description of free electron/positron fields. The interaction between
free photons and free electrons/positrons is then determined by the usual in-
teraction Hamiltonian, which involves the contraction of the vector potential
and the Dirac current. Because of working in the transverse gauge only the
spatial components of the Dirac current appear.

4.1.2 The state space

The reducible representations of the free electromagnetic field and the free
electron/positron field each have their own wave vector used to label the
irreducible components. They are denoted kph, respectively k. A field ζ of
the interacting system associates with each pair kph 6= 0, k of wave vectors
a wave function ζkph,k in the product Hilbert space Hem × H16, where Hem

is the Hilbert space of a two-dimensional harmonic oscillator, and H16 is
the 16-dimensional Hilbert space representing the possible states of an elec-
tron/positron field. Basis vectors in the product Hilbert space are denoted
|m,n〉 × |Λ〉 ≡ |m,n,Λ〉, where m,n count photons and Λ is a subset of
{1, 2, 3, 4}. The space of continuous fields of the form

(kph,k) ∈ R
3
o × R

3 7→ ζkph,k ∈ Hem ×H16.

is denoted Γph/el.

4.1.3 The interaction Hamiltonian

The Hamiltonian Ĥ is of the usual form

Ĥ = Ĥph + Ĥ el + Ĥ I. (4.1)

The kinetic energy of the photon field is given by (2.18)

Hph

kph = ~c|kph|
(

a†HaH + a†VaV

)

,

that of the electron/positron field by (3.13, 3.15)

H el

k
=

1

2
~ω(k)

4
∑

s=1

Ns,
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where Ns is the number operator indicating the presence of a particle of type
s (electron or positron, spin up or down). The interaction term involves the
Dirac current Ĵµ(x) and the electromagnetic potential operators Âµ(x). The
obvious definition is

Ĥ I(x0) =

∫

R3

dx Âµ(x)Ĵ
µ(x).

For x0 = 0 this defines the interaction Hamiltonian in the Schrödinger pic-
ture.

The charge operator Q̂ commutes with the Hamiltonian Ĥ of the inter-
acting system. Indeed, one has

[Q̂, Ĥ]− = [Q̂, Ĥ I]−

=

∫

R3

dx Âµ(x)[Q̂, Ĵµ(x)]−

= 0.

The latter commutant vanishes – see (3.43).

4.1.4 Gauge transformations

The charge operator Q̂ commutes with Ĥph, Ĥ el and Ĥ I and hence with the
full Hamiltonian Ĥ . The one-parameter group Λ ∈ R 7→ exp(iΛQ̂) is a global
symmetry of electrodynamics and corresponds with the U(1) gauge group of
the Standard Model. This raises the question whether this symmetry group
can be extended to include local symmetries. Local means here local in the
space of wave vectors.

Given a smooth function Λ(kph,k) introduce the diagonal operator ÛΛ

defined by

[ÛΛζ ]kph,k = eiΛ(k
ph,k)Qζkph,k.

Proposition 4.1.1 Assume that any of the 4 possibilities k′ = ±k ± kph

implies that Λ(kph,k′) = Λ(kph,k). Then ÛΛ commutes with the Hamiltonian

Ĥ.

Proof
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It clearly commutes with Ĥph and Ĥ el. Because Q̂ commutes with Ĵα one
has

[Û−1
Λ Ĥ IÛΛζ ]kph,k =

∫

R3

dx
∑

α

Aα,kph(0,x)

×ℓ3
∫

dk′ ei[Λ(k
ph,k′)−Λ(kph,k)]QJα

k,k′(0,x)ζkph,k′.

The x-dependence of Aα,kph(0,x) involves factors eik
ph·x. The x-dependence

of Jα
k,k′(0,x) involves factors ei(±k±k′). Hence the integration over x produces

Dirac delta functions δ(±kph ± k± k′). By assumption these restrictions on
the wave vectors imply that Λ(kph,k′) = Λ(kph,k). Therefore the factor
ei[Λ(k

ph,k′)−Λ(kph,k)]Q may be omitted in the above expression. The result is
that

[Û−1
Λ Ĥ IÛΛζ ]kph,k = [Ĥ Iζ ]kph,k.

This implies that Ĥ I commutes with ÛΛ.
�

Let k = k‖ + k⊥ be the decomposition of k into a part parallel to kph

and an orthogonal part. With this notation, the condition of the proposition
is satisfied when Λ(kph,k) is a function of kph and |k⊥| only. It is easy to
construct functions Λ which depend on kph and |k⊥| in a non-trivial manner.
Hence, the Hamiltonian Ĥ is invariant under non-trivial gauge transforma-
tions. On the other hand, it is also easy to construct functions Λ such that
ÛΛ does not commute with Ĥ .

4.2 Bound states

4.2.1 The unperturbed vacuum

The ground state of the non-interacting system is given by ζkph,k = |0, 0, ∅〉.
The two zeroes indicate the absence of horizontally, respectively vertically
polarized photons. The empty set indicates the absence of electrons and
positrons. This state is not an eigenstate of the interacting Hamiltonian Ĥ.
One has

[Ĥζ ]kph,k = [Ĥ Iζ ]kph,k

=

∫

R3

dx [Âµ(x)Ĵ
µ(x)ζ ]kph,k

∣

∣

∣

∣

x0=0
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=

∫

R3

dxAµ,kph(x)|0, 0〉

∫

dk′ Jµ
k,k′(x)|∅〉

∣

∣

∣

∣

x0=0

=
λ

2N0(kph)

qc

2(2π)3

∫

R3

dx eik
ph
µ xµ

∫

dk′ ei(kν+k′
ν
)xν

∣

∣

∣

∣

x0=0

×
∑

α

[

ε(H)
α (kph)|1, 0〉+ ε(V )

α (kph)|0, 1〉
]

×
∑

s=1,2

∑

t=3,4

[

〈u(s)(k)|γ0γαv(t)(k′)〉+ 〈u(s)(k′)|γ0γαv(t)(k)〉
]

×σ(−)
s σ

(−)
t |∅〉

= −
λqc

2N0(kph)

∑

α

[

ε(H)
α (kph)|1, 0〉+ ε(V )

α (kph)|0, 1〉
]

×
∑

s=1,2

∑

t=3,4

〈u(s)(k)|γ0γαv(t)(−k− kph)〉 |{s, t}〉.

To obtain the last line the identities (D.5 — D.7), found in the Appendix D,
are used. The action of the Hamiltonian Ĥ on the free vacuum creates an
electron/positron pair together with a single photon.

The quantum expectation 〈ζ |Ĥζ〉 of the energy vanishes. An important
question is whether there exist fields ζ in Γph/el for which 〈ζ |Ĥζ〉 is negative,
or even diverges to minus infinity. This question is related to the problem
of stability of matter and has been studied extensively. See for instance the
work of Lieb and coworkers [12]. A systematic study in the present context
is postponed. A partial answer is given in the following sections.

4.2.2 Trial wave function

Let us try to find a wave function ζkph,k for which the expectation value

〈ζ |Ĥζ〉 is strictly negative.

For all ζ of the form ζkph,k =
∑

m,n am,n(k
ph,k)|m,n, ∅〉 is 〈ζ |Ĥζ〉 ≥ 0. As

a next step consider wave functions of the form

ζkph,k =
√

ρvac(kph,k)|0, 0, ∅〉
+a0,0(k

ph,k)|0, 0, {1}〉+ a1,0(k
ph,k)|1, 0, {1}〉+ a0,1(k

ph,k)|0, 1, {1}〉.

They describe a single electron with spin up, eventually accompanied by
an electromagnetic wave which is a superposition of a horizontally and a
vertically polarized photon. The superposition with a wave function with
vanishing electron/positron field is needed in order to satisfy the conflicting
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requirements of proper normalization and of a finite quantum expectation of
the energy. Proper normalization requires that for all kph,k

1 = ρvac(kph,k) + |a0,0(k
ph,k)|2 + |a1,0(k

ph,k)|2 + |a0,1(k
ph,k)|2.

Finiteness of the total energy requires that the density of the vacuum ρvac(kph,k)
tends to 1 fast enough when |kph| and |k| become large.

The kinetic energy of the fields equals

Eph = ℓ3
∫

dkph
~c|kph|ρph(kph),

E el = ℓ3
∫

dk ~ω(k)ρel(k),

with

ρph(kph) = ℓ3
∫

dk
[

|a1,0(k
ph,k)|2 + |a0,1(k

ph,k)|2)
]

,

ρel(k) = ℓ3
∫

dkph
[

|a0,0(k
ph,k)|2 + |a1,0(k

ph,k)|2 + |a0,1(k
ph,k)|2)

]

= ℓ3
∫

dkph [1− ρvac(kph,k)] .

Before evaluating the interaction energy first consider

[Ĥ Iζ ]kph,k

=

∫

dx
∑

α

Aα,kph(x)|0, 0〉

×

∫

dk′ Jα,k,k′(x)a0,0(k
ph,k′)|{1}〉

∣

∣

∣

∣

x0=0

+

∫

dx
∑

α

Aα,kph(x)|1, 0〉

×

∫

dk′ Jα,k,k′(x)a1,0(k
ph,k′)|{1}〉

∣

∣

∣

∣

x0=0

+

∫

dx
∑

α

Aα,kph(x)|0, 1〉

×

∫

dk′ Jα,k,k′(x)a0,1(k
ph,k′)|{1}〉

∣

∣

∣

∣

x0=0

=
λqc

4N0(kph)(2π)3

∫

dx
∑

α

[

ε(H)
α (kph)e−ikph·xa†H + ε(V )

α (kph)e−ikph·xa†V

]

|0, 0〉



4.2. BOUND STATES 87

×

∫

dk′
[

e−i(k−k′)·x〈u(1)(k)|γ0γαu(1)(k′)〉+ ei(k−k′)·x〈u(1)(k′)|γ0γαu(1)(k)〉
]

×a0,0(k
ph,k′)|{1}〉

+
λqc

4N0(kph)(2π)3

∫

dx
∑

α

ε(H)
α (kph)eik

ph·xaH|1, 0〉

×

∫

dk′
[

e−i(k−k′)·x〈u(1)(k)|γ0γαu(1)(k′)〉+ ei(k−k′)·x〈u(1)(k′)|γ0γαu(1)(k)〉
]

×a1,0(k
ph,k′)|{1}〉

+
λqc

4N0(kph)(2π)3

∫

dx
∑

α

ε(V )
α (kph)eik

ph·xaV|0, 1〉

×

∫

dk′
[

e−i(k−k
′)·x〈u(1)(k)|γ0γαu(1)(k′)〉+ ei(k−k

′)·x〈u(1)(k′)|γ0γαu(1)(k)〉
]

×a0,1(k
ph,k′)|{1}〉

+ · · · .

The omitted terms are orthogonal to |0, 0, ∅〉 and |m,n, {1}〉. Integration
over x gives

[Ĥ Iζ ]kph,k

=
λqc

4N0(kph)

∑

α

[

ε(H)
α (kph)|1, 0〉+ ε(V )

α (kph)|0, 1〉
]

×

∫

dk′

[

δ(−kph − k+ k′)〈u(1)(k)|γ0γαu(1)(k′)〉

+δ(−kph + k− k′)〈u(1)(k′)|γ0γαu(1)(k)〉

]

a0,0(k
ph,k′)|{1}〉

+
λqc

4N0(kph)

∑

α

ε(H)
α (kph)|0, 0〉

×

∫

dk′

[

δ(kph − k+ k′)〈u(1)(k)|γ0γαu(1)(k′)〉

+δ(kph + k− k′)〈u(1)(k′)|γ0γαu(1)(k)〉

]

a1,0(k
ph,k′)|{1}〉

+
λqc

4N0(kph)

∑

α

ε(V )
α (kph)|0, 0〉

×

∫

dk′

[

δ(kph − k+ k′)〈u(1)(k)|γ0γαu(1)(k′)〉

+δ(kph + k− k′)〈u(1)(k′)|γ0γαu(1)(k)〉

]

a0,1(k
ph,k′)|{1}〉

+ · · ·

=
λqc

4N0(kph)

∑

α

[

ε(H)
α (kph)|1, 0, {1}〉+ ε(V )

α (kph)|0, 1, {1}〉
]
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×

[

〈u(1)(k)|γ0γαu(1)(k + kph)〉a0,0(k
ph,k+ kph)

+〈u(1)(k− kph)|γ0γαu(1)(k)〉a0,0(k
ph,k− kph)

]

+
λqc

4N0(kph)

∑

α

ε(H)
α (kph)|0, 0, {1}〉

×

[

〈u(1)(k)|γ0γαu(1)(k− kph)〉a1,0(k
ph,k− kph)

+〈u(1)(k + kph)|γ0γαu(1)(k)〉a1,0(k
ph,k+ kph)

]

+
λqc

4N0(kph)

∑

α

ε(V )
α (kph)|0, 0, {1}〉

×

[

〈u(1)(k)|γ0γαu(1)(k− kph)〉a0,1(k
ph,k− kph)

+〈u(1)(k + kph)|γ0γαu(1)(k)〉a0,1(k
ph,k+ kph)

]

+ · · · .

The quantum expectation of the interaction energy becomes

E int = −ℓ3
∫

dkph
λqc

4N0(kph)

∑

α

×
[

ε(H)
α (kph)w(H)

α (kph) + ε(V )
α (kph)w(V )

α (kph)
]

with

w(H)
α (kph) = −2Re ℓ3

∫

dk a1,0(kph,k)a0,0(k
ph,k+ kph)

×〈u(1)(k)|γ0γαu(1)(k+ kph)〉

and

w(V )
α (kph) = −2Re ℓ3

∫

dk a0,1(kph,k)a0,0(k
ph,k+ kph)

×〈u(1)(k)|γ0γαu(1)(k+ kph)〉.

The terms which contribute describe the interaction of the photon with
the spin of the electron.

4.2.3 Variational approach

Consider now the problem of minimizing the total energy given a fixed value
for the density of the vacuum ρvac(kph,k). Variation of a1,0(kph,k) gives

a1,0(k
ph,k) = −U (H)(kph,k)a0,0(k

ph,k+ kph)
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with

U (H/V )(kph,k) =
λq

4N0(kph)~|kph|

∑

α

ε(H/V )
α (kph)〈u(1)(k)|γ0γαu(1)(k + kph)〉.

Similarly,

a0,1(k
ph,k) = −U (V )(kph,k)a0,0(k

ph,k+ kph).

The normalization condition becomes

1 = ρvac(kph,k) + |a0,0(k
ph,k)|2 + U2

⊥(k
ph,k) |a0,0(k

ph,k+ kph)|2, (4.2)

with

U2
⊥(k

ph,k) = |U (H)(kph,k)|2 + |U (V )(kph,k)|2.

The functions w
(H)
α (kph) and w

(V )
α (kph) are of the form

w(H/V )
α (kph) = 2Re ℓ3

∫

dkU (H/V )(kph,k)|a0,0(k
ph,k+ kph)|2

×〈u(1)(k)|γ0γαu(1)(k+ kph)〉.

The interaction energy becomes

E int = −2ℓ6
∫

dkph

∫

dk
λqc

4N0(kph)
|a0,0(k

ph,k+ kph)|2

×
∑

α

Re
[

ε(H)
α (kph)U (H)(kph,k) + ε(V )

α (kph)U (V )(kph,k)
]

×〈u(1)(k)|γ0γαu(1)(k+ kph)〉

= −2ℓ6
∫

dkph
~c|kph|

∫

dk |a0,0(k
ph,k+ kph)|2U2

⊥(k
ph,k)

= −2Eph.

The interaction energy is minus twice the kinetic energy of the photon field.
This result is typical for a quadratic minimization problem. During the
minimization the energy of the electron field is kept constant. Hence one
can conclude that for an electron field with a given kinetic energy and no
photons present there always exists an interacting system where the energy
spectrum of the electron field is unmodified but the total energy is lowered
by adding the photon field.

For further use, note that the kinetic energy of the photon field can be
written as

Eph = ℓ6
∫

dkph
~c|kph|

∫

dk |a0,0(k
ph,k)|2U2

⊥(k
ph,k− kph).



90 CHAPTER 4. INTERACTION OF PHOTONS AND ELECTRONS

(4.3)

The density of the electron field equals

ρel(k) = ℓ3
∫

dkph
[

|a0,0(k
ph,k)|2 + |a1,0(k

ph,k)|2 + |a0,1(k
ph,k)|2)

]

= ℓ3
∫

dkph
[

|a0,0(k
ph,k)|21 + U2

⊥(k
ph,k)|a0,0(k

ph,k+ kph)|2
]

.

(4.4)

4.2.4 Long-wavelength analysis

In the previous section it is shown that for a wave function of the form

ζkph,k =
√

ρvac(kph,k)|0, 0, ∅〉+ a0,0(k
ph,k)|0, 0, {1}〉

−U (H)(kph,k)a0,0(k
ph,k+ kph)|1, 0, {1}〉

−U (V )(kph,k)a0,0(k
ph,k+ kph)|0, 1, {1}〉

the interaction energy is minus twice the kinetic energy of the photon field.
Let us now check by explicit calculation that coefficients a0,0(k

ph,k) exist
such that the wave function is physically acceptable.

It is shown in the Appendix H that

U (H/V )(kph,k) = −
λqc

4N0(kph)~|kph|

∑

α

ε(H/V )
α (kph)kα

×
ω(k) + ω(k+ kph) + 2cκ

√

ω(k+ kph)[ω(k+ kph) + cκ]
√

ω(k)[ω(k) + cκ]
.

(4.5)

This gives

U2
⊥(k

ph,k) =

(

λqc

4N0(kph)~|kph|

)2 (

|k|2 −
(k · kph)2

|kph|2

)

×
[ω(k) + ω(k+ kph) + 2cκ]2

ω(k+ kph)[ω(k+ kph) + cκ]ω(k)[ω(k) + cκ]

≥

(

λqc

4N0(kph)~|kph|

)2 (

|k|2 −
(k · kph)2

|kph|2

)

4

ω(k)ω(k+ kph)
.

A long wavelength approximation is

U2
⊥(k

ph,k) =

(

λqc

4N0(kph)~|kph|

)2 (

|k|2 −
(k · kph)2

|kph|2

)
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×
4

ω2(k)

[

1−
k · kph

κ2 + |k|2
+O(|kph|2)

]

.

If kph and k are not parallel then this expression diverges as |kph|−3. From
the normalization condition (4.2) then follows that a0,0(k

ph,k) should vanish
in the long-wavelength limit as |kph|3 or it should vanish in all regions away
from the longitudinal direction. This observation leaves room for two types
of solutions.

4.3 Emergent Coulomb forces

In standard QED the electromagnetic field is described by 4 independent
operators Âµ(x). In the present approach one component, namely Â0(x) is

identically zero and the 3 remaining components Âα(x), α = 1, 2, 3, satisfy
the orthogonality relation

∑

α

kph

α Aα,kph(x) = 0.

Hence, the electromagnetic quantum field, as treated in the present work,
has only two degrees of freedom. In particular, the electric field operators
Êα(x) satisfy Gauss’ law in absence of charges. See (2.21). This can be
justified with the argument that the full law, including a source term in the
r.h.s., will emerge after the interaction with the electron/positron field is
taken into account. This argument is supported by the existence [13] of a
transformation of the field operators Êα(x) which maps the homogeneous
law of Gauss onto the full version of the law.

Introduce new electric field operators

Ê ′′
α(x) = Ê ′

α(x)

+
µ0c

4π

∂

∂xα

∫

dy
1

|x− y|
×Û(−x0)ĵ0(y, 0)Û(x0).

(4.6)

Here, Û(x0) = exp(−ix0Ĥ/~c) is the time evolution of the interacting system.
The new operators are marked with a double prime to distinguish them
from the operators of the non-interacting system and those of the interacting
system. The latter are denoted with a single prime. One verifies immediately
that Gauss’ law is satisfied

∑

α

∂

∂xα
Ê ′′

α(x) = −µ0c ĵ
0′(x).
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The second term of (4.6) is the Coulomb contribution to the electric field.
The curl of this term vanishes. Hence it is obvious to take

B̂′′
α(x) ≡ B̂′

α(x).

This implies the second of the four equations of Maxwell, stating that the
divergence of B̂′′

α(x) vanishes. In addition, the fourth equation, absence of
magnetic charges, follows immediately because Ê ′′(x) and Ê ′(x) have the
same curl. Remains Faraday’s law to be written as

(∇× B̂′′(x))α −
1

c

∂

∂x0
Ê ′′

α(x) = −µ0 ĵ
′′
α(x)

with

ĵ′′α(x) = −
1

µ0c

∂

∂x0

(

Ê ′′
α(x)− Ê ′

α(x)
)

.

Finally, take ĵ′′0 (x) = ĵ′0(x). A short calculation shows that the newly defined
current operators ĵ′′µ(x) satisfy the continuity equation.

One concludes that a formalism of QED is possible which does not pos-
tulate the existence of longitudinal or scalar photons. Two pictures coexist:
the original Heisenberg picture and what is called here the emergent picture.
In both pictures the time evolution of all operators is the same, but the
definition of the electromagnetic field operators differs. In the original de-
scription only transversely polarized photons exist. On the other hand, the
field operators of the emergent picture satisfy the full Maxwell equations,
including Coulomb forces.



Appendix H

Long wavelength analysis

One has

〈u(1)(k)|γ0γαu(1)(k+ kph)〉

= −c
kα[ω(k+ kph) + cκ] + (kα + kph

α )[ω(k) + cκ]
√

ω(k+ kph)[ω(k+ kph) + cκ]
√

ω(k)[ω(k) + cκ]
.

This implies

∑

α

ε(H/V )
α (kph)〈u(1)(k)|γ0γαu(1)(k+ kph)〉 = −

∑

α

ε(H/V )
α (kph) [Akα +Bkph

α ] ,

with

A = c
ω(k) + ω(k+ kph) + 2cκ

√

ω(k+ kph)[ω(k+ kph) + cκ]
√

ω(k)[ω(k) + cκ]
and

B = c
ω(k) + cκ

√

ω(k+ kph)[ω(k+ kph) + cκ]
√

ω(k)[ω(k) + cκ]
.

Because
∑

α ε
(H/V )
α (kph)kph

α = 0 there follows

∑

α

ε(H/V )
α (kph)〈u(1)(k)|γ0γαu(1)(k + kph)〉 = −A

∑

α

ε(H/V )
α (kph)kα.

This implies (4.5).
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