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Abstract

In this paper a selection of seven stock market prices is
analysed. We model daily (compound) returns of closing prices
- for a sample period, running from Eastern 1988 to the end of
November 1990.

Since we are principally 1looking for deviations from the
traditional random walk stock returns, also by using the
recent concept of ‘self-organized criticality’ in chaos theo-
ry, we construct ARIMA- and transfer function models for the
daily stock returns. Finally, forecasts are generated for a
20-day, up to a 60-day, forecasting period. '
It is verified that random walk model forecasts are better (in
the short run) in only one case, and that in more than half of
the cases the time series analyses get better forecasts than
the technical (and fundamental) analyses.

Finally, a rough test on robustness is performed by computing
new estimates over a sample period from the end of June 1988
to the beginning of February 1991 and making forecasts for 20
periods'ahead, and by comparing these results to the estimates
and forecasts previously mentioned. Again, technical and
fundamental analyses are clearly beaten.

JEL codes: €220, E440, G120



"Study the past if you want to
forecast the future"
Confucius (551 - 478 a.D.)

Introduction

As Campbell (1991) in his recent H.G. Johnson Lecture to the
Royal Economic Society states, it is important to distinguish
between interpreting and forecasting the movements of the
stock market. "To forecast the (financial) market means to
predict price changes in the near future. To interpret the
(financial) market means to explain, with the benefit of hind-
sight, why prices have changed in the way they have. This is
something which the financial press does almost every day. But
the financial press does not impose on itself the discipline
of consistency; one day’s explanation need not cohere logi-
cally with the next day’s story. The task for academics is to
find an interpretation which can consistently explain stock
market movements over a long period of time.®

We shall analyse the (recent) development of seven Belgian
closing market prices at the Brussels Stock Exchange in this
paper, i.e., these of Petrofina, GB-Inno-BM (GIB), Gevaert,
Solvay, Glaverbel, CBR and Electrabel (EBES). We shall try to
interpret daily stock market returns (excluding weekend data)
for a sample period, running from April 11, 1988 to November
26, 1990, and afterwards for a sample period between June 24,
1988 and February 8, 1991, and to forecast these stock market
prices over a forecasting period of at least 20 days.

Since the (often advocated) strict ‘random walk’ theory of
stock market prices implies that stock returns are (strictly)
unforecastable, so that, under the condition that ‘rational
bubbles’ are ruled out, all unexpected movements in stock
prices are assumed to be due to ‘news’ about future dividends,
we shall try to study deviations from random walk stock market
prices.



In studying these deviations, we shall make use of ARIMA- and
transfer function time series modelling. For the latter
aspect, we shall consider possible explanatory variables as
exchange rates, oil prices, interest rates, etc.... In this
respect, we shall also use some recently developed aspects of
chaos theory. Hence, extensive use will be made of time
series analysis. Application of multivariate, simultaneous
time series analysis will be delayed to a subsequent paper.

In an introductory section, a brief discussion about the
measurement of stock market returns and some aspects of time
series analysis are stated. The sample data are clarified in
section 2, where some brief concepts of ‘predictable chaos’
are also mentioned. Section 3 contains the analysis and
forecasting of the exchange rates, while section 4 discusses
the statistical estimation and prediction of the above called
Belgian closing prices. Finally, section 5 retrieves some

conclusions.
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1. Stock Market Returns and some brief Aspects of Time Series
Analysis.

In general, we can distinguish three types of stock (market)
returns, which can be either returns of shares (or assets) or
returns of exchange rates (see, e.g., Taylor (1986)). Deno=~
ting the returns, or alternatively, the price differentials,
as x,, we may define :

i) "the absolute or first difference returns" :

X, =8 + d - s (1)
ii) "the compound returns" :
Xy = log(s, + d) - log s, (2)

iii) "the simple or relative first difference returns" :

s, +d,~-s
Xy, 1= ———Lt 1 (3)
s
t-1

with s, the price of,e.g., an asset at period t (month,
week, day, hour or even minute) (usually clo-
sing prices)

and q, the dividend (if any) of an asset, payable at
periecd t.

Since the absolute returns x, depend on the individual price
units, comparison among the various absolute returns is very
difficult. Moreover, variances of returns are proportional to
the price level in this case (’/variable-heteroskedasticity’).

Therefore, almost everyone uses either the compound returns or
the simple returns. According to the Taylor expansion :

Sc-}1(Sc+dc) = X3+l = @™ = 1+xzc+2—1,x22c+3—11x23c* s ' (4)

we immediately observe that, if the compound returns are small
(which is 1likely to be true if t stands for days), compound
and simple returns are more or less the same. Hectic develop-
ments, however, with |x,| > 0.10, can disturb this statement.
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Moreover, there exist two fundamental reasons why the compound
returns x, are used more often than the simple returns x, :
a) generalizations of discrete time results to continuous
time results are simpler with x, (e-powers !) than with
X; and
b) compound returns of more than one period are just sums of
the (compound) returns of one period, which: cannot be
said for the simple returns.

For example, neglecting dividends, the simple returns for 2
periods (e.g., 2-day returns) satisfy:
{2) See1=Seq S¢=8Spy  Sen~Se S

X3, te1 = = + . = Kyt Xy pa Xy e Xy o (5)
Sey Se,y S, 8y

where an embarassing product term emerges. For 3-day returns,
we get:
(3) . _ Ste2" St

X3, t41 ¢ —s. = PEYSR SRS S WFIL) SO D CUFLE CURTTRD. CP0.0 SRRV S
£-1

X3 Xy, a1 X3, 042 0

(6)

Hence, we prefer the compound returns-definition (2) for our
paper (too).

Now, we shall break the compound returns into a component
which is a reaction to (other) measured (news) variables, and
a residual (often called "noise"). Hence, we can model the
compound returns x, as a time series model.

Inspecting the autocorrelation_ function and the partial auto-
correlation function of the compound returns x, (t=1,2,...,T},
up to a maximum lag length depending on the sample size (e.g.,
for about 700 observations, the maximum lag length should be
at least 50), we may derive a univariate ARIMA (p, d, q)-
model, where p is the (maximum) order of the autoregressive
process, d is the order of integration (i.e., the compound
returns are found to be stationary after differencing d times)
and g is the (maximum) order of the moving average process of
the compound returns, viewed as a time series. If no signifi-
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cant (partial) autocorrelations of the residuals remain', we
may generate our forecasts for the ARIMA-model over the fore-
casting pericd.

In order to model the compound returns x, into a ‘transitory’
and a more ’‘systematic’ or ‘permanent’ component, we may look
for omitted variables which have an impact on the compound
returns investigated. Hence, by computing the cross correla-
tion function between the compound returns on the one side and
important explanatory variables or "“input variables", posses-
sing an impact on these returns, as, e.g., exchange rates,

(0il) prices, interest rates, etc..., on the other side, we
may identify a transfer function for x,.

In general, such a transfer function should quantify the
economic variables which would determine the compound returns
of assets, as, e.g. (see also Fase (1990)):

i) the growth of the quantity of money, defined as the
difference between the nominal money growth and the
inflation rate, which might have a positive impact on the
general‘index of asset returns; notice, however, that
such a relationship is not very convincing, since a sound
economic reasoning is lacking for it, asset returns are
more and more internationally determined and the true
relationship may also be the reverse: enlarged asset
portfolios require more liquidity and quantity of money
('reverse causation’, quantity of money demand relation-
ship);

ii) the external balance (exports minus imports), exchange
rates, interest rates, inflation and unemployment rates
as main general economic indicators;

iii) variables underlying the efficient market hypothesis,
saying that the expected asset price equals the present
value of all expected future after tax dividend payments
({i.e., the expected dividends, inflation rates, growth

! Under the null hypothesis that the (partial) autocorre-
lation is egual to zero, the variance of a (partial) autocor-
relation coefficient may be approximated by T', so that a
rough confidence interval for the (partial) autocorrelation
coefficient is +2T* (see Plasmans (1990) for further details).



rates and interest rates are the ’fundamentals’);
iv) the ’speculative bubbles’ hypothesis, assuming that
speculative behaviour dominates the asset market.

The above mentioned cross correlation analysis is usually made
with ‘prewhitening’, i.e., cross correlation coefficients
between an input and the output x.. are usuallly computed
after, firstly, deriving an ARIMA-model for the input variable
(and, so, obtaining a white noise residual input) and applying
the same ‘filter’ to the output variable. Simulation studies
have demonstrated (see also Plasmans (1990)), however, that it
is sometimes better not to ‘prewhiten’ (PW), i.e., in the case
that the standard deviation of the noise term of the endoge-
nous (output) variable is much higher (e.g., 5 times) than the
standard deviation of the noise term of the exogenous {input)
variable. Hence, identification of transfer functions could
be improved by combining cross correlation analyses with PW-
and non-PW (or "unwhitened") inputs and outputs.

We shall use the SAS-package (SAS-ETS), both for PC and Main-
frame, to perform the statistical estimation. In this paper,
only the conditional Jleast gquares (CLS) method, setting the
pre-sample starting values at zero, is used. Empirical evi-
dence and simulation studies have shown (see Plasmans (1988))
that this method performs well, compared with the method of
unconditional least squares (ULS), with back-forecasting of
the pre-sample values, and with the exact ML-method, which
maximizes the log-likelihood-function of the observed output
variable with back-forecasting of its pre-sample values.
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In this paper, we investigate compound returns of daily clo-
sing rates for seven (large) Belgian firms: Petrofina, GB Inno
BM (GIB), Solvay, Glaverbel, CBR and Electrabel (formerly
FEBES) for a sample period running from April 11, 1988 to
November 26, 1990. If we exclude weekends and interpolate
linearly for remaining missing values (as, e.g., holidays,
days without any closing prices at the Brussels stock exchan-
ge), we get 686 daily observations in this way. Afterwards,
we shall generate forecasts, in general for a 20 - day fore-
casting period (t = 687 (27/11/90),....,706 (24/12/1990)), but
also for 30 days (t = 716 on January 7, 1991), 40 days (t =
726 on January 21, 1991), 50 days (t = 736 on February 2,
1991) and 60 days (February 18, 1991). Finally, the sample
period is changed to 24/6/88 - 8/2/91 with a 20 period fore-
casting period.

Since we are studying deviations from random walk modelling,
we may search for ARIMA- and transfer functions. Candidate
variables having a possible impact on asset (compound) returns
are (the returns of) exchange rates, inflation rates, interest
rates, growth rates, unemployment rates, quantity of money
changes, expected future dividends, external balance variables
etc.... Since we have to stick to daily observations, we have
chosen the spot rate of Brent-oil in US Dollars per barrel on
the London International ©0il Market as a measure for prices
and the interest rate on 3 months - Eurobonds as a measure for
interest rates (the interest rates on 1 month - Eurobonds have
a similar pattern). Other variables, except exchange rates,
are not available on a daily basis. ©One can find a list of
variables selected and their corresponding symbols in appendix
A.

Several authors have advocated the unpredictability of (com-
pound) returns (see, e.g. Fase (1990)). Moreover, when cata-
strophe strikes, analysts typically blame some rare set of
circumstances or some combination of powerful mechanisms.
When the (New York) stock market crashed on Black Monday in
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1987, economists pointed to the destabilizing effect of compu-
ter trading. Therefore, some economists utilized elements of
chaos theory to explain exchange rate movements and/or asset
returns (see, e.g., De Grauwe and Vansanten (1990)). Never-
theless, it was observed that 1large interactive systems on
stock markets organize themselves to a critical state in which
a minor event starts a chain reaction that can lead to a
catastrophe (see, e.g., Bak and Chen (1991)).

Bak a.o. (1988, 1991) developed the theory of gelf-organized
criticality: many composite systems naturally evolve to a
critical state in which a minor event starts a chain reaction
that can affect any number of elements in the system.
"According to the theory, the mechanism that leads to minor
events is the same one that leads to major events. Furthermo-
re, composite systems never reach equilibrium but instead
evolve from one metastable state to the next." (Bak and Chen
(1991), p. 26).

These findings originate from the study of earthquakes.
According to the Gutenberg - Richter law (1956), e.g., the
number of earthguakes each year that release a certain amount
of energy (intensity), E, is proportional to one divided by E
to the power b, where the exponent b is about 3/2.

Hence, large earthquakes are much more rare than small ones.
Because the number of small earthquakes is systematically
related to the number of large earthguakes, Bak a.o. suggested
that small and large events arise from the same (mechanical)
process. Under the Gutenberg - Richter empirical law, the
system evolves on the border of chaos (’weak chaos’). Weak
chaos differs significantly from fully chaotic behaviour.
Fully chaotic systems are characterized by a time scale beyond
which it is impossible to make predictions. Weakly chaotic
systems lack such a time scale and, so, allow (even) long -
term predictions, using, e.g., transfer functions (being
similar to ‘flicker noise’ in physics; see Bak and Chen

(1991), p. 28).

In order to test the Gutenberg-Richter law, and, hence, the
above theory, for our daily data, we have established two
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pictures, i.e., the GIB - returns/US Dollar cross correlations
and the Gevaert - returns/DM cross correlations. Considering
classes of cross - correlations (being multiplied by 100) as
measures for intensity on the x-axis and the number of (abso-
lute) cross correlations falling in each class on the ordina-
te, we get an approximate (negative) exponential empirical law
with exponent at about -3/2 indeed. This can be directly seen
from the charts below.

This is not true for each cross correlogram, but a y - type of
distribution is always obtained. According to the theory of
self - criticality, there is room for forecastability in this
case.

Modelling and forecasts will first be made for the exchange
rates, since they seem to possess (more or less) important
impacts on closing price returns.

AlnGIB/AlnUSS AlnGevaert/A1nDM

number of absolute

crosscommelations

15

10

i

3

c' ‘ . ““““:' - c ' i}

12 3 45 678 9101M1213 14 1 2 3 4 5 6 7 8 9 10

ICross Correl.}+100 {Croas Comel.}«100

Chart 1 Chart 2
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3. odell]j d Forecasting the Exchange Rates

As to Koedijk and Schotman (19%0), the low explanatory power
of models which attempt to explain exchange rate changes need
not be in conflict with the theory : "The overshooting model
of Dornbusch (1976), and the asset market approach in general,
stresses that exchange rates will be highly sensitive to news,
and that the variance of the error term in an exchange rate
equation can be large compared with the variance of the expla-
natory variables™ (p. 311).

Symptoms of misspecified exchange rate equations are then :
autocorrelated residuals, time varying parameters, structural
breaks, heteroskedasticity and omitted variables. Aiming at
forecasting the exchange rates of the Belgian Franc (BF) vis &
vis the US Decllar (USD), the Deutsche Mark (DM) and the Japa-
nese Yen (JY) respectively, we shall focus on the first and
last mentioned sources of misspecification in this paragraph.

In a recent survey, however, Takagi (1988) conbluded that
empirical exchange rates of major currencies followed a time
series process that is closely approximated by a random walk.
Monthly data generally showed greater serial dependence than
daily data, possibly suggesting the presence of systematic
information in low frequency data corresponding to macroecono-
mic variables. This feature was confirmed by the above cited
study of Koedijk and Schotman (1990), who observed that the
mutual monthly exchange rates between the USD, the DM, the JY
and the BP (British Pound) do not follow a random walk at all,
but are strongly influenced by price differentials between
wholesale and consumption prices and by relating interest
rates during the sample period February 1977 - July 1987.

Although Koedijk and Schotman (1990) observed that individual
interest rates had a larger impact than interest rate diffe-
rentials, we decided to test the Uncovered Interest Rate
Parity (UIP-) hypothesis, also for high frequency data as
daily exchange rate returns. This UIP-hypothesis follows from
the Covered Interest Rate Parity (CIP-) hypothesis, if the
expected spot rate and the forward rate of the exchange rate
coincide (risk premium equal to zero), so that the nominal



12

interest rate differential between two countries will be equal
to the expected relative change of the exchange rate under
(strict) UIP. Hence, for the validity of this (strict) UIP,
one has to make some rather strong assumptions (see, e.q.,
Kirchgdssner and Wolters (1989)) : capital has to be perfectly
mobile and domestic and foreign bonds are perfect substitutes,
which implies that there are to be no transaction costs, no
differences in national tax systems regarding capital markets
and no risk premia in forward markets, which are in addition
regarded as efficient.?

Notice also that departures from random walk can also point to
heteroskedasticity. Therefore, we performed statistical tests
on the existence of ARMA-models with dgeneralized autoregressi-
ve conditional heteroskedasticity (GARCH-effect) for the
compound returns of exchange rates Alne, in a model as (see
Hsieh (1989)) :

Alne, = @, + o D, + a; D, + a, D, + ag D, + @, Hol +

p
Y aAlne, ; +n, ' (7)

J=1

with the error term n. distributed as N(0, h,), with the condi-
tional variance h, satisfying :
h, = By + B, D,, + B, D, + B, Dy + By Dy, + B, Hol +

g
E Biﬂz—i + Bh,_, (8)

I=1

where D,, D;, D, DR' and Hol are dummies for Monday, Tuesday,
Wednesday, Thursday and Helidays (excl. Weekends) respective-

ly.

2 In contrast to UIP, CIP states that interest rate
differentials equal the difference between the forward and the
spot exchange rate. Hence, if a risk premium is not negligi-
ble in the foreign exchange market, the forward rate is no
longer an unbiased predictor of the next period's spot rate.
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Utilizing the method of Maximum Likelihood (ML) for relation-
ships (7-8), maximizing the log likelihood function of the
sample data :

T
1 1 1
L(m-—,f);I - E (F(—L)) (9)

1 2
t'—'l /

with respect to the (m + g + 13)-dimensional parameter vector

& := (0o, On, Qr, Qu, Cp, A, X1y «--; Uu; Bo, Bu, By, By, B,

Bz, Biy «o., By, B)’, where £(.) is the standard

normal density function, yielded a Jjoint estimation of the
parameters in the mean- and variance equations (7-8), also
imposing the restrictions 8, 2 0 and h. > 0. Application of ML
on the daily returns of the BF vis & vis the USD, the DM and
the JY respectively for the sample period t = 1 (19/4/1988),
..., 686 (26/11/1990) did not yield any day-effect at all.

It should be noticed that a significant GARCH-effect, (B,, B.,
«ee, By, BY? » 0, was sometimes found. This could already be
checked by computing the coefficient of kurtosis, a, = m,/c*,
with m, the fourth moment about the mean and o the standard
deviation of the compound returns of the relating exchange
rates; usually a, was found to be larger than 3, pointing to a
leptokurtic distribution. Moreover, ML-estimates of a fat-
tailed Student t-distributed GARCH(1l,1)-model as:

Alne, = p +e, , e, ~ t(h,,v) with
h, = BO+BHDm+D1DTt+BWDWt+BRDRc+aei-1+B'ht:-l (10)

and v degrees of freedom, for the BF/DM - [and the BF/USD]
exchange rates (685 time periods), yielded no significant day-
effect either (t-ratios for B&,, 8, 8, and B, were 1.36 [0.96],
0.58 [0.84], 1.0 [-0.02] and -1.15 [1.38] respectively).
GARCH(1,1)-effects, nevertheless, were very significant:

a=0.088 [0.087] B -0.905 [0.851] vV =4.38 [5.11]
(t-ratio) (8.72) -[(7.48)] (79.85) [(45.22)] (38.35) [(34.17)]

The mean equation is not disturbed too strongly by this
GARCH(1,1)-effect, however, so that ARIMA- and transfer func-
tions for the logarithmic exchange rates may be modelled,
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although the error terms are in fact not identically distribu-
ted with constant variance.

Utilizing the symbols of appendix A, the following departures
from a random walk for the three daily exchange rates returns
considered were observed for the above mentioned sampling
period of 686 time points (where (|f;]) are the absolute values
of the t-ratios):

BF / USD
i) Random walk: Alnz,, = 1, ¢ 8,= 0.00664 (11)
ii) ARIMA: Alnz , = (1-0.114L + 0.12058L*®) fj,,

(€} (3.02) (3.18) (12)
84, = 0.00657197
iii) Transfer function:
Ainz = (-2.79213-1.09939L°”)Alnz,, + (0.33283+0.11606L'¢)41lnz,,

(1€ (5.62)  (2.29) (7.62) (2.65)
-0.00532(2,~25)¢-2s + 0.02942A1N2, .., + (1-0.1199L).
(1.89) (3.11) (3.02)
(1 + 0.08376L*){1 + 0.14901L*) fj,,
(2.09) (3.73)
G4, = 0.00614985 (13)
F /DM
i) Random walk : Alnz, = 14, i 8, = 0.00049] (14)
ii) ARIMA: (1+0.13643L**)(1+0.08937L*’-0.074B4L*")(1-0.09503L*°).
(€D (3.53) (2.30) (1.93) (2.43)
(1-0.10778L*) Alnz_ = (1-0.07625L7)(1+0.11458L%") f,,
(2.76) (1.97) (2.94)
§q, = 0.00047577 (15)

iii) Transfer function :
Alnémf -0.01653Alnz,, + {0.0119-0.00567L* + 0.010841>*

(£ (6.60) (3.88) (1.84) (3.38)
+0.011161%%) Alnz, ., + 0.00058(2,~Z¢)e0
(3.43) (2.55)
+ [(1+0.17052L“)(1+0.14667L")(1-0.08671L=7
(4.26) (3.64) (2.14)
- 0.15586L*)}*(1-0.10369L7)(1+0.09230L*) f,,
(3.82) (2.59) (2.28) (16)

aﬂ= 0.00044562
F
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BF / JY

i) Random walk : Alnz, = 1m,,; ©8,= 0.005355 (17)
ii) ARIMA :

(1-0.09100L*-0.09839L%) (1+0.08019L%) (1+0.10502LY) Alnz, =
(€ (2.38) (2.57) (2.07) (2.60)

(1-0.07881L") (1+0.10169L%) 4,

(2.04) (2.57)
84= 0.0052561 (18)

iii) Transfer function :
Alnz, = (0.22476-0.07170L")Alnz,+(1.27295-0.69917LS

(€D (7.99) (2.56) (3.26) (1.84)
+1.53902L7+1.40758L%)Alnz,,» - 0.00576(Z,~2;),y,
(4.00) (3.72) (2.16)
+(=0.02094 + 0.01865L? - 0.01849L* + 0.02815L%)Alnz,,y,
(2.82) (2.45) (2.47) (3.77)
+[(1-0.10880L? - 0.08456L7) (1-0.09026LY)]"
(2.70) (2.09) (2.20)
(1 - 0.08335L%) (1 + 0.07105L* + 0.10277L%) f,,
(2.02) (1.67) (2.43)
843= 0.00486897 : (19)

Since the sample standard error difference between the estima-
ted ARIMA-model and the estimated transfer function model is
relatively smallest for the BF/USD exchange rate compound
returns, and since we do not use simultaneous time series
analysis in this paper, the transfer functions (16) and (19)
and the ARIMA-function (12) were chosen to generate (best
possible) forecasts of the BF/DM-, BF/JY- and BF/USD exchange
rates respectively (see Tables 1 and 2; 20-day forecasts for
the BF/DM and BF/JY).



Table 1: Forecasts of the BF/DM exchange rates: t=687
27/11/920) - 706 (24/12/90
t Observed Random ARTMA- Transfer
DEM walk model function
exchange model
rate (14) {15) (16)
686 20.6008 20.6008 20.6008 20.6008
687 20.598 20.6008 20.5975 20.6005
688 20.6040 20.6008 20.5963 20.5981
689 20.5875 20.6008 20.5934 20.5987
690 20.6080 20.6008 20.5941 20,5967
691 20.6205 20.6008 20.5917 20.5988
692 20.6335 20.6008 20.5901 20.5930
693 20.6460 20.6008 20.5927 20.5945
694 20.664 20.6008 20.5910 20.5913
695 20.666 20.6008 20.5886 20.5887
696 20.6775 20.6008 20.5908 20.5870
697 20.6755 20.6008 20.5930 20.5919
698 20.6705 20.6008 20.5924 20.5953
699 20.6740 20.6008 20.5951 20.6013
700 20.6755 20.6008 20.5929 20.6078
701 20.6665 20,6008 20.5941 20.6113
702 20.6445 20.6008 20.5928 20.6134
703 20.6505 20.6008 20.5936 20.6152
704 20.6425 20.6008 20.5936 20.6129
705 20.6250 20.6008 20.5934 20.6173
706 20.5950 20.6008 20.5937 20.6180
Exchange rates Ul 0.00243 0.00277 0.00251
Exchange rates U2 0.00121 0.00138 0.00126
Compound returns Ul 1.00000 1.00458 1.12605
Compound returns U2 1.00000 0.87138 0.B88354



Table 2: Forecasts of BF/JY exchange rates: t=687

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

Exchange
Exchange
Compound
Compound

{27/11/90)
Observed Random
YEN walk
exchange
rate {(17)
23,8350 23.8350
23.8000 23.8350
23.5725 23.8350
23.4550 23.8350
23.2700 23.8350
23.1050 23.8350
23.2075 23.8350
23.0225 23.8350
23.1625 23.8350
23.3100 23.8350
23.1475 23.8350
23.0850 23.8350
23.2325 23.8350
23.1825 23.8350
23.1625 23.8350
23.0775 23.8350
23.0725 23.8350
22.8375 23.8350
22.9000 23.8350
23.1050 23.8350
23.3150 23.8350
rates Ul 0.02884
rates U2 0.01422
returns Ul 1.00000
returns U2 1.00000

= 706 (24/12/90)

ARIMA-
model

(18)

23.8350
23.8688
23.8632
23.9174
23.9028
23.9651
23.9972
23.9700
23.9654
23.9586
23.9122
23.8914
23.8494
23.8451
23.8352
23.8113
23.7921
23.7611
23.7745
23.7138
23.7132

0.03008
0.01483
1.03640
0.85418

Transfer

function

model
(19)

23.8350
23.7681
23.9307
23.8528
23.7585
23.8223
23.8134
23.7542
23.8124
23.7768
23.8269
23.9043
23.9411
23.9540
23.8840
23.8775
23.7917
23.7656
23.6473
23.6713
23.6815

0.02788
0.01376
1.11326
0.76009
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These ex ante forecasts are compared with the ex post observa-
tions utilizing as forecast performance indices the absolute
and relative Theil’s inequality indices:

¥ (x,-R,)2 Y (x.-2,)?

U, := \ ieF, and U, := NeeFe (20)
Y xi \I Y x2 \J T 2
teT, teT, teT,

respectively, where T; is the forecasting period.

U, is (assumed to be) positive and is considered to be good if
it is smaller than 0.4, while U, is always between zero and
one.

For the BF/DM exchange rate a random walk predicts the best
within the 20-day period; for the BF/JY exchange rate the
transfer function performs better.

On a sixty-day basis (+ 3 months), the BF/DM-exchange rate is
predicted to be more or less constant at about 20.6 BF per DM,
while the BF/JY-exchange rate is predicted to vary between
23.6 and 23.9 BF per JY.

According to the technical analysis (see Table 3), performed
on the 27th of November 1990, the BF/USD exchange rate was
predicted to (further) decrease and the BF/DM~ and BF/JY-
exchange rates were predicted to increase. We may observe
that reality developed differently, and that our exchange rate
forecasts were not that bad.

Recomputing univariate time-series models for the various
exchange rates for a sampling period running from June 24,
1988 to February 8, 1991 (observation 55 to observation 740)
and comparing for best forecasts over 20 days, we found that
the random walk models for the three exchange rates perform
relatively best.
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Table 3: Technical analysis for the BF/USD, BF/DM and BF/JY

exchange rates.
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4. Estimating and Forecasting (the Returns of) the Closing

Prices.
Tables 1 to 7 in appendix B of this paper contain the speci-

fication for the selected random walk-, ARIMA- and transfer
function models for the Petrofina, GIB, Gevaert, Solvay,
Glaverbel, CBR and Electrabel (EBES) shares respectively. The
transfer function models differ in that respect only that the
identification phase occurred differently: either the inputs
and the relating output were all prewhitened (PW) or a combi-
nation of PW and non-PW ("unwhitened") inputs and relating
output is considered in order to compute the crosscorrelati-
ons. In general, the statistical estimations were improved by
also considering unwhitened inputs and output. Furthermore,
the ex_ante forecasts of the exchange rates could be impfoved
by alsc considering the other exchange rates and other exoge-
nous variables. Hence, ex ante forecasts for those exchange
rates, occurring in the transfer functions for the asset
returns, can be constructed, either by simple ARIMA-structures
(see (12), (15) and (18)) or by the transfer functions (16)
and (19). Since the BF/USD was explained relatively best of
all 3 exchange rates by an ARIMA-model and since we do not
model simultaneously (yet), we preferred to utilize equations
(12), (16) and (19) for the exchange rates of the BF vis a vis
the USD, the DM and the JY respectively. In the sequel we
shall briefly discuss the forecasting capability of each asset
pribe model.

Notice, however, that constant error variances of the ARIMA-
and transfer function models for the 7 asset returns conside-
red are assumed for estimation, and even normality of the
corresponding errors is adopted for (most) testing.

In fact, daily data of stock returns are not {always) normally
distributed with constant variance, so that ARIMA-modelling
may be {very) doubtful. Time varying conditional variances
and fat-tailed error distributions are often observed and
should be treated appropriately. In the early seventies it
was reported that many stock return distributions are fat-
tailed (see, e.g., Blattberg and Gonedes (1974) and, more
recently, the GARCH-model has been frequently used in studies
on stock return behaviour (e.g. in Chou (1988), Akgiray (1989)
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and Connolly (1989)). We shall study this eventually occur-
ring GARCH~behaviour of the 7 asset returns considered in a
subsequent paper. Since emphasis is concentrated on forecas-
ting of asset prices paper,
GARCH-characteristics of these 7 asset returns may be conside-
for our sake’.

in this eventually occurring

red as ‘not too harmful’

4.1 etrofina

Inspecting the predictions of the Petrofina closing prices in
table 1B we may remark that we overestimated the ex post deve-
lopment of the closing prices (Kuwait war!), but that for the
first 50 forecasting periods the random walk model overes-
timated even more. Looking at the inequality coefficients
below we remark that the best closing price forecasts are

obtained with the help of transfer function (1.3.2) with
improved exchange rate equations (16) and (19). Compcund
returns of the Petrofina closing prices, however, are predic-

ted best by equation (1.3.1). From the technical analysis
charts in appendix €, a further increase of the Petrofina
closing prices is predicted (buy signal) while reality showed
a decrease (from the end of November 90 until half of January
1991). Notice, that our forecasts do not indicate anh increase
either, but rather a very moderate decrease (even in the long
run up to 60 periods; while on February 4 1991 equation
(1.3.2) predicted 10174 for the closing price and in reality
it was only 9920, 10 working days later (February 18, 1991) a
toc low prediction emerged (10188 compared to 10950 in reali-

ty)).

Petrofina Randonm ARIMA- Transfer function models
walk model (1.3.1) (1.3.2)
(1.1) (1.2) ARIMA improved improved
exch. exch. exch.
rates rates rates
Clos.prices Ul 0.02975 0.03162 0.03091 0.03060 0.02711
Clos.prices U2 0.01469 0.01560 0.01525 0.01510 0.0133¢%
Comp.Returns Ul 1.00000 0.99390 0.96625 0.97032 1.06053
Conmp.Returns U2 1.00000 0.95855 0.63278 0.62951 0.66386

3 See Baillie and Bollerslev (1990) for predictions in
dynamic models with time dependent conditional variances.



Changing the sample period from 24/6/88 to 8/2/91,
and transfer function (1.3.1)’,

ARTIMA-model

(1.2)7
responding inequality coefficients:
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we find
with cor-

Petrofina Random ARIMA~ Transfer function models
walk model (1.3.1)7 (1.3.2)7
(L.1) (1.2)7

Clos.prices Ul 0.06346 0.06211 0.04727 0.04810

Clos.prices U2 0.03267 0.03196 0.02415 0.02458

Comp.Returns Ul 1.00000 0.98969 1.07973 1.08795

Comp.Returns U2 1.00000 0.95430 0.77421 0.78630

Inequality coefficients are somewhat larger, for an important
part due to the Gulf War. Notice that the best forecasts are
obtained now from the transfer function, being identified with
PW inputs only.

4.2 GIB
As becomes clear from the inequality coefficients below, it is
directly verified that all coefficients in the estimated

relationships for the first sampling period are very low, but
that the best 20-day prediction for the GIB closing price is
obtained by the ARIMA-model (2.2). At the end of November
1990, the technical analysis charts indicated a further decre-
which did not come out in our transfer function fore-
ARIMA-predictions decreased very moderately.
we may state that our models generate good GIB

ase,
casts. Our
Concluding,

closing price forecasts.

GIB Random ARIMA- Transfer function models
walk nodel (2.3.1) (2.3.2)
(2.1) (2.2) ARIMA improved improved
exch. exch. exch.
rates rates rates
Clos.prices Ul 0.01730 0.01057 0.01932 0.01923 0.01751
Clos.prices U2 0.00859 0.00528 0.00959 0.00954 0.00870
Comp.returns Ul 1.00000 1.02283 1.03736 1.03522 1.06144
Comp.returns U2 1.00000 0.85821 0.81575 0.80990 0.78023

For the second sampling period, the random walk predicts best.

The increase with %

11% in the GIB closing prices can not be

predicted very well with the ARIMA model nor with the transfer

function model.



GIB Random

walk

(2.1)7
Clos.prices Ul 0.10312
Clos.prices U2 0.05426

Comp.Returns Ul 1.00000
Comp.Returns U2 1.00000

4.3 evaert

ARTMA-
model
(2.2)7
0.10545
0.05555
1.01072
0.95027
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Transfer function model

(2.3.1)’

0.12114
0.06435
1.00176
0.79533

A striking result from the inspection of the inequality coef-
ficients for a 20-day forecasting experiment, given below, is
that the simple random walk model (3.1) predicts the Gevaert
closing prices best vis & vis ARIMA-model (3.2) and transfer
function models (3.3.1) and (3.3.2), although the correspon-
ding residual sample standard errors are lower. This origina-
tes from the fact that the ARIMA-model and the transfer func-
tion models overestimate too much the realized development of
the Gevaert asset closing price during the 20-day forecasting
period. In the long run (60 days), however, the transfer
function performs relatively best (6566 on February 18 1992 by

(3.3.1) and 6520 by (3.1), compared with 6960 as realized
value). '
Gevaert Random ARIMA~- Transfer function models
walk model (3.3.1) (3.3.2)
(3.1) (3.2) ARIMA improved improved
exch. exch. exch.
rates rates rates
Clos.prices Ul 0.02265 0.02742 0.02653 0.02591 0.03206
Clos.prices U2 0.01125 0.01357 0.01313 0.01283 0.01583
Comp.returns Ul 1.00000 1.02156 1.01714 1.02991 1.02330
Comp.returns U2 1.00000 0.91690 0.83575 0.85388 0.84514
In the second forecasting period transfer function (3.3.1)’

performs best, while the random walk forecasting value remains
at a too low price level.

Gevaert Random ARTMA- Transfer function models
walk model {(3.3.1)1 (3.3.2)'
(3.1)" (3.2)'

Clos.prices Ul 0.11700 0.12623 0.11521 0.11617

Clos.prices U2 0.06172 0.06697 0.06080 0.06135

Comp.Returns Ul 1.00000 1.02061 1.03537 1.10107

Comp.Returns U2 1.00000 0.88574 0.86284 0.83760
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4.4 Solvay
According to the inequality coefficients below the best pre-

dictions occur with the help of transfer function (4.3.2),
although the ARIMA-model (4.2) also generates
forecasts on a 20-day basis. Notice that, in contrary to the
other variables’ forecasts, our forecast on a 20-day basis was
This underestimation also remains in the long run.

reasonable

too 1low.
From the detailed inspection of the technical analysis in
appendix C a buy signal could emerge and a price increase can
be expected. Why? Three reasons can be mentioned. Firstly,
the Solvay closing price line crosses the moving average line
from downstairs to upstairs at the end of October ’90; se-
condly, we can observe a triangle with upwards breakthrough
and finally, the (long term) Solvay asset price comes in the

neighbourhood of the support 1line. Predictions should be

improved.
Solvay Random ARIMA- Transfer function models
walk model (4.3.1) (4.3.2)
(4.1) (4.2) ARIMA improved improved
exch. exch. exch.
rates rates rates
Clos.prices Ul 0.05607 0.05595 0.06325 0.06327 0.05574
Clos.prices U2 0.02871 0.02869 0.03253 0.03254 0.02856
Comp.returns Ul 1.00000 0.92959 1.09125 1.09143 1.06520
Comp.returns U2 1.00000 0.77875 0.84051 0.84062 0.79620

Transfer function (4.3.2)’ performs alsc best in the forecas-
ting period, using the sampling estimates for the second
period. Notice also that the Solvay closing price predictions
are (much) better for this second forecasting period than for
the first one, although the Gulf War came to its end in this

period.

Solvay Random ARIMA- Transfer function models
walk model (4.3.1)' (4.3.2)'
(4.1) "' (4.2)7

Clos.prices Ul 0.05572 0.04273 0.05011 0.03394

Clos.prices U2 0.02849 0.02167 0.02554 0.01710

Comp.Returns Ul 1.00000 1.01529 1.07885 1.11503

Comp.Returns U2 1.00000 0.79950 0.83124 0.80279
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4.5 Glaverbel

The random walk (5.1) performs very badly and, accoerding to
the inequality coefficients presented below, transfer function
(5.3.2) 1is preferred. Nevertheless, the Glaverbel closing
price is generally overestimated (in the long run). Notice,
however, that the sell-signal (predicted decrease)
technical analysis is neither realized nor predicted;
contrary, equation (5.3.2) forecasts an increase
Glaverbel asset price increased in practice too.

from the
on the
and the

Glaverbel Randon ARIMA- Transfer function models
walk model (5.3.1) {(5.3.2)
(5.1) (5.2) ARIMA improved improved
exch. exch. exch.
rates rates rates
Clos.prices Ul 0.05824 0.03935 0.05436 0.05482 0.05509
Clos.prices U2 0.02980 0.01981 0.02663 0.02686 0.02693
Comp.returns Ul 1.00000 1.14190 1.29156 1.31767 1.25953
Comp.returns U2 1.00000 0.76520 0.73610 0.73592 0.69547

The random walk model, however, yields the best predictions in
the second experiment when changing the sample period.

Glaverbel Random ARTMA- Transfer function models
walk model (5.3.1)7 (5.3.2) "
{5.1)’ {5.2)'

Clos.prices Ul 0.12176 0.12670 0.13288 0.12618

Clos.prices U2 0.06426 0.06703 0.07066 0.06691

Comp.Returns Ul 1.00000 1.04083 1.05060 1.13311

Comp.Returns U2 1.00000 0.83348 0.75379%9 0.76446

4.6__CBR

The random walk model seriously underestimates the future
development of the CBR closing prices.
inequality coefficients, the best forecasts emerge by far from

the transfer function

(6.3.2),

compound returns of this asset.

which point to an increase and not

to a

suggested from the technical analysis.

According to the

which is also true for the
Good forecasts are obtained,
'steady state’ as



CBR

Clos.prices Ul
Clos.prices U2

Random
walk
(6.1)

0.03871
0.01966

Comp.returns Ul 1.00000
Comp.returns U2 1.00000

ARTMA~
nmodel
(6.2)

0.04052
0.02058
1.10692
0.88153
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Transfer function models

(6.3.1)

ARIMA improved
exch. exch.
rates rates
0.02693 0.02644
0.01354 0.01330
1.18006 1.14468
0.80044 0.77602

(6.3.2)
improved
exch.
rates

0.02638
0.01327
0.95971
0.65790

A similar picture is obtained when translating the sampling

and forecasting periods to more recent dates.

CBR

L

Clos.prices Ul
Clos.prices U2

Random
walk
(6.1)7
0.16033
0.08655

Comp.Returns Ul 1.00000
Comp.Returns U2 1.00000

4.7 Electrabel (EBES)

ARIMA-
model
(6.2)7
0.15%41
0.08601
1.00282
0.95832

Transfer function models

(6.3.1)7

0.13185
0.07017
0.96156
0.79491

(6.3.2)7

0.,12247
0.06489
0.94826
0.73982

Transfer function (7.3.2) with underlying identification based
on a combination of prewhitened and unwhitened inputs and
being considerably better

output yields the best forecasts,

than the random walk forecasts.

Electrabel

Clos.prices Ul
Clos.prices U2

Random
walk
(7.1)

0.01736
0.00861

Comp.returns Ul 1.00000
Comp.returns U2 1.00000

For the second sampling period, however,
dicts best.

Electrabel

Clos.prices Ul
Clos.prices U2

Random
walk
(7.1)*
0.02190
0.01106

Comp.Returns Ul 1.00000
Comp.Returns U2 1.00000

ARIMA~
model
(7.2)

0.01325
0.00659
1.00412
0.94166

ARTMA~-
model
(7.2)7
0.02208
0.01116
1.00667
0.99102

Transfer function models

(7.3.1) (7.3.2)
ARIMA improved improved
exch. exch. exch.
rates rates rates
0.01225 0.01204 0.01132
0.00610 0.00599 0.00564
1.03040 1.03078 1.07968
0.84537 0.82882 0.87134

the random walk pre-

Transfer function models

(7.3.1)°

0.02840
0.01439
1.15013
0.80551

(7.3.2)7

0.02747
0.01391
1.14798
0.79774
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5. Some concluding Remarks

In this paper deviations from random walk processes for (com-
pound) returns of some major Belgian closing prices at the
Brussels Stock Exchange have been investigated. Although
utilizing high frequency data, the often supported random walk
hypothesis yielded better (short term) predictions only once,
i.e., for the Gevaert closing prices.

Furthermore, the technical analyses showed in more than half
of the cases a wrong strategy direction (e.g. Petrofina,
Glaverbel, CBR, Electrabel and to a lesser extent GIB).

By changing the sampling period from 11/4/1988 - 26/11/1990 to
24/6/1988 - 8/2/1991, both with sample size 686 observations,
and corresponding 20-day forecasting periods, we could observe
that, although the point estimates changed, the corresponding
forecasts were comparable. Due to the Gulf War, most of the
predictions worsened, except for GIB and Solvay. In this
second period, the technical analyses give only a correct
picture for Solvay. In the other cases a decrease of the
closing prices is predicted instead of an increase.

All in all, this (very) rough test of robustness was rather
successful, except for the prediction of the exchange rates,
where we had to work with naive random walk predictions for
the second forecasting period.

The theoretical and empirical apparatus has still to be impro-
ved in the near future, as, e.g., the use of multivariate,
simultaneous models where compound asset returns can explain
each other (better), intervention models (as, e.g. the Kuwait-
war), structural break models implying models with time-vary-
ing coefficients. The analysis should be broadened to foreign
assets and foreign stock exchanges as well. Comparison with
weekly/monthly time series could also be very informative.
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Appendix 2

List of 1

A. FEndogenous Variables

Vie = the (compound) return of one Petrofina share at period
t, defined as the difference between the natural loga-
rithm of the sum of the closing price of one Petrofina
share and its dividend paid at period (day) t (which
is zero most of the time) and the natural logarithm of
the closing price of one Petrofina share at period
(day) t-1;

Vae = the (compound) return of one GIB share at period t:;

Yae = the (compound) return of one Gevaert share at period

Yar = the (compound) return of one Solvay share at period t;

Vee = the (compound) return of one Glaverbel share at period

Ver = the (compound) return of one CBR share at period t;

Voe = the (compound) return of one Electrabel (Ebes) share
at period t;

IE. Exogenous Variables

2. == the nonminal exchange rate of Belgian Franc w.r.t. one
US Dollar at period t;

2o 1= the nominal exchange rate of Belgian Franc w.r.t. one
German Mark at period t;

z,. := the nominal exchange rate of Belgian Franc w.r.t. one
Japanese Yen at period t:

z,. := the nominal interest rate for Eurobonds on 3 months in
Belgian Francs at period t;

2,. := the nominal interest rate for Eurobonds on 3 meonths in
US Dollars at period t;

Z,. := the nominal interest rate for Eurobonds on 3 months in
German Marks at period t;

Z,. := the nominal interest rate for Eurobonds on 3 months in
Japanese Yens at period t;

Zye = the spot price of Brent-oil in US Dollar per barrel at

the London International 0il Market.
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ndix B

Table 1
Petrofina closing prices

A Sampling Estimates of Petrofina returns
Y. == 1n (8, + d,x) - In s, o,

(t =1 (11/4/88),..., 686 (24/11/90))
[(t = 55 (24/6/88),..., 740 (8/2/91))]

(1.1) Random walk model

Yie=€ar
_ (significant (partial) autocorrela-
ah_0'011639 tions at peaks 1 and 11)
[8, =0.0115915] (1.1)/

(1.2) ARIMA model (CLS)

(1+0.08481L) (1-0.08109L) ¥, =€,

€D (2.22) (2.12)

_ (no significant (partial) autocorre-
6%'0'01157993 lation of the residuals)

[¥,.=(1+0.008293L*-0.07773L") €& ,] (1.2)/

(2.17) (2.03)
[8h=0.01186449]

(1.3) Transfer function models (CLS)
(1.3.1) Identification with prewhitened (PW) inputs and output

$,,=0.16252A1nz;,+(-1.51940-2.79942L%) Alnz,  ,;+

€D (2.51) (1.67) (3.09)

+(0.18517+0.18612L%) Alnz, . ,,-0.20096Alnz, . ,+

(2.29) (2.29) (2.97)
+(-0.06261+0.04444L1)Alnz, , 5+ [(1-0.08671L)

(3.59) (2.52) (2.16)
(1-0.08095L°) (1+0.12512L) (1+0.06947L4%)] '€,

(2.01) (3.13) (1.70)
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_ (no significant (partial) residual-
6%'0'01124505 autocorrelations)

[¥,.=(-0.01909+0.02686L)Alnz, . ,+(0.15606+0.21666L+
+0.16954L*+0.23399L*)Alnz, , ,+(-0.23513+0.19461L*)Alnz, , ,,
+(~0.04427-0.02708L**-0.05264L**)Alnz, .+

+[{1-0.08165L)(1+0.11157L**)] *¢,,]
(1.3.1)

[8,,=0.0111115]

(1.3.2) Identification with a combination of PW and unwhitened

inputs and output

¥,,=0.16813Alnz, +(-1.60080-3.1639L*5) Alnz, , ,,+

(ED  (2.61) (1.79)  (3.53)

+(0.17409+0.15225L%+0.23108L**) Alnz, . ,,+(-0.20546+

(2.15) (1.88) (2.82) (3.14)
+0.19028L%°+0.14729L*¢) Alnz, , ,,+(-0.06020+0.03496L**) Alnz, , ;.

(2.86) (2.22) (3.52) (2.02)
+[(1+0.08191L%) (1+0.12763L)]'E,,

(2.02) (3.19)

_ (no significant (partial) residual
6%_0‘01111375 autocorrelations)

[¥,,=0.13836Alnz, . ,+0.03506A1lnz, , ,+(0.15200+0.22255L1%+
+0.16778L%*-0.15116L*"+0.17443L%®+0.23295L%¢) Alnz, , +
+(-0.24077+0.15508L3%+0.18024L*¢)Alnz, . ,,+(-0.04531-
-0.03171L*3-0.05100L%*) Alnz, ,+[(1-0.07381L%°)

(1+0.12640L*1)]11(1-0.08978L%) &,,]
(1.3.2)

(8, =0.01097246]



686
687
688
689
690
691
692
693
694
625
696
697
698
699
700
701
702
703
704
705
706

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

t

tro

ina ¢

in

ices:

t=687 (27/11/90) - 706 (24/12/90)

=74] (09/02/91)

- 760 (08/03/91)

Observed Randon
Petrofina walk
closing {(1.1)
prices

10300 10300
10225 10300
10025 10300
10030 10300
10095 10300
10140 10300
10185 10300
10230 10300
10275 10300
10200 10300
10250 10300
10175 10300
10100 10300
10050 10300
9960 10300
9860 10300
9840 10300
9940 10300
9820 10300
9795 10300
9770 10300
Observed Random
Petrofina walk
closing (1.1)'
prices

10425 10425
10575 10425
10550 10425
10625 10425
10625 10425
11100 10425
10950 10425
11075 10425
10850 10425
10950 10425
10950 10425
11125 10425
11150 10425
11275 10425
11350 10425
11100 10425
11175 10425
11275 10425
11525 10425
11475 10425
11525 10425

ARTMA-
model
(1.2)

10300
10300
10299
10304
10311
10316
10312
10313
10320
10321
10323
10324
10325
10326
10326
10326
10326
10327
10328
10328
10329

ARTMA-
model
(1.2)'

10425
10424
10425
10437
10424
10437

10439

10442
10443
10446
10451
10439
10439
10440

10441

10441
10442
10443
10444
10444
10445

33

Transfer function models

(1.3.1) (1.3.2)
ARIMA improved improved
exch. exch. exch.
rates rates rates
10300 10300 10300
10295 10295 10277
10287 10287 10316
10284 10284 10321
10262 10262 10254
10276 10276 10277
10260 10260 10257
10259 10259 10253
10333 10332 10344
10330 10330 10333
10428 10428 10418
10430 10430 10411
10414 10414 10387
10401 10401 10353
10369 10369 10294
10324 10316 10265
10330 10336 10271
10306 10302 10233
10235 10224 10153
10213 10202 10134
10315 10300 10227

Transfer function models
(1.3.1)' (1.3.2)7
10425 10425
10468 10471
10488 10461
10454 10441
10542 10524
10532 10501
10479 10443
10510 10482
10521 10514
10627 10611
10663 10649
10664 10653
10662 10684
10735 10747
10665 10665
10672 10675
10616 10606
10585 10577
10548 10543
10737 10708
10764 10761
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GIB closing prices

A séggling Estimates of GIB-returns
Yo = 1n (S, + d,) - 1n 8,,,..,

(t = 1(11/4/88),...,686 (24/11/90))
[(t = 55 (24/6/88),..., 740 (8/2/91))]

(2.1) Random walk model

Ya2:=82¢

8 =0.010218 (significant autocorrelation at peaks
€ i, 2 and 35 and significant partial
autocorrelation at peaks 1 and 35)

[&,,=0.010608] (2.1)/

(2.2) ARIMA model (CLS)

(1-0.11349L3%) ¥, =(1+0.11706L+0,08319L?) (1-0.08592L%%)

(|£;)  (2.88) (3.06) (2.17) (2.22)

(1+0.08844L%%)¢,,

(2.26)
_ (no (partial) autocorrelation of the
[(1-0.08446L3%%) 7, =€,.] (2.2)/
(2.09)

[ah;0.01058394]
(2.3) Transfer function models (CLS)

(2.3.1) Identification with prewhitened (PW) inputs and output

$,.=(0.18777+0.11187L5-0.10722L°) Alnz, +(-1.49053-1.73030L%) Alnz, .,

(1€:)  (3.39) (2.01) (1.91) (1.94) (2.28)
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+(-0.12773-0.16814L+0.27147L%)Alnz, , ,,-0.14957Alnz, , ,+

(1.81) (2.39) (3.81) (2.54)
+(-0.03504-0.03663L12)Alnz, +(1+0.07427L) (1-0.08737L*)¢,,

(2.58) (2.65) (1.87) (2.17)

_ (no significant (partial} residual
6%—0.00966336 autocorrelations)

[¥,.=(0.16823-0.14116L°+0.12117L**)Alnz,,+(0.03375+
+0.02340L%)Alnz, . ,+(-0.13108-0.13976L+0.16143L°-
-0.14019L*)Alnz, , ,,-0.14816Alnz, . ,,+(-0.03850-
-0.02355L**-0,03171L**+0.03762L**)Alnz,, +

+[(1-0.08881L¢) 1%, ]
(2.3.1)"

[6,,=0.01002855]

(2.3.2) Identification wj ac ination of d unwhiten

inputs and output

¥,.=(0.17085+0.09692L%-0.08937L°+0.10092L%) Alnz, +

(€D (3.09) (1.74) (1.60) (1.82)

+(-1.66307-1.51062L+1.76027L%)Alnz, , ,,+

(2.18) (1.96) (2.33)
+(-0.11821-0.16895L+0.23961L¢)Alnz, .,

(1.69) (2.40) (3.37)
-0.16987Alnz, .,,+(-0.03039-0.02214L-0.03119L*+0.03028L~

(2.89) (2.26) (1.64) (2.27) (2.14)
-(0.03183L%°-0.02914L%")Alnz, +(1+0.06068L) (1-0.09569L?*")E,,

{2.18) (1.97) (1.51) (2.35)

_ (slightly significant residual auto-
eh-0.00956198 correlation at peak 40:-0.079%3; no
significant partial residual auto
correlation)



686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

Forecas

closin T
t=687 (27/11/90) - 706 (2&(12[2 ]

t=74]1 (09/02/91)

Observed Randon

GIB
closing
prices

1108
1104
1104
1082
1085
1089
1092
1096
1100
1106
1114
1108
1102
1106
1096
1060
1082
1092
1080
1085
1090

Observed
GIB
closing
prices

1098
1152
1146
1162
1172
1230
1270
1256
1228
1232
1210
1234
1200
1204
1230
1222
1240
1252
1244
1252
1240

- 760 (08/03/91)

walk
(2.1)

1108
1108
1108
1108
1108
1108
llo8
1108
1108
1108
1108
llo8
1108
1108
1108
1108
1108
1108
1108
1108
1108

Random
walk
(2.1)'

1098
1098
1098
1098
1098
lo9s8

1098

1098
1098
1098
1098
1098
1098
1098
1098
1098
1098
1098
1098
1098
1098

ARIMA-
model
(2.2)

1108
1101
1097
1098
1097
1094
1095
1096
1097
1098
1096
1096
1094
1093
1090
1092
1094
1092
1092
1092
1093

ARIMA-
model
(2.2)7

1098
1099
1098
1098
1098
1097
1097
1097
1098
1096
1097
1095
1095
1095
1094
1094
1092
10921
1091
1095
1092
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Transfer function models

(2.3.1)
ARIMA improved
exch. exch.
rates rates
1108 1108
1104 1104
1114 1114
1115 1115
1110 1110
1112 1112
1115 1115
1115 1115
1118 1118
1116 1116
1113 1113
1112 1112
1107 1107
1109 1109
1108 1108
1110 1110
1111 1111
1109 1109
1106 1105
1107 1107
1107 1106

Transfer function

model
(2.3.1)°
lo98
1102
1077
1074
1075
1073
1077
1073
1073
1071
1074
1077 -
1077
1078
1077
1076
1073
1073
1074
1075
1074

(2.3.2)
improved
exch.
rates

1108
1102
1117
1114
1115
1116
1117
1115
1111
1107
1107
1108
1103
1101
1104
1104
1102
1099
1098
1104
1104
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Table 3 . .
Gevaert closing prices

A Sampling Estimates of the Gevaert returns
Y. = 1n (s, + d,.) = 1n Si,¢a

(t = 1(11/4/88),..., 686 (26/11/90))
[(t = 55 (24/6/88),..., 740 (B/2/91))]

(3.1) Random walk model

Vic=8ay

_ (significant (partial) autocorrelation
6%'0'011731 at peaks 1 and 9)
[8,,=0.01248] (3.1)/

(3-.2) ARTIMA-model (CLS)
(1+40.13575L) (1+0.07799L%) ¥,,=(1-0.09246L%) &,,

(1€:D)  (3.54) (2.02) (2.55)

(no significant (partial) autocor-

8,,=0.01158276 relation of the residuals)

[(1+0.11644L) (1+0.08228L%) (1+0.08207L7) (1+0.09741L%) ¥, =

(3.02) (2.13) (2.12) (2.53)
(1+0.0826L%) (1-0.08238L%) ¢, ] (3.2)/
(2.11) (2.08)

[8,,=0.012296]
(3.3) Transfer function models (CLS)
(3.3.1) Jdentification with prewhitened (PW) inputs and output

¥,,=-2.02785A1nz, . ,+(0.24046-0.17395L>+0.31683L"

(€D (2.37) (3.10) (2.21)  (4.05)

+0.14449L*)Alnz, +(-0.11731+0.16097L%) Alnz, . ,,+

(1.83) (1.85) (2.50)
+(-0.04602-0.04223L%) Alnz, , ,+(1-0.16036L-0.08932L%)

(3.03) (2.74) (4.12) (2.29)
(1+0.07743L*)¢&,,

(1.94)
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_ (no significant (partial) residual
6%'0'01109422 autocorrelation)

[¥,.=(-0.15529+0.14020L**)Alnz, , . +(0.02860-0.02117L*~
~0.01732L**)Alnz, , ,+(0.28437+0.28938L5-0.21326L*+
+0.17393L**)Alnz, +(0.20002-0.13423L**+0.10904L*")Alnz, , , +
+(-0.03229-0.04279L-0.03243L*)Alnz, +(1-0.14547L)

(1-0.09737L°)(1+0.10416L*)¢E,, ] :
(3.3.1)°

[6,,=0.0115593]

(3.3.2) Identification wi a ination of PW whitened

inputs and output

V,.=(0.13321-0.15886L1) Alnz, , ,,-2.30679Alnz, , .+

(€D (2.03) (2.41) (2.59)

+(0.24580-0.15521L3+0,29061L5+0.14027L1?-0.22139L*%) Alnz, ,

(3.11) (1.94) (3.66) (1.76) (2.75)
+(-0.11928+0.14620L*) Alnz, , .+

(1.85) (2.22)
+(-0.04631-0.04249L*)Alnz, , ,+

(3.04) (2.73)
+(1-0.16041L-0.08754L%) &,,

(3.99) (2.18)

_ (no significant (partial) residual
6%'0'01115835 autocorrelation)

[¥..=(-0.14373+0.13291L**)Alnz, , ,.+(0.03003-0.01916L*-
~0.01841L**)Alnz, , ,+(0.29338+0.29347L°-0.22586L*+
+0.16667L*)Alnz, +(-0.16970+0.21249L"-0.12073L*°+
+0.09706L>)Alnz, , ,+(-0.02531-0.04299L+0.02398L>-
-0.03133L**-0.04140L>*)Alnz,, +(1-0.15230L)

(1-0.11611L°)(1+0.09864L*)E,, ]
(3.3.2)"

[8,,=0.01144363]



686
687
688
689
690
691
692
693
694
695
696
697
€98
699
700
701
702
703
704
705
706

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

ts
=68 7
£=7431 (0

Observed
Gevaert
closing
prices

6520
6480
6420
6300
6340
6380
6420
6460
6500
6620
6680
6610
6650
6480
6380
6400
6300
6250
6360
6355
6350

Cbserved
Gevaert
closing
prices

6450
6500
6600
6530
6580
6900
6960
7100
7110
7200
7320
7400
7450
7300
7400
7210
7340
7560
7700
7640
8000

Gevaert closi

0) = 7
= 760

Random
walk
(3.1)

6520
6520
6520
6520
6520
6520
6520
6520
6520
6520
6520
6520
6520
6520
6520
6520
6520
6520
6520
6520
6520

Random
walk
(3.1)7

6450
6450
6450
6450
6450
6450
6450
6450
6450
6450
6450
6450
6450
6450
6450
6450
6450
6450
6450
6450
6450

39

ices:
4/12/90
08/03/91

ARIMA~- Transfer function models
model (3.3.1) (3.3.2)
(3.2) ARIMA improved improved

exch. exch. exch.

rates rates rates
6520 6520 6520 6520
6544 6557 6551 6547
6559 6550 6552 6576
6568 6578 6574 6572
6564 6578 6570 6570
6548 6556 6543 6569
6561 6588 6570 6588
6556 6569 6569 6587
6557 6575 6566 6593
6571 6597 6584 6616
6570 6603 6601 6640
6569 6574 6575 6608
6570 6570 6569 6608
6570 6571 6575 6614
6571 6566 6557 6613
6571 6557 6547 6612
6572 6553 6546 6629
6572 6550 6555 6633
6573 6549 6541 6616
6573 6548 6544 6631
6574 6553 6553 6651
ARIMA- Transfer function models
nodel (3.3.1)7 (3.3.2)7
(3.2)°
6450 6450 6450
6376 6412 6408
6348 6357 6353
6357 6365 6350
6370 6396 6375
6386 6441 6423
6379 6410 6381
6367 6404 6375
6386 6403 6379
6367 6405 6408
6379 6415 6416
6380 6456 6457
6375 6454 6448
6366 6468 6492
6376 6459 6438
6378 6516 6498
6384 6506 6460
6369 6490 6441
6374 6499 6446
6376 6514 6563
6377 6518 6569
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Table 4 .
Solva si rices

A SanPIing Estimates of the Solvay returns
Ye:= 1D (S, + d.) - 1n Set-a

1 (11/4/88),...,686 (26/11/90))
55 (24/6/88),..., 740 (8/2/91))]

(4-1) Random walk model

Yar=€yr

(t =
[(t =

_ (significant autocorrelation at peaks
8,=0.011187 1, 2, 13, 17, 26, 27, 34 and 41 and
significant partial autocorrelation at

~peaks 1, 2, 13 and 27)

[8,,=0.011952] (a.1)/

(4.2) ARIMA model (CLS)

(1+0.09380L%") (1-0.10476L>*)¥,,=(1+0.11116L%+0.11672L"%)

(& (2.39) (2.66) (2.92) (3.06)

(1-0.08716L%7) (1+0.09221L3°) (1-0.11836L41)¢,,

(2.25) (2.35) (2.99)

(no significant (partial) autocor-

B,,=0.01087716 relation of the residuals)

[(1-0.12652L%) (1-0.13733L%%) ¥, ,=(1-0.09028L%7)

(3.29) (3.55) (2.24)
(1+0.12193L%+0.10647L3%-0.14545L4°)¢,,] (4.2)1
(3.01) (2.62) (3.55)

[8,,=0.01159773]
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(4.3) Iransfer fupnction models (CLS)

(4.3.1) Identificatjon with prewhitened (PW) inputs and output

Y4e=(0.15491-0.11648L%)Alnz, , ,+2.22546Alnz, . ,+

(1€:)  (2.59) (1.93) (2.67)

+(-0.17873+0.25208L°) Alnz, . ,,+

(2.39) (3.32)
+(-0.19293+0.14326L%+0.143302L*°) Alnz, , .+

(3.04) (2.29) (2.24)
+(-0.02690-0.04271L~0.04022L%-0.06111L*+0.05348L%) Alnz, ,+

(1.85) (2.89) (2.74) (3.72) {3.28)
+[(1+0.11559L%7) (1-0.06669L3%)]"1(1+0.08502L2+0.10418L13)

(2.84) (1.63) (2.10) (2.57)
(1-0.08468L*%*"-0.08162L%)¢,,

(2.00) (1.93)

(no significant (partial)} resi-

B,,=0.01036086 dual autocorrelations)

[¥.=0.13087Alnz, . ,+0.02885Alnz, , ,+(-0.17710+0.20946L°-
-0.21119L*)Alnz, , ., +0.17776Alnz, , , +(-0.07210-
-0.02540L**-0.04211L°+0.04086L**)Alnz, +[ (1-0.11373L*+
+0.07631L*) ](1+0.09108L**+0.09640L*~0.07974L*°) ¢ ]

(4.3.1)7
[8,,=0.01086778]



x L AL 2 L]
inputs and output

P,.=(0.,14265-0.12231L%) Alnz, , ,+

(€D (2.45) (2.08)

8,,=0.01010727

+(2.17823+1.68428L3°-1.66045L%°) Alnz, , .+

(2.73) (2.17) (2.08)
+(0.15388-0.18757L1%2+0.21744L%1+0.18496L%°) Alnz, . ,+

(2.08) (2.60)‘ (2.95) (2.46)

+{-0.18279+0.15074L%+0.15618L7+0.15824L) Alnz, . ,,+

(2.95) (2.46) (2.53) (2.54)
+(-0.0269-0.04353L-0.04227L3-0.04019L4-0.05970L47+

(1.90) (3.05) (2.95) (2.11)  (3.77)
+0,05482L%) Alnz, ,+[(1+0.11265L27+0.08593L1¢)

(3.46) (2.75) (2.09)
{1+0.11290L39)]1"%(1+0.07868L2+0.10740L13)

(2.67) (1.93) (2.61)
(1-0.09305L%-0.07988L%)¢,,

(2.17) (1.87)

(no significant (partial) resi-
dual autocorrelations)

[¥.=0.02580Alnz,, ,+(0.23170-0.15545L""+0.18930L*-

+0.19283L%*-0.16017L**-0.22616L*°)Alnz, , +
+(-0.13802+0.18135L%¢+0.12174L>*)Alnz, , ,+(-0.06859-
-0.02495L®-0.02526L%°-0.04351L%*-0.05306L*" +
+0.04393L*)Alnz, +[(1-0.11897L%)]*
(1+0.11714L*+0.11735L3¢~0.08579L*°)¢,,]

(4.3.2)"

[8,,=0.01059377]



B. Forecasts of Solvay closing prices:

686
687
688
689
620
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

=687 (27/11/90)

- 706 (24/12/90)

t=741 (09/02/91) - 760 (08/03/91)

Observed
Sclvay
closing
prices

10075
10075
10125
10125
10250
10375
10500
10625
10750
10725
11125
10975
11225
11050
10800
10525
10600
10475
10300
10325
10350

Observed
Solvay
closing
prices

11700
11800
11800
118590
11825
12375
12475
12600
12250
12200
12150
12175
11950
11950
12200
11925
11950
1217%
12575
12925
13550

Random
walk
(4.1)

10075
10075
10075
10075
10075
10075
10075
10075
10075
10075
10075
10075
10075
10075
10075
10075
10075
10075
10075
10075
10075

Random
walk
(4.1)7

11700
11700
11700
11700
11700
11700
11700
11700
11700
11700
11700
11700
11700
11700
11700
11700
11700
11700
11700
11700
11700

ARTMA-
model
(4.2)

10075
10016
9958

2962

9946

9949

9974

10000
10064
10065
10107
10122
10149
10124
10119
10106
10085
10072
lo047
10030
10044

ARIMA-

medel
(4.2)"

11700
11702
11807
11810
11896
11906
11878
11866

11937

11881
11960
11858
11956
11936
12032
11949
11925
11876
11987
11922
11958

43

Transfer function models

(4.3.1) (4.3.2)
ARIMA improved improved
exch. exch. exch.
rates rates rates
10075 10075 10075
10006 10006 10034
10021 10021 10056
10040 10040 10055
9956 9956 9965
9908 9907 9897
9909 9909 9939
9958 9957 10014
10022 10021 10098
10036 10035 10102
9970 9970 10087
10016 10016 10169
10008 10008 10128
9984 5984 10118
10009 10010 10137
10014 10014 10115
9997 9997 10093
10007 10007 10083
9918 9918 10012
9902 9902 9965
9965 9966 10050

Transfer function models
(4.3.1)7 (4.3.2)7
11700 11700
11673 11755
11600 11715
11581 11699
11706 11909
11640 11849
11674 11920
11717 11910
11737 12071
11789 12108
11849 12131
11929 12150
11899 12150
11933 12188
11844 12236
11816 12227
11751 12120
11802 12174
11744 12128
11941 12400
11859 12278
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Glaverbel closing prices

A Sampling Estimates of the Glaverbel returns
Ysei= 1N (S, + ds.) ~ 1n Ss, -1
(E =1 (11/4/88),...,686 (26/11/90))
[(t = 55 (24/6/88),..., 740 (8/2/91))]

(5.1) Random walk mgggl;
Y5:=€se
(significant autocorrelation at peaks,

26, 40 and 48; significant partial au-
tocorrelation at peaks 26 and 40).

6,.=0.016784
5

[8,,=0.017505] (5.1)/
(5.2) ARIMA - model (CLS)

V..=(1+0.20851L2%) (1+0,12500L%°) (1+0,10405L33-0.,13695L4%%) ¢
S5t 5t

- 5.37 .05 2.63 3.2
(ED ( ) (3.05) ( ) (3.21)

(no significant (partial)} autocorre-

8,,=0.01628827 lation of the residuals).

[(1-0.07011L%) (1+0.07291L2') (1-0.16470L%°} ¥, =(1+0.09081L%°)¢
(1.83) (1.83) (4.15) (2.24)

[8,,=0.01719853]

St]

(5.3) Transfer function models (CLS)
(5.3.1) 1d ification wi rewhit inpu nd out

¥Y;,=0.26936A1lnz, ,+3.17390Alnz, , ,,+(0.29633-0.37407L2°

€D (3.15) (2.71) (2.71)  {3.47)

-0.25859L%'+0.23182L%%+0.40288L3¢) Alnz, , ,+

(2.41) (2.08) (3.62)
+0.24427Alnz, , ,,+(-0.05352-0.06087L2°) Alnz, .+

(2.80) (2.63) (2.77)
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+(1-0.1148973*)1(1-0.10240L7) (1-0.08630L%) (1+0.21236L28)

(2.72) ' (2.54) (2.09) (5.15)

(1-0.07956L3°+0.11185L%°-0.19012L) &,

(1.87) (2.64) (4.32)

(no significant (partial) resi-

@5 =0.01550203 dual autocorrelations)

[y,..=(0.19737+0.23919L*-0.22774L*) Alnz, +(0.02403-
-0.05174L*)Alnz, , ,+(0.28909-0.32320L%-0.23097L*+
+0.34723L%*-0.34795L*+0.25858L*°-0.29608L%°) Alnz,, +
+(-0.25565+0.27115L%)Alnz, . .+(-0.07061-0.03560L" -
-0.03721L*+0.05484L*)Alnz, +[ (1+0.10597L*) ]
(1+0.15465L%%) (1+0.8866L>-0.09169L°")¢_, ]

(5.3.1)°
[8,,=0.01609417]

(5.3.2) Identificatio jth a combinati of PW and
inputs and output

¥,.=0.28741A1nz, . +3.03164Alnz, , ,,+(0.24214~0.37781L%°

(€] (3.a6) (2.64) (2.28) (3.59)

-0.19478L%1+0.26410L%¢+0.39678L>%) Alnz, , ,+

(1.85) (2.44) (3.65)
+(0.17037+0.22993L5+0.23636L2°) Alnz, , ..+

(2.00) (2.73) (2.82)
+(-0.05983-0.05818L12-0.04843L%°-0.04906L%

(2.95) (2.85) (2.23) (2.20)
~0.04350L%) Alnz, +[(1+0.10229L%%) (1-0.12097L%)] 7

(2.01) (2.46) (2.82)
(1-0.10775L7) (1-0.07995L%8) (1+0.19283L2¢)

(2.64) (1.91) (4.58)
(1-0.06807L3°+0.11864L4°-0.24098L%%) &,

(1.59) (2.79) (5.45)

(no significant (partial) residual-

8,,=0.01526799 autocorrelations)
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[¥..=(0.19931+0.19019L*-0.19635L"**)Alnz, +(0.33454+
+0.25693L*-0.25059L**-0.24380L>*+0.39648L>" -
-0.32526L*°+0.18857L**-0.28517L*°)Alnz, +(-0.23919+
+0.25671L%)Alnz, , ,+(-0.09208-0.04907L**+0.05420L"* -
-0.05413L%-0.05705L%*)Alnz,, +[ {1+0.09691L)
(1+0.08073L*)]1*(1+0.16152L%¢) (1-0.09817L**)¢,,]

(5.3.2)’
[84,=0.01607318]

(5.3.3) entification wi inputs (i . GIB and P ofina
ret =) and output

¥.,=0.23623A1lnz, ,+3.67374Alnz, , ,,+(0.21733-0.26558L2°-

(€D (2.84) (3.26) (2.11) (2.53)

-0.24687L%'+0.36042L%)Alnz, , ,+0.22508Alnz, , ,,+

(2.38) (3.37) (2.67)
+(-0.05218-0.05709L%)Alnz, ,+(0.18467+0.06332L"°-

(2.60) (2.62) (4.96) (1.78)
-0.11984L%-0.08496L>)y,,+(0.09617-0.11752L°+0.08742L*?) y, +

(3.35) (2.39) (2.24) (2.85) (2.15)
+(1-0.09846L33)1(1-0.09130L7) (1-0.09340L2%-0.10389L"%)

(2.31) (2.22) (2.27) (2.51)
(1+0.20154L2%%) (1+0.09361L%°-0.16344L*")E,,

(4.84) (2.17) (3.66)

_ (no significant (partial) resi-
eh_0'01484509 dual autocorrelation)}



686
687
688
689
690
691
692
693
694
695
696
€97
698
699
700
701
702
703
704
705
706

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

sts Glaverbe
= 7 9 - 706
=7 - 76
Cbserved Random
Glaverbel walk
closing (5.1)
prices
2850 2850
2850 2850
2850 2850
2810 2850
2868 2850
2926 2850
2984 2850
3042 2850
3100 2850
3195 2850
3220 2850
3125 2850
3100 2850
2950 2850
2975 2850
2905 2850
2920 2850
2945 2850
2970 2850
2970 2850
2970 2850
Observed Randon
Glaverbel walk
closing (5.1)’
prices
2930 2930
3030 2930
3020 2930
2900 2930
2975 2930
3000 2930
3090 2930
3250 2930
3160 2930
3180 2930
3260 2930
3300 2930
3280 2930
3330 2930
3460 2930
3450 2930
3460 2930
3460 2930
3590 2930
3a570 2930
3580 2930

o)
24
8/03/9

ARTIMA-
model
(5.2)

2850
2915
2920
2948
2953
2926
2967
2926
2957
2927
2963
2952
2929
2918
2918
2959
2956
2975
2971
2969
2961

ARIMA-
model
(56.2)7

2930
2911
2931
2917
2939
2899
2901
2895
2901
2915
2347
2948
2944
2938
2903
2909
2910
2896
2907
2893
2893

Transfer function models
(5.3.1) (5.3.2)

ARIMA improved improved
exch. exch. exch.
rates rates rates
2850 2850 2850
2954 2969 2969
3010 3010 3006
3075 3076 3056
3095 3096 3080
3093 3090 3071
3165 3168 3171
3104 3102 3115
3130 3125 3133
3084 3079 3110
3140 3133 3178
3137 3129 3198
3104 3098 3170
3103 3096 3136
3120 3117 3124
3156 3157 3165
3138 3142 3146
3170 3174 3183
3145 3147 3149
3134 3137 3140
3116 3116 3120

Transfer function models
(56.3.1)' (5.3.2)°
2930 2930
2930 2910
2874 2860
2873 2860
2877 2867
2850 2846
2848 2848
2856 2851
2885 2897
2886 2914
2880 2924
2891 2919
2863 2902
2884 2944
2876 2915
2875 2900
2832 2854
2873 2B64
2915 2900
2963 2998
2927 3029

47



48

Table 6
CBR closing prices

A Sampling Estimates of the CBR returns

Yo := In(Sg+ds )= 1In s, ..,
(t =1 (11/4/88),...,686 (26/11/90))
[(t = 55 (24/6/88),..., 740 (8/2/91))]

(6.1) Random walk model

Yer=Cer
_ (significant autocorrelations at
8,,=0.013452 peaks 1, 11 and 41; significant
partial autocorrelations at peaks
1, 22, 24, 25, 40 and 41)
[8, =0.014155] (6.1)/

(6.2} ARIMA model (CLS)

(1-0.09105L) (1+0.08029L%2~-0.07538L2%) (1-0.08467L4) vy
6L

(2.36) (2.03) (1.88) (2.10)

(E:D
=(1+0.08362L1)¢,,

(2.13)

(no significant (partial) auto-

B,,=0.01323350 correlations of the residuals)

[(1-0.07784L) (1-0.07729L4%) ¥, =€, ,] (6.2)/

(2.09) (1.89)
[8,,=0.01408985]

(6.3) Transfer function model (CLS)

(6.3.1) Identification with prewhitened (PW) inputs and output

¥,,=0.15244A1nz; , ,,+(~2.05449-2.11757L%%) Alnz, , .3+

UED  (2.04) (2.06) (2.10)

+(-0.21024+0,27758L%~0.27878LY")Alnz, , .+

(2.26) (2.95) (2.94)
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+0.19954A1lnz, , ,,+(-0.05933-0.05646L**-0.05822L%%) Alnz, . ,+

(2.57) (3.37) (3.14) (3.08)
+[(1+0.11524L2%) {1-0.10008L%°%) (1-0.08694L%1+0.09559L%%+

(2.77) (2.36) (2.06) (2.25)
+0.12072L%7) ] &4,

(2.83)

(residual autocorrelation at

6%=0-0128282 peak 17:-0.08052, residual par-
tial autocorrelation at peak
17:-0.07689; hence, MA(17) could
be added)

[Ye=0.13406Alnz, . . +(0.04141-0.02283L**)Alnz, , .+
+(0.20496-0.24924L**+0.30203L**-0.25660L" -
-0.19524L%*°-0.20999L**)Alnz, . ,+(0.16373~
-0.23721L°+0.23316L**)Alnz, , , +(-0.05583+0.04358L°-
-0.03307L**-0.04583L*)Alnz, +[ (1-0.07345L~

~0.10096L%) (1+0.11560L32) (1+0.08470L>-0.06022L**) ] ¢ ]
(6.3.1)

[8,,=0.0123756]

(6.3.2) Identification with combination of PW and unwhitened
inputs and output

Vse=0.13787A1n2, , ,,+(-2.34646-1.83575L%°) Alnz, , ,,+

€D (1.87) (2.44) (1.86)

+(-0.17323+0.23607L4-0.18601L1°+0.16334L3-0.26261LY ~

(1.88) (2.52) (1.99) (1.74) (2.78)
-0.16905L%') Alnz, ,,+(0.19529+0.16865L%) Alnz, . .o+

(1.78) (2.53) (2.20)
+(-0.05089-0.03385L-0.04743L1-0.04103L%1-0.05525L%®-

(2.90) (1.90) (2.65) (2.25) (2.95)
-0.04954L%) Alnz, . ,+[(1+0.13014L2°) (1+0.10348L%)

(2.57) (3.11) (2.46)
(1+0.09814L%+0.,13384L%7)] &,

(2.29) (3.12)
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(no significant (partial) resi-

B, =0.01261798 dual autocorrelations)

[Ve.=0.20446Alnz, , ,+(0.04168-0.02474L**)Alnz, , ,+

+(0.22821-0.23970L**+0.30099L*-0.17943L""-
-0.16575L**+0.10604L>")Alnz +(0.20117-

~0.21690L*+0.21041L%*)Alnz, , , +(-0.05594+0.04480L°-
-0.02760L**-0.04638L**~0.04547L°-0,04826L**) Alnz,, +

+[(1-0.08300L-0.11170L%) (1+0.10033L>) (1+0.07609L*") ]2
(1-0.10105L*")&_,]

3,t-4

(6.3.2)
[6, =0.0128402]



686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

e

t=687 (27/11/90)

fC

Si
- 706 (24/12/90)

ices:

£=741 (09/02/91)

- 760 (08/03/91)

Observed Random

CBR
closing
prices

5550
5600
5570
5550
5620
5690
5760
5830
5900
5930
5980
5940
5820
5860
5690
5650
5650
5650
5580
5605
5630

Observed
CBR
closing
prices

6100
6280
6490
6470
6500
6530
6700
7070
6900
7070
7100
7540
7300
7330
7590
7470
7530
7560
7730
7770
7840

walk
(6.1)

5550
5550
5550
5550
5550
5550
5550
5550
5550
5550
5550
5550
5550
5550
5550
5550
5550
5550
5550
5550
5550

Random
walk
(6.1)7

€100
6100
€100
6100
6100
6100
6100
6100
6100
6100
6100
6100
6100
6100
6100
6100
6100
6100
6100
6100
€100
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ARIMA~ Transfer function models
model (6.3.1) (6.3.2)
(6.2) ARIMA improved improved
exch. exch. exch.
rates rates rates
5550 5550 5550 5550
5567 5588 5588 5554
5591 5666 5666 5588
5585 5661 5661 5561
5552 5688 5688 5612
5537 5667 5667 622
5548 5691 5691 5624
5548 5662 5662 5607
5538 5652 5657 5648
5521 5656 5653 5662
5537 5670 5674 5715
5525 5639 5646 5678
5536 5640 5640 5657
5515 5641 5654 5673
5528 5705 5712 5698
5555 5707 5705 5722
5567 5680 5680 5736
5579 5654 5647 5708
5561 5632 5618 5674
5557 5655 5640 5693
5557 S680 5663 5742
ARIMA- Transfer function models
model (6.3.1)7 (6.3.2)7
(6.2)°
6100 6100 6100
6103 6136 6128
6102 6l22 6133
6102 6114 6157
6103 6212 6221
6098 6237 6257
6100 6224 6238
6103 6257 6283
6106 6232 6289
6108 6297 6363
6111 6312 6399
6111 6333 6463
6110 6359 6459
6108 6388 6521
6107 6352 6437
6121 6349 6407
6116 6361 6386
6098 6340 6388
6097 6371 6403
6115 6371 6509
6103 6385 6519
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Table 7
B si rjices

A Sampling Estimates of the Electrabel (EBES) returns

Yo i= in(s,.+d,. )= ln 57,41
(t=1 (11/4/88),...,686 (26/11/90))
[(t = 55 (24/6/88),..., 740 (8/2/91))]

(7.1) Random walk model

Y7:=€q¢
(significant autocorrelations at
2, 8, 27 and significant

8,,=0.008402 peaks 1,
partial autocorrelations at peaks
1, 2 and 27)

[8,=0.008644] (7.1)/

(7.2) ARIMA - model (CLS)
Y7¢=(1+0.07625L) (1+0.08380L2) (1-0.09466L?7) ¢,
(& (1.99) (2.35) (2.45)

8, =0.0083323

[(1-0.008644) 7, =E.,] (7.2)/

(2.68)
[8,,=0.00863019]

(7.3) Iransfer function models (CLS)
inpu an ut

(7.3.1) Identifi ion wit rewhijtened W
. ¥7.=(0.09154+0.08378L%) Alnz, . ,,-1.80151Alnz, , ,,+(0.15790+
()€, (1-93) (1.77) (2.80) (2.69)

: +0.16786L1-0.13207L%+0.13783L%*) Alnz,,+0.11373A1nz, ,_,+

(2.86) (2.25) (2.33) (2.28)
+{(-0.02605-0.02526L%7+0.03269L*7) Alnz, , ,+(1+0.06073L)
(2.26)  (2.03) (2.57) (1.51)

(1+0.06909L%) (1~0.08872L%)¢,,
(1.72) (2.18)

8, =0.00808113
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[¥,,=(0.12194+0.08443L7)Alnz, , ,,-0.02168Alnz, , ,+
+0.14192A1lnz,, +(0.02890-0.02949L'%+0.03278L?*®) Alnz, , .+
+{1~0.13238L) *(1+0.08007L?) (1-0.10069L%) &, ]

[6,,=0.0083909]

(7.3.2) ification with combination of PW and unwhitened
input: nd output

¥,,.=(0.09931+0.08883L%) Alnz, , ,,+(-1.53559-1.91172L*%) Alnz, ., +

(|€,]) (2-08) (1.87) (2.35) (2.97)
1
+{0.15679+0.17463L1-0.13031L1°+0.13339L%°+0.11578L**) Alnz,,+
(2.67) (2.97) (2.22) (2.26) (1.91)
+0.11276Alnz, . ,,+(-0.02442-0.02568L>7+0.02976L%") Alnz, , ,+
(2.28) (2.14) (2.08) (2.36)
+(1+0.07512L2%) (1-0.08581L%7)¢&,,
(1.87) (2.11)

8, =0.00804393

[¥,.=(0.12998+0.08032L7)Alnz, , ,,~0.02187Alnz, , ,+
+(0.13309+0.14209L%*)Alnz,,+(0.02703-0.03138L"8+
+0.03365L%8) Alnz, , ,,++(1-0.13434L) *(1+0.08844L%)
(1-0.09742L%7)¢&,,]

[8,,=0.00835708]
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B. - Forecasts of Flecrabel closing prices:
t=687 7/11/90) - 706 (24/12/90
t=741 (09/02/91) - 760 (08/03/91)

t Observed . Random ARIMA- Transfer function models
Elecrabel walk model (7.3.1) (7.3.2)
closing (7.1) (7.2) ARTMA improved improved
prices exch. exch. exch.

rates rates rates

686 4375 4375 4375 4375 4375 4375

687 4290 4375 4372 4370 4367 4365

688 4285 4375 4366 4359 4361 4364

689 4280 4375 4361 4361 4359 4367

690 4400 4375 4358 4356 4352 4348

691 4350 4375 4352 4336 4332 4339

692 4280 4375 4354 4337 4331 4342

693 4300 4375 4350 . 4350 " 4344 4335

694 4340 4375 4352 4351 4347 4345

695 4320 4375 4351 4345 4340 4336

696 4307 4375 4352 4340 4337 4331

697 4295 4375 4353 4341 4341 4337

698 4290 4375 4354 4343 4343 4336

699 4285 4375 4352 4361 4367 4355

700 4280 4375 4354 4366 4366 4354

701 4325 4375 4352 4354 4352 4341

702 4320 4375 4351 4348 4346 4332

703 4315 4375 4348 4330 4323 4307

704 4310 4375 4350 4329 4319 4305

705 4320 4375 4348 4322 4319 4304

706 4250 4375 4349 4335 4332 4316

t Observed Random ARIMA- Transfer function models
Elecrabel walk model (7.3.1)7 (7.3.2)
closing (7.1)7 {7.2)7
prices

740 4675 4675 4675 4675 4675

741 4800 4675 4673 4675 4676

742 4825 4675 4673 4674 4677

743 4801 4675 4673 4698 4708

744 4785 4675 4673 4650 4662

745 4775 4675 4673 4637 4650

746 4775 4675 4673 4647 4653

747 4760 4675 4673 4645 46585

748 4745 4675 4674 4659 4666

749 4735 4675 4674 4643 4649

750 4750 4675 4674 4642 4651

751 4780 4675 4674 4641 4647

752 4740 4675 4674 4646 4650

753 4725 4675 4674 4654 4658

754 4730 4675 4675 . 4648 - N i 4650

755 4725 4675 4675 4642 4648

756 4750 4675 4675 4650 4658

757 4760 4675 4675 4623 4626

758 4770 4675 4675 4628 o 4627

759 4815 4675 4675 4611 4608

760 4890 4675 4676 4596 4598
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