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Chapter 1

Fields of Hilbert spaces

1.1 Quantum fields

Throughout this part of the work H is a given Hilbert space, either finite
dimensional or separable, and K is an open subset of Rn. In subsequent
parts, K will be either Rn or Rn \ {0}. Normalized elements of H are called
wave functions, elements of K are called wave vectors. Maps of K into H
are called quantum fields.

1.1.1 Fields

Let Γ denote the linear space of continuous fields

ζ : k ∈ K 7→ ζk ∈ H.

In the terminology of [1] Γ is a continuous field of Hilbert spaces. A family
of sesquilinear forms (·, ·)k, k ∈ K, is defined on Γ by

(φ, ζ)k = (φk, ζk).

The corresponding semi-norms ||ζ ||k ≡ ||ζk|| turn Γ into a locally convex
Hausdorff space.

A subspace Γnorm of Γ is formed by the ζ ∈ Γ for which the map k 7→ ||ζk||
is bounded continuous. A norm is defined on this subspace by

||ζ || = sup
k∈K

||ζk||.

It turns Γnorm into a Banach space. Fields belonging to this subspace are said
to be bounded in norm.
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In standard quantum mechanics the normalization of wave functions is
important. In the present context this leads to the axiom that states of the
quantum field theory are represented by elements ζ of Γ which satisfy the
normalization condition

||ζk|| = 1 for all k ∈ K.

If this condition is satisfied then ζ ∈ Γ is said to be properly normalized.

1.1.2 Transposed fields

The dual Γ∗ of Γ consists of all continuous conjugate-linear functions of Γ.
Introduce

Definition 1.1.1 A dual field θ is a map k ∈ K 7→ θk ∈ Γ∗ which is point-
wise continuous.

The space of dual fields is denoted Γ†. Introduce also the notation

(θ, ζ)k = θk(ζ), ζ ∈ Γ, θ ∈ Γ†.

Because ζ 7→ θk(ζ) is conjugate-linear the form (·, ·) is sesquilinear. Following
the Physics convention it is linear in the second argument. The requirement
of point-wise continuity in the definition means that the map k 7→ (θ, ζ)k is
continuous for any field ζ in Γ.

Given θ ∈ Γ let θT

k
be defined by

θT

k
: ζ ∈ Γ 7→ 〈ζk|θk〉.

It belongs to Γ∗ and the map θT : k 7→ θT

k
is a dual field. This shows that Γ

is embedded in the set of dual fields by the injection θ 7→ θT. One has

(θT, ζ)k = θT

k
(ζ)

= 〈ζk|θk〉
= 〈θk|ζk〉

and

(θT, ζ)k = (ζT, θ)k.

The space of transposed fields θT, θ ∈ Γ is denoted ΓT and is a subspace of
Γ†. The inverse transposition is the map θT 7→ θ. It is tradition to call this
inverse map also a transposition and to convene that (θT)T = θ.
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1.2 Linear operators

1.2.1 Diagonal operators

A linear operator Â in Γ is a diagonal operator if there exists a map k ∈
K 7→ Ak, where Ak is a linear operator on H, and a subspace D of Γ, called
the domain of Â, such that for all ζ in D

• ζk is in the domain of Ak for all k;

• k 7→ Akζk is continuous;

• Âζ equals the map k 7→ Akζk.

The diagonal operators generalize the concept of block-diagonal matrices
for which all blocks have the same size. In fact, if K is a finite set and H
is finite-dimensional then any diagonal operator is represented by a block-
diagonal matrix.

Any operator A on H defines a diagonal operator Â on Γ by

[Âζ ]k = Aζk for all k ∈ K.

The domain of this operator is the set

D = {ζ ∈ Γ : ζk is in the domain of A for all k ∈ K}.

In particular, the identity operator I is a diagonal operator which satisfies
Îζ = ζ for all ζ ∈ Γ.

Proposition 1.2.1 If A is a bounded operator on H then

1) Â is a continuous operator defined on all of Γ;

2) If ζ ∈ Γ is bounded in norm then also Âζ is bounded in norm and
||Â|| = ||A||.

Proof
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1) For any ζ ∈ Γ is

||Aζk − Aζk′|| ≤ ||A|| ||ζk − ζk′||.

Hence, continuity of k 7→ Aζk follows from the continuity of k 7→ ζk. This
shows that any ζ in Γ belongs to the domain of Â. Finally, continuity of Â
follows because it suffices that for each k the seminorm ||Âζ ||k is bounded
above by ||A|| ||ζ ||k.

2) If ζ ∈ Γ is bounded in norm then

||Âζ || = sup
k

||[Âζ ]k||
= sup

k

||Aζk||
≤ ||A|| sup

k

||ζk||
= ||A|| ||ζ ||.

Hence k 7→ Aζk is bounded in norm and ||Â|| ≤ ||A||. Equality ||Â|| = ||A||
follows from the action of Â on constant fields.

�

Proposition 1.2.2 If A is a closed operator on H then Â is a closed operator
on the Banach space Γnorm.

Proof
Assume ζ (n) converge in norm to ζ and η(n) ≡ Âζ (n) converge to η. Then

for each k ∈ K converges ζ
(n)
k

to ζk and η
(n)
k

= Aζ (n) converge to ηk. Because
A is closed with given domain DA ⊂ H the vector ζk belongs to DA and
Aζk = ηk. Because η ∈ Γnorm the map k 7→ ηk is continuous. Hence, ζ

belongs to D and Âζ = η.
�

An example of diagonal operators is found in the book of Dixmier [1].
Given two fields ζ, η in Γ introduce the bounded operators Ak defined by

Akθk = 〈ηk|θk〉ζk.

Then the diagonal operator Â is defined on all of Γ. To prove this use that
the map k 7→ 〈ηk|θk〉 is continuous.



1.2. LINEAR OPERATORS 13

1.2.2 Integral operators

The diagonal operators generalize a certain type of diagonal block matrices.
The analogue of non-diagonal block matrices are then integral operators of
the type defined below.

The integral operator Ĵ with measurable kernel J(k,k′) is defined by

[Ĵζ ]k =

∫

dk′ J(k,k′)ζk′.

The domain of definition of Ĵ is the subspace of Γ consisting of all ζ for which

• ζk′ is in the domain of J(k,k′) for all k and almost all k′;

• the map k′ 7→ J(k,k′)ζk′ is integrable for all k;

• the map k 7→
∫

dk′ J(k,k′)ζk′ is continuous;

Formally, a diagonal operator Â is an integral operator Ĵ with kernel J(k,k′) =
δ(k − k′)Ak. However, this kernel does not satisfy the condition of integra-
bility.

Given kernels J(k,k′) and L(k,k′) the product of the operators Ĵ and L̂

involves a convolution of their kernels and can be written as Ĵ L̂ = ̂(J ∗ L).
This follows from

[Ĵ L̂ζ ]k =

∫

dk′ J(k,k′)[L̂ζ ]k′

=

∫

dk′ J(k,k′)

∫

dk′′ L(k′,k′′)ζk′′

=

∫

dk′′

(
∫

dk′ J(k,k′)L(k′,k′′)

)

ζk′′

= [ ̂(J ∗ L)ζ ]k
with the convolution of kernels J and L defined by

(J ∗ L)(k,k′′) =

∫

dk′ J(k,k′)L(k′,k′′).

1.2.3 Adjoint operators

The adjoint Â† of an operator Â on Γ is an operator on Γ† satisfying

(Â†θ, ζ)k = (θ, Âζ)k for all k ∈ K, θ ∈ Γ†, ζ ∈ Γ.

The operator Â on Γ is said to be symmetric if Â†ζT = (Âζ)T for all ζ ∈ Γ.
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Proposition 1.2.3 Consider an operator Â on Γ, which is everywhere de-
fined and continuous. Then there exists a unique adjoint Â† with domain all
of Γ†.

Proof
Fix θ in Γ†. Let η†

k
(ζ) = θ†

k
(Âζ). Then the map ζ 7→ η†

k
(ζ) is continuous

because ζ 7→ Âζ is continuous by assumption and θ†
k
belongs to Γ∗. In

addition is k 7→ η†
k
(ζ) continuous for any ζ ∈ Γ because k 7→ θ†

k
is pointwise

continuous. Hence, k 7→ η†
k
belongs to Γ†.

Define the linear operator Â† by Â†θ = η. One verifies that

(Â†θ, ζ)k = (η, ζ)k = ηk(ζ) = ζk(Âζ) = (ζ, Âζ)k.

This shows that Â† is an adjoint of Â.
Assume now that (ζ, θ)k = (ζ, η)k for all ζ and k. This means θk(ζ) =

ηk(ζ) so that the functions θk and ηk coincide for all k. This implies θ = η
and hence uniqueness of the adjoint Â†.

�

Consider a diagonal operator Â defined by bounded operators Ak. Then Â
is continuous and everywhere defined. Hence the proposition applies and the
adjoint Â† is well-defined. In addition one has for all θ ∈ Γ that Â†θT = ηT

with the field η defined by ηk = A†
k
θk. This implies that Â† maps the

subspace ΓT of Γ† into itself.

On the other hand, if Ĵ is an integral operator with kernel Jk,k′, then one

cannot expect that Ĵ† maps the subspace ΓT of Γ† into itself. Indeed, one
calculates

(

Ĵ†θT, ζ
)

k

=
(

θT, Ĵζ
)

k

=
〈

θk|[Ĵζ ]k
〉

=

∫

dk′ 〈θk|Jk,k′ζk′〉

=

∫

dk′
〈

J†
k,k′θk|ζk′

〉

=

∫

dk′ (ηT(k), ζk′)
k′

with ηk′(k) = J†
k,k′θk. This result is not of the form (ηT, ζ)k.
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1.2.4 Isometries

Consider an operator Û on Γ which conserves field normalization. Continuity
of the map Û follows from

||[Ûζ ]k|| = ||ζk|| for all k ∈ K.

Hence, by Proposition 1.2.3, Û † is defined on all of Γ†. In addition, if ζ and
θ belong to Γ then one has
(

Û †(Ûθ)T, ζ
)

k

=
(

(Ûθ)T, Ûζ
)

k

= 〈[Ûθ]k|[Ûζ ]k〉 = 〈θk|ζk〉 = (θT, ζ)k.

This implies Û †(Ûθ)T = θT for all θ ∈ Γ.

Proposition 1.2.4 Any strongly continuous map k 7→ Uk into the isome-
tries of H defines a diagonal operator Û which conserves field normalization.

Proof
One has

||Ukζk − Uk′ζk′|| ≤ ||(Uk − Uk′)ζk||+ ||Uk′(ζk − ζk′)||
= ||(Uk − Uk′)ζk||+ ||ζk − ζk′||.

Hence continuity of the map k 7→ ||Ukζk|| follows from the strong continuity
of k 7→ Uk and continuity of k 7→ ζk. This shows that Ûζ belongs to Gamma
for all ζ and therefore that Û is defined on all of Γ. That it conserves field
normalization follows immediately.

�

1.3 Quantum expectations

The quantum expectation of an operator Â on Γ, given a properly normalized
field ζ belonging to its domain, equals

〈Â〉 = ℓ3
∫

dk
(

ζT, Âζ
)

k

,

whenever this integral converges. The constant length ℓ has been added to

make the field ζ dimensionless. The quantity
(

ζT, Âζ
)

k

is interpreted as

being the quantum expectation of Â conditioned on the knowledge of the
value of the wave vector k. This conditioning is meaningful because the
reduction of the representation over the wave vector is a classical, i.e. non-
quantum aspect of the theory. A weighing of the integration over k may be
added if there is physical evidence for it.
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Chapter 2

Boson Fields

2.1 The scalar boson field

The standard representation of quantum mechanics is said to be irreducible
because the only operators commuting with momentum and position oper-
ators P and Q are the multiples of the identity operator. The reducible
representation, used in the present work, is built by integrating irreducible
representations. Following the original work of Marek Czachor and coworkers
(see [2, 3, 4, 5] and papers cited in these works) integration over the wave
vector k is used to decompose the reducible representation into irreducible
ones. This means that for a given wave vector k the standard representation
of quantum mechanics in a Hilbert space H is used. The dependence of the
wave vector involves a field of Hilbert spaces Γ. It is the linear space which
consists of all continuous fields ζ : k ∈ R3

o
7→ ζk ∈ H. Note the exclusion of

k = 0. It is assumed that the wave vector of a massless boson field cannot
vanish.

2.1.1 The irreducible components

A scalar boson at a given wave vector k in R3
o
is described by a quantum

harmonic oscillator. For further use and in order to establish notations some
standard knowledge about the quantum harmonic oscillator is repeated here.

The Hilbert space H equals the space L2(R,C) of quadratically integrable
complex functions over the real line. The momentum operator P and the
position operator Q are self-adjoint operators defined in the usual manner.
The annihilation operator a, and its adjoint a†, are defined by

a =
1

r
√
2
Q + i

r

~
√
2
P.

17
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The positive constant length r is introduced to make the operators a, and
a† dimensionless. The Hamiltonian H of the harmonic oscillator can then be
written as

H = ~ωa†a,

with ω > 0 the frequency of the oscillator. Note that the so-called ground
state energy is omitted. In what follows the frequency ω will depend on a
3-dimensional wave vector k, with a so-called linear dispersion relation

ω(k) = c|k|.

Here, c is the speed of light.

The ground state of the harmonic oscillator is described by the wave
function

|0〉(y) =
1

π1/4r1/2
e−y2/2r2 , y ∈ R.

It is normalized to one

|| |0〉||2 =
∫

| |0〉(y)|2 dy = 1.

It satisfies a|0〉 = 0.

The eigenstates of the Hamiltonian H are denoted |n〉, n = 0, 1, 2 · · · .
They can be constructed starting from the ground state |0〉 by the action of
the creation operator a†. Indeed, one has

a†|n〉 =
√
n + 1|n+ 1〉 and a|n + 1〉 =

√
n+ 1|n〉.

This implies a†a|n〉 = n|n〉 so that

H|n〉 = n~ω|n〉.

A formally definition of the annihilation operator a is needed in what
follows. It is the smallest closed linear operator satisfying a|0〉 = 0 and
a|n〉 = √

n|n− 1〉, n = 1, 2 · · · .
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2.1.2 Coherent states

Fix a complex number z. The following wave function determines a coherent
state

|z〉c = e−
1
2
|z|2

∞
∑

n=0

1√
n!
zn|n〉

The sum is convergent and the wave function is normalized to one:

|| |z〉c|| =
√

c〈z|z〉c = 1.

Proposition 2.1.1 All coherent states belong to the domain of the annihi-
lation operator a.

Proof
The wave functions ζm defined by

ζm = e−
1
2
|z|2

m
∑

n=0

1√
n!
zn|n〉

belong to the domain of a and converge to |z〉c. Their image aζm satisfies

aζm = e−
1
2
|z|2

m
∑

n=1

1√
n!
zn
√
n|n− 1〉

= ze−
1
2
|z|2

m−1
∑

n=0

1√
n!
zn|n〉

= zζm−1.

In particular, the latter converges to z|z〉c. Therefore one concludes that |z〉c
belongs to the domain of the closed operator a.

�

From the proof follows the well-known result that the coherent states are
eigenstates of the annihilation operator

a|z〉c = z|z〉c.

Note that |0〉c = |0〉 is the ground state of the harmonic oscillator.

Proposition 2.1.2 The maps w → |w〉c and |w〉c → w are one-to-one and
continuous.
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Proof
The norm continuity of the map z 7→ |z〉c follows immediately from

|| |z〉c − |w〉c||2 = 2 (1− Re 〈z|w)〉c)2

= 2
[

1− e−
1
2
|z−w|2 cos (z ∧ w)

]

,

with

w ∧ z = (Rew)( Im z)− ( Imw)( Re z).

Conversely, if || |z〉c−|w〉c|| tends to zero then both e−
1
2
|z−w|2 and cos (z ∧ w)

converge to 1. This implies that |z − w| tends to zero.
�

Proposition 2.1.3 All coherent states belong to the domain of the creation
operator a†.

Proof
The domain of a† consists of all wave functions φ for which the map

ζ ∈ Dom(a) 7→ 〈φ|aζ〉

is continuous. Let φ = |z〉c and ζ = |w〉c. It suffices to show that the map

|w〉c 7→ w〈z|w〉c

is continuous. From the lemma follows that |w〉c 7→ w is continuous. In
addition the map w 7→ w〈z|w〉c is continuous as well. This follows from

w〈z|w〉c = wei(w∧z)e−
1
2
|w−z|2.

�

2.1.3 Coherent fields

Let be given a continuous complex function F (k). Use it to define the wave
function |F 〉c of a coherent field by [|F 〉c]k = |F (k)〉c. This coherent field
is a properly normalized element of Γ. This follows from Proposition 2.1.2.
Clearly is

a[|F 〉c]k = F (k)[|F 〉c]k for all k ∈ R
3
o
.
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Coherent fields play an important role further on in the development of the
free field theory.

With some abuse of notation the constant field k 7→ |0〉c will be denoted
|0〉c as well as |0〉. It is the vacuum state of the free field theory.

The extension â of the annihilation operator a to a diagonal operator on
Γ satisfies the following property.

Proposition 2.1.4 Let be given a continuous complex function F (k). The
coherent field |F 〉c belongs to the domain of the diagonal operator â and sat-
isfies [â|F 〉c]k = F (k)|F (k)〉c for all k in R3

o
. If F (k) is bounded then â|F 〉c

is bounded in norm.

Proof
The conditions for |F 〉c to belong to the domain of â are that |F (k)〉c is in

the domain of a for any k and that the map k 7→ F (k)|F (k)〉c is continuous.
Proposition 2.1.1 shows that |F (k)〉c is in the domain of a. Continuity follows
from Proposition 2.1.2 and continuity of the function F . If F (k) is bounded
then

||[â|F 〉c]k|| = |F (k)| ||F 〉c|| = |F (k)|

is bounded as well.
�

A similar result holds for the creation operator â†.

Proposition 2.1.5 Let be given a continuous complex function F (k). The
coherent field |F 〉c belongs to the domain of the diagonal operator â†. If F (k)
is bounded then â†|F 〉c is bounded in norm.

Proof
Use now Proposition 2.1.3 to show that |F 〉c belongs to the domain of â†.

Denote ζ = |F 〉c. Continuity of the map k 7→ a†ζk follows from

||a†ζk − a†ζk′||2 = 〈ζk − ζk′|aa†(ζk − ζk′)〉
= 〈ζk − ζk′|(1 + a†a(ζk − ζk′)〉
= ||ζk − ζk′||2 + ||a(ζk − ζk′)||2
= ||ζk − ζk′||2 + ||F (k)ζk − F (k′)ζk′||2
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and the continuity of both F (k) and k 7→ ζk.

In addition one has

||[â†ζ ]k||2 = 〈ζk|aa†ζk〉
= 〈ζk|(1 + a†a]ζk〉
= [1 + |F (k)|2] |||ζk||2
= 1 + |F (k)|2.

This shows that â†|F 〉c is bounded in norm when F (k) is bounded.
�

2.1.4 The free field Hamiltonian

The free-field Hamiltonian Ĥ is an unbounded symmetric operator on Γ. It
is the diagonal operator defined by

[Ĥζ ]k = Hkζk with Hk = ~c|k|a†a, (2.1)

where a is the annihilation operator introduced before. Its domain of defini-
tion is the subspace of Γ consisting of all ζ in Γ such that

• ζk is in the domain of the self-adjoint operator a†a for all k;

• k ∈ R3
o
7→ |k|a†aζk is continuous.

The following result shows that physically acceptable free fields necessar-
ily are superpositions with the vacuum field.

Proposition 2.1.6 Let be given a field ζ in the domain of Ĥ and assume
that Ĥζ is bounded in norm. Then there exists a complex function c0(k) such
that ζk − c0(k)|0〉 converges in norm to zero as |k| diverges.

Proof
Let C denote the uniform bound of |k|2 ||a†aζk||2. Decompose ζk in the

basis of eigenvectors of the harmonic oscillator

ζk =
∞
∑

n=0

cn(k)|n〉.

Then one has

C ≥ |k|2 ||a†aζk||2 = |k|2
∑

n

n2|cn(k)|2.
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This implies

|k|2n2 |cn(k)|2 ≤ C for all k, n.

One obtains

||
∞
∑

n=1

cn(k)|n〉||2 =

∞
∑

n=1

|cn(k)|2

≤ C

|k|2
∞
∑

n=1

1

n2
< +∞.

This shows that
∑∞

n=1 cn(k)|n〉 converges in norm to zero as |k| tends to
infinity.

�

2.1.5 The classical wave equation

A large class of solutions of the free wave equation �xφ = 0 consists of
functions φ(x) of the form

φ(x) = 2Re

∫

dk
ℓ3/2

N0(k)
f(k)e−ikµxµ

, (2.2)

where f is a continuous function of R3
o
.

The so-called normalization factor N0(k) is the usual one

N0(k) =
√

(2π)32|k|ℓ, (2.3)

except that the constant ℓ is inserted also here to make it dimensionless.
The insertion of this normalization factor leads further on to a satisfactory
physical interpretation of the profile function f(k).

The total energy of the classical field φ is given by

E cl =
~c

2ℓ2

∫

R3

dx

[

(

∂φ

∂x0

)2

+
∑

α

(

∂φ

∂xα

)2
]

. (2.4)

From (2.2) one obtains

E cl =

∫

R3

dk ~c|k||f(k)|2. (2.5)
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The interpretation in the context of quantum mechanics is standard. The
factor |f(k)|2 is the density of particles with wave vector k and corresponding
energy ~c|k|.

The particle density |f(k)|2 has the dimension of the inverse of a volume
in k-space. Introduce therefore the dimensionless function

F (k) = l−3/2f(k)

and use it to construct the coherent field |F 〉c — see Section 2.1.3. Con-
sider now the Hamiltonian Ĥ of the free boson field as given by (2.1). Its
irreducible components satisfy

c〈F (k)|Hk|F (k)〉c = ~c|k|c〈F (k)|a†a|F (k)〉c
= ~c|k| |F (k)|2
= ℓ−3

~c|k||f(k)|2.

This result allows us to write the classical energy (2.5) in terms of the free-
field Hamiltonian Ĥ and the coherent field |F 〉c

E cl = ℓ3
∫

R3

dk 〈F (k)|Hk|F (k)〉c ≤ +∞. (2.6)

2.1.6 Correspondence principle

Introduce field operators φ̂(x), with x in Minkowski space R4, defined by

[φ̂(x)ζ ]k = φk(x)ζk

with

φk(x) =
1

N0(k)

(

e−ikµxµ

a+ eikµx
µ

a†
)

. (2.7)

The eigenstates |n〉, n = 0, 1, · · · of the harmonic oscillator belong to the
domain of the r.h.s. of (2.7), as well as all coherent states |z〉, z ∈ C. It is
obvious to define φk as the self-adjoint extension of the r.h.s. of (2.7). The
map k 7→ φk(x) defines a diagonal operator φ̂(x) of Γ. It is called the free
field operator.

The free field operators satisfy the commutation relations

[φ̂(x), φ̂(y)]− =

(

k 7→ 1

(2π)3ℓ|k|i sin(kµ(y
µ − xµ)

)

.
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The r.h.s. of this expression is a bounded diagonal operator which commutes
with all other diagonal operators of Γ.

Derivatives to all orders of φ̂(x) with respect to xµ are again diagonal
operators. In particular the free field operators satisfy the operator-valued
wave equation

�xφ̂(x) = 0.

Proposition 2.1.7 Given any continuous complex function f of R3
o
and the

corresponding function F (k) = ℓ−3/2f(k), the coherent field |F 〉c belongs to
the domain of the free field operator φ̂(x) for any x in Minkowski space R4.

Proof
The proofs of Propositions 2.1.4 and 2.1.5 can be adapted to show that

|F (k)〉c is in the domain of the operators φk(x) and that the map k ∈ R3
o
7→

φk(x)|F (k)〉c is continuous. This suffices to conclude that |F 〉c belongs to
the domain of φ̂(x).

�

The calculations of the previous section can be summarized as follows.

Theorem 2.1.8 Let be given a solution φ(x) of the wave equation. Assume
it is of the form (2.2) with a complex function f(k) continuously defined on
R3

o
. Then there exists a coherent field ζ in Γ such that the classical field φ(x)

and its classical energy E cl are given by

φ(x) = ℓ3
∫

dk (ζ, φk(x)ζ)k, (2.8)

E cl = ℓ3
∫

dk (ζ, Ĥζ)k ≤ +∞.

Proof
Take ζk = |F (k)〉c with F (k) = ℓ−3/2f(k). From the definitions follows

ℓ3
∫

dk 〈ζk|[φ̂(x)ζ ]k〉 = ℓ3
∫

dk
1

N0(k)
2 Re 〈ζk|e−ikµxµ

aζk〉

= ℓ3
∫

dk
1

N0(k)
2 Re e−ikµxµ

F (k)〉

= ℓ3/2
∫

dk
1

N0(k)
2 Re e−ikµxµ

f(k)〉
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= φ(x).

This proves the former of the two claims. Next calculate

ℓ3
∫

dk 〈ζk|[Ĥζ ]k〉 = ~cℓ3
∫

dk |k|〈ζk|a†aζk〉

= ~cℓ3
∫

dk |k| |F (k)|2

= ~c

∫

dk |k||f(k)|2

= E cl.

To obtain the last line (2.5) is used.
�

2.1.7 Incoherent fields

Up to now coherent fields |F 〉c are considered. It is obvious to postulate that
any physically acceptable quantum field is described by a properly normalized
element ζ in the domain of the annihilation operator â. This includes the
coherent fields |F 〉c because they are properly normalized and belong to the
domain of â — see Proposition 2.1.4.

If ζ is properly normalized and belongs to the domain of â then a classical
field φ(k) is defined by

φcl(x) = 2Re ℓ3
∫

dk
1

N0(k)
e−ikµxµ〈ζk|aζk〉

provided that the latter integral is convergent. This classical field is of the
form (2.2) with

f(k) = ℓ3/2〈ζk|aζk〉.
The corresponding classical energy is (see (2.4))

E cl = ℓ3
∫

dk ~c|k| |〈ζk|aζk〉|2 ≤ +∞.

The quantum expectation Equ of the energy is given by

Equ = 〈ζ |Ĥζ〉 = 〈Ĥ1/2ζ |H1/2ζ〉. (2.9)

The assumption that ζ belongs to the domain of â does not imply that it
belongs to the domain of Ĥ, but only to that of Ĥ1/2. Therefore only the
latter of the two expressions is used. This gives

Equ = ℓ3
∫

dk ~c|k| ||aζk||2 ≤ +∞.
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From Schwarz’s inequality follows E cl ≤ Equ. This implies that the quantum
energy of a free boson field is always larger than or equal to the classical
energy of the classical field determined by the quantum field. Equality occurs
for coherent fields. One concludes that there exists many quantum fields
which all produce the same classical field. If the quantum expectation of
the energy is finite then the energy of the coherent field equals the classical
energy while incoherent fields have a larger energy.

2.1.8 Correlations

It is tradition to introduce so-called positive frequency and negative frequency
parts φ̂(±)(x) of the field operator φ̂(x). They are defined by

φ
(+)
k

(x) =
1

N0(k)
e−ikµxµ

a and φ
(−)
k

(x) =
1

N0(k)
eikµx

µ

a†.

One has of course

φ̂(x) = φ̂(+)(x) + φ̂(−)(x).

Fix a field ζ in the domain of â. Then a two-point function is formally
defined by

Gζ(x, y) = ℓ3
∫

dk

∫

dk′ 〈ζk|φ(−)
k

(x)φ
(+)
k′ (y)ζk′〉.

Consider now the energy density e(x) of the field at space time position
x. It is defined by

e(x) =
~c

ℓ2
∂

∂x0
∂

∂y0
G(x, y)

∣

∣

∣

∣

y=x

+
~c

ℓ2

∑

α

∂

∂xα
∂

∂yα
G(x, y)

∣

∣

∣

∣

y=x

=
~cℓ3

2(2π)3

∫

dk

∫

dk′ |k||k′|+ k · k′

√

|k| |k′|
〈ζk|φ(−)

k
(x)φ

(+)
k′ (x)ζk′〉.(2.10)

With this definition the integral of the energy density equals the total energy
Equ as given by (2.9). Indeed,

∫

dx e(x) =
~cℓ3

2

∫

dk

∫

dk′ |k||k′|+ k · k′

√

|k| |k′|
δ(k− k′)〈ζk|a†aζk′〉

= ℓ3
∫

dk ~c|k|〈ζk|a†aζk〉 = Equ. (2.11)
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2.1.9 Lorentz covariance of coherent fields

The Lorentz covariance of the theory is based on the Lorentz invariance of
the set of coherent fields.

Fix a complex continuous function f(k) and let |F (k)〉c be the corre-
sponding coherent wave function. Let Λ be a proper Lorentz transformation.
The classical field (2.2) transforms as φ→ φ′ with

φ′(x) = φ(Λ−1x)

= 2Re

∫

dk
ℓ3/2

N0(k)
f(k)e−ikµ(Λ−1x)µ . (2.12)

If Λ is a spatial rotation R then Λ−1 is the hermitian conjugate of Λ. Intro-
duce a new integration variable k′ = R−1k. Because |k′| = |k| the Jacobian
determinant of the transformation equals 1. There follows that

φ′(x) = 2Re

∫

dk′ ℓ3/2

N0(k′)
f(R−1k′)e−ik′

µ
xµ

.

This shows that the rotation R can be transferred to a rotation of the profile
function f(k).

An arbitrary proper Lorentz transformation can be decomposed into a
spatial rotation, a Lorentz boost in the third direction, followed again by a
rotation. It therefore suffices to consider now a Lorentz boost of the form

Λ =









coshχ 0 0 sinhχ
0 1 0 0
0 0 1 0
sinhχ 0 0 coshχ









. (2.13)

Let k1′ = k1, k2′ = k2, k3′ = k3 coshχ+ |k| sinhχ. Then

e−ikµ(Λ−1x)µ = e−ik′µx
µ

.

The Jacobian of the transformation from k to k′ is |k|/|k′|. Hence (2.12)
becomes

φ′(x) = 2Re

∫

dk′ ℓ3/2

N0(k′)

√

|k|
|k′|f(k)e

−ik′µx
µ

. (2.14)

Introduce a transformed profile function f ′ by

f ′(k′) =

√

|k|
|k′|f(k) and hence F ′(k′) =

√

|k|
|k′|F (k). (2.15)
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This defined the Lorentz boost |F ′〉c of the coherent field |F 〉c. Indeed, (2.14)
now becomes

φ′(x) = 2Re

∫

dk′ ℓ3/2

N0(k′)
f ′(k′)e−ik′

µ
xµ

.

This is of the same form as (2.2). Note that k′ 7→ F ′(k′) is a continuous
function on R3

o
so that |F ′〉c is a properly normalized element of Γ. One

concludes the following.

Theorem 2.1.9 The set of coherent fields is invariant under proper Lorentz
transformations.

2.1.10 Lorentz covariance of non-coherent fields

The Lorentz transformation of a coherent wave function is not a linear op-
eration. This is a consequence of the normalization of these wave functions.
Introduce therefore denormalized coherent wave functions defined by

|z〉• = e−ze
1
2
|z|2|z〉c = e−a

∞
∑

n=0

1√
n!
zn|n〉.

They all lie in the plane

{ζ : •〈1|ζ〉 = e−1}.

Any wave function ζ can be decomposed into coherent wave functions by

ζ =
1

π

∫

C

dz |z〉c c〈z|ζ〉.

See Section 3.2.2 of [6]. Denormalize ζ to become a point ζ• in the plane
(2.16). This gives

ζ• =
1

•〈1|ζ〉e
ζ

=
1

•〈1|ζ〉πe

∫

C

dz |z〉c c〈z|ζ〉

=
1

•〈1|ζ〉πe

∫

C

dz
[

eze−
1
2
|z|2 c〈z|ζ〉

]

|z〉•.

This is the decomposition of ζ• into denormalized coherent wave functions.
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Let us now generalize (2.16) by linearity in the plane of denormalized
wave functions. Expression (2.15) can be written as

|F ′(k′)〉• = e−a T

(
√

|k|
|k′|

)

ea|F (k)〉•, (2.16)

where T is the linear operator defined by

T (λ) =

∞
∑

n=0

λn|n〉 〈n| = λa
†a.

The obvious generalization is

ζ•′
k′ = e−a T

(
√

|k|
|k′|

)

eaζ•
k
.

This defines the Lorentz transformation in the plane (2.16). By normalization
one obtains the Lorentz transform θ of the field ζ . It is given by

θk =
1

||ζ•′
k
||ζ

•′
k

2.2 Electromagnetic fields

The vector potential Aµ(x) of classical electromagnetism has a so-called gauge
freedom. This means that it is not fully determined by the physical quantities
which are the electric and magnetic forces. It is tradition to fix this freedom
by use of the Lorentz gauge. It has the advantage of leading to a theory which
is manifestly Lorentz covariant. However, it does not eliminate all freedom
of choice. The description of free electromagnetic fields is most convenient
in the so-called transverse gauge. It limits the number of degrees of freedom
to two transversely propagating electromagnetic waves. The discussion on
other degrees of freedom in the case of interacting electromagnetic fields is
postponed to Part II of this work.

2.2.1 The classical vector potential

An electromagnetic wave traveling in direction 3 with electric component in
direction 1 can be described by the vector potential

Acl(x) ∼









0
1
0
0









cos(kph(x3 − x0)).
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Here kph is the wave vector. The index ’ph’ is used to label wave vectors
of the electromagnetic field. The electric and magnetic fields can be derived
from the vector potential Acl(x) by

Ecl

α = −∂A
cl

α

∂t
− c

∂Acl

0

∂xα
,

Bcl

α =
∑

β,γ

ǫα,β,γ
∂Acl

γ

∂xβ
.

One then finds

Ecl

1 ∼ ck sin(kph(x3 − x0)),

and Bcl

2 = −1

c
Ecl

1 and Ecl

2 = Ecl

3 = cBcl

1 = cBcl

3 = 0.

Now let Ξ(kph) be a rotation matrix which rotates the arbitrary wave
vector kph ∈ R3

o
into the positive z-direction. An explicit choice is found

in the Appendix A. Then an electromagnetic wave with wave vector kph is
described by the vector potential with components Acl

0 (x) = 0 and

Acl

α(x) ∼ ReΞ1,α(k
ph)e−ikphµ xµ

.

After smearing out with a complex weight function f(kph), and inserting a
normalization factor as before (see (2.3)), this becomes

Acl

α(x) = Re

∫

dkph
λℓ3/2

N0(kph)
f(kph)Ξ1,α(k

ph)e−ikphµ xµ

.

The parameter λ could be absorbed into the weight function f(kph). However,
it is kept for dimensional reasons.

The free electromagnetic wave has two possible polarizations. The sec-
ond linear polarization is obtained by replacing Ξ1,α(k

ph) by Ξ2,α(k
ph) in the

previous expression. In addition, the two polarizations can be combined by
adding up the corresponding vector potentials. The general expression is of
the form

Acl

α(x) = Re

∫

dkph
λℓ3/2

N0(kph)

∑

β=1,2

fβ(k
ph)Ξβ,α(k

ph)e−ikphµ xµ

. (2.17)

2.2.2 Field operators

Because the electromagnetic wave has two polarizations it is obvious to con-
sider a 2-dimensional quantum harmonic oscillator instead of the single os-
cillator used in Section 2.1 on scalar bosons.
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Let aH and aV be the annihilation operators for a photon with horizontal
respectively vertical polarization. The free-field Hamiltonian of the quantized
electromagnetic field Ĥph is the diagonal operator defined by

Hph

kph = ~c|kph|
(

a†
H
aH + a†

V
aV

)

. (2.18)

Field operators Âα(x) are defined by

Aα,kph(x) =
λ

2N0(kph)
ε(H)
α (kph)

[

e−ikphµ xµ

aH + eik
ph
µ xµ

a†
H

]

+
λ

2N0(kph)
ε(V )
α (kph)

[

e−ikphµ xµ

aV + eik
ph
µ xµ

a†
V

]

, (2.19)

with polarization vectors ε
(H)
α (kph) and ε

(V )
α (kph) given by two rows of the

rotation matrix Ξ

ε(H)
α (kph) = Ξ1,α(k

ph) and ε(V )
α (kph) = Ξ2,α(k

ph).

Note that aH and aV commute and that [aH, a
†
H] = I and [aV, a

†
V] = I. This can

be used to verify that the field operators Âα(x) satisfy Heisenberg’s equation
of motion

i~c∂0Âα(x) =
[

Âα(x), Ĥph

]

−
.

Fix a properly normalized field ζ in Γ. The quantum expectation of the
field operators becomes

Acl

α(x) = ℓ3
∫

dkph (ζ, |Aα(x)ζ)kph

= ℓ3Re

∫

dkph
λ

N0(kph)
e−ikphµ xµ

×
[

ε(H)
α (kph)〈ζkph|aHζkph〉+ ε(V )

α (kph)〈ζkph|aVζkph〉
]

. (2.20)

This is of the form (2.17) with

f1(k
ph) = ℓ3/2〈ζkph|aHζkph〉 and f2(k

ph) = ℓ3/2〈ζkph|aVζkph〉.

Operator-valued electric and magnetic fields are defined by

Êα = −c∂0Âα,

B̂α =
∑

β,γ

ǫα,β,γ
∂

∂xβ
Âγ.



2.2. ELECTROMAGNETIC FIELDS 33

Gauss’s law in absence of charges is satisfied. Indeed, the divergence of the
electric field operators vanishes, as follows from

∑

α

∂αEα,kph =
1

2N0(kph)
λc|kph|

(

∑

α

kph

α ε
(H)
α (kph)

)

[

e−ikphµ xµ

aH + eik
ph
µ xµ

a†
H

]

+
1

2N0(kph)
λc|kph|

(

∑

α

kph

α ε
(V )
α (kph)

)

[

e−ikphµ xµ

aV + eik
ph
µ xµ

a†
V

]

= 0, (2.21)

because
∑

α

kph

α ε
(H)
α (kph) = (Ξ(kph)kph)1 = |kph|(e3)1 (2.22)

vanishes, as well as a similar expression for the vertical polarization.
Finally let us calculate the commutation relations

[

Aα,kph(x), Aβ,kph(y)
]

−
= − i

(2π)34|kph|ℓλ
2 sin(kph

µ (x− y)µ)

×
(

ε(H)
α (kph)ε

(H)
β (kph) + ε(Vα (kph)ε

(V )
β (kph)

)

.

These commutation relations differ from the standard ones in the first place
because the integration over the kph vector, found in the standard theory, is
missing.

2.2.3 Coherent fields

A pair of complex numbers z, w determines a coherent state of the two-
dimensional quantum harmonic oscillator. It satisfies aH|z, w〉c = z|z, w〉c
and aV|z, w〉c = w|z, w〉c. Given two complex continuous functions f1(k

ph),
f2(k

ph) a properly normalized field ζ in Γ is defined by

ζkph = |F1(k
ph), F2(k

ph)〉c, kph ∈ R
3
o
,

with Fi(k
ph) = ℓ−3/2fi(k

ph), i = 1, 2. This field ζ describes a coherent elec-
tromagnetic field. It belongs to the domain of the free Hamiltonian Ĥph. The
quantum expectation of the latter equals

Equ = ℓ3
∫

dk (ζ, Ĥζ)k

=

∫

dk ~c|kph|
(

|f1(kph)|2 + |f2(kph)|2
)

≤ +∞.

The interpretation is obvious: |f1(kph)|2 and |f2(kph)|2 are the expected den-
sities for horizontally, respectively vertically poarized photons with kinetic
energy ~c|kph|.
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2.2.4 Single photon states

An important example of an incoherent field is the electromagnetic field
produced by a single photon. In the present formalism this field requires a
wave vector-dependent superposition of the single photon wave function, say
|1, 0〉 for a horizontally polarized photon, with the ground state |0, 0〉 of the
two-dimensional harmonic oscillator. This superposition can be written as

ζkph =
√

ρ(kph)eiφ(k
ph)|1, 0〉+

√

1− ρ(kph)|0, 0〉.
The energy of the electromagnetic wave equals

Equ = ~c

∫

dkph |kph|ρ(kph).

The wave vector distribution |kph|ρ(kph) must be integrable to keep the total
energy finite. In particular, ρ(kph) cannot be taken constant. Therefore, the
superposition of the one-photon wave function and the ground state wave
function is a necessity.

The quantum expectation of the vector potential evaluates to

Acl

α(x) = λ

∫

dkph
ℓ5/2

N0(kph)

√

ρ(kph)(1− ρ(kph))ε(H)
α (kph) Re eiφ(k

ph)e−ikphµ xµ

.

Note that the contribution to the classical electromagnetic field comes from
the region where the overlap with the ground state is neither 0 nor 1.

The one-photon field discussed above is linearly polarized. An example
of circularly polarized one-photon field is obtained by choosing

ζkph =
√

ρ(kph)eiφ(k
ph) 1√

2
(|1, 0〉 ± i|0, 1〉) +

√

1− ρ(kph)|0, 0〉.

The spin is given by S2 = ±ℓ3
∫

dkph ρ(kph). Note that
1√
2
(|1, 0〉 ± i|0, 1〉)

is a wave function of the 2-dimensional harmonic oscillator, just like |1, 0〉 or
|0, 1〉. Both linearly and circularly polarized one-photon fields exist in the
present theory.

2.2.5 SU(2) gauge symmetry

The Hamiltonian (2.18) of the two-dimensional quantum harmonic oscillator
is invariant for certain unitary transformations Uph of the Hilbert space H,
constructed as follows. Fix a unitary 2-by-2 matrix

Π =

(

ΠHH ΠHV

ΠVH ΠVV

)

.
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If Π belongs to SU(2) then the operators

bH = ΠHHaH +ΠHVaV,
bV = ΠVHaH +ΠVVaV.

and their conjugates b†H, b
†
V satisfy the same canonical commutation relations

as the original creation and annihilation operators. They define a unitary
operator Uph(Π) by linear extension of

|m,n〉 = 1√
m!n!

(a†
H
)m(a†

V
)n|∅〉 7→ Uph(Π)|m,n〉 = 1√

m!n!
(b†

H
)m(b†

V
)n|∅〉.

It satisfies

Uph(Π)aHU
ph −1(Π) = bH and Uph(Π)aVU

ph −1(Π) = bV.

In particular, it commutes with the Hamiltonian (2.18)

Uph(Π)Hph

kphU
ph −1(Π) = ~c|kph|

(

b†
H
bH + b†

V
bV
)

= ~c|kph|
(

[

ΠHHa
†
H
+ΠHVa

†
V

]

[ΠHHaH +ΠHVaV]

+
[

ΠVHa
†
H
+ΠVVa

†
V

]

[ΠVHaH +ΠVVaV]

)

= ~c|kph|
(

a†
H
aH + a†

V
aV

)

= Hph

kph.

The effect of the unitary transformation on the field operators is

Uph(Π)Aα,kph(x)Uph −1(Π)

=
λ

2N0(kph)
ε(H)
α (kph)

[

e−ikphµ xµ

bH + eik
ph
µ xµ

b†
H

]

+
λ

2N0(kph)
ε(V )
α (kph)

[

e−ikphµ xµ

bV + eik
ph
µ xµ

b†
V

]

=
λ

2N0(kph)

[

ε(H)
α (kph)ΠHH + ε(V )

α (kph)ΠVH

]

e−ikphµ xµ

aH

+
λ

2N0(kph)

[

ε(H)
α (kph)ΠHV + ε(V )

α (kph)ΠVV

]

eik
ph
µ xµ

aV

+ h.c.

At this point it becomes clear that the field operators, as defined by (2.19),
are not in their most general form. The unitary transformation Uph(Π) is a
gauge transformation not affecting the physical content of the theory. This
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gauge freedom has been removed by choosing a specific expression for the
field operators Aα,kph(x), which is favoring orthogonally polarized waves.

Let us continue under the assumption that the matrix Π is an orthogonal
matrix, i.e. it is a 2-dimensional rotation

Π =

(

cosφ − sin φ
sin φ cos φ

)

.

The effect of the transformation Uph(Π) is a rotation of the polarization

vectors ε
(H)
α (kph) and ε

(V )
α (kph). It is straightforward to verify that, in vector

notation,

Uph(−φ)Akph(x)Uph(φ) = ΞT(kph)M(φ)Ξ(kph)Akph(x), (2.23)

with the matrix M(φ) given by

M(φ) =





cosφ − sinφ 0
sinφ cosφ 0
0 0 1



 .

Indeed, use

∑

α

Ξ†
α,1Aα,kph(x) =

λ

2N0(kph)

[

e−ikphµ xµ

aH + eik
ph
µ xµ

a†
H

]

,

∑

α

Ξ†
α,2Aα,kph(x) =

λ

2N0(kph)

[

e−ikphµ xµ

aV + eik
ph
µ xµ

a†
V

]

,

to obtain

Uph(Π)Aα,kph(x)Uph −1(Π)

=
∑

β

{

[Ξ1,α(k
ph) cos(φ) + Ξ2,α(k

ph) sin(φ)] Ξ†
β,1(k

ph)

+ [−Ξ1,α(k
ph) sin(φ) + Ξ2,α(k

ph) cos(φ)] Ξ†
β,2(k

ph)

}

Aβ,kph(x)

=
∑

β

[ΞT(kph)M(φ)Ξ(kph)]α,βAβ,kph(x).

To obtain the last line
∑

β Ξ3,βAβ,kph(x) = 0 is used.

Finally consider the action of Uph(Π) on coherent fields. From

|z, w〉c = eza
†
H
−zaHewa†

V
−waV |0, 0〉
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follows

Uph(Π)|z, w〉c
= ezb

†
H
−zbHewb†

V
−wbV |0, 0〉

= exp
(

z(ΠHHaH +ΠHVaV)
† − z(ΠHHaH +ΠHVaV)

)

× exp
(

w(ΠVHaH +ΠVVaV)
† − w(ΠVHaH +ΠVVaV)

)

= exp

(

1

2

[

z(ΠHHaH +ΠHVaV)
† − z(ΠHHaH +ΠHVaV),

w(ΠVHaH +ΠVVaV)
† − w(ΠVHaH +ΠVVaV)

]

−

)

× exp

(

z(ΠHHaH +ΠHVaV)
† − z(ΠHHaH +ΠHVaV)

+w(ΠVHaH +ΠVVaV)
† − w(ΠVHaH +ΠVVaV)

)

.

The commutator in the first exponential vanishes because Π belongs to SU(2).
The result is

Uph(Π)|z, w〉c = |z′, w′〉c

with
(

z′

w′

)

= Π†

(

z
w

)

.

This shows that the set of coherent fields is invariant under the unitary
transformations Uph(Π), where Π is any element of SU(2).
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Chapter 3

Fermionic Fields

3.1 Scalar fermions

3.1.1 The Klein-Gordon equation

This section concerns the quantum field description of fermions with a rest
mass m > 0. The appropriate wave equation is the Klein-Gordon equation

(�+ κ2)φ(x) = 0 with κ =
mc

~
. (3.1)

Form = 0 it reduces to the d’Alembert equation �φ = 0, discussed in Section
2.1.5. Propagating wave solutions are of the same form as in Section 2.1.5

φ(x) = 2Re

∫

R3

dk
ℓ3/2

Nκ(k)
f(k)e−ikµxµ

, (3.2)

but with a dispersion relation given by the positive square root

k0 = ω(k)/c with ω(k) = c
√

κ2 + |k|2,

and a corresponding normalization

Nκ(k) =
√

(2π)32ℓω(k)/c.

The constant ℓ is inserted in (3.2) for dimensional reasons. It makes |f(k)|2
into a density.

3.1.2 Larmor precession

We use the harmonic oscillator in the description of bosons because it exhibits
periodic motion. An alternative model exhibiting periodic motion is that of

39
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Larmor precession. It involves the Pauli matrices σα, α = 1, 2, 3. The time
evolution is

σ1(t) = σ1 cos(ωt) + σ2 sin(ωt), (3.3)

σ2(t) = σ2 cos(ωt)− σ1 sin(ωt), (3.4)

σ3(t) = σ3.

The Hamiltonian reads

H = −1

2
~ωσ3. (3.5)

Note that

σ±(t) = σ±e
∓iωt,

where

σ± =
1

2
(σ1 ± iσ2).

A wave function |z〉 describing the state of the system consists of two
complex numbers z+, z− which satisfy the normalization condition |z+|2 +
|z−|2 = 1. The quantum expectation of the Hamiltonian (3.5) equals

〈z|Ĥ|z〉 = −1

2
~ω(k)(z1 z2)

(

1 0
0 −1

)(

z1
z2

)

= −1

2
~ω(|z1|2 − |z2|2).

The quantum expectation of the matrices σ̂±(t) is given by

〈z|σ̂+(t)|z〉 =
1

2
z1z2e

−iωt and 〈z|σ̂−(t)|z〉 =
1

2
z2z1e

iωt.

3.1.3 Fermionic state space

Let Γ2 denote the linear space of continuous fields ζ : k ∈ R3 7→ ζk ∈
C2. Like in the case of bosonic fields it is a locally convex Hausdorff space.
However, because the Hilbert space C2 is finite-dimensional it is also a Banach
space. An element ζ of Γ2 is said to be properly normalized if ||ζk|| = 1 for all
k. States of the fermionic quantum field theory are represented by properly
normalized fields.

Note that any properly normalize field ζ of Γ2 can be written into the
form

ζk =

(
√

1− ρ(k)eiχ(k)
√

ρ(k)eiξ(k)

)

, (3.6)
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where ρ, χ and ξ are real-valued functions of k ∈ R3. By adopting this way of
writing one tacitly assumes that (1, 0)T means absence of the fermion, while
(0, 1)T means presence of the fermion. Note the analogy with single photon
states as described in Section 2.2.4. With this interpretation ρ(k) becomes
the density of the fermion field with wave vector k.

The Hamiltonian (3.5) of Larmor precession defines a diagonal operator
Ĥ el by [Ĥ elζ ]k = H el

k
ζk with

H el

k
=

1

2
~ω(k)(I− σ3). (3.7)

A constant matrix has been added to make the Hamiltonian non-negative.
This does not change the dynamics of the Larmor precession. The domain
of definition of Ĥ el is all of Γ2.

With the help of (3.6) the quantum expectation of the Hamiltonian be-
comes

〈Ĥ el〉 = ℓ3
∫

dk
(

ζ, Ĥζ
)

k

= ℓ3
∫

dk ~ω(k)ρ(k). (3.8)

This reveals that ρ(k) is a distribution of quantum particles with dispersion
relation ω(k). It is restricted by the condition that 0 ≤ ρ(k) ≤ 1 for all k.
Because the energy must remain finite the distribution ρ(k) should go to 0
fast enough for large values of the wave vector |k|.

3.1.4 Field operator

Introduce now the field operator φ̂(x) defined by [φ̂(x)ζ ]k = φkζk with

φk(x) =
1

Nκ(k)

[

σ+(t)e
ik·x + σ−(t)e

−ik·x
]

. (3.9)

It is tradition to decompose this field operator into so-called positive-frequency
and negative-frequency operators

φ̂(x) = φ̂(+)(x) + φ̂(−)(x), with

φ
(+)
k

(x) =
1

Nκ(k)
σ+(t)e

ik·x =
1

Nκ(k)
σ+e

−ikνxν

,

φ
(−)
k

(x) =
1

Nκ(k)
σ−(t)e

−ik·x =
1

Nκ(k)
σ−e

ikνxν

.

They satisfy the anti-commutation relations

φ̂(+)(x)φ̂(+)(y) = 0,
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{φ̂(+)(x), φ̂(−)(y)}+ =

(

k 7→ c

2(2π)3ℓω(k)
e−ikµ(x−y)µ

)

. (3.10)

These anti-commutation relations are non-canonical. Note that

φ̂(−)(x) =
(

φ̂(+)(x)
)†

.

The classical field φcl(x) corresponding with the field operator φ̂(x) equals

φcl(x) = ℓ3
∫

dk
(

ζ, φ̂(x)ζ
)

k

= ℓ3
∫

dk 〈ζk|
1

N(k)

[

σ+e
−ikµxν

+ σ−e
ikµxν]

ζk〉

=

∫

dk
ℓ3

Nκ(k)

√

ρ(k)(1− ρ(k))2 Re e−i(χ(k)−ξ(k))e−ikµxµ

.(3.11)

The integral converges provided that the density ρ(k) tends fast enough
either to 0 or to 1 for large values of |k|. The expression (3.11) is of the form
(3.2) with

f(k) = ℓ3/2
√

ρ(k)(1− ρ(k))e−i(χ(k)−ξ(k)).

3.2 The free Dirac equation

3.2.1 The algebra of creation and annihilation opera-
tors

The electron wave is fermionic. It has two polarizations, which are related
to the spin of the electron. In addition, the electron has an anti-particle,
which is the positron. This means that the electron field has 4 internal
degrees of freedom and that we need 4 copies of the spin matrices σ± instead
of the single copy introduced in Section 3.1.2. The corresponding matrices
are denoted σ

(±)
s , with the index s running from 1 to 4. They satisfy the

anti-commutation relations
{

σ(+)
s , σ

(+)
t

}

+
= 0,

{

σ(+)
s , σ

(−)
t

}

+
= δs,t.

The hermitian conjugate of σ
(+)
s is σ

(−)
s . Together they generate an algebra

known as a Clifford algebra. An explicit representation of the operators as
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16-by-16 matrices is easily constructed (see for instance Section 3-9 of [7]).
However, it is not needed in the sequel.

Basis vectors of the 16-dimensional Hilbert space H16 are specified by
subsets Λ ⊂ {1, 2, 3, 4} and are given by

|Λ〉 = [σ
(−)
4 ]I4∈Λ [σ

(−)
3 ]I3∈Λ[σ

(−)
2 ]I2∈Λ [σ

(−)
1 ]I1∈Λ |∅〉.

For instance, if Λ = {1, 3} then |{1, 3}〉 = σ
(−)
3 σ

(−)
1 |∅〉.

The field operators φ̂s(x) are diagonal operators on Γ2 defined by matrices
φs,k(x). The latter can be written in the form (3.9). They satisfy the anti-
commutation relations

{φ(+)
s,k (x), φ

(+)
t,k′(y)}+ = 0 and

{φ(+)
s,k (x), φ

(−)
t,k′(y)}+ =

c

2(2π)3ℓω(k)
δs,te

−ikµxµ

eik
′
µy

µ

. (3.12)

Note that (3.9) implies that

φ
(+)
s,k (x) =

1

Nκ(k)
e−ikµxµ

σ(+)
s .

A familiar notation for these operators, evaluated at x = 0, is

b↑ = σ
(+)
1 , b↓ = σ

(+)
2 , d↓ = σ

(+)
3 , d↑ = σ

(+)
4 .

This alternative notation is not used here.

3.2.2 The Hamiltonian

The Hamiltonian of the electron field Ĥ el is the sum of 4 copies of the scalar
Hamiltonian (3.7). It is defined by [Ĥ elζ ]k = H el

k
ζk with

H el

k
=

1

2
~ω(k)

4
∑

s=1

(I− σ3
s). (3.13)

Note that the Hamiltonian is positive. It is tradition to assign negative
energies to positrons and positive energies to electrons. This tradition is not
followed here because it does not make sense. It is a remainder of Dirac’s
interpretation of positrons as holes in a sea of electrons. The alternative
treatment assigns the vacuum state to one of the eigenstates of σ3 instead of
assigning a particle/anti-particle pair to the two eigenstates. The dimension
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of the Hilbert space goes up from 4 (the number of components of a Dirac
spinor) to 16. This is meaningful because the Dirac equation considered here
is an equation for field operators and not the original one which holds for
classical field spinors (see (3.26) below).

Number operators Ns are defined by

Ns = σ(−)
s σ(+)

s s = 1, 2, 3, 4. (3.14)

They appear in the Hamiltonian

H el

k
= ~ω(k)

4
∑

s=1

Ns. (3.15)

The field operators φ̂
(+)
s (x) satisfy Heisenberg’s equations of motion

i~c∂0φ̂
(+)
s (x) =

[

φ̂(+)
s (x), Ĥ el

]

−
.

In principle, this is all that is needed for a description of electron/positron
fields. However, in the next part of this work the notion of electric current is
needed for a description of the interactions between the electromagnetic field
and the electron/positron field. The actual expression which will be used
is given by (3.38, 3.39) in the next section. The derivation of this result is
far from trivial and follows the approach initiated by Dirac. Let us start by
introducing Dirac’s equation for quantum field operators.

3.2.3 Dirac’s equation

Introduce the gamma matrices. In the standard representation they read

γ0 =

(

I 0
0 −I

)

and γα =

(

0 −σα
σα 0

)

.

Next introduce auxiliary field operators ψ̂r, r = 1, 2, 3, 4. They are called the
Dirac field operators and are defined by [8]

ψr,k(x) =
√

2ℓk0

[

∑

s=1,2

u(s)r (k)φ
(+)
s,k (x) +

∑

t=3,4

v(t)r (k)φ
(−)
t,k (x)

]

=
1

√

(2π)3

[

∑

s=1,2

u(s)r (k)e−ikµxµ

σ(+)
s +

∑

t=3,4

v(t)r (k)eikµx
µ

σ
(−)
t

]

.

(3.16)
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The vectors u(1), u(2), v(3), v(4) are the analogues of the polarization vectors of
the photon. They are partly fixed by the requirement that the vector with
components ψ̂r satisfies Dirac’s equation

iγµ∂µψ̂(x) = κψ̂(x). (3.17)

Indeed, using

∂µφ
(±)
s,k = ∓ikµφ(±)

s,k

one finds that a sufficient condition for (3.17) to hold is

γµkµu
(s) = κu(s) and γµkµv

(t) = −κv(t).

Each of these two equations has two independent solutions. See Appendix
B. They can be chosen to satisfy the orthogonality relations

∑

r

u
(s)
r (k)u(s

′)
r (k) = δs,s′,

∑

r

v
(t)
r (k)v(t

′)
r (k) = δt,t′ ,

∑

r

u
(s)
r (k)v(t)r (−k) = 0. (3.18)

Let T (k) be the matrix which maps the orthonormal bazis vectors u(s)(0)
and v(t)(0), defined at wave vector k = 0, onto their values at arbitrary k

T (k)u(s)(k = 0) = u(s)(k), s = 1, 2,
T (k)v(t)(k = 0) = v(t)(k), t = 3, 4. (3.19)

Clearly is T (0) = id. It is shown in Appendix C that this matrix is hermitian
and that its determinant equals det T (k) = κ/k0. In particular, this implies
that the matrix T (k) is non-singular. A continuity argument then shows that
the matrix is positive-definite. An explicit expression for this matrix is

T (k) =
2κ

√

2k0(k0 + κ)
(kνγ

νγ0 + κ). (3.20)

For further use note the inverse relations
∑

r

u
(s)
r (−k)ψr,k(x) =

κ

k0

√

2ℓk0φ
(+)
s,k (x), s = 1, 2, (3.21)

∑

r

v
(t)
r (−k)ψr,k(x) =

κ

k0

√

2ℓk0φ
(−)
t,k (x), t = 3, 4. (3.22)
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Some further properties are (see Appendix D)

〈u(s)(k)|γ0γµu(s′)(k)〉 =
kµ

k0
δs,s′, s, s′ = 1, 2, (3.23)

and

〈v(t)(k)|γ0γµv(t′)(k)〉 =
kµ

k0
δt,t′ , t, t′ = 3, 4. (3.24)

It is easy to see, using the anti-commutation relations, that

{ψr,k(x), ψr′,k′(y)}+ = 0

holds for any choice of parameters and indices. On the other hand,

{

ψr,k(x), ψ
†
r′,k(x)

}

+
=

1

(2π)3
δr,r′

holds only for equal positions and momenta. This relation can be written as

{

ψ̂r(x), ψ̂
†
r′(x)

}

+
=

1

(2π)3
δr,r′

An electron/positron field is now determined by a properly normalized
field ζ of the form

ζk =
∑

Λ⊂{1,2,3,4}}

zΛ
k
|Λ〉,

with complex coefficients zΛ
k
satisfying

∑

Λ⊂{1,2,3,4}

|zΛ
k
|2 = 1, for all k.

It defines a Dirac spinor containing classical fields by

φcl

r(x) = ℓ3
∫

dk 〈ζk|ψr,kζk〉, (3.25)

whenever the integral converges. This Dirac spinor φcl(x) with 4 components
satisfies the Dirac equation

iγµ∂µφ
cl(x) = κφcl(x). (3.26)
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Finally note that each of the Dirac field operators, as constructed here,
is not only a solution of the Klein-Gordon equation

[�+ κ]ψr,k = 0 (3.27)

but also of the partial equations
[

c2∂20 + [~ω(k)]2
]

ψr,k(x) = 0,
[

∆+ |k|2
]

ψr,k(x) = 0.

A Lorentz transformation can mix up these two equations. See Section 3.4
below for a further discussion of these matters.

3.2.4 The adjoint equation

The so-called adjoint spinor is defined by

ψ̂a
r(x) =

∑

r′

ψ̂†
r′(x)γ

0
r′,r.

It satisfies the adjoint equation

−i∂µ
∑

r

ψ̂a
r(x)γ

µ
r,r′ = κψ̂a

r′(x). (3.28)

To prove this take the adjoint of the Dirac equation and multiply with γ0

from the right. This gives

−i∂µ
∑

r,r′

ψ̂†
r′(x)(γ

µ)†r′,rγ
0
r,r′′ = κψ̂a

r′′(x).

Next use that (γµ)†γ0 = γ0γµ to obtain (3.28).

3.2.5 Charge conjugation

The charge conjugation matrix C is defined by

CγµC−1 = −(γµ)T.

Using the standard representation of the gamma matrices it equals C =
iγ2γ0. See for instance Section 10.3.2 of [9]. In explicit form is

C =









0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0









.

The main properties of the matrix C are
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• C−1 = C† = CT = −C;

• ∑r′ Cr,r′u
(1)
r′ (k) = v

(4)
r (−k);

• ∑r′ Cr,r′u
(2)
r′ (k) = v

(3)
r (−k).

The charge conjugation operator Cc is a linear operator on H16 with the
properties that C−1

c
= C†

c
= −Cc and

Ccψr,k(x)C
−1
c

= −
∑

r′

Cr,r′ψ
a

r′,k(x),

Ccψ
a

r,k(x)C
−1
c

=
∑

r′

Cr,r′ψr′,k(x). (3.29)

An explicit definition of the operator Cc is given in Appendix E

3.3 The Dirac current

3.3.1 Two-point correlations

Fix a properly normalized electron field ζ . A two-point correlation function
for the Dirac field operators ψ̂r(x) is defined by (compare with that intro-
duced in Section 2.1.8)

Gr′,r(x, x
′) = ℓ3

∫

dk

∫

dk′ 〈ζk|ψa

r,k(x)ψr′,k′(x′)ζk′〉,
(3.30)

whenever the integrals converge. Note the order of the indices r, r′. By use
of Dirac’s equation there follows

iκGr′,r(x, x
′) = − ∂

∂x′µ
∑

r′′

γµr′,r′′Gr′′,r(x, x
′). (3.31)

On the other hand, using the adjoint equation, one obtains

iκGr′,r(x, x
′) =

∂

∂xµ

∑

r′′

Gr′,r′′(x, x
′)γµr′′,r. (3.32)

Subtracting one expression from the other yields

0 =
∂

∂x′µ
∑

r′′

γµr′,r′′Gr′′,r(x, x
′) +

∂

∂xµ

∑

r′′

Gr′,r′′(x, x
′)γµr′′,r.
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Now take r = r′ and sum over r. There follows

0 =
∂

∂x′µ
Tr γµG(x, x′) +

∂

∂xµ
TrG(x, x′)γµ.

In particular, one has

0 =
∂

∂xµ
Tr γµG(x, x). (3.33)

This result shows that the vector r(x) with 4 components

rµ(x) = Tr γµG(x, x)

satisfies the continuity equation.

3.3.2 Properties of the particle current

The vector r(x), introduced above, describes a current, which however is not
yet the electric current. The latter is introduced in the next section. It is
tempting to interpret r(x) as the particle current. However, this interpreta-
tion has some difficulties. The integration over space of its zeroth component,
which should be the total number of particles, is usually divergent. The lat-
ter is anyhow not a very interesting quantity once the interaction with the
electromagnetic field is turned on because it is not conserved. An electron
and a positron may annihilate each other or may be created by a pair of pho-
tons. When doing so the total number of electrons plus positrons is changed.
On the other hand the total charge remains conserved in the presence of
interactions. It is therefore the quantity of interest.

The components of r(x) are real numbers. Indeed, using (γµ)†γ0 = γ0γµ

one verifies that

rµ(x) = Tr γµG(x, x)
= TrG†(x, x)γ0γµγ0

=
∑

r,r′

〈ζk|[ψr,k(x)]†ψr′,k′(x)ζk′〉γ0r,r[γ0γµγ0]r′,r

=
∑

r,r′

ℓ3
∫

dk

∫

dk′ 〈ζk′|[ψr′,k′(x)]†ψr,k(x)ζk〉[γ0γµ]r′,r

=
∑

r,r′

Gr′,r(x, x)γ
µ
r,r′

= TrG(x, x)γµ

= rµ(x).
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The current operator R̂(x) corresponding to the classical current r(x) is
given by the kernel

Rµ
k,k′(x) =

∑

r,r′

ψa

r,k(x)γ
µ
r,r′ψr′,k′(x).

Indeed, one can write

rµ(x) = ℓ3
∫

dk

∫

dk′ 〈ζk|Rµ
k,k′(x)ζk′〉

= ℓ3
∫

dk 〈ζk|[R̂µ(x)ζ ]k〉
= 〈ζ |R̂µ(x)ζ〉.

The zeroth component of the current operator R̂(x) is a density operator.
Its kernel simplifies to

R0
k,k′(x) =

∑

r

(ψr,k(x))
† ψr,k′(x). (3.34)

This is a positive operator, in the sense that for any field ζ one has r0(x) ≥ 0.
The integral over space is a constant of the motion. However, it turns out
that the integral diverges for wave functions of interest.

For further use let us show that the kernels of the integral operators R̂µ(x)
are symmetric, this is, they satisfy

(

Rµ
k,k′(x)

)†
= Rµ

k′,k(x). (3.35)

Indeed, one calculates, using γ0[γµ]† = γµγ0,

(

Rµ
k,k′(x)

)†
=

∑

r,r′

γµr,r′
(

ψa

r′,k′(x)ψr,k(x)
)†

=
∑

r,r′

[γµ]†r′,r (ψr,k(x))
†
∑

r′′

γ0r′′,r′ψr′′,k′(x)

=
∑

r,r′,r′′

γ0r′,r (ψr,k(x))
† γµr′′,r′ψr′′,k′(x)

=
∑

r′,r′′

ψa

r′,k(x)γ
µ
r′′,r′ψr′′,k′(x)

= Rµ
k′,k(x).

This proves (3.35).
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3.3.3 The electric current

The electric current operators Ĵµ(x) are integral operators defined by the
symmetric kernels

Jµ
k,k′(x) =

1

2
qc
(

Rµ
k,k′(x)− CcR

µ
k,k′(x)C

−1
c

)

. (3.36)

Here, q is a unit of charge. The domain of definition of Ĵµ(x) consists of the
fields ζ ∈ Γ2 for which the integrals

∫

dk′ Jµ
k,k′(x)ζk′

are absolutely convergent. Because R̂ satisfies the continuity equation also
Ĵ does.

It is shown in the Appendix F that

Jµ
k,k′(x) =

1

2
qc
∑

r,r′

γµr,r′ψ
a

r,k(x)ψr′,k′(x)− 1

2
qc
∑

r,r′

γµr′,rψr,k(x)ψ
a

r′,k′(x).

(3.37)

This is a well-known expression for the Dirac current, adapted to the present
context. Using the definitions of ψ̂ and ψ̂a it can be further evaluated. Let
us split the expression into two contributions, one which commutes with the
number operator N , and another, called the off-diagonal part [10], which
consists of terms creating or annihilating electron-positron pairs. It is shown
in the same Appendix F that

Jµ
k,k′(x) = Jdiag,µ

k,k′ (x) + Joff,µ
k,k′ (x)

where

Jdiag,µ
k,k′ (x) =

qc

2(2π)3
ei(kν−k′ν)x

ν
∑

s,t=1,2

〈u(s)(k)|γ0γµu(t)(k′)〉σ(−)
s σ

(+)
t

− qc

2(2π)3
ei(kν−k′

ν
)xν

∑

s,t=3,4

〈v(s)(k′)|γ0γµv(t)(k)〉σ(−)
t σ(+)

s

+(k ↔ k′) (3.38)

and

Joff,µ
k,k′ (x) =

qc

2(2π)3
ei(kν+k′ν)x

ν
∑

s=1,2

∑

t=3,4

〈u(s)(k)|γ0γµv(t)(k′)〉 σ(−)
s σ

(−)
t

+
qc

2(2π)3
e−i(kν+k′ν)x

ν
∑

s=3,4

∑

t=1,2

〈v(s)(k)|γ0γµu(t)(k′)〉 σ(+)
s σ

(+)
t
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+(k ↔ k′). (3.39)

Note that these are normal-ordered expressions, with creation operators σ(−)

left of annihilation operators σ(+), whenever both types occur simultaneously.
One verifies that each of the two current operators Ĵdiag,µ(x) and Ĵoff,µ(x)

satisfies the continuity equation

i∂µJ
diag,µ
k,k′ (x) = 0, respectively i∂µJ

off,µ
k,k′ (x) = 0. (3.40)

See the Appendix G. In addition they satisfy

kµJ
diag,µ
k,k′ (x) = k′µJ

diag,µ
k,k′ (x) and kµJ

off,µ
k,k′ (x) = −k′µJoff,µ

k,k′ (x). (3.41)

Let us now calculate the total charge Q̂, which is the diagonal operator
satisfying

1

c

∫

dx J0
k,k′(x) = δ(k− k′)Qk. (3.42)

Using the orthogonality relations (3.23, 3.24) one finds

∫

dx Jdiag,0
k,k′ (x) =

qc

2(2π)3

∫

dx ei(kν−k′
ν
)xν

∑

s,t=1,2

〈u(s)(k)|u(t)(k′)〉σ(−)
s σ

(+)
t

− qc

2(2π)3

∫

dx ei(kν−k′
ν
)xν

∑

s,t=3,4

〈v(s)(k′)|v(t)(k)〉σ(−)
t σ(+)

s

+(k ↔ k′)

= qcδ(k− k′)
∑

s,t=1,2

〈u(s)(k)|u(t)(k)〉σ(−)
s σ

(+)
t

−qcδ(k− k′)
∑

s,t=3,4

〈v(s)(k)|v(t)(k)〉σ(−)
t σ(+)

s

= qcδ(k− k′)

[

∑

s=1,2

σ(−)
s σ(+)

s −
∑

s=3,4

σ(−)
s σ(+)

s

]

= qcδ(k− k′) (N1 +N2 −N3 −N4) .

Similarly,

∫

dx Joff,0
k,k′(x) =

qc

2(2π)3

∫

dx ei(kµ+k′
µ
)xµ
∑

s=1,2

∑

t=3,4

〈u(s)(k)|v(t)(k′)〉 σ(−)
s σ

(−)
t

+
qc

2(2π)3

∫

dx e−i(kµ+k′µ)x
µ
∑

s=3,4

∑

t=1,2

〈v(s)(k)|u(t)(k′)〉 σ(+)
s σ

(+)
t

+(k ↔ k′)
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= qcδ(k+ k′)
∑

s=1,2

∑

t=3,4

〈u(s)(k)|v(t)(−k)〉 σ(−)
s σ

(−)
t

+qcδ(k+ k′)
∑

s=3,4

∑

t=1,2

〈v(s)(k)|u(t)(−k)〉 σ(+)
s σ

(+)
t

= 0.

One concludes that

1

c

∫

dx J0
k,k′(x) = qδ(k− k′) (N1 +N2 −N3 −N4) .

This implies

Q̂ = q (N1 +N2 −N3 −N4) .

The obvious interpretation is that the components 1 and 2 of the field describe
an electron with charge q, and that components 3 and 4 describe a positron
with charge −q.

Note that

[φ
(+)
s,k , Q]− = qφ

(+)
s,k , s = 1, 2,

[φ
(−)
s,k , Q]− = qφ

(−)
s,k , s = 3, 4.

This implies

[ψr,k(x), Q]− = qψr,k(x), r = 1, 2, 3, 4.

By taking the hermitian conjugate one obtains
[

ψ†
r,k(x), Q

]

−
= −qψ†

r,k(x), r = 1, 2, 3, 4.

From (3.37) then follows that
[

Jµ
k,k′(x), Q

]

−
= 0. (3.43)

3.3.4 Example of a polarized electron field

Assume a field ζ with wave functions of the form

ζk = eiχ(k)
√

1− ρ(k)|∅〉+ eiξ(k)
√

ρ(k)|{1}〉.

It describes an electron field polarized with spin up. Take

ρ(k) =
1

cosh2(a|k|) and ξ(k) = χ(k) = 0. (3.44)
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This gives

ζk = tanh(a|k|)|∅〉+ 1

cosh(a|k|) |{1}〉.

The Dirac field operators ψ̂r acting on this field ζ yield

ψr,kζk

=
1

√

(2π)3

[

u(1)r (k)e−ikµxµ

σ
(+)
1

1

cosh(a|k|) |{1}〉+
∑

s=3,4

v(s)r (k)eikµx
µ

σ(−)
s ζk

]

=
1

√

(2π)3

[

u(1)r (k)e−ikµxµ 1

cosh(a|k|) |∅〉+
∑

s=3,4

v(s)r (k)eikµx
µ

σ(−)
s ζk

]

.

The quantum expectation equals

〈ζk|ψr,kζk〉 =
1

√

(2π)3
u(1)r (k)e−ikµxµ tanh(a|k|)

cosh(a|k|) .

The classical Dirac spinor has components

φcl

r(x) = ℓ3
∫

dk 〈ζk|ψr,kζk〉

=
ℓ3

√

(2π)3

∫

dk u(1)r (k)e−ikµxµ tanh(a|k|)
cosh(a|k|) .

The quantum energy of the field is given by

〈Ĥ〉 = ℓ3
∫

dk ~ω(k)〈ζk|N1ζk〉

= ℓ3
∫

dk ~ω(k)ρ(k)

= ℓ3~c

∫

dk

√

κ2 + |k|2
cosh2(a|k|)

=
4π~cℓ3

a3

∫ ∞

0

dr r2
√

κ2 +
(r

a

)2 1

cosh2(r)
. (3.45)

The charge is given by

〈Q̂〉 = ℓ3q

∫

dk 〈ζk|N1ζk〉

= ℓ3q

∫

dk ρ(k)
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=
q4πℓ3

a3

∫ ∞

0

dr r2
1

cosh2(r)

=
qπ3ℓ3

3a3
. (3.46)

In the limit of large a one obtains from the combination of (3.45) and (3.46)

E ≃ mc2
Q

q
.

If the field contains exactly one electron then the total charge Q equals the
elementary charge q and the total energy in the long-wavelength limit is the
rest mass energy of a single electron.

The above discussion does not depend on the choice of the length scale
ℓ, as it should be. However, the electron field has an intrinsic length scale
κ−1 = ~/mc ≃ 4× 10−13m. It is therefore obvious to choose ℓ equal 1/κ.

3.4 Symmetries

3.4.1 Representation independence

The so-called standard representation (3.16) of the gamma matrices is used
explicitly in the present work. Other choices are found in the literature.
The essential property of the gamma matrices is that they satisfy the anti-
commutation relations

{γµ, γν}+ = 2gµ,ν . (3.47)

Pauli’s fundamental theorem (see for instance Section 3.2 and Appendix C of
[11], or Appendix A2 of [7]) states that given two different sets of matrices, γµ

respectively γ′µ, there exists a non-singular matrix S such that Sγµ = γ′µS
for all µ. This matrix is unique up to multiplication with a scalar. Conversely,
given the standard representation of the γµ any non-singular matrix S defines
a set of alternative gamma matrices γ′µ by the transformation γ′µ = S−1γµS.

The definition of the current operators Ĵµ(x) does not depend on the
choice of representation of the gamma matrices. This is most easily seen
from the explicit expressions (3.38, 3.39). The argument is that when γµ

transforms into γ′µ also the polarization vectors u(s) and v(s) transform into
S−1u(s), respectively S−1v(s). The argument works when S−1 = S†. In the
present work formulas are presented in such a way that they only hold when
γ0 is hermitian and the γα are anti-hermitian.



56 CHAPTER 3. FERMIONIC FIELDS

3.4.2 Lorentz covariance of the Dirac equation

Consider a proper Lorentz transform x 7→ x′. It is determined by 4-by-4
matrices Rµν so that

x′µ = gµ,νRν,λx
λ.

These matrices must satisfy

RT

λ,µg
µ,νRν,τ = gλ,τ (3.48)

so as to conserve the pseudo-metric k′µx
′µ = kµx

µ. One has also the inverse
transformation

xµ = gµ,λRT

λ,νx
′ν .

The Dirac field operators ψ̂r(x) transform into operators ψ̂′
r(x) which

must also satisfy Dirac’s equation (3.17). One has

κψ̂(x) = iγµ
∂

∂xµ
ψ̂(x)

= iγµ
∂x′ν

∂xµ
∂

∂x′ν
ψ̂(x)

= iγ′ν
∂

∂x′ν
ψ̂(x) (3.49)

with

γ′ν = γµ
∂x′ν

∂xµ
= gν,λRλ,µγ

µ.

The matrices γ′ν still satisfy the anti-commutation relations (3.47) because of
(3.48). By the fundamental theorem of Pauli, discussed in the previous sec-
tion, there exists a non-singular matrix S, unique up to scalar multiplication,
for which γ′ν = SγνS−1. Then (3.49) becomes

κψ̂(x) = iSγνS−1 ∂

∂x′ν
ψ̂(x).

This can be written as

κS−1ψ̂(x) = iγν
∂

∂x′ν
S−1ψ̂(x)

and shows that ψ′
k′(x′) defined by

ψ′
k′(x′) = S−1ψk(x)
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satisfies Dirac’s equation in the transformed Lorentz frame.

Let us now figure out the effect a Lorentz transformation has on the field
operators φ

(±)
s,k (x). From the inverse formula (3.21) follows for s′ = 1, 2

φ
(+)′
s′,k′(x

′) =
k′0
κ

1
√

2ℓk′0

∑

r

u
(s′)
r (−k′)ψ′

r,k′(x′)

=
k′0
κ

1
√

2ℓk′0

∑

r,r′

u
(s′)
r (−k′)S−1

r,r′ψr′,k(x)

=

√

k0k
′
0

κ

∑

r,r′

u
(s′)
r (−k′)S−1

r,r′

×
[

∑

s=1,2

u
(s)
r′ (k)φ

(+)
s,k (x) +

∑

t=3,4

v
(t)
r′ (k)φ

(−)
t,k (x)

]

=

√

k0k′0
κ

[

∑

s=1,2

〈u(s′)(−k′)|S−1u(s)(k)〉φ(+)
s,k (x)

+
∑

t=3,4

〈u(s′)(−k′)|S−1v(t)(k)〉φ(−)
t,k (x)

]

. (3.50)

Similarly, from (3.22) follows for t′ = 3, 4

φ
(−)′
t′,k′(x

′) =

√

k0k
′
0

κ

[

∑

s=1,2

〈v(t′)(−k′)|S−1u(s)(k)〉φ(+)
s,k (x)

+
∑

t=3,4

〈v(t′)(−k′)|S−1v(t)(k)〉φ(−)
t,k (x)

]

. (3.51)

These equations show that under a Lorentz transformation each of the field
operators φ

(±)
s,k is replaced by a linear combination involving all of them.

The two subcases of a spatial rotation and of a Lorentz boost are treated
separately in the following two sections. They complete the discussion of
Lorentz transformations because any proper Lorentz transformation can be
decomposed into a succession of a spatial rotation, a Lorentz boost in the
third direction, and a final spatial rotation.

3.4.3 Spatial rotations

In this section the Lorentz transformation R is assumed to be a spatial ro-
tation. As before, let S be a matrix for which

γµgν,λRλ,µ = γ′ν = SγνS−1.
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Because R is a rotation matrix these equations reduce to

γ0 = Sγ0S−1 and −
∑

α

γαRβ,α = SγβS−1.

This matrix S is not unique, even not if one requires that it is unitary. It is
of the form

S =

(

A 0
0 ±A

)

, (3.52)

where A is a solution of AσαA
−1 = ±∑β Rα,βσβ . This equation establishes

a relation between the rotation group SO(3) and the group SU(2) of unitary
two-by-two matrices with determinant 1. For a given rotation matrix R it has
two solutions +A and −A, where A satisfies A†A = AA† = id and detA = 1.

Consider now the operator T (k), defined before. From the explicit ex-
pression (3.20) and the observation that S commutes with γ0 follows that

ST (k)S−1 = T (k′).

This allows to write (3.50) as

φ
(+)′
s′,k′(x

′) =

√

k0k′0
κ

[

∑

s=1,2

〈T (−k)S−1u(s
′)(0)|u(s)(k)〉φ(+)

s,k (x)

+
∑

t=3,4

〈T (−k)S−1u(s
′)(0)|v(t)(k)〉φ(−)

t,k (x)

]

. (3.53)

Note that S−1u(s
′)(0) is a linear combination of u(1)(0) and u(2)(0) so that

T (−k)S−1u(s
′)(0) is a linear combination of u(1)(−k) and u(2)(−k). From

the orthogonality relations (3.18) then follows that the latter term of (3.53)
vanishes. The result is

φ
(+)′
s′,k′(x

′) =

√

k0k′0
κ

∑

s=1,2

〈T (−k)S−1u(s
′)(0)|u(s)(k)〉φ(+)

s,k (x).

It shows that each of the electron field operators φ̂
(±)
s , s = 1, 2 transforms

into a linear combination of these operators. In the same way one shows a
similar property for the positron operators φ̂

(±)
t , s = 3, 4. This confirms the

well-known observation that spatial rotations do not mix up electrons and
positrons.
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3.4.4 Lorentz boost

In this section the Lorentz transformation matrix R is assumed to be a
Lorentz boost in direction 3. The non-vanishing elements of R ν

µ are

R0,0 = R3,3 = cosh(χ),
R0,3 = R3,0 = sinh(χ),
R1,1 = R2,2 = 1,

with χ ∈ R. As before, let S be a matrix for which gν,λRλ,µγ
µ = γ′ν =

SγνS−1. It is explicitly given by

S =
1

√

(1− α2

(

I ασ3
−ασ3 −I

)

,

with

α =
sinh(χ)

cosh(χ) + 1
=

cosh(χ)− 1

sinh(χ)
= tanh

(χ

2

)

.

The normalization is chosen such that detS = 1. Note that S2 = I.

The transformed gamma matrices γ′µ = SγµS−1 are γ′1 = γ1, γ′2 = γ2,

γ′0 =
1

1− α2

(

(1 + α2)I 2ασ3
−2ασ3 −(1 + α2)I

)

,

γ′3 =
1

1− α2

(

−2αI −(1 + α2)σ3
(1 + α2)σ3 2αI

)

.

Note that for α 6= 0 the matrix γ′0 is not anymore hermitian. The freedom
of choice of representation of the gamma matrices is a gauge freedom of the
Dirac equation. The present work relies heavily on choosing the standard
representation in which γ0 is a hermitian matrix. This particular choice is
the reason why the Klein Gordon equation (3.27) splits into two equations.
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Appendix A

Polarization of electromagnetic
waves

Let us first make an explicit choice for the rotation matrix Ξ(k). By definition
it rotates the vector k into the positive third direction. Choose to do this by
rotating around the first axis and then around the second axis. This gives a
matrix of the form

Ξ(k) =





cos β 0 − sin β
0 1 0
sin β 0 cos β









1 0 0
0 cosα − sinα
0 sinα cosα





=





cos β − sinα sin β − sin β cosα
0 cosα − sinα
sin β sinα cos β cosα cos β



 .

The first rotation eliminates component 2, the second eliminates component
1. From these requirements one deduces that

cosα =
k3

√

k22 + k23
, sinα =

k2
√

k22 + k23
,

and

cos β =
1

|k|
√

k22 + k33, sin β =
k1
|k| .

It is now straightforward to verify that Ξ(k)k = |k|e3.
Next let R be an arbitrary rotation matrix and Λ the corresponding 4-

dimensional Lorentz transformation. We want to calculate

MΛ(k) = Ξ(Rk)RΞ(k)†.
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We know that MΛ(k) is of the form

MΛ(k) =





cos γ − sin γ 0
sin γ cos γ 0
0 0 1



 .

Use the notation k′ = Rk, and α′, β ′ for the value of α respectively β when
evaluated at k′ instead of k. Then the first row of the matrix Ξ(k′)†MΛ(k)
evaluates to

[

cos β ′ cos γ, − cos β ′ sin γ, sin β ′
]

.

The first row of the matrix RΞ(k)† evaluates to

[

R1,1 cos β − (R1,2 sinα +R1,3 cosα) sin β, R1,2 cosα− R1,3 sinα,
R1,1 sin β + (R1,2 sinα +R1,3 cosα) cosβ

]

.

Equating both rows yields

cos β ′ cos γ = R1,1 cos β − (R1,2 sinα +R1,3 cosα) sin β, (A.1)

− cos β ′ sin γ = R1,2 cosα− R1,3 sinα, (A.2)

sin β ′ = R1,1 sin β + (R1,2 sinα +R1,3 cosα) cosβ.

The latter implies

cos γ =
R1,1 − sin β sin β ′

cos β cos β ′
, (A.3)

sin γ = −R1,2 cosα− R1,3 sinα

cos β ′
.
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Polarization of electron waves

Let us first consider solutions of the equation

γµkµu
(s)(k) = κu(s)(k). (B.1)

When k = 0 the equation reduces to

γ0u
(s)
0 = u

(s)
0 .

This has indeed two independent solutions u
(1)
0 and u

(1)
0 . Assuming the stan-

dard representation of the gamma matrices one can choose (1, 0, 0, 0)T and
(0, 1, 0, 0)T.

Next, choose u
(s)
r,k of the form

u(s)r (k) =
1√
2k0

1√
k0 + κ

[

∑

r′

kνγ
ν
r,r′u

(s)
r′,0 + κu

(s)
r,0

]

. (B.2)

Note that u(s)(0) = u
(s)
0 . Then one finds, using γµγν + γνγµ = 2gµ,ν ,

kµγ
µu(s)(k) =

1√
2k0

1√
k0 + κ

[

kµkνγ
µγνu

(s)
0 + κkµγ

µu
(s)
0

]

=
1√
2k0

1√
k0 + κ

[

kµk
µu

(s)
0 + κkµγ

µu
(s)
0

]

=
1√
2k0

1√
k0 + κ

[

κ2u
(s)
0 + κkµγ

µu
(s)
0

]

= κu(s)(k).

One concludes that u
(s)
r (k), defined by (B.2), solves the equation (B.1).

Next one verifies that
∑

r

u
(s)
r (k)u(t)r (k) =

1

2k0

1

k0 + κ

〈

u
(s)
0

∣

∣(kν(γ
ν)† + κ)(kσγ

σ + κ)u
(t)
0

〉
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=
1

2k0

1

k0 + κ

[

〈

u
(s)
0

∣

∣kν(γ
ν)†kσγ

σu
(t)
0

〉

+κ
〈

u
(s)
0

∣

∣kσγ
σu

(t)
0

〉

+ κ
〈

u
(s)
0

∣

∣kν(γ
ν)†u

(t)
0

〉

+ κ2δs,t

]

.

Now use that (γν)†γ0 = γ0γν and that γ0u
(s)
0 = u

(s)
0 to obtain

kν(γ
ν)†kσγ

σu
(s)
0 = γ0kνγ

νγ0kσγ
σu

(s)
0

=

(

k0 −
∑

α

kαγ
α

)(

k0 +
∑

β

kβγ
β

)

u
(s)
0

= (k20 + |k|2)u(s)0 . (B.3)

Because also
〈

u
(s)
0

∣

∣kσγ
σu

(t)
0

〉

= k0δs,t

there follows
∑

r

u
(s)
r (k)u(t)r (k) = δs,t.

Next consider the equation

γµkµv
(s)(k) = −κv(s)(k). (B.4)

At k = 0 it becomes γ0v
(s)
0 = −v(s)0 . The matrix γ0 has two eigenvectors with

eigenvalue −1. We choose

v
(3)
0 = (0, 0, 1, 0)T and v

(4)
0 = (0, 0, 0, 1)T.

Next one verifies that

v(s)r (k) =
1√
2k0

1√
k0 + κ

[

−
∑

r′

kνγ
ν
r,r′v

(s)
r′,0 + κv

(s)
r,0

]

(B.5)

is a solution of (B.4). The normalization

∑

r

v
(s)
r (k)v(t)r (k) = δs,t

is proved in the same way as for the u-vectors.
Finally, let us calculate

∑

r

u
(s)
r (k)v(t)r (−k) =

1

2k0

1

k0 + κ

〈

u
(s)
0

∣

∣

∣

∣

(k0γ
0 −

∑

α

kαγ
α + κ)
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×(−k0γ0 +
∑

β

kβγ
β + κ)v

(t)
0

〉

= − 1

2k0

1

k0 + κ

〈

u
(s)
0

∣

∣

∣

∣

(k0 + κ)2 −
(

∑

α

kαγ
α

)2

v
(t)
0

〉

= − 1

2k0

1

k0 + κ

(

(k0 + κ)2 + |k|2
)

〈u(s)0 v
(t)
0 〉

= 0.

This ends the verification of the orthogonality relations.
The inverse relations (3.21, 3.22) follow easily. Using the orthogonality

relations one obtains

∑

r

u
(s)
r (−k)ψr,k(x) =

√

2ℓk0
∑

t=1,2

〈u(s)(−k)|u(t)(k)〉φ(+)
t,k (x). (B.6)

Now use the definitions to evaluate

〈u(s)(−k)|u(t)(k)〉
=

1

2k0(k0 + κ)
〈(k0 + κ−

∑

α

kαγ
α)u

(s)
0 |(k0 + κ+

∑

α

kαγ
α)u

(t)
0 〉

=
1

2k0(k0 + κ)
〈u(s)0 |(k0 + κ+

∑

α

kαγ
α)2u

(t)
0 〉

=
1

2k0(k0 + κ)
〈u(s)0 |(k0 + κ)2 +

∑

α

k2α(γ
α)2u

(t)
0 〉

=
(k0 + κ)2 − |k|2
2k0(k0 + κ)

δs,t

=
κ

k0
δs,t.

Hence (B.6) implies (3.21). The derivation of (3.22) is similar.



66 APPENDIX B. POLARIZATION OF ELECTRON WAVES



Appendix C

Transformation

Let T (k) be the matrix defined by (3.19). It maps the orthonormal bazis

vectors u(s)(k = 0) = u
(s)
0 and v(t)(k = 0) = v

(t)
0 , defined at wave vector

k = 0, onto their values at arbitrary k

T (k)u
(s)
0 = u(s)(k), s = 1, 2,

T (k)v
(t)
0 = v(t)(k), t = 3, 4.

The matrix elements are

〈u(s′)0 |T (k)u(s)0 〉 =

√

k0 + κ

2k0
δs,s′,

〈v(t′)0 |T (k)v(t)0 〉 =

√

k0 + κ

2k0
δt,t′ ,

〈v(t′)0 |T (k)u(s)0 〉 =
1√

2k0
√
k0 + κ

〈v(t′)0 |
∑

α

kαγ
αu

(s)
0 〉,

〈u(s′)0 |T (k)v(t)0 〉 =
−1√

2k0
√
k0 + κ

〈u(s′)0 |
∑

α

kαγ
αv

(t)
0 〉.

Use (γα)† = −γα to verify that the matrix T (k) is hermitian.
The determinant of the matrix T (k) equals

det T =

(

k0 + κ

2k0

)2

+
k0 + κ

2k0

(

|T13|2 + |T14|2 − |T23|2 − |T24|2
)

−|T13T24 − T14T23|2,

with

T1,3 = 〈u(1)0 |T (k)v(3)0 〉 = k3√
2k0

√
k0 + κ
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T1,4 = 〈u(1)0 |T (k)v(4)0 〉 = k1 − ik2√
2k0

√
k0 + κ

T2,3 = 〈u(2)0 |T (k)v(3)0 〉 = k1 + ik2√
2k0

√
k0 + κ

T2,4 = 〈u(2)0 |T (k)v(4)0 〉 = −k3√
2k0

√
k0 + κ

= −T13.

The result simplifies to

det T (k) =
(k0 + κ)4 − |k|4
4k20(k0 + κ)2)

=
κ

k0
.



Appendix D

Useful relations

A useful relation is

γ0u(s)(k) = γ0
1√
2k0

1√
k0 + κ

[

k0γ
0 +

3
∑

α=1

kαγ
α + κ

]

u
(s)
0

=
1√
2k0

1√
k0 + κ

[

k0 −
3
∑

α=1

kαγ
α + κ

]

u
(s)
0

= u(s)(−k). (D.1)

Similarly is γ0v(s)(k) = −v(s)(−k). Both relations are used in

〈v(4)(k)|γ0γµv(4)(k′)〉 = 〈Cu(1)(−k)|γ0γµCu(1)(−k′)〉
= 〈u(1)(−k)|C†γ0γµCu(1)(−k′)〉
= 〈u(1)(−k)|(γµγ0)Tu(1)(−k′)〉
= 〈u(1)(−k′)|γµγ0u(1)(−k)〉
= 〈u(1)(k′)|γ0γµu(1)(k)〉. (D.2)

Similarly is

〈v(4)(k)|γ0γµv(3)(k′)〉 = 〈u(2)(k′)|γ0γµu(1)(k)〉; (D.3)

〈v(3)(k)|γ0γµv(3)(k′)〉 = 〈u(2)(k′)|γ0γµu(2)(k)〉. (D.4)

One has also

〈u(1)(k)|γ0γµv(4)(k′)〉 = 〈u(1)(k)|γ0γµCu(1)(−k′)〉
= 〈u(1)(k)|C(γµγ0)Tu(1)(−k′)〉
= −〈u(1)(−k′)|γµγ0Cu(1)(k)〉
= −〈u(1)(−k′)|γµγ0v(4)(−k)〉
= 〈u(1)(k′)|γ0γµv(4)(k)〉. (D.5)
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Similarly is

〈u(2)(k)|γ0γµv(4)(k′)〉 = 〈u(1)(k′)|γ0γµv(3)(k)〉; (D.6)

〈u(2)(k)|γ0γµv(3)(k′)〉 = 〈u(2)(k′)|γ0γµv(3)(k)〉. (D.7)

Next we calculate

〈u(s)(k)|γ0γµu(t)(k)〉
=

1

2k0(k0 + κ)
〈(kνγν + κ)u

(s)
0 |γ0γµ(kτγτ + κ)u

(t)
0 〉

=
1

2k0(k0 + κ)
〈u(s)0 |(kνγν + κ)γµ(kτγ

τ + κ)u
(t)
0 〉

=
1

2k0(k0 + κ)
〈u(s)0 |[γµ(−kνγν + κ) + 2kµ](kτγ

τ + κ)u
(t)
0 〉

=
kµ

k0(k0 + κ)
〈u(s)0 |(kτγτ + κ)u

(t)
0 〉+ 1

2k0(k0 + κ)
〈u(s)0 |γµ[−kνγνkτγτ + κ2]u

(t)
0 〉

=
kµ

k0
δs,t. (D.8)

Similarly is

〈v(s)(k)|γ0γµv(t)(k)〉
=

1

2k0(k0 + κ)
〈(−kνγν + κ)v

(s)
0 |γ0γµ(−kτγτ + κ)v

(t)
0 〉

=
1

2k0(k0 + κ)
〈v(s)0 |(−kνγν + κ)†γ0γµ(−kτγτ + κ)v

(t)
0 〉

= − 1

2k0(k0 + κ)
〈v(s)0 |(−kνγν + κ)γµ(−kτγτ + κ)v

(t)
0 〉

= − 1

2k0(k0 + κ)
〈v(s)0 |[γµ(kνγν + κ)− 2kµ](−kτγτ + κ)v

(t)
0 〉

=
kµ

k0(k0 + κ)
〈v(s)0 |(−kτγτ + κ)v

(t)
0 〉 − 1

2k0(k0 + κ)
〈v(s)0 |γµ[−kνγνkτγτ + κ2]v

(t)
0 〉

=
kµ

k0
δs,t. (D.9)

This finishes the proof of (3.23, 3.24).



Appendix E

Charge conjugation

Let Cc|∅〉 = i|∅〉 and require

Ccσ
(−)
1 C−1

c
= −σ(−)

4 ,

Ccσ
(−)
2 C−1

c
= −σ(−)

3 ,

Ccσ
(−)
3 C−1

c
= −σ(−)

2 ,

Ccσ
(−)
4 C−1

c
= −σ(−)

1 .

This implies in particular that

Cc|{1}〉 = i|{4}〉,
Cc|{2}〉 = i|{3}〉,
Cc|{3}〉 = i|{2}〉,
Cc|{4}〉 = i|{1}〉.

Extend the definition to arbitrary basis vectors |Λ〉, Λ ⊂ {1, 2, 3, 4}, and by
linearity to all of H16. One verifies that C2

c
= −id and C†

c
= C−1

c
= −Cc.

This implies that also

Ccσ
(+)
s C−1

c
= −σ(+)

5−s,

and

Ccφ
(+)
s,k (x)C

−1
c

=
1

Nκ(k)
e−ikµxµ

Ccσ
(+)
s C−1

c

= −φ(+)
5−s,k(x).

From the definition (3.16) now follows

Ccψr,k(x)C
−1
c
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=
√

2ℓk0

[

∑

s=1,2

u(s)r (k)Ccφ
(+)
s,k (x)C

−1
c

+
∑

s=3,4

v(s)r (k)Ccφ
(−)
s,k (x)C

−1
c

]

= −
√

2ℓk0

[

∑

s=1,2

u(s)r (k)φ
(+)
5−s,k(x) +

∑

s=3,4

v(s)r (k)φ
(−)
5−s,k(x)

]

= −
√

2ℓk0

[

∑

s=3,4

u(5−s)
r (k)φ

(+)
s,k (x) +

∑

s=1,2

v(5−s)
r (k)φ

(−)
s,k (x)

]

= −
√

2ℓk0
∑

r′

Cr,r′

[

−
∑

s=3,4

v
(s)
r′ (−k)φ

(+)
s,k (x) +

∑

s=1,2

u
(s)
r′ (−k)φ

(−)
s,k (x)

]

= −
√

2ℓk0
∑

r′

Cr,r′

[

−
∑

s=3,4

v
(s)
r′ (−k)φ

(−)
s,k (x) +

∑

s=1,2

u
(s)
r′ (−k)φ

(+)
s,k (x)

]†

= −
√

2ℓk0
∑

r′

Cr,r′γ
0
r′,r′

[

∑

s=3,4

v
(s)
r′ (k)φ

(−)
s,k (x) +

∑

s=1,2

u
(s)
r′ (k)φ

(+)
s,k (x)

]†

= −
∑

r′

Cr,r′ψ
a

r′,k(x).

This proves (3.29).



Appendix F

The current operators

Here explicit expressions for the current operators Jµ
k,k′(x) are calculated.

From the definition follows

Jµ
k,k′(x) =

1

2
qc
(

Rµ
k,k′(x)− CcR

µ
k,k′(x)C

−1
c

)

=
1

2
qc
∑

r,r′

γµr,r′
(

ψa

r,k(x)ψr′,k′(x)− Ccψ
a

r,k(x)ψr′,k′(x)C−1
c

)

=
1

2
qc

(

∑

r,r′

γµr,r′ψ
a

r,k(x)ψr′,k′(x)

+
∑

r,r′

γµr,r′
∑

r′′,r′′′

Cr,r′′ψr′′,k(x)Cr′,r′′′ψ
a

r′′′,k′(x)

)

=
1

2
qc

(

∑

r,r′

γµr,r′ψ
a

r,k(x)ψr′,k′(x) +
∑

r,r′

(CTγµC)r,r′ψr,k(x)ψ
a

r′,k′(x)

)

Use that CTγµC = −(γµ)T to obtain

Jµ
k,k′(x) =

1

2
qc
∑

r,r′

γµr,r′ψ
a

r,k(x)ψr′,k′(x)− 1

2
qc
∑

r,r′

γµr′,rψr,k(x)ψ
a

r′,k′(x).

This is (3.37).
Use the definition of the field operators to obtain

Jµ
k,k′(x) =

1

2
qc
∑

r,r′

(γ0γµ)r,r′ψ
†
r,k(x)ψr′,k′(x)

−1

2
qc
∑

r,r′

(γ0γµ)r,r′ψr′,k(x)ψ
†
r,k′(x)

= qcℓ
√

k0k′0
∑

r,r′

(γ0γµ)r,r′
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×
[

∑

s=1,2

u
(s)
r (k)φ

(−)
s,k (x) +

∑

s=3,4

v
(s)
r (k)φ

(+)
s,k (x)

]

×
[

∑

s′=1,2

u
(s′)
r′ (k′)φ

(+)
s′,k′(x) +

∑

s′=3,4

v
(s′)
r′ (k′)φ

(−)
s′,k′(x)

]

−qcℓ
√

k0k
′
0

∑

r,r′

(γ0γµ)r,r′

×
[

∑

s=1,2

u
(s)
r′ (k)φ

(+)
s,k (x) +

∑

s=3,4

v
(s)
r′ (k)φ

(−)
s,k

]

×
[

∑

s′=1,2

u
(s′)
r (k′)φ

(−)
s′,k′(x) +

∑

s′=3,4

v
(s′)
r (k′)φ

(+)
s′,k′(x)

]

. (F.1)

The two terms of (F.1) are evaluated separately, with omission of the pref-
actor. One has

First term =
∑

s,t=1,2

〈u(s)(k)|γ0γµu(t)(k′)〉 φ(−)
s,k (x)φ

(+)
t,k′(x)

+
∑

s=1,2

∑

t=3,4

〈u(s)(k)|γ0γµv(t)(k′)〉 φ(−)
s,k (x)φ

(−)
t,k′(x)

+
∑

s=3,4

∑

t=1,2

〈v(s)(k)|γ0γµu(t)(k′)〉 φ(+)
s,k (x)φ

(+)
t,k′(x)

+
∑

s,t=3,4

〈v(s)(k)|γ0γµv(t)(k′)〉 φ(+)
s,k (x)φ

(−)
t,k′(x)

=
∑

s,t=1,2

〈u(s)(k)|γ0γµu(t)(k′)〉 φ(−)
s,k (x)φ

(+)
t,k′(x)

+
∑

s=1,2

∑

t=3,4

〈u(s)(k)|γ0γµv(t)(k′)〉 φ(−)
s,k (x)φ

(−)
t,k′(x)

+
∑

s=3,4

∑

t=1,2

〈v(s)(k)|γ0γµu(t)(k′)〉 φ(+)
s,k (x)φ

(+)
t,k′(x)

−
∑

s,t=3,4

〈v(s)(k)|γ0γµv(t)(k′)〉 φ(−)
t,k′(x)φ

(+)
s,k (x)

+
∑

s=3,4

〈v(s)(k)|γ0γµv(s)(k′)〉 ei(k′ν−kν)xν

,

and

Second term =
∑

s,t=1,2

〈u(s)(k′)|γ0γµu(t)(k)〉 φ(+)
t,k (x)φ

(−)
s,k′(x)

+
∑

s=1,2

∑

t=3,4

〈u(s)(k′)|γ0γµv(t)(k)〉 φ(−)
t,k (x)φ

(−)
s,k′(x)
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+
∑

s=3,4

∑

t=1,2

〈v(s)(k′)|γ0γµu(t)(k)〉 φ(+)
t,k (x)φ

(+)
s,k′(x)

+
∑

s,t=3,4

〈v(s)(k′)|γ0γµv(t)(k)〉 φ(−)
t,k (x)φ

(+)
s,k′(x)

= −
∑

s,t=1,2

〈u(s)(k′)|γ0γµu(t)(k)〉 φ(−)
s,k′(x)φ

(+)
t,k (x)

+
∑

s=1,2

〈u(s)(k′)|γ0γµu(s)(k)〉 ei(k′ν−kν)xν

+
∑

s=1,2

∑

t=3,4

〈u(s)(k′)|γ0γµv(t)(k)〉 φ(−)
t,k (x)φ

(−)
s,k′(x)

+
∑

s=3,4

∑

t=1,2

〈v(s)(k′)|γ0γµu(t)(k)〉 φ(+)
t,k (x)φ

(+)
s,k′(x)

+
∑

s,t=3,4

〈v(s)(k′)|γ0γµv(t)(k)〉 φ(−)
t,k (x)φ

(+)
s,k′(x).

Next subtract the two contributions. It is shown in the Appendix D that

∑

t=3,4

〈v(t)(k′)|γ0γµv(t)(k)〉 =
∑

s=1,2

〈u(s)(k)|γ0γµu(s)(k′)〉. (F.2)

Hence the two scalar terms cancel and one obtains

First− second =
∑

s,t=1,2

〈u(s)(k)|γ0γµu(t)(k′)〉 φ(−)
s,k (x)φ

(+)
t,k′(x)

+
∑

s,t=1,2

〈u(s)(k′|γ0γµu(t)(k)〉 φ(−)
s,k′(x)φ

(+)
t,k (x)

−
∑

s,t=3,4

〈v(s)(k)|γ0γµv(t)(k′)〉 φ(−)
t,k′(x)φ

(+)
s,k (x)

−
∑

s,t=3,4

〈v(s)(k′)|γ0γµv(t)(k)〉 φ(−)
t,k (x)φ

(+)
s,k′(x)

+
∑

s=1,2

∑

t=3,4

〈u(s)(k)|γ0γµv(t)(k′)〉 φ(−)
s,k (x)φ

(−)
t,k′(x)

−
∑

s=1,2

∑

t=3,4

〈u(s)(k′)|γ0γµv(t)(k)〉 φ(−)
t,k (x)φ

(−)
s,k′(x)

+
∑

s=3,4

∑

t=1,2

〈v(s)(k)|γ0γµu(t)(k′)〉 φ(+)
s,k (x)φ

(+)
t,k′(x)

−
∑

s=3,4

∑

t=1,2

〈v(s)(k′)|γ0γµu(t)(k)〉 φ(+)
t,k (x)φ

(+)
s,k′(x).

This result can be split into two pieces (3.38) and (3.39).
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Appendix G

The continuity equation

Here follows the proof that Ĵdiag,µ(x) satisfies the continuity equation (3.40)
and the symmetry property (3.41). The similar proofs for Ĵoff,µ(x) are omit-
ted.

Use the explicit expression (3.38) to obtain

i∂µJ
diag,µ
k,k′ (x) = −1

2

∑

s,t=1,2

〈u(s)(k)|γ0γµu(t)(k′)〉(kµ − k′µ)φ
(−)
s,k (x)φ

(+)
t,k′(x)

+
1

2

∑

s,t=3,4

〈v(s)(k′)|γ0γµv(t)(k)〉(kµ − k′µ)φ
(−)
t,k (x)φ

(+)
s,k′(x)

+
1

2

∑

s,t=1,2

〈u(s)(k′)|γ0γµu(t)(k)〉(kµ − k′µ)φ
(−)
s,k′(x)φ

(+)
t,k (x)

−1

2

∑

s,t=3,4

〈v(s)(k)|γ0γµv(t)(k′)〉(kµ − k′µ)φ
(−)
t,k′(x)φ

(+)
s,k (x).

Each of the 4 contributions can be shown to vanish by use of the definition of
the polarization vectors u(s) and v(t) as solutions of the equations (B.1, B.4).

Use the same relations to calculate

kµJ
diag,µ
k,k′ (x) =

1

2

∑

s,t=1,2

〈u(s)(k)|γ0kµγµu(t)(k′)〉φ(−)
s,k (x)φ

(+)
t,k′(x)

−1

2

∑

s,t=3,4

〈v(s)(k′)|γ0kµγµv(t)(k)〉φ(−)
t,k (x)φ

(+)
s,k′(x)

+(k ↔ k′)

=
1

2
κ
∑

s,t=1,2

〈u(s)(k)|γ0u(t)(k′)〉φ(−)
s,k (x)φ

(+)
t,k′(x)

−1

2
κ
∑

s,t=3,4

〈v(s)(k′)|γ0v(t)(k)〉φ(−)
t,k (x)φ

(+)
s,k′(x)
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+(k ↔ k′).

For the part with k and k′ exchanged one can use that the matrix γ0k′µγ
µ is

hermitian. The same expression is obtained when one calculates k′µJ
diag,µ
k,k′ (x).

One concludes that (3.41) holds.


