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Abstract

In this paper an overview is presented of the basic principles of fuzzy set
theory. The fuzzy set theory was introduced by Zadeh (1965) to deal with
problems in which the absence of sharply defined criteria is involved. In
particular, fuzzy sets aim at mathematically representing the vagueness
intrinsic in linguistic terms and approximate reasoning.

The aim is to provide the reader with a better understanding of the
fundamental concepts underlying the theory of fuzzy sets and reasoning. In
particular, this contribution focuses on the following aspects:

1) relationship between crisp and fuzzy sets;

(ii)  fuzzy membership functions;

(iii) relationship between probability, stochastic preference and membership
function; ‘

(iv)  estimation of membership functions;

(v)  fuzzy set operators;

(vi) fuzzy set hedges.



Introduction

The fuzzy set theory was introduced by Zadeh' (1965) to deal with problems in
which the absence of sharply defined criteria is involved. In particular, fuzzy
sets aim at mathematically representing the vagueness intrinsic in linguistic
terms and approximate reasoning.

To illustrate the vagueness of language, take, for instance, a simple statement
like "John is tall". Such a statement is abound with vague and imprecise
concepts that are difficult to translate into more precise language without
losing some of its semantic value. For example, the statement "John’s height is
175 cm." does not explicitly state whether he is tall, and the statement "John’s
height is 1.2 standard deviations about the mean height for men of his age in
his culture" is fraught with difficulties, and also demands further information
(What is John’s age? Which culture does he belong to?). And what if we would
state that 190 cm. is tall, would 189 cm. not be considered tall? It is precisely
such vagueness that could be an obstacle when one wants te represent
knowledge in an expert system.

Note that if the aim is to design an expert system one of the major tasks is to
codify the manager’s decision-making process. The designer will soon learn that
the manager’s view of the world, despite the dependence upon numerous,
empirical tests and case-studies, incorporates evaluations of facts, and
relationships between then, in a "fuzzy", intuitive manner. While some of the
decisions and considerations are based on objective criteria, allowing for a fuzzy
system could broaden the field of decision-making tremendously.

Through the use of the fuzzy set theory, ill-defined and imprecise knowledge
and concepts can be treated in an exact mathematical way (Tzafestas, 1994). It
is important to note, however, that fuzziness has nothing to do with ambiguity,
nor does it stem from partial or total ignorance. Fuzziness deals with the
natural imprecision associated with everyday events (Cox, 1994, p. 589).

Zadeh (1965, p. 338) defined a fuzzy set as "a class of objects with a continuum
of grades of membership". This fuzzy set is characterized by a membership
function (also called truth or indicator function) which assigns to each object of
the set a grade of membership ranging from zero (non-membership of the set)
to one (full-membership of the set).

More formally, a fuzzy set is defined as follows (Zadeh, 1965, p. 339; 1975a, p.
219): .

! For an interesting selection of papers written by Zadeh, see, e.g., Yager et al. (1987). For some
book-length treatments on the subject of fuzzy set theory, see, e.g., Dubois and Prade (1980a),
Zimmermann (1985, 1987, 1991), Kandel (1986), Lowen (1986), Klir and Folger (1988), Kerre
(1993), Cox (1994) and Koske (1994).
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Definition 1: Fuzzy set
In a universe of discourse I/, a fuzzy set A is given by a
membership function p,: U — [0,1].0

Following the above definition, a membership function associates with each
element u of U a real number m,(z) in the interval [0,1], with mn,(u)
representing the grade of membership of u in A. Hence, p,(x)=0 implies non-
membership, p,y(z)=1 means full-membership, and O<p,(u)<1 signifies partial
membership or intermediate degrees of membership. Obviously, the nearer the
value of p,(u) to zero (unity), the lower (higher) the grade of membership of u
in A. Also, gradual transition follows from partial degree of membership of the
set. The general structure of a linear increasing fuzzy set is shown in Figure 1.

Figure 1: The general structure of a linear increasing fuzzy set
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Source: Cox, 1994, p. 32.

Figure 1 shows the general structure of a linear increasing fuzzy set. Three
components may be distinguished: (i) a horizontal domain axis of monotonically
increasing real numbers that make up the population of the fuzzy set (ie.,
(R, 9] in the present context), (i) a vertical membership axis ranging from zero
to one indicating the degree of membership in the fuzzy set (i.e., n,()), and (iii)
the surface (or shape) of the fuzzy set itself (i.e., u,) that connects an element
in the domain with a degree of membership in the set. In Figure 1, p, is a
simple linear _increasixig curve that starts at a domain value, R®; that has zero
membership in the set and moves to the right with values that have increasing
set membership. The right-hand edge of the domain, %; is the value with full
membership. The value in the domain that has a (0.5) degree of membership is
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~ called the flex point (or cross-over point).

In what follows, the basic principles of the fuzzy set theory are discussed. The
aim of this overview is to provide the reader with a better understanding of the
fundamental concepts underlying the theory of fuzzy sets and reasoning. In
particﬁlar, this contribution focuses on the following aspects:

(1) relationship between crisp and fuzzy sets;

(ii)  fuzzy membership functions;

(iii) relationship between probability, stochastic preference and membership
function; '

(iv)  estimation of membership functions;

(v)  fuzzy set operators;

(vi) fuzzy set hedges.

1 Crisp sets versus fuzzy sets

At the heart of the difference between classical standard set theory and fuzzy
set theory is what Aristotle called the "Law of the Excluded Middle". This law
states that every proposition must either be true (not false) or false (not true).
Stated in terms of classical set theory, it implies that the union of a set with its
complement results in the universal set of the underlying domain. This
property may be compared to the requirement of exhaustivity.

In standard set theory, an object is either a member of a set or it is not. There
is no in between, no middle, no partial containment: for instance, the number 5
belongs fully to the set of odd numbers and not at all to the set of even
numbers. Usually, the term crisp set is applied to these classical sets where
membership is either equal to one (totally contained in the set) or equal to zero
(totally excluded from the set). To put it succinctly, crisp sets are based on the
so-called "principle of dichotomy", and avoid the contradiction that an object
both is and is not a member of a set. As such, crisp sets comply with the Law of
the Excluded Middle.

More formally, alterations between set inclusion or exclusion in a crisp set
environment are defined as follows:



Definition 2: Crisp sets
In a universe of discourse U, a crisp set A is given by a
membership function y,: U — {0,1}. W

Following Definition 2, a membership (or characteristic) function associates
with each element u of U a binary number y,(u), with y, @) = 1if v ¢ A
implying set inclusion and y,(z) = 0 if u ¢ A implying set exclusion. Note that
with crisp sets membership is exactly defined. Since there are only two
different state values, the alteration between these states is always immediate
because partial or gradual memberships are not allowed.

To illustrate the implications of this characteristic, take the following brief
example. Suppose, a firm wants to evaluate a potential location site in respect
to the supply of raw materials. The supply of raw materials may be judged
"good"”, "medium" or "bad" depending on the outcome of only two conditions; C;:
distance (in meters) to a harbour; and, C,: distance (in meters) to a goods
station. The basic assumption being that a location site near a harbour is easy
to supply, while in all other cases, the supply possibility depends on the
proximity of a goods station. For both conditions, C, and C,, the following
condition states are specified:

C, : distance (X in meters) to a harbour
CS,, : X < 1000 or X € [0, 1000)
CS,, : X 21000 or X € [1000, +cc)
C, : distance (X in meters) to a goods station
CS,; : X <250 or X € [0, 250)
CS,, : 250 < X < 450 or X'e [250, 450]
CS,; : X > 450 or X € (450, +c0)

Assume further, for the sake of simplicity, that condition state CS,; (X<1000}
reflects the set of "short" distances (denoted S) and condition state CS,
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(X>1000) the set of "long" distances (denoted L). Then, the crisp set for the
concept "short distance to harbour" is defined as follows:

Short = {X € U | CS,; = true} : [1]

meaning that any distance X less than 1000 m. is a full member of the short
distance set, while any distance greater than or equal to 1000 m. has a zero
degree of membership to the short distance set. Analogous, the crisp set for the
concept "Jong distance to harbour" is defined as follows:

Long = X € U | C8,; = true} (2]

meaning that any distance greater than or equal to 1000 m. is a full member of
the long distance set, while any distance less than 1000 m. has a zero degree of
membership to the long distance set. The crisp characteristic functions of both
concepts are shown in Figure 2 (a) and (b).

Figure 2: The crisp sets for the concept "distance to harbour"
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The characteristic (membership) function for the concept "short distance to
harbour" is defined as follows:



1if X < 1000,
Yesy - R — {0,1], X » (3]
0 if X > 1000
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The characteristic (membership) function for the concept "long distance to

harbour" is defined as follows:

1if X > 1000,
Xcsz - R = [0,1], X » [4}
01if X <« 1000 '

It is apparent that the characteristic functions of both crisp sets depicted in
Figure 2 reflect their Boolean nature. As one moves along the distance domain,
the membership of distances in the "short” ("long") set equals full (zero)
membership until it jumps immediately to zero (full) membership when a
distance of 1000 m. is reached. This property supports the fact that crisp sets
do not allow partial or gradual condition state transitions. |

Whether the membership function %, or j, can only take the values 0 and 1, or
any value between 0 and 1 indicates the difference between a crisp and fuzzy
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representation. The former definition refers to a crisp representation: y,: U —
(0,1}, while the latter points to a fuzzy representation: m,: U — [0,1]. Note that
the fuzzy representation is in fact a generalization of the crisp representation.
This is because a characteristic function can be extended from the binary
lattice range {0,1} to the continuous range [0,1] (i.e. the so-called extension
principle, see further). It is evident that in contrast to crisp sets, fuzzy sets do
allow partial or gradual set memberships. The degree of set membership may
equal any value in the interval [0,1]. This property is also reflected in the
shape of the membership function. While the values in the domain of a fuzzy
set always increase as one goes from left to right, the degree of membership
follows from the surface (or shape) of the membership function of the fuzzy set.
Hence, the choice and generation of the type of membership function is an
important subject in fuzzy set theory. | |

In respect to representing the concepts "short" and "long" distance, the
associated fuzzy membership functions may look something like the curves
depicted in Figures 3 (a) and (b). '

Figure 3: The fuzzy sets for the concept "distance to harbour"
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(b)
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It is apparent from the membership function specifications that items or objects
(in the present context different distances) may belong (i.e. be a member of)
only partially to a fuzzy set, and may also belong to more than one set at the
same time. For instance, in Figure 5.3 (a) and (b), a distance of 1100 m. has a
0.18 niembership value in the fuzzy set of "short" distances to a harbour and a
0.82 membership value in the fuzzy set of "long" distances to a harbour. In a
crisp representation, however, 1100 m. would result in a zero membership in
the set of "short" distances, and a full membership in the set of "long"
distances.

The fact that an item can belong to more than one set at the same time implies
that the Law of the Excluded Middle no longer holds (Laviolette et al., 1995, p.
250). To illustrate the consequences of this fact, take the following ancient
Greek riddle: "The liar from Crete asserts that all Cretans lie". The question
now is: "Is the Cretan telling the truth or is he lying?". Note that if -he lies,
then he actually tells the truth and does not lie. And if he does not lie, then he
tells the truth and so lies. Apparently, both cases lead to a contradiction as the
Cretan seemed to lie and not lie at the same time. Clearly, faced with such a
conundrum, classical logic, which states that any statement is either true or
false, surrenders. In contrast, the answer in fuzzy logic is that the statement is
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viewed as being half true and half false. The Cretan lies fifty percent of the
time and does not lie the other half (Kosko, 1994, p. 6). Such a statement
implies that the Law of the Excluded Middle is violated.

Kosko and Isaka (1993, pp. 62-63) argue that the Law of the Excluded Middle
only holds merely as a special case in fuzzy logic; namely, when an object or-
item belongs 100 percent to one group. Consequently, the only constraint on
fuzzy logic is that an object’s degrees of membership in complementary groups
must sum to unity. Imposing this property to account for the Law of the
Excluded Middle seems a rather straigthforward approach. However, in fuzzy
set theory, this is by no means the case (see below). In our example, 1100 m.
has a 0.18 degrée membership in the fuzzy set "short" distance, and a 0.81 (1-
0.18) degree membership in the fuzzy set "long" distance. Hénce, the Law of the
" Excluded Middle holds: p,(X) = (1-1,,,,(X)) and p,,,(X). = (1-pg, (X)) for all X
e U. Stated differently, the sum of all the supports of the membership function
values of the fuzzy sets involved in all fuzzy condition states should be equal to
one.

Note that when all fuzzy membership grades of all elements of the space are
restricted to the traditional set {0,1}, the result is again the classical, two-value
crisp set. This characteristic is known as the "extension principle” (Zadeh,
1975a, p. 236). It effectively establishes that fuzzy sets are a true
generalization of classical set theory. In fact, by this reasoning all crisp sets are
fuzzy sets of that very special type; and there is no conflict between both
methods. |

2 Fuzzyv membership functions

A fuzzy set is characterized by a membership function which assigns to each
object of the set a degree of membership ranging from zero (non-membership of
the set) to one (full-membership of the set).

Classifying membership functions is by no means an easy task. This is partly
explained by the fact that the choice of a membership function is (i) context-
dependent (i.e., devised for a specific, individual problem), and (ii) for a same

context, dependent on the observer (different observers have different opinions).
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It is not our intension here to make a complete literature coverage on
membership functions. This would lead us too far, and moreover, is done
elsewhere (see, e.g., Dubois and Prade, 1980a; Kandel, 1986; Dombi, 1990;
Turksen, 1991; Zimmermann, 1991; Kerre, 1993; Cox, 1994; and Tzafestas,
1994). However, an effort is made to include in this paragraph the most
representative standard representations of membership functions that have

been advanced to represent fuzzy concepts.

In Table 1, three different classes of concepts have been distinguished: (i)
increasing concepts, (ii) decreasing concepts, and (iii) the so-called "fuzzy
numbers". Subject to the kind of concept that needs to be represented, potential
standard membership functions are given that could be applied to represent a

particular fuzzy notion.

Table 1: Summary of standard applied membership functions

increasing concept growth curve * increasing linear line

* sigmoid curve (S_-curve)

decreasing concept decline curve * decreasing linear line

* logistic curve (L-curve)

fuzzy number and bell-shaped * T-curve -
"around" or "close to" curve * Beta-curve
representation * Gaussian-curve

triangular curve | * triangular fuzzy set
* shouldered fuzzy set

* trapezoidal fuzzy set

Membership functions belonging to the first two classes of representations are
frequently used to model concepts that have an intrinsic growth or decline
surface. Examples of increasing concepts are 'long’, old’, 'rich’, tall’, heavy’, etc.
These concepts are best represented by a growth curve. The basic idea of a
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growth curve is that for a fuzzy set like ’distance’, the degree of membership in
the set of the concept ‘long’ increases as the domain values of distance
augment. This follows from the logical assumption that longness is proportional
to distance. It is also typical of a growth curve that it moves from no
membership at its extreme left-hand side to full membership at its extreme
right-hand side. In contfast, decreasing notions such as ’short’, ’young’, ’poor’,
low’, light’, etc. are best represented by the complement of a growth curve;
that is, a decline curve. A decline curve moves from complete membership at its
extreme left-hand side to zero membership at its extreme right-hand side. The
growth and decline curves have in common that they are both pivoted around
their inflexion point (i.e., the 0.5 membership point). Let us take a closer look
at some examples of standard applied fuzzy membership functions that
represent the growth and decline surfaces.

A growth curve may be represented by an increasing linear line or, more
advanced, a sigmoid or S-curve. The case of the increasing linear line is rather
straightforward (cf. Figure 1). An increasing linear representation assumes a
direct increasing proportionality between the elements of the domain and the
degree of membership of the set. Due to this specific property, linear
representations fit very well the requirements of an increasing notion.
However, the property of direct proportionality is sometimes a too rigid
assumption to represent a concept. Therefore, as a rule, a linear fuzzy set is a
good first choice when approximating an unknown or poorly understood concept
that is not a fuzzy number (Cox, 1994, p. 47). In a later stage of the research,
some fine tuning is needed.

A more advanced representation is a non-linear function such as the quadratic
monotonic S-curve. An S-curve can be defined in terms of three parameters: the
zero membership value (o), the complete membership value (y), and the
inflexion point (B). The S-membership function is specified as follows (Zadeh,
1975d, p. 29; Sanchez, 1986, p. 337; Hellendoorn, 1990, p. 18}

0 - ifuga
2((u-a)/(y-0)) ifao<u<B
S (;aBy) R [01],z~ | 5]
1-2((u-Ply-o)? iff<uc<y
1 ifus>y
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It follows from specification [5] that only within the domain of [&,y] partial
degrees of membership are possible. This is because all values of u lower than
o imply zero membership, whereas all values of u beyond y imply full
membership. The inflexion point, f = (a+y/2 is the point with degree of
membership equal to 0. By determining the values of o and v for a certain
concept, the S-curve is established.

A decline curve may be characterized by a decreasing linear line or, also more
advanced, a logistic or L-curve. The L-curve is also a non-linear function. In
fact, an L-curve is complemententary to an S-curve. The L-membership

function is given by:
L G =1 -8 GaBip. | 6]

It is clear that the presence of the parameters o, B and ¥ makes it possible to
adapt the non-linear membership function to altering conditions and concepts
without essentially changing the curve’s general shape. The S- and L-curves
allow for more flexibility and are, therefore, more commonly used in an applied
context than, for instance, simple linear representations.

The 8- and L-shaped membership function curves can also be defined in terms
of a logistic function. Zysno (1981, p. 353), Zimmermann and Zysno (1985, p.
153) and Turksen (1991, p. 32) suggest:

S () = [1 + exp [-a(u-b)]}" [7]
and
L (my(w)) = [1 + exp [a@-b)II" | (8]

with a determining the slope of the curve and b determining the inflexion

point.

A third class of membership functions deals with the so-called fuzzy numbers
and the "about" or "close to" representations. Typical of this class of functions 1s
that they represent the approximations of a central value (or plateau if
truncated). Usually, fuzzy numbers are graphically visualized through the use
of a bell-shaped curve with the most probable value for the function at the
center of the bell. To illustrate, the concept "approximately 1000" or "close to
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1000" is a fuzzy number and could be represeﬁted with a bell-shaped fuzzy set
that 1s spread around the central value of 1000.

There are at least three important classes of bell-shaped curves. These are the
n-, the Beta-, and the Gaussian-curve (Kerre, 1993, p. 23; Cox, 1994, p. 61). The
difference between the three classes of fuzzy sets has to do with the curve’s
width and slope as well as the curve values at the endpoints. The width and
slope indicate the degree of spreading associated with the fuzzy number.

The most preferred of the three bell-shaped representations is the n-curve. This
is because the m-curve provides a smooth descent gradient from the central
value (i.e., the concept being approximated) to a zero membership point
somewhere along the domain. The fact that the endpoints of a m-curve are
always bounded at a discrete and specific point, makes the function not
asymptotic and most useful to approximate any fuzzy number.

The symmetric, unimodal m-membership function results from a continuous
linking of an S-membership function and its reflected image (i.e., the L-curve).
The m-membership function depends on two parameters: the value from the
domain around which the function is centered (y), and the bandwidth
parameter (B). The bandwidth parameter is twice the distance between the
inflexion point and the centered value. More formally, the n-membership
function for u € R is specified as follows (Hellendoorn, 1990, p. 18):

By :R—[0,1], u~ [9]
1-S (u;y,y+p2,y+B) ifuzvy

Note, that in the above equation of the n-curve the inflexion points (y£(/2) are
automatically defined. Also, the endpoints are determined from the
specification of the n-curve’s parameters as (y-f) on the left-hand side and (y+p) -
on the right-hand side. The width of the curve depends on the value of B. This
is often calculated as a percentage of the fuzzy number itself (Cox, 1994, p. 67).

The Beta-curve differs from the m-curve in that it is a bell-shaped function
without compact support and, more important, it has no bounded endpoints
(asymptotic function). Like the n-curve, the Beta-curve is defined using only
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two parameters: the center value (y) and the half-bandwidth parameter (B). The
Beta-membership function is defined as follows:

1

1+ﬂ)2
(ﬁ

Beta (5B,v): R - [0,1}, u ~ (10}

Note, that the point with zero degree of membership is only attained at
extremely large values for beta (B—-+ec). Also, it is the half-bandwidth
parameter p which plays a crucial role in the general shape of the Beta fuzzy
set. The larger the B-value, the wider is the curve and, conversely, the smaller
‘the B-value, the narrower the curve.

A third, though less popular bell-shaped curve for representing a fuzzy number
is the Gaussian-curve. Like the Beta-curve, the Gaussian-curve is an
unbounded function which is defined in terms of only two parameters: the
center value (y) and the width parameter (x). The G(aussian)—memb‘ership
function is given as follows: |

GCxy:R—[0,1], ur e™rv [11]

Like in the case of Beta-curve, the slope of the Gaussian fuzzy set is
determined by the value of the width parameter.

Aside from applying bell-shaped membership functions to depict a fuzzy
variable, fuzzy numbers and "around” or "close to" notions may also be
represented by means of a triangular form. A further distinction can be made
between a simple triangular, a shouldered and a trapezoidal fuzzy set.
Triangular fuzzy sets mostly originate from the field of process engineering and
control.

In a trianguldr (or pyramidal) fuzzy set, the apex of the triangle is centered

around the unity measure of the fuzzy number or its most representative and
characteristic value of the fuzzy variable, and equals full-membership. The left
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and right corners of the triangle correspond with the points where set
membership is equal to zero. The distance between both corner points
determines the spread around the centered value. It is also typical that, when
several triangular sets are applied in a sequence to represent a concept, they
necessarily overlap to some extent. The overall result is a sawtooth function
which is easy to specify and visualize. This is one of the reasons why triangular
functions are still very popular among researchers.

In a shouldered fuzzy set, triangular forms are also used to represent the fuzzy
variable. Graphically, this results in that the apices of left-hand and right-hand
out-side triangles in a sequence are topped-off and equal full-membership. The
topped-off horizontal line is called a "shoulder” or "plateau". An important
advantage of using shouldered fuzzy sets is that one is able to meet the
endpoints of the variable’s universe of discourse. An alternative to shouldered
fuzzy sets is the use of bisected triangles at the edges of the domain.

A third variety to represent a fuzzy number or an "about” or "close to" notion is
by means of a trapezoidal (or plateau) fuzzy set. A trapezoidal set is a
truncated triangular fuzzy set with a crossover plateau. All domain elements
that fall within that specified crossover plateau have equal (usually complete)
membership in the set. The trapezoidal membership function is defined as
follows (Dombi, 1990, p. 3):

0 ifu<a
(u-a¥(b-a) ifa<u<b

T (sab,ec,d): R—[0,1],ur~ 1 ifb<u<e & [12]
(u-d)f(c-d) ifc<u<d '
0 ifu>d

witha<b<c<d.

Note, that in equation [12] of a trapezoidal membership function the crossover
plateau is equal to [b,c] because all » that fall within that interval have full
membership in the set. Only if b=c the trapezoidal membership function is
transformed into a triangular fuzzy set with apex b. Examples of triangular
and trapezoidal fuzzy numbers are easy to define. For instance, "approximately
equal to 350 meters" can be represented by T (+300,350,350,400),
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"approximately between 250 m. and 450 m." can be represented by T
(=200,250,450,500), and the non-fuzzy notion "exactly 100 m." can be
represented by 7' (-;100,100,100,100).

It is generally accepted that fuzzy numbers are best represented by bell-shaped
curves. This is because bell-shaped curves, in particular the n-curve, provide a
better and more smooth way to represent individual fuzzy domain than
triangular fuzzy sets. However, the use of triangular representations still
remains very popular as they are easy to specify, interpret and visualize. Also,

triangular fuzzy sets are not complex to defuzzify (see below).

The selection of the type of membership function that should be used to
represent a particular notion is very complex and subject to criticism. Also, it is
difficult to argue what a particular degree of membership for a certain object

really means.

Some authors are of the opinion that these issues are not very important,
because fuzzy sets are intrinsically vague and should only give an indication or
tendency of the corresponding linguistic concepts (Hellendoorn, 1990, p. 19). In
this respect, Dubois and Prade (1980a, p. 2) stated:

"Precise membership values do not exist by themselves, they are
tendency indices that are subjectively assigned by an individual or
group. Moreover, they are context-dependent. The grades of
membership reflect an "ordering” of the objects in the universe,
induced by the predicate ‘associated with a fuzzy set; this
"ordering", when if exists, is more important than the membership
values themselves".

On the other hand, Jain (1980, p. 131), for instance, has a very strict
interpretation of membership function selection. He argued:

"The first step in the application of fuzzy set theory is to select
either a membership function or a fuzzy set to represent a fuzzy
variable. Most papers in the field start with a given fuzzy set or a
given membership function, without any mention of how and why
they were chosen. (...) But fuzzy set theory wants a fuzzy set to be
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unfuzzily specified. It is not clear how to represent an ill defined
or imprecise variable even in a fuzzy set theoretic framework".

A somewhat more compromising position is taken by, e.g., Lakoff (1973) when
discussing the notion “tallness" and using an S-membership function curve to
represent the concept. In respect to choosing the membership function
specification, Lakoff (1973, p. 464) wrote:

"The curve (...) is not to be taken with great seriousness as to its
exactitude. Undoub'tedly the function which maps height into
tallness is itself fuzzy. However, I do think that the curve (...) is
not a bad approximation to my own intuitions about degrees of
tallness. The curve has about the right Shape. It rises
continuously, as it should. It would be wrong to have a curve that
falls or has several dips. It goes up from zero at about the right
place and seems to hit one at about the right place. In short, there
is far more right than wrong about it, which is what makes it an
inferésting approximation”.

The fact that there exists a diversity of opinions on membership function
specification indicates the controversy of the subjéct. As a result, fuzzy
researchers and scientists have put in great efforts to produce several theories
to explain and justify the choice of membership function. The most famous, and
generally accepted theory is the so-called possibility theory.

3 Relationship between probability, stochastic preference and
membership function

An important issue, which is commonly misunderstood, concerns the
relationship between a probability, a stochastic preference and a fuzzy
membership function (see, e.g., Cheeseman, 1986; Hisdal, 1988a; Smets and
Magrez, 1988; Klir, 1989; Kosko, 1990; Thomas, 1995). The confusion arises
because probability models, stochastic preference models and models using -
fuzzy sets all deal with uncertainty and all operate over the same numerical
range (scaling between 0 and 1) to measure the uncertainty. |

From the classical point of view on statistics, a probability of an event is based
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on the relative frequency or proportion of occurrence of that event in repeated
trails of an experiment. Hence, classical probability models usually rely for
operationalization on samples of responses taken at specific points in time
whereby the probabilities will change during the sampling process.

While probabilities are based on the theory of chances, stochastic preferences
relate to the principles of random utility theory used in decision-making models
(Thurstone, 1927; Manski, 1977). In random utility modelling, it is assumed
that not all factors influencing the choice processes are known. Therefore, the
decision-maker’s preference for a choice alternative is assumed to be stochastic.
This assumption is reflected in the random utility component of the choice
alternative. Depending on the assumptions made regarding the distribution of
these random utility components, the actual choice model is obtained. It is then
assumed that an individual draws at random from this distribution a utility

function at each choice occasion.

Although there is a basic difference between a probability and a stochastic
preference, both concepts relate mathematically to the techniques developed in
probability theory.

In fuzzy set theory, a membership function deals with fuzziness (sometimes
also referred to as "vagueness" or "imprecision"). The membership function
assigns to each object in the universe of discourse a grade of set membership
ranging from zero to one. Therefore, a membership function value can be
considered as a measure of the feasibility or ease of attainment of an event.
Unlike with probabilities and stochastic preferences, with fuzzy membership
functions one cannot say unequivocally whether an event occurred or not,
instead one aims at trying to model the extend (or degree) to which an event

occurred.

To illustrate the fundamental difference between probability theory and fuzzy
set theory, take the following example (Bezdek, 1993, p. 2). Suppose you see
two bottles containing a liquid. You are told that bottle A has a 90% chance of
being potable (i.e., a probability), while bottle B has a 0.90 membership
function with the fuzzy set of potable ("suitable for drinking") liquids. If you
had to drink one, which would you choose first? The probability that bottle A is
potable is 90 percent. This means that over the long run of experiments, the
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contents of A is expected to be potable about 90% of the trials; so what about
the other 10%? In these cases the contents will be unsavoury (indeed, possibly
deadly). Bottle A could contain either water, or hydrochloric acid. On the other
hand, bottle B is "mostly potable". Its membership function of 0.90 will not |
change. This means that the contents of bottle B is fairly similar to perfectly
potable liquids (pure water). So, bottle B is something like swamp water. It
* would certainly not contain liquids that are poisonous or deadly. Thus, if given
the choice, you better select bottle B.

To give another example to further clarify the difference between probability
theory and fuzzy set theory, take Kosko’s (1993, p. 4) "half-eaten apple” which
.goes as follows. No one would question the fact that an apple belongs to the
crisp set "apples". So, if a person displays an apple and asks: "Is this an
apple?”, most people would answer "Yes!". If the person chews a bite from the
apple and repeats the question, the answer would most likely still be "Yes!".
But what happens if the peréon keeps on eating so that, in the end, only the
core of the apple remains? Is it still an apple? Most would say: “No!". The
question then becomes: When did the apple pass from being an apple
(belonging to the set "apples") to a non-apple (belonging to the complementary
set "not apples”)? Although we at all times have all the facts about the apple —
its shape, its size, its weight, etc. — and although we can measure the change
in these parameters with any precision, we still cannot say exactly when it
ceased to be an apple. Obviously, the problem cannot be solved using statistics,
since the uncertainty involved is non-random (chance is not involved. If we
instead assume that the person with the apple holds it behind his or her back,
and asks: "Do I have the apple in my right or left hand?", then chance is indeed
involved and we have a random uncertainty (P = 0.5 for either hand).

It is well understood that probability theory is a natural tool for formalizing -
uncertainty in situations where class frequencies are known, where evidence is
based on outcomes of large series of independent random experiments or where
qualitative response variables are assumed. The random variable (being the
outcome of a chance experiment or being a stochastic preference measure) 1s
associated with a probability distribution. A minimum requirement of
probabilities is additivity; that is, probabilities must add together to one. Fuzzy
sets and membership functions, on the other hand, have been related to the so-
called possibility theory (Zadeh, 1978; Yager, 1982; Dubois and Prade, 1988).

-19 -



The possibility theory is applied as a tool for formalizing fuzziness that results
from information that is fuzzy. In much the same way as a random variable 1s
associated with a probability distribution, a fuzzy variable (concerning a
meaning) is associated with a possibility distribution (Hellendoorn, 1990, p. 29).
As such, the relationship between probabilities, stochastic preferences and’
membership functions (fuzzy sets) can also be viewed as a relationship between

probability theory and possibility theory.

Possibility distributions have some similarities to probability distributions, but
their meanings are essentially different. The mathematical relatioriship
between the two distributions has been studied extensively in the literature
(see, e.g., Zadeh, 1978, 1995; Hisdal, 1982, 1996; Cheeseman, 1986, 1988;
Delgado and Moral, 1987; Dubois and Prade, 1983, 1986, 1989; Klir and Folger,
1988; Klir, 1989, 1991; Klir and Parviz, 1992). To illustrate the connection
between the two theories, we overview the theories from a broader perspective
of Dempster-Shafer theory (also known as evidence theory or theory of belief
functions), under which both probability and possibility theory appear as

special cases.

The Dempster-Shafer theory (Dempster, 1968; Shafer, 1976; Zadeh, 1984;
Shafer and Logan, 1987; Klir and Ramer, 1990; Stein, 1993) is capable of
conceptualizing two distinct types of uncertainty, one emerging from probability-
theory and one from possibility theory. '

Let X denote a universal set under consideration,Aassumed here to be finite,
and let P(X) denote the power set of X. The power set is a set consisting of all
the subsets of a particular set. Then, the Dempster-Shafer theory is based upon

a function

m : P(X) —» [0,1] : . [13]
such that

m@)=0and % mA)=1 | [14]

AeP(X)
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The function m resembles a probability distribution, and therefore is usually
called a basic probability assignment. However, there is a fundamental
difference between probability distribution functions and basic probability
assignments. For one, probability distribution functions are defined on X,
whereas basic probability assignments are defined on P(X). Every set A ¢ P(X)
for which m(A) > 0 is called a focal element. As this name suggests, focal
elements are subsets of X on which the available evidence focuses. The pair
(F,m), where F denotes the set of all focal elements of m, is called a body of
evidence. In the same line of thought, we are able to define total ignorance in
terms of basic probability assignments by m(X) = 1 and m(A) = 0 for all A = X.
That is, we know that the element is in the universal set, but we have no
evidence about its location in any subset of X.

Associated with each basic probability -assignmenf m 1s a belief measure (Bel)
and a plausibility measure (P1Y which are determined for all sets A € P(X) by
the formulas: '

Bel : PO — [0,1],A~ T m(B), | [15]
BcA :

Pl: PO - [0, A~ ¥ mB). | [16]
Bire .

" The belief measure represents the total evidence or belief that the element
belongs to A as well as to the various subsets of A. The plausibility measure
represents not only the total evidence or belief that the element in question
belongs to set A or to any of its subsets but also the additional evidence or
belief associated with sets that overlap with A. Hence, PI(A) = Bel(4).

The belief and plausibility measures are connected by the equation Pl(A) =1 -
Bel(A®) or Bel(A) = 1 - PI(A®) for all sets A € P(X), where A° denotes the
complement of A.

2 The belief measure and plausibility measure correspond with what Dempster (1968, p. 206)
called the lower and upper probabilities associated with the proposition "x € A", respectively.
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The two formulas, Bel(A) and Pl(A), and the definition of the basic probabﬂity
agsignment, m(4), form the core of the Dempster-Shafer theory. Let us now

take a closer look at two specific cases.
First, when the basic assignment focuses only on singletons, belief and
plausibility measures collapse into a single measure [Bel(A) = PlA) =

E m({x})]. The result is the classical additive probability measure. As a
x€A '

result, for any probability measure (Prob) on a finite set X there exists a unique
probability distribution function:

p:X—[01] | ' [17]
such that
Prob(A) = E plx) [18]
xeA _
forall A c X.

From the standpoint of Dempster-Shafer theory,
p(x) = m({x}); | [19]

hence, it is required that

3 pw=1 [20]

xeAd

Second, when all of the focal elements of a body of evidence are nested (ordered
by set inclusion), the belief and plausibility measures are called consonant.
Thus, in a way, consonance is reflected in the fact that degrees of evidence
allocated to focal elements that are nested do not conflict with each other; that
is, nested focal elements are free of dissonance of evidence. In this case, the
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plausibility measures are called possibility measures (also referred to as
consonant plausibility measures), and belief measures are called necessity
measures. Furthermore, any possibility measure (Poss, or m) is uniquely
determined by a possibility distribution function: |

ri X - [0,1] | 21]

via the formula,

Poss(A) or n(A) = max r(x) [22]

xEA

for all A € P(X). The corresponding necessity measure (Nec, or 1) is determined
as MA) = 1 - w(A°). Because of this convertibility property, we are able to
concentrate on only one measure. Since possibility measures are more
prominent in the literature than necessity measures, we will focus on the
former.

Recall that probability measures can be represented by probability distribution
functions for finite X. It turns out that possibility measures can be represented
in this same way as well. Thus, given a consonant body of evidence F = {A}, A,,
..,A } such that A, ¢ A, c ... ¢ A, the basic assignment in pos'sibility theory is
connected with the possibility distribution via the formula

m(4,) = r(x,) - rx,,,), and : (23]
] .
r(x) = E m,) =1 | [24]
k=i
for some x; € A, some x,, € A, and i = 1, 2, ..., n, where r(x_;) = 0 by

convention (Klir and Folger, 1988, p. 124).

Possibility theory can be formulated not only in terms of consonant bodies of
evidence within the Dempster-Shafer theory, but also in terms of fuzzy sets. It
was introduced in this manner by Zadeh (1978).
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Zadeh (1975d; 1978, pp. 5-9) defined the concept of a possibility distribution as
a fuzzy restriction which acts as an elastic constraint on the values that may be
assigned to a variable. For instance, in the atomic sentence "John is young”,
youngness (i.e., the predicate) is viewed as a fuzzy restriction on John (i.e., the
subject) because the predicate acts as an elastic constraint on the values that
may be assigned on the subject. |

More formally, let X be a-variable taking values in a finite U, and let A act as a
fuzzy restriction on X. The proposition "X is A" associates a possibility
distribution, II, with X. The corresponding possibility distribution function is
denoted by m,(x). This measure (i.e., a possibility measure) may be interpreted
as the possibility that a value of X belongs to A and is defined to be pointwise
equal to the membership function of 4, i.e., -

) = p, @) | [25]

for all X € A. Thus, (), the possibility that X = u, is postulated to be equal to
n,(w). In this interpretation of possibility theory, focal elements are represented
by so-called o-cuts of the associated fuzzy set. An o-cut of a fuzzy set A is a
crisp set. A, that contains all the elements of the universal set X that have a
degree of membership in A greater than or equal to the specified value of o.

Returning to the example "John is young" (X is A), the possibility of X
assuming a value u is interpreted as the degree of ease with which u may be
assigned to X. In other words, suppose that an arbitrary chosen age, say u =
28, corresponds, according to a specified membership function, with a 0.70
degree of membership in the fuzzy set "young". This implies that the possibility
that the variable Age (John) may take the value 28 is 0.70, with 0.70
representing the degree of ease with which 28 may be assigned to Age (John)
given the elasticity of the fuzzy restriction labelled young.

The heuristic connection between possibilities and probabilities may also be
stated in the form of what Zadeh (1978, p. 8) called the possibility/probability
consistency' principle. This principle establishes a basis for measuring the
degree of consistency between a possibility distribution = and a probability
distribution p, and is expressed by
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Clr,p) = f Te(u) py(ie). [26]

ueX

When C(n,p) = 1, there are no contradictions between possibility and probability
distribution transformations. Note, that it is only when the possibility

distributions are normalized (i.e., max {m(u)} = 1) that the degree of
uek

consistency equals unity (Delgado and Moral, 1987, p. 312). However, following

relations [14], [16] and [22], it can be seen that max my(u) = II(X) = Z
ucX BA+a

m(B) = E m(B) = 1. An extensive overview of different types of probability-
BeP(X) _

possibility transformations is g'iveh in Klir and Parviz (1992).

The fact of the matter is that fuzzy researchers have gone to great pains to
distance themselves from probabilities and stochastic preferences (see, e.g,
discussions in Cheeseman, 1988; Hisdal, 1988a, 1988b; Mabuchi, 1992; and
Laviolette et al., 1995), but often assume that the fuzzy logic related possibility
distribution functions are normalized in order to be able to transform them into
probability distributions, or, on a comparable level in fuzzy set theory, interpret
the grades of set membership as probabilities (Ruspini, 1969; Gaines, 1975,
1978; Watanabe, 1975; Giles, 1976, 1982; Hersh and Caramazza, 1976; Kandel
and Byatt, 1978; Bezdek et al., 1981; Hisdal, 1982, 1988a, 1988b, 1996; Bandler
and Kohout, 1985; Mabuchi, 1992; Painter, 1993; Beliakov, 1996; Kelly and
Painter, 1996). Like Kandel and Byatt (1978, p. 1623) put it: "Intuitively, a
similarity is felt between the concepfs of fuzziness and probability. The
problems in which they are used are similar (...) The fact that the assignment
of a membership function of a fuzzy set is 'nonstatistical’ does not mean that
we cannot use probability distribution functions in assigning menﬁbership
functions". Therefore, in a number of fuzzy set applications, it is assumed on
methodologicél grounds that membership values add to one. Kosko and Isaka
(1993, p. 62) argue that it is required in view of not-violating the Law of the
Excluded Middle (see pp. 8-9).
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Klement (1982a), Norwich and Turksen (1982d) and Turksen (1982, 1988) have
tried to synthesize the relation between probabilistic and fuzzy models through
the development of the notion of stochastic fuzziness. In contrast with an

ordinary fuzzy set, a stochastic fuzzy set defines set membership as a random
variable v,(z) having a probability density function which may be estimated
instead of the usual deterministic scalar mp,(x). As it turns out, the fuzzy
domain of a probability density function appears to be smaller in size than the
fuzzy domain of a membership function. Clearly, over the years, fuzzy set
theory and probabilistic theory have grown closer together. Instead of being
each others counterparts, much can be gained from a combination of both
approaches. Stated in the words of the founding father of the fuzzy set theory:
"Probability theory and fuzzy logic are complementary rather than competitive"
(Zadeh, 1995, p. 271).

4 Estimation and choice of membership functions

A predominant problem in fuzzy set theory involves the estimation or choicen of
membership functions. This is because estimation of p,(z) will eventually lead
to defuzzification which is the ultimate aim of any fuzzy defined problem.

In his early writings, Zadeh was not really concerned with the problem of
estimating membership values. The grades of membership are subjective, in the
sense that their specification is a matter of definition rather than objective
experimentation or analysis (Zadeh, 1972, p. 5). In spite of the fact that in the
literature the estimation of P,(u) has not been dealt with systematically, a
number of individual ideas and methods exists. Dubois and Prade (1980a, pp.
257-261), Zysno (1981), Norwich and Turksen (1982b, 1984), Bharathi Devi and
Sarma (1985), Zimmermann (1985, pp. 305-339; 1986), Zimmermann and Zysno
(1985), Turksen (1986b; 1991, pp. 26-33), Tzafestas (1994, pp. 238-239), Chen
and Otto (1995), and Bilgic and Turksen (1996) mention among others the
following techniques:

(i) Exemplification: In this technique, the respondents are asked to what
extend a given variable (e.g., "length [") is considered as being a member of a
pre-specified fuzzy classification (e.g., "long"). To answer the respondents have

to make use of one of the following linguistic expressions: "true”, "more or less

true", "borderline", "more or less false", or "false". These linguistic terms are

- 96 -



then simply translated into membership values: 1, 0.75, 0.5, 0.25, and 0,
respectively. '

(i1) Distance function method (or deformable prototypes method): In this
method, first a distance d(u) of an arbitrary point u from the set A under
consideration is calculated. For all u that belong to the set, this distance is
equal to zero; while for those elements not belonging to the set, this distance
takes on some maximum value sup(d). The latter value can also be interpreted
as a measure of dissimilarity (or distortion) between the point u and the set A.
The membership function for p,(z) can then be defined as:

- 4w [27]
sup(d)

(iii) Implicit analytical definition (or intuitive relation method): It is
intuitively true that, when the belief that u belongs to the fuzzy set A
strengthens, the membership value of m,(z) will increase, and vice versa. In
other words, it is assumed that the marginal increase of a respondent’s
strength of belief that "u € A" is proportional to the strength of belief that "u
A" and the strength of belief that "u ¢ A". Analytically, this is expressed by the
relation:

dF'A(")
du

= k p@)[1-p,@)] (28]

which, upon integration, gives the following membership function:

pu) = m . [29]

The parameters a and b of relation [29] are estimated from statistical data.
Note here the similarity with the logistic S- and L-membership function
definitions (see relations [7] and [8]).

(iv) Binary polling method (or use of statistics): In this method, the
respondents are faced with the question: "Does u belong to the fuzzy set A?",
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and are only allowed a binary reply (yes or no). The value of p,(u) is then
estimated as follows for finite U

number of positive replies ) . [30]
total number of replies

B A(u) =

(v). Comparison of subsets: Suppose A is a fuzzy set of U with membership
function p,. A fuzzy subset A’ on F(U) from A can be introduced as follows:

o {te g, ) =

.
3w . [31]
i=1 .

R

This specification could be interpreted as an "average membership" of
{y,us,...,u} in A. Next, a preference relation (>) is introduced in F(U) such that

¥ 8, S, e FW, S, » 8, Sy > 1Sy 132}

The preference relation of S, » S, signifies "S; matches A better than S,".
Resulting from this relation are preference data between subsets of U, that can
be translated into a systerﬁ of inequalities among membership values for p,(z).
This method is only applicable if F(U) is limited in size, and the usefulness of
the method is determined by the quality of the subset induction process. '

(vi) Filter function method: The filter function F (u;IP,w) is characterized by
two parameters: (i) the inflexion point IP (i.e., the point along the domain of u
with 0.5 membership value), and (ii) the width 2w of the transition between
non-membership (where u < IP - w) and full-membership (where u 2 IP + w).
Next, a specification is needed for the fuzzy domain ([P-w,[P+w) which is
associated with the concept that needs to be represented.

It is assumed that the fuzzy concept can be related to a given population for
which a normal probability distribution applies. If ¥ and ¢ are the parameters

of this distribution, the membership function of m,(u) is then estimated by the
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following filter function: F (u; # +00,B0) where o and £ have to be determined

experimentally.

(vii) Direct rating (or magnitude or point estimation): Randomly selected
elements # € U are presented to a respondent in a random manner. The
subject is asked to respond to a question of the following form: "How A is u?"
(i.e., How long is 1000 m.?) where A represents a fuzzy set. The subject’s
response (a rating) is a value r(u) € [py,py] where m, and py are arbitrary
membership values indicating a lower and upper bound, respectively. The
respondent is also asked to identify u.;,, corresponding to m;, and u,,
corresponding to Py, in repeated experiments in order to identify the range
[U_.wUuma] of the referential set (ie., the support or domain of the base -
variable). Note that the respondent always gives his/her rating while bearing in
mind that liL represents total agreement that u is not A and p; represents total

()
By — Ey

agreement that u is A. This is equivalent to asking that represent

the ratio of the increase with respect to being A from u_, to u, to that of the
increase from u__ to u,,. Because the ratings p, and W, represent the
membership in A of u_, and u,,, respectively, the value r(z) is interpreted as
the membership of u in A (i.e., p,(uw)). Hence, the membership ratio of
differences is equal to:

A AU

. [33]
E'I'A(um) - uA(um)

The subject’s responses are recorded as ratings r(u) — being the observed
values of p,(u) — for given u € U, ie., r(u}|u. Thus, in every direct rating
experiment the recorded values r(u)|u generate a distribution function. Let
Opwr@) | 1) be the probability density function of the distribution function
gy (r@) |u) of the random variable R(u) generated in a direct rating
experiment at a given value u € U. According to Turksen (1991, p. 27), these
are error distributions, chosen as Beta distributions near the boundaries p; and
Py but as Gaussian N(p,(©),0?) in the rest of the range [m,py], with mean
Pruie = E(R(u)|u) and variance 0%, = Var(R(u)|u). These error distributions
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capture the subjectiveness in human perception in identifying the grades of
membership p,(u) € [py,}yl. Both mean and variance are unknown parameters.
Unbiased estimates of these parameters can be obtained in the usual

manner: r(u)|u = % 3 Ir(wu] and [34]

S.:(u)h: = ;{—1 Eiri(uﬂu - rw)jul® . ' [35]

(viii) Reverse rating: Randomly selected ratings r(z) € [p;,py] are presented
to a subject in a random manner. The subject is asked to respond to the
following question "Identify or choose a u € U that possesses or best
corresponds to the r(u)-th degree (grade) of membership in the fuzzy set A"
The same degree of membership or rating is presented to the respondent a
reasonable number of times in between other random presentations of r(u) in
order to avoid memorization. The subject’s responses are recorded as observed
values of u for given ru), i.e., u|r(u). The distributions in this case turn out to
be Gaussian error distributions N(u,(z),6% with py ., = EU|r@) and

variance 0'2U|r(u) = Var(U|r(u)). Again, these unknown parameters can be

estimated by x|r() and s%;,,, (see relations [34] and [35]).

Having examined some standard membership function representations and
methods to construct and estimate membership functions, we now turn our
attention to the issue of fuzzy set operators.

5 Fuzzy set operators

Fuzzy set operators enables one to combine and modify fuzzy sets. Originally,
Zadeh (1965, pp. 340-342; 1975a, p. 225) advanced three basic type of
operations on fuzzy sets. These so-called standard Zadeh min/max operations
are the (i) intersection, (ii) union, and (iii) complement operators.

The intersection operator is the equivalent of the logical AND-operation. This
means that the intersection (or conjunction) of two sets yields a new set
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containing only those elements that are common to both sets. In conventional
fuzzy set theory, the AND-operator is supported by taking the minimum of the
membership functions for the two intersected sets. In contrast, the union (or
disjunction) of two sets yields a new set that contains all elements that are in
either of the sets. Its equivalent is the logical OR-operation which, in’
conventional fuzzy set theory, is supported by taking the maximum of the
membership functions for the two combined sets. The complement (or negation)
of a set contains all the elements that are not in the original set. Its equivalent
is the NOT-operator (Rédder, 1975, pp. 2-3).

More explicitly, the intersection, union and complement operators are defined
as follows (Zadeh, 1965):

Definition 3: Intersection _
In a universe of discourse U, the intersection of two fuzzy sets A
and B of U is defined as p, .5 : U = {0,1], z » min {p,(u),ps)}. 0

Definition 4: Union
In a universe of discourse U, the union of two fuzzy sets A and B of U is
defined as p, 5 : U — [0,1], u = max {p,(u),pp(w)).H

Definition 5: Complement
In a universe of discourse U, the complement of a fuzzy set A of U
isdefinedasp_, : U—> [0,1], u ~ 1 - p,(u). 0

Note that operations on fuzzy sets always take place at membership function
level (degree of membership), and that any operation on a fuzzy set results in
the creation of a new fuzzy set.

Besides utilizing the classical Zadeh-type operations on fuzzy sets, there exists
other specifications of operators. These alternative forms of the AND, OR and
NOT operations are termed compensatory operators because they tend to
compensate for the strict minimum, maximum, and complement of the Zadeh
operators (Turksen, 1992). An example of such a compensatory operator is the
product operator (see Definition 6). Bellman and Zadeh (1970, p. 145) referred
to this operator as the ’soft AND’ operator.
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.The classical Zadeh intersection/union operators also do not satisfy the
Excluded Middle Laws. Therefore, the product operator for the intersection of
two fuzzy sets is often advanced as alternative (Bellman and Zadeh, 1970, p.
145: Thole et al., 1979, Dubois and Prade, 1980a, p. 262; 1980b, p. 63;
Zimmermann and Zysno, 1980; Francioni and Kandel, 1988).

Definition 6: Product
In a universe of discourse U, the product of two fuzzy sets A and B
of U is defined as p, o5 : U — (0,11, u = p(u).pa(u). W

The product operator has obviously some intuitive appeal; it is simple,
compatible to the conjunction of standard logic, and has a much more softer
interpretation of the notion "and" than the classical Zadeh intersection operator
(Bellman and Zadeh, 1970; Turksen, 1992). The product operator belongs to the
so-called class of triangular norms (or briefly, {-norms). Such a ¢{-norm is a
mapping or function 7: [0,1] x [0,1] — [0,1] fulfilling the following four
conditions (Klement, 1981, p. 219; 1982, p. 223; Zimmermann, 1985, p. 32):

1. T(0,0) = 0; T(x,1) = T(1,x) = x for all x € [0,1], [36]
2.if0<x<p<land 0 <y <¢g<1then T(xy) < T(p,9), [37]
8. Vo epn Ty =Thx), . [38]
4. V. em T(T(xy),z) = T(x,T(y,2)). [(39]

The selection of the appropriate operator for a particular model is generally
done heuristically. However, as a rule, one usually starts with the conventional
Zadeh operators and evaluates the model’s result. If the result is deemed
unsatisfactory, a number of relatively simple algebraic transformations could
bring some relief. Examples of such algebraic compensatory operations involve
taking the mean or average, the squared mean, the product, and the bounded
sum of the membership functions involved (Dubois and Prade, 1980a, p. 262). If

the result is still unacceptable, a move to more complex compensatory operators
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might be advisable. Examples of such operators are the Yager-operators, the
Zimmermann and Zysno-operators and the Dubois and Prade-operators (see
Dubois and Prade, 1980b; Dombi, 1982; Klement, 1981, 1982b; Klir and Folger,
1988, pp. 37-64; Cox, 1994, pp. 143-152; Tzafestas, 1994, p. 233).

6 Fuzzy set hedges

Apart from applying fuzzy set operators to transform fuzzy sets, modification of
sets can also be accomplished by means of using hedges (Zadeh, 1972; Lakoff,
1973).

A hedge, also sometimes referred to as a linguistic variable, is a linguistic term
that modifies the shape characteristics of a fuzzy set. Hedges have a typical
adjectival or adverbial relationship with a fuzzy set. In a sense, they can be
compared to operators because they also transform one fuzzy set into another,
new fuzzy set. The newly acquired set is in fact a rescaled version of the
original set. In all, four important categories of hedges may be distinguished: (i)
concentrators, (ii) dilators, (iii) contrast hedges, and (iv) approximation hedges.

First, an example of a hedge that has received particular attention in the
literature (see Zadeh, 1972, pp. 22-25; MacVicar-Whelan, 1978), is the "very”
hedge. The idea behind the linguistic term "very" is rather self-evident: one
aims at intensifying a notion. The consequence of this intensification operation
is that the surface of the fuzzy set will be rescaled. In the case of the "very"
hedge, rescaling implies reducing the membership function for each value of the
domain except at the fuzzy set extremes (i.e., the points representing absolute
set membership and set exclusion). To illustrate this further, in considering the
fuzzy set "long" and its intensified set "very long", we would expect that a
representative distance from the intensified fuzzy set is rated at least as true
as the same distance in the base fuzzy set, but the reciprocal is not true. Thus,
a distance that is considered "very long" would also generally be rated as
"simple long", but a simply long distance would not be categorized as very long.
From this, it is clear that the effect of the "very" hedge — in Zadeh’s words, a
concentrator — is to reduce or concentrate the overall fuzzy domain (support) of

a concept. Consequently, class membership becomes more restrictive.

Originally, Zadeh (1972, p. 23; 1975a, p. 226; 1975b, p. 322) heuristically
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conjectured that a good estimate for the "very" hedges would be squaring the
membership function at each point in the set (or, W al4) = ()%, More
recently, a generalization of the Zadeh concentrator hedge replaces the
exponent of the intensification function with any real positive number greater
than one. The concentrator has the following construct: '

pcom.:entrator (A) U—- [0’1]3 u i pA(u)n; Where n>1 [40]

Other examples of concentrator hedges or intensification transformers are
"extremely", "pretty", "slightly", "a little", etc. Cox (1994, p. 174) argues that n
will most likely fall in the interval [1,4] whereby fractional exponents are also
allowed. This is because exponents outside the interval will push the
membership function quickly toward zero. |

Second, the complement of the concentrator hedge is the hedge group
represented by such linguistic terms like "somewhat", "rather"”, "quite", "sort
of', "more or less", etc. These hedges, all basic synonyms for each other, have
the capacity to dilute a notion. In the case of the "somewhat" hedge — in
Zadeh’s terminology, a dilator — rescaling the original fuzzy set implies
increasing the membership function for each domain value except at the fuzzy
set extremes. This is explained by the fact that by diluting a notion, its class
membership becomes less restrictive; hence, the surface of the membership
function is expanded. Zadeh’s estimate for the "somewhat" hedge was simple to
take the square root of the membership function at each point along the set (or,
Mounes a) = ma@)*®). However, by replacing the exponent with any real
number less than one, a generalization of the Zadeh dilator hedge 1s obtained,
and has the following construct:

Matator iy - U = [0,1), p, @)™ where n > 1 411

In practical use, n will fall within the interval [1,8]. This is because exponents
outside this interval tend to push the membership function quickly toward one.

A third category of hedges is termed contrast hedges. A contrast hedge changes
the nature of the fuzzy domain by either making the region less fuzzy (in which
case, the hedge is called a contrast intensification hedge) or more fuzzy (in
which case, the hedge is termed a contrast diffusion hedge). Examples of
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contrast intensification modifiers are “positively', "absolutely”, "precisely",
"definitely", etc., while examples of contrast diffusion modifiers are, for

instance, "generally”, and "usually".

The effect of a contrast intensification hedge is to make a region less fuzzy.
This is accomplished by systematically increasing all the membership function
values above 0.5 and diminishing all the membership function values below 0.
The overall effect of this process is a shift in the membership values either
closer to one (above 0.5) or closer to zero (below 0.5); hence, reducing the
overall fuzziness of the region. Conversely, the effect of a contrast diffusion
hedge is to make a region more fuzzy. This is achieved by systematically
reducing all the membership function values above 0.5 and increasing all the
membership function values below 0. The overall effect of this process 1s a move
of all membership values toward the inflexion point (i.e., the 0.5 membership
point); hence, increasing the overall fuzziness of the region. .

The contrast hedge can be formalized as follows (Zimmermann, 1987, p. 238):

Peontrast ) - U — [G,1], uw ~ n(p,(u))™ . if p,(u) € [0,0.5]
1-n(1- p,(w))® otherwise [42]
where n > 1 implies intensification, and

n < 1 implies diffusion.

A fourth and final category of hedges is the approximation hedge group. To this
important category belong such representations as "about”, "around”, "in the
vicinity of", "close to", "near", "roughly", etc. It should be clear that the result of
applying an approximation hedge is a fuzzy number. As this subject has
already been dealt with earlier, we will not repeat it here.

It is important to note that all hedges described until now owe their origin to a
purely mathematical operation; that is, the degree of membership is simply
raised to an arbitrary power. These hedges are therefore referred to as powered
hedges. An alternative to applying powered hedges is the use of so-called
shifted hedges (Hellendoorn, 1990). In a shifted hedge approach, the shape of
the membership function is altered by changing the parameters of the
membership function. Thus, instead of raising the degrees of membership to a
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power, a shift in membership values. is obtained by changing the parameters,
and with it, the overall shape of the fuzzy set. For example, suppose a notion
like "old" is represented by a sigmoid membership function, S (;0.8,y} with o =
70, f = 75, and y = 80, then the notion "very old" would be represented as a
shifted version of that sigmoid membership function, e.g., S (;a,B,y) with o =
80, § = 85, and 'y = 90.

7 Conclusions

In this paper, we focused on the theory of fuzzy sets as initially introduced by
Zadeh (1965).

The fuzzy set theory aims at mathematically representing the vagueness
intrinsic in linguistic terms and approximate reasoning. Through the use of the
fuzzy sets, ill-defined and imprecise knowledge and concepfs can be treated 1n
an exact mathematical way. Fuzzy sets allow for partial or gradual set
memberships. This property is reflected in the shape of the membership
function.

The overview presented concentrated oﬁ six key issues of fuzzy set theory.
These are: (i) relationship between crisp and fuzzy sets; (ii) fuzzy membership
functions; (iii) relationship between probability, stochastic preference and
membership function; (iv) estimation of membership functions; (v) fuzzy set
operators; and (vi) fuzzy set hedges. '

Given that this paper is an introductory paper on fuzzy set theory, a number of
elements have not been dealt with. In this respect, we would like to mention
such items as fuzzy reasoning, fuzzy relations, defuzzification processes, and
also applications of fuzzy set theory (approximate reasoning, fuzzy control and
expert systems, pattern recognition, decision-making, operational research,
etc.).
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