Efficiency and Equity in Block Grant Design:
Simulating some Alternatives for
Flemish Municipalities
Bruno DE BORGER
Kristiaan KERSTENS
Wim MOESEN
Jacques VANNESTE
Report 90/246

August 1990

Financial support of the FKFO (grant 2.0099.88) is gratefully acknowledged.

Universitaire Faculteiten St.-Ignatius
Prinsstraat 13 - B 2000 Antwerpen
D/1990/1169/10
ABSTRACT

The purpose of this research memorandum is to present grant allocation mechanisms which take account of both the efficiency and the equity reasons involved in grant distribution. These schemes share a number of desirable characteristics.

Efficiency considerations are incorporated by allocating part of the grant on the basis of 'standard' municipal expenditures. These expenditures reflect the demand for local public services and the impact of spillover effects on municipal outlays. Equity considerations are captured by reserving part of the grant budget for redistributive purposes. Three specifications for the equity component of our grant proposal are suggested. The basic idea behind each of them is to correct for differences in local taxbases.

We simulate the outcome of these three specific proposals and compare the results both with the existing grant allocation mechanism and with a recent policy proposal formulated by the Ministry of Internal Affairs.
EFFICIENCY AND EQUITY IN BLOCK GRANT DESIGN:
SIMULATING SOME ALTERNATIVES FOR FLEMISH MUNICIPALITIES

INTRODUCTION

The purpose of this paper is to provide some insight into the implications of alternative mechanisms of distributing unconditional block grants to local authorities. These mechanisms are applied to the allocation of grants from the intermediate Flemish government to the municipalities in the Flemish region. We consider alternative grant allocation schemes that share a number of desirable characteristics derived from the literature on fiscal federalism. The allocation resulting from the application of the proposed schemes is compared with the observed grant distribution and with the allocation implied by a recent proposal formulated by the Ministry of Internal Affairs.

The paper is structured as follows. In Section 1 we describe grant distribution mechanisms which take account of the corrective role of grants from both the efficiency and equity viewpoint. A family of implementable mechanisms, each consisting of an explicit efficiency and equity component, is proposed. Within this general framework we formulate several more specific grant allocation schemes in Section 2. The efficiency component, which is common to all alternatives considered, is specified on the basis of 'standard' municipal expenditures obtained as the predictions resulting from an explanatory regression model. The allocation schemes differ from one another due to the specification of the equity component. Out of a much larger set of possibilities we consider three attractive alternatives, each of which reflects the desirability of correcting inequities in the distribution of taxbases among municipalities.

The remainder of the paper deals with the
comparison of alternative grant distribution mechanisms. In
Section 3 the current allocation scheme in the Flemish region,
in which municipalities are classified into fourteen cells, is
briefly described. Using the cell classification we report the
implications of three concrete proposals for the distribution
of grants in Section 4. We compare the consequences of our
proposed mechanisms with the existing system as well as with
the recent proposal of the Ministry of Internal Affairs.
Unfortunately, it will become obvious from the analysis that
use of the cell classification does not provide much
information with respect to the characteristics of the
municipalities that would be most strongly affected by the
introduction of the proposed grant distribution schemes.
Therefore, the analysis is also replicated using an
alternative classification of Flemish municipalities based on
cluster analysis. We investigate the implications of our
proposals for the distribution of grants over clusters of
municipalities with 'similar' characteristics. This allows us
to identify which types of municipalities would gain or lose
under the allocation schemes we developed in comparison with
both the current allocation and the allocation proposed by the
Ministry of Internal Affairs. Finally, some general
conclusions and policy recommendations are formulated in
Section 5.
1. A FAMILY OF GRANT ALLOCATION MECHANISMS

In the second best models on fiscal federalism (see, e.g., Atkinson (1980) and Tresch (1981)) there is a consensus on two reasons for grants from higher to lower level governments. The first one relates to the externalities generated by local public good provision. These include the benefit spillovers of urban centres, externalities associated with schooling, etc. The central government's role is to correct for allocative distortions, e.g. the underprovision of public services generating positive external effects. The second reason concerns the redistributive task of the central government to correct for differences in local taxbases.

The above very general guidelines suggest the desirability of designing actual allocation mechanisms that reflect both efficiency and equity considerations. The most obvious way to meet this requirement is to design schemes that contain separate efficiency and equity components. As spelled out below, this is the approach taken in this paper. However, to limit the range of potential grant distribution schemes meeting these general conditions it seems desirable to require that some additional intuitive criteria be met. In a well known paper Le Grand (1975) suggests three such criteria. First, he argues that grants should be a function of the income or wealth of a community. A second criterion requires grants to be independent of any expenditure decisions of local authorities. Finally, Le Grand suggests that grants should vary directly with municipalities' own fiscal effort.

1 It is fair to say that the role of grants-in-aid is still very incompletely understood. Therefore questions on the optimal design of central governments grants have remained largely unanswered : see especially Tresch (1981), p. 625-631. Gramlich (1977) reviews the empirical literature.
Note that Le Grand's second and third condition may well be inconsistent (see, e.g. Tresch (1981, p. 627)). While the second criterion conforms to the federalist ideal of non-interference of the grantor government and to the non-manipulability of the grants received, the third criterion fails on both accounts. Distributing grants according to own fiscal efforts may induce local governments to increase taxes and outlays and hence the overall level of the budget may be affected. In order to avoid this undesirable potential side-effect we focus in this paper on grant distribution mechanisms that are completely independent of both the expenditure and the taxing decisions of the local authorities.

With the above ideas in mind we consider a family of grant allocation schemes that are simple linear functions of their efficiency and equity components and that are not directly manipulable by the municipalities. We discuss both components in turn.

The efficiency component is defined on the basis of what we call 'standard' expenditures. For each municipality these reflect the typical expenditures of municipalities with similar social and economic characteristics. To be more precise, standard expenditures are derived as the predictions resulting from an empirical model explaining local government expenditures on the basis of a set of relevant determinants derived from the literature. The explanatory variables include spillover effects and a number of determinants of the demand for public outlays by local residents. Allocating grants partially on the basis of standard expenditures may therefore be interpreted as a crude reflection of the first corrective role of grants, viz. to correct inefficiencies.

The equity component should capture the central government's redistributive preferences regarding inequities in the distribution of income among local governments. To meet the condition of non-manipulability it should be defined to
take account of the differences in local taxbases without incorporating variables under the control of the local authorities. For example, actual tax rates are to be excluded.

The previous discussion leads us to specify a family of grant allocation mechanisms of the form:

$$Grant_i = \alpha \text{Standexp}_i + \beta \text{Redistribution}_i$$

(1)

where

- $Grant_i$ is the proposed grant per capita for the municipality i
- Standexp_i are the standard expenditures per capita for municipality i
- Redistribution_i is the value of the explicit redistributional component for municipality i, also on a per capita basis.

In principle, the parameters α and β can be chosen by the central government according to their preferences with respect to the efficiency-equity trade-off, and depending on the overall budget available. The detailed specification of the efficiency and equity components and the determination of the parameters for the empirical application will be discussed in Section 2 below.

Apart from the desirable characteristics previously mentioned, the above family of grant design proposals has an additional interesting feature. Indeed, note that the resulting grants are a continuous and positive monotonic function of their components. As indicated in Section 3, one of the major problems with the current system is precisely its discontinuity. Note also that our proposals treat all municipalities on an equal basis and hence an elementary notion of horizontal equity is respected. Under the current grant allocation system some parts of the budget are a priori reserved for distribution among some privileged sets of
municipalities (see Section 3 for details).

2. IMPLEMENTING GRANT ALLOCATION MECHANISMS

In this section we specify in more detail the grant allocation mechanisms that will be empirically analyzed in this paper. We consecutively discuss the specification of standard expenditures for any given municipality, propose three alternative specifications for the redistributational component, and explain the determination of the parameters α and β in the simulation exercise that follows.

2.1. Determination of standard expenditures

Cross section models of municipal expenditures reveal a considerable spread in actual outlays. In the literature at least five factors have been found to account for the observed variations. First, local authorities differ from one another in residents needs. A second dimension is related to the income and wealth tax base of resident individuals and enterprises and thus to the budgetary and taxing capacity of a local government. Third, benefit spillovers of urban centres may create substantial surplus outlays. Examples are local schools, libraries, municipal hospitals, cultural heritages, etc. Fourth, the transmission of voter preferences in the political decision making process may be distorted due to, e.g., the existence of pressure groups and reelection considerations of politicians. This modulation of voters demands for local public goods may well result in above optimal expenditures. Finally, the implementation of political decisions can be influenced by bureaucratic inefficiencies, budgetmaximizing behavior, etc.

The model we have estimated takes account of the
most important factors considered in the literature on local public goods demand\(^2\). Indeed, expenditures are explained by variables indicating residents needs, wealth, and benefit spillovers. The political and bureaucratic factors are not considered here mainly due to the unavailability of the relevant data. To be specific, in our model per capita municipal expenditures (Exp) are explained by the following list of need variables: the share of the elderly in the population (Old), the share of people receiving income grants (Poor), the share of industrial workers in the active population (Industry), the number of privately owned houses (Houses), and the population density (Density). The wealth variable is defined as the imputed tax base for homeownership (Wealth). The index for spillover functions (Spillover) is defined as the ratio of the active population not living in the municipality to the total active population. Our model is linear in the parameters and all variables were transformed in logarithms prior to estimation.

To restrict the application of the regression model we excluded outliers for which the implied model may not be appropriate. Various methods to detect outliers are available\(^3\). We used the method of studentized deleted residuals. More details are provided in Appendix A. The resulting 9 outliers were deleted from the sample and the model was reestimated on the remaining 299 observations. This drastic remedy to the outlier problem seems to be warranted since we want to avoid too strong policy implications for individual cases.

The resulting OLS regression results based on 1985 data for 299 Flemish municipalities were as follows:

\(^2\) See e.g. Bergstrom (1973), Borcherding (1972), Pommerehne (1978).

\(^3\) See Belsley (1980) and Atkinson (1985).
Exp = 4.80 Constant + .12 Houses + .41 Old + .30 Industry
(.31)** (0.02)** (0.32) (0.12)*
+ 32.68 Spillover + 48.85 Density + .37 Wealth + .07 Poor
(12.17)** (23.84)** (0.03)** (0.03)**

R² = .66
SER = .15
N = 299

(2)

where standard errors are between brackets and the * and the
** indicate significance at respectively the 95% and the 99%
level. A comparison of the estimated equation with the
regression based on the full sample (see Appendix A) shows
that the deletion of the nine outliers results in an
improvement of both the R-squared and the standard error of
the regression.

In order to see whether the model conforms to the
assumptions under which OLS provides a Best Linear Unbiased
Estimator (BLUE) we checked both for normality of the
residuals and for homoskedasticity. The normal probability
plots and the results of White's test for heteroscedasticity⁴
reported in Appendix B suggest that none of the standard OLS
assumptions could be rejected.

As previously indicated, the predictions generated
by regression equation (2) will be interpreted as the
standard expenditures of a municipality. They reflect the
typical expenditures for a municipality with a given set of
characteristics, as measured by the values of the explanatory
variables in the regression.

2.2. Specification of the equity component

Consistent with the general remarks made in
Section 1 with respect to the positive nature of the grants
and the exclusion of current tax rates, we consider - out of
an almost infinite number of possibilities - three proposals

⁴ For a discussion see Amemyia (1985).
which have in common their non-manipulability and their relative simplicity. The latter consideration may be important in the phase of policy implementation because simple formulas may be more appealing to policy makers.

A first proposal is to redistribute grants inversely proportional to the share of the local taxbase in the overall taxbase, where both income and wealth taxes are taken into account. The proposal, denoted Red1, defines the equity component for municipality i on the basis of the following expression:

$$\text{Red1}_i = \frac{1}{[\text{Share Income Tax}_i + \text{Share Wealth Tax}_i]}$$

(3)

where

$$\text{Share Income Tax}_i = \frac{(\text{Revenue of } 1\% \text{ Income Tax})}{\sum (\text{Revenue of } 1\% \text{ Income Tax})}$$

$$\text{Share Wealth Tax is defined in an analogous way.}$$

The interpretation of this proposal is straightforward. It redistributes towards municipalities with relatively small local taxbases.

A second alternative proposal is to redistribute according to the gap between the standard expenditures and the concept of 'standard tax revenues'. The latter are defined as the tax revenues a municipality would generate if it applied the average tax rates observed for the region as a whole. This proposal (Red2) implies a redistributive component for a given municipality that directly varies with the municipal budget deficit that is to be expected for municipalities with the same characteristics and applying average tax rates. It can be written as:

$$\text{Red2}_i = \text{Standexp}_i - \text{Standard Tax Revenue}_i$$

(4)

where Standard Tax Revenue$_i = (\text{Revenue of } 1\% \text{ Income Tax in } i \times \text{Average Income Tax Rate}) + (\text{Revenue of } 1\% \text{ Wealth Tax in } i \times \text{Average Wealth Tax Rate}).
Finally, a third proposal considered in this paper (Red3) consists of distributing grants inversely proportional to the standard tax revenues themselves. Specifically:

\[\text{Red3}_i = \frac{1}{\text{Standard Tax Revenue}_i} \]

(5)

Note that this third proposal is closely related to the first one in the sense that they both redistribute grants inversely proportional to some concept of local taxbase. On the other hand the interpretation of the second proposal may be slightly different. The standard expenditures can be seen as some target level of local government outlays deemed essential to the production of local public goods. The proposal then bridges the gap between this target level and the potential local taxbase. This proposal might result as a consequence of the government's desire to guarantee a minimum level of local public goods to all citizens. Note in general that all three redistributional components may be compatible with a wide range of equity objectives - utilitarian or non-utilitarian.

2.3. Determination of the parameters of the grant distribution mechanisms

The parameters \(\alpha \) and \(\beta \) which reflect the relative weight of the efficiency and equity components in the general grant distribution mechanism (1) have to be determined in practice on the basis of the strength of the government's redistributive preferences and the size of the overall grant budget to be allocated.

With respect to the latter, we assumed the budget to be allocated to be equal to the actual 1985 budget. This allows us to directly compare the effects of our proposals with the observed allocation for 1985, the year to which our
data refer. Regarding the former, the relative weight to be
given to the redistributive component was determined using the
preferences revealed in a recent policy proposal. A proposal
formulated by the Ministry of Internal Affairs explicitly
suggests to reserve 30% of the overall grant budget for
redistributive purposes. In order to facilitate the comparison
of our results with those implied by this latter proposal we
have incorporated these revealed preferences into our
calculations. However, to illustrate the sensitivity of the
resulting grants with respect to the redistributional
assumptions we also calculated a 0%, a 50%, a 70% and a 100%
share of the equity component in the overall grant budget.

Specifically, let the overall grant budget be
given by B. Suppose that a fraction \(\delta \) of this budget is
reserved for the redistributive component, while a fraction
\((1-\delta)\) is to be allocated on the basis of the standard
expenditures. The parameter \(\alpha \) is then determined by

\[
(1-\delta) B = \alpha \sum_i \text{Standexp}_i \tag{6}
\]

from which it follows that

\[
\alpha = ((1-\delta)B)/\left(\sum_i \text{Standexp}_i\right). \tag{7}
\]

The parameter \(\beta \) is determined in an analogous way. Note,
however, that its value will differ depending on the
specification of the equity component. For redistributive
component Redj \((j=1,2,3)\) the corresponding parameter \(\beta_j \) is
found as the solution of

\[
\delta B = \beta_j \sum_i \text{Redj}_i
\]

where the Redj's have been defined by equations (3), (4) and
(5).

As an example, consider the case where \(\delta = 0.3 \).
Application of the above procedure leads to the following three proposals:

Proposal 1 \[\text{Grant}_1 = 0.163 \text{ Standexp}_i + 28089.964 \text{ Red}_1 \] \hspace{1cm} (8)

Proposal 2 \[\text{Grant}_2 = 0.163 \text{ Standexp}_i + 0.117 \text{ Red}_2 \] \hspace{1cm} (9)

Proposal 3 \[\text{Grant}_3 = 0.163 \text{ Standexp}_i + 105490733886.456 \text{ Red}_3 \] \hspace{1cm} (10)

where the Redj (j=1,2,3) are defined as in (3), (4), and (5) respectively.

3. THE CURRENT GRANT ALLOCATION SYSTEM

In order to compare the simulated results following from our alternative proposals with the observed grant allocation system it is useful to summarize the current system. The distribution of the grants is the responsibility of the government of the Flemish region\(^5\). The local governments are classified into fourteen different classes according to two criteria: the number of inhabitants and the active population in the municipality relative to its population. The overall grant budget is distributed over the cells mainly on the basis of past expenditure levels and population density. However, it is important to note that the urban centres situated in cells 13 and 14 have a special status in the allocation mechanism as a large share of the overall budget is a priori reserved for distribution among them. Moreover, the municipalities along the coast are also treated in a special way. They have an additional weight in the grant distribution, independent of the cell they happen to belong to.

\(^5\) For details see Vanneste (1986).
After the overall grant has been allocated to the fourteen cells they are further distributed to the individual municipalities according to a variety of criteria, some of which intend to capture differences in needs, in fiscal capacity and in spillover effects. Interestingly, the criteria to distribute the overall cell grant to the individual members differ substantially from one cell to another.

One of the major drawbacks of the current grant distribution system is the lack of continuity and monotonicity implied by the cell classification. For example, relatively minor changes in population may move a municipality into a different cell with sometimes drastic implications for the grant to be received. Also note that the actual outlays determine to some extent the grant distribution. The determination of the grants can therefore be partly affected by the local authorities themselves.

In Table 1 we present the observed average per capita grant in each cell for 1985 based on all 308 municipalities. Note that cell XIV consists of only two observations, viz. the cities of Antwerp and Ghent. Not surprisingly, both turned out to be outliers in the regression analysis previously reported. Cell XIV will therefore be discarded in the remainder of this paper. This implies that our analysis will have nothing to say about the grants allocated to the two largest Flemish cities.
Table 1: Current Cell Classification of the Flemish municipalities and the average grant per capita

<table>
<thead>
<tr>
<th>Population</th>
<th>Active population relative to population</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5000</td>
<td>< 0.2</td>
</tr>
<tr>
<td>5000-10000</td>
<td>Cell 1 2870</td>
</tr>
<tr>
<td>10000-20000</td>
<td>Cell 3 2555</td>
</tr>
<tr>
<td>20000-50000</td>
<td>Cell 6 2689</td>
</tr>
<tr>
<td>50000-150000</td>
<td>Cell 10 3651</td>
</tr>
<tr>
<td>>150000</td>
<td>Cell 13 6699</td>
</tr>
</tbody>
</table>

The cell classification will be used in the next section to report the implications of the three proposed grant allocation mechanisms and to compare the results with the current system. However, the cell classification alone does not allow us to indicate what type of municipalities will most strongly be affected by the introduction of alternative systems. We will therefore also discuss the results using another classification scheme that singles out municipalities with similar characteristics. A cluster analysis performed by CADEPS (1989) grouped the municipalities on the basis of about fifty variables summarizing in detail their socio-economic characteristics. It resulted in eight clusters of 'similar' municipalities.

The detailed content of the clusters is available

6 See Cadeps (1989) for details of the analysis.
on request. One group (cluster 3) consisted of only one observation, viz. the city of Antwerp. It will be discarded in the remainder of the paper as it turned out to be an outlier. The remaining seven clusters can be briefly characterised as follows:

- Cluster 1: small, densely crowded municipalities in the neighbourhood of Antwerp and Brussels.
- Cluster 2: small, rich and residential municipalities in the neighbourhood of Antwerp, Brussels and Gent.
- Cluster 4: large municipalities fulfilling the role of a regional urban centre.
- Cluster 5: municipalities with a strong touristic attraction situated along the coast.
- Cluster 6: residual cluster largely consisting of small rural municipalities.
- Cluster 7: small, low income rural municipalities.
- Cluster 8: municipalities with a young population experiencing a high degree of unemployment.

4. COMPARING ALTERNATIVE GRANT ALLOCATIONS

In this section we compare the simulated outcomes for our three proposed grant allocation mechanisms with the current system and with the allocation implied by a recent policy proposal of the Ministry of Internal Affairs. For reasons previously explained, the results will be reported both for the cell classification upon which the current system is based, and for the classification of municipalities in clusters with similar characteristics. The results with respect to all 299 individual municipalities can be found in an appendix which is available on request.
4.1. Results for the cell classification

Consider the cell classification. To fix ideas, Table 2 first gives some descriptive statistics. The first two columns contain for each cell the average per capita grant and the standard expenditures per capita. Based on this information we calculated a 'self financing ratio' which is presented in the third column. It expresses the amount of standard expenditures not financed by grants. The last column reports the policy proposal. Note that in the remainder of the analysis averages have been calculated over the aggregates and not over the individual observations. E.g., the average observed grant for cell 1 (2923) has been calculated as the ratio of the sum of the observed grants in cell 1 over the sum of the population in cell 1.

Table 2: Some descriptive statistics for the cell classification and the policy proposal

<table>
<thead>
<tr>
<th>Cell</th>
<th>Number of cases</th>
<th>Observed grant per capita</th>
<th>Standard expenditures per capita</th>
<th>Self financing ratio</th>
<th>Policy proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell 1</td>
<td>7</td>
<td>2923</td>
<td>10709</td>
<td>0.73</td>
<td>2804</td>
</tr>
<tr>
<td>Cell 2</td>
<td>5</td>
<td>3849</td>
<td>14557</td>
<td>0.74</td>
<td>2634</td>
</tr>
<tr>
<td>Cell 3</td>
<td>54</td>
<td>2558</td>
<td>12488</td>
<td>0.80</td>
<td>2783</td>
</tr>
<tr>
<td>Cell 4</td>
<td>34</td>
<td>2634</td>
<td>13676</td>
<td>0.81</td>
<td>2821</td>
</tr>
<tr>
<td>Cell 5</td>
<td>11</td>
<td>2652</td>
<td>13855</td>
<td>0.81</td>
<td>2725</td>
</tr>
<tr>
<td>Cell 6</td>
<td>49</td>
<td>2679</td>
<td>14088</td>
<td>0.81</td>
<td>2861</td>
</tr>
<tr>
<td>Cell 7</td>
<td>46</td>
<td>3047</td>
<td>14785</td>
<td>0.79</td>
<td>3004</td>
</tr>
<tr>
<td>Cell 8</td>
<td>21</td>
<td>3294</td>
<td>15067</td>
<td>0.78</td>
<td>3108</td>
</tr>
<tr>
<td>Cell 9</td>
<td>6</td>
<td>3848</td>
<td>16991</td>
<td>0.77</td>
<td>2991</td>
</tr>
<tr>
<td>Cell 10</td>
<td>29</td>
<td>3646</td>
<td>16719</td>
<td>0.78</td>
<td>3603</td>
</tr>
<tr>
<td>Cell 11</td>
<td>20</td>
<td>3842</td>
<td>17132</td>
<td>0.78</td>
<td>3931</td>
</tr>
<tr>
<td>Cell 12</td>
<td>8</td>
<td>4661</td>
<td>19259</td>
<td>0.76</td>
<td>4179</td>
</tr>
<tr>
<td>Cell 13</td>
<td>9</td>
<td>7016</td>
<td>21847</td>
<td>0.68</td>
<td>7005</td>
</tr>
<tr>
<td>Flanders</td>
<td>299</td>
<td>3780</td>
<td>16265</td>
<td>0.77</td>
<td>3780</td>
</tr>
</tbody>
</table>

Note first that despite the substantial variance of standard expenditures over the cells the current grant allocation system implies a very moderate variation in the self financing ratio. Only the cells corresponding to the
municipalities with very small populations (cells 1 and 2) and the cell consisting of cities with more than 50000 inhabitants (cell 13) seem to finance a somewhat larger share of their standard expenditures by grants. Furthermore, observe that, with the exception of cells 1, 2 and 9, the average grant per capita increases monotonically over the cell numbers.

The results for our three grant proposals are presented in respectively Table 3.A, Table 3.B and Table 3.C. Each table contains the average proposed grant per capita for all cells for the range of policy parameters, related to budget shares, as specified above. Note that since the three proposals have the same efficiency component it is obvious that a 100% share of this component in the budget yields identical results.

The comparison of the proposals with each other leads to the following conclusions. First, observe that for the first and the third proposal the sensitivity analysis results in a large range of grants per cell while for the second proposal a small range is implied. Second, for the three proposals the average grants per capita increase almost monotonically over the cell numbers for a 100%/0% share distribution, suggesting among others that the larger municipalities would receive larger per capita grants. But for the first and third proposal increasing the equity component reverses this result. Indeed, from a 70%/30% distribution onwards the first and third proposal result in almost monotonically decreasing grants over the cell numbers. Third, increasing the weight of the redistributional component for the first and third proposal results in a strong redistribution from cells 9 to 13 in favour of cells 1 to 8. The second proposal implies, with exception for cells 8 and 9, exactly the reverse. For the second proposal however the redistribution is rather small. As a preliminary conclusion it appears that the first and third proposal redistribute in favour of the municipalities with relatively small populations.
while the larger municipalities benefit under the second proposal. Furthermore, the analysis of the average grants reveals a strong similarity between the first and third proposal at the aggregate level.

Comparing the three proposals to the current grants they all seem to redistribute in the same direction. Cells 1 to 9 would on average receive more, cells 1 and 2 even significantly more under the first and third proposal. Cells 10 to 13 would receive less, although under the second proposal only cell 13 would lose significantly. Thus, in comparison with the current system, the main implication of our proposals is that they tend to redistribute towards the lower range of municipalities in terms of population and active population. But note that for moderate shares of the redistributional component a grant allocation is implied that remains consistent with the overall pattern of the current system.

A final observation with respect to Tables 3.A, 3.B and 3.C concerns the recent policy proposal formulated by the Ministry of Internal Affairs. The latter seems to stay close to the current system. There is some redistribution in favour of the mid range, viz. cells 3 to 6. Note that the implied redistributional pattern seems to combine the effects of our proposals, namely redistributing to the lower range (proposal 1 and 3) and redistributing towards the larger municipalities (proposal 2). Note furthermore that our grant distribution has a larger variance.
Table 3.A: Grants per capita for proposal 1 (local taxbase share)

<table>
<thead>
<tr>
<th>Cell</th>
<th>100/0</th>
<th>70/30</th>
<th>50/50</th>
<th>30/70</th>
<th>0/100*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell 1</td>
<td>2489</td>
<td>9126</td>
<td>13551</td>
<td>17975</td>
<td>24613</td>
</tr>
<tr>
<td>Cell 2</td>
<td>3384</td>
<td>7230</td>
<td>9794</td>
<td>12358</td>
<td>16204</td>
</tr>
<tr>
<td>Cell 3</td>
<td>2903</td>
<td>4647</td>
<td>5810</td>
<td>6973</td>
<td>8718</td>
</tr>
<tr>
<td>Cell 4</td>
<td>3179</td>
<td>4638</td>
<td>5611</td>
<td>6583</td>
<td>8043</td>
</tr>
<tr>
<td>Cell 5</td>
<td>3220</td>
<td>4252</td>
<td>4940</td>
<td>5628</td>
<td>6660</td>
</tr>
<tr>
<td>Cell 6</td>
<td>3274</td>
<td>3609</td>
<td>3832</td>
<td>4055</td>
<td>4389</td>
</tr>
<tr>
<td>Cell 7</td>
<td>3437</td>
<td>3783</td>
<td>4014</td>
<td>4244</td>
<td>4591</td>
</tr>
<tr>
<td>Cell 8</td>
<td>3502</td>
<td>3685</td>
<td>3806</td>
<td>3928</td>
<td>4111</td>
</tr>
<tr>
<td>Cell 9</td>
<td>3949</td>
<td>3919</td>
<td>3900</td>
<td>3880</td>
<td>3850</td>
</tr>
<tr>
<td>Cell 10</td>
<td>3886</td>
<td>3338</td>
<td>2972</td>
<td>2607</td>
<td>2058</td>
</tr>
<tr>
<td>Cell 11</td>
<td>3982</td>
<td>3333</td>
<td>2899</td>
<td>2466</td>
<td>1817</td>
</tr>
<tr>
<td>Cell 12</td>
<td>4539</td>
<td>3697</td>
<td>3135</td>
<td>2574</td>
<td>1732</td>
</tr>
<tr>
<td>Cell 13</td>
<td>5078</td>
<td>3747</td>
<td>2859</td>
<td>1972</td>
<td>640</td>
</tr>
</tbody>
</table>

Flanders 3780 3780 3780 3780 3780

*The first integer refers to the budget share of the efficiency component, the second to the budget share of the equity component.

Table 3.B: Grants per capita for proposal 2 (gap)

<table>
<thead>
<tr>
<th>Cell</th>
<th>100/0</th>
<th>70/30</th>
<th>50/50</th>
<th>30/70</th>
<th>0/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell 1</td>
<td>2489</td>
<td>2474</td>
<td>2464</td>
<td>2454</td>
<td>2440</td>
</tr>
<tr>
<td>Cell 2</td>
<td>3384</td>
<td>3175</td>
<td>3036</td>
<td>2897</td>
<td>2689</td>
</tr>
<tr>
<td>Cell 3</td>
<td>2903</td>
<td>2815</td>
<td>2757</td>
<td>2698</td>
<td>2611</td>
</tr>
<tr>
<td>Cell 4</td>
<td>3179</td>
<td>3105</td>
<td>3056</td>
<td>3007</td>
<td>2933</td>
</tr>
<tr>
<td>Cell 5</td>
<td>3220</td>
<td>3153</td>
<td>3108</td>
<td>3063</td>
<td>2995</td>
</tr>
<tr>
<td>Cell 6</td>
<td>3274</td>
<td>3201</td>
<td>3152</td>
<td>3103</td>
<td>3029</td>
</tr>
<tr>
<td>Cell 7</td>
<td>3437</td>
<td>3410</td>
<td>3393</td>
<td>3375</td>
<td>3349</td>
</tr>
<tr>
<td>Cell 8</td>
<td>3502</td>
<td>3514</td>
<td>3521</td>
<td>3529</td>
<td>3541</td>
</tr>
<tr>
<td>Cell 9</td>
<td>3949</td>
<td>3897</td>
<td>3863</td>
<td>3829</td>
<td>3777</td>
</tr>
<tr>
<td>Cell 10</td>
<td>3886</td>
<td>3889</td>
<td>3891</td>
<td>3892</td>
<td>3895</td>
</tr>
<tr>
<td>Cell 11</td>
<td>3982</td>
<td>4005</td>
<td>4021</td>
<td>4036</td>
<td>4059</td>
</tr>
<tr>
<td>Cell 12</td>
<td>4539</td>
<td>4572</td>
<td>4593</td>
<td>4615</td>
<td>4648</td>
</tr>
<tr>
<td>Cell 13</td>
<td>5078</td>
<td>5242</td>
<td>5352</td>
<td>5461</td>
<td>5626</td>
</tr>
</tbody>
</table>

Flanders 3780 3780 3780 3780 3780
Table 3.C: Grants per capita for proposal 3 (standard tax revenue)

<table>
<thead>
<tr>
<th>Cell</th>
<th>100/0</th>
<th>70/30</th>
<th>50/50</th>
<th>30/70</th>
<th>0/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell 1</td>
<td>2489</td>
<td>11048</td>
<td>16753</td>
<td>22459</td>
<td>31017</td>
</tr>
<tr>
<td>Cell 2</td>
<td>3384</td>
<td>7162</td>
<td>9681</td>
<td>12200</td>
<td>15979</td>
</tr>
<tr>
<td>Cell 3</td>
<td>2903</td>
<td>4613</td>
<td>5753</td>
<td>6893</td>
<td>8603</td>
</tr>
<tr>
<td>Cell 4</td>
<td>3179</td>
<td>4602</td>
<td>5551</td>
<td>6500</td>
<td>7923</td>
</tr>
<tr>
<td>Cell 5</td>
<td>3220</td>
<td>4263</td>
<td>4958</td>
<td>5653</td>
<td>6695</td>
</tr>
<tr>
<td>Cell 6</td>
<td>3274</td>
<td>3598</td>
<td>3815</td>
<td>4031</td>
<td>4355</td>
</tr>
<tr>
<td>Cell 7</td>
<td>3437</td>
<td>3767</td>
<td>3987</td>
<td>4207</td>
<td>4538</td>
</tr>
<tr>
<td>Cell 8</td>
<td>3502</td>
<td>3688</td>
<td>3812</td>
<td>3937</td>
<td>4123</td>
</tr>
<tr>
<td>Cell 9</td>
<td>3949</td>
<td>3895</td>
<td>3859</td>
<td>3824</td>
<td>3770</td>
</tr>
<tr>
<td>Cell 10</td>
<td>3886</td>
<td>3335</td>
<td>2968</td>
<td>2601</td>
<td>2050</td>
</tr>
<tr>
<td>Cell 11</td>
<td>3982</td>
<td>3336</td>
<td>2905</td>
<td>2474</td>
<td>1827</td>
</tr>
<tr>
<td>Cell 12</td>
<td>4539</td>
<td>3701</td>
<td>3141</td>
<td>2582</td>
<td>1744</td>
</tr>
<tr>
<td>Cell 13</td>
<td>5078</td>
<td>3748</td>
<td>2861</td>
<td>1974</td>
<td>644</td>
</tr>
<tr>
<td>Flanders</td>
<td>3780</td>
<td>3780</td>
<td>3780</td>
<td>3780</td>
<td>3780</td>
</tr>
</tbody>
</table>

4.2. Results for the cluster classification

As the reader will have noticed the cell classification does not allow us to clearly describe the municipalities that gain or loose under the proposed grant allocation systems in terms of their social and economic characteristics. In what follows, we therefore turn to a discussion of the results using the cluster classification previously referred to.

Let us again start by considering some descriptive statistics. The information summarized in Table 4 clearly illustrates the special treatment of the urban centres and the coastal municipalities under the current grant allocation scheme. The urban centres (cluster 4) receive a very large grant per capita which would allow them to finance 28% of their standard expenditures, as indicated by the self financing ratio. The coastal municipalities belonging to cluster 5 are in a quite different situation. Although they receive the second highest per capita grants under the existing system, these grants would allow them to finance only
15% of their standard expenditures. For the other clusters there is only a moderate variation in the self financing ratio.

Table 4: Some descriptive statistics for the cluster classification and the policy proposal

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Number of cases</th>
<th>Observed grant expenditures per capita</th>
<th>Standard</th>
<th>Self financing ratio</th>
<th>Policy proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>25</td>
<td>3823</td>
<td>18717</td>
<td>0.80</td>
<td>3202</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>30</td>
<td>5496</td>
<td>16341</td>
<td>0.83</td>
<td>2635</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>35</td>
<td>5438</td>
<td>19157</td>
<td>0.72</td>
<td>5468</td>
</tr>
<tr>
<td>Cluster 5</td>
<td>6</td>
<td>5496</td>
<td>26279</td>
<td>0.85</td>
<td>3573</td>
</tr>
<tr>
<td>Cluster 6</td>
<td>66</td>
<td>2982</td>
<td>14730</td>
<td>0.80</td>
<td>3062</td>
</tr>
<tr>
<td>Cluster 7</td>
<td>82</td>
<td>2462</td>
<td>12870</td>
<td>0.77</td>
<td>3051</td>
</tr>
<tr>
<td>Cluster 8</td>
<td>82</td>
<td>3197</td>
<td>13997</td>
<td>0.77</td>
<td>3473</td>
</tr>
<tr>
<td>Flanders</td>
<td>299</td>
<td>3780</td>
<td>16265</td>
<td>0.77</td>
<td>3780</td>
</tr>
</tbody>
</table>

The results of the sensitivity analysis with respect to our three proposed grant allocation mechanisms can be found in Tables 5.A, 5.B and 5.C.

Comparing the three proposals with each other yields the following results. First, the second proposal has again the smallest range of values. But note that the range of the other proposals is somewhat reduced compared to the cell classification. Second, as the importance of redistribution increases the first and third proposal redistribute from clusters 1 to 5 to the clusters 6 to 9. The poor rural municipalities in cluster 7 are the big winners, while cluster 4 looses relatively most under the first proposal and cluster 5 under the third proposal. With the exception of cluster 4 and 6 the second proposal would redistribute in the same direction. Now cluster 4 is the big winner and cluster 2 the big looser.

Hence the three proposals are similar in favouring the lower income and rural municipalities. Further, we again
observe that despite their different definitions the first and third proposals yield almost identical results. The main difference with the second proposal is clearly that the redistribution implied by the latter is less favorable for the low income municipalities of clusters 7 and 8. To the extent that this redistribution is an explicit policy concern, proposals 1 and 3 may be preferable.

A comparison of the proposals with the existing system reveals that the suggested schemes would imply on average a reduction in the per capita grant for the urban centres (cluster 4), especially under extreme redistributional concerns for proposal 1 and 3. A number of densely populated urban municipalities (cluster 1) gain only under the second proposal. The beneficiaries of the new proposals would be a number of relatively residential suburban municipalities (cluster 2), the coastal municipalities (cluster 5) - but not so for high shares of the redistributional component under the first and third proposal - , and the low income and rural municipalities (clusters 6, 7 and 8).

This substantial reduction in grants allocated to the urban centres of cluster 4 should be interpreted in view of their special status under the current system. If the general setup of our proposals is accepted and the regression model used to estimate standard expenditures is correctly specified, then there seems to be no compelling reason to treat the urban centres in a special way. In that case the current system is simply too generous. Alternatively, it is possible that our regression model has failed to adequately capture spillover effects. In that case the standard expenditures for the urban municipalities in cluster 4 may on average have been underestimated.

A somewhat surprising finding is the larger grants that would on average be allocated to clusters 2 and 5, which both contain residential municipalities that are characterized
by relatively high incomes. Here the above-average values for the standard expenditures, especially for cluster 5, causes the increase in allocated grant per capita. If one believes that standard expenditures should be reflected in grant design then it seems that the municipalities of clusters 2 and especially 5 are particularly poorly treated under the current system. Therefore, the increase in grants for these residential municipalities should not be interpreted as some perverse redistribution towards the rich.

Finally, the proposal formulated by the Ministry of Internal Affairs again stays close to the current system. The municipalities in clusters 6, 7 and 8 would on average receive a larger grant per capita, whereas cluster 1, 2 and 5 would get less. Interestingly, our proposals agree about this direction of redistribution except for clusters 2, 4 and 5. Our proposals - for reasons cited above - unanimously increase the grants for the relatively wealthy communities contained in cluster 2 and for the coastal municipalities (cluster 5) but decrease the grants for the urban centres of cluster 4. The policy proposal does exactly the reverse for cluster 2 and 5 and leaves cluster 4 almost unaffected. Note further that our proposals imply on average somewhat larger departures from the current system than the policy proposal.

Table 5.A : Grants per capita for proposal 1 (local taxbase share)

<table>
<thead>
<tr>
<th>Cluster</th>
<th>100/0</th>
<th>70/30</th>
<th>50/50</th>
<th>30/70</th>
<th>0/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>4351</td>
<td>3771</td>
<td>3384</td>
<td>2998</td>
<td>2418</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>3798</td>
<td>3600</td>
<td>3468</td>
<td>3336</td>
<td>3138</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>4453</td>
<td>3560</td>
<td>2966</td>
<td>2371</td>
<td>1479</td>
</tr>
<tr>
<td>Cluster 5</td>
<td>6108</td>
<td>5022</td>
<td>4298</td>
<td>3574</td>
<td>2488</td>
</tr>
<tr>
<td>Cluster 6</td>
<td>3424</td>
<td>3692</td>
<td>3870</td>
<td>4049</td>
<td>4316</td>
</tr>
<tr>
<td>Cluster 7</td>
<td>2991</td>
<td>4340</td>
<td>5239</td>
<td>6138</td>
<td>7486</td>
</tr>
<tr>
<td>Cluster 8</td>
<td>3253</td>
<td>3649</td>
<td>3913</td>
<td>4176</td>
<td>4572</td>
</tr>
<tr>
<td>Flanders</td>
<td>3780</td>
<td>3780</td>
<td>3780</td>
<td>3780</td>
<td>3780</td>
</tr>
</tbody>
</table>
Table 5.B: Grants per capita for proposal 2 (gap)

<table>
<thead>
<tr>
<th>Cluster</th>
<th>100/0</th>
<th>70/30</th>
<th>50/50</th>
<th>30/70</th>
<th>0/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>4351</td>
<td>4218</td>
<td>4129</td>
<td>4041</td>
<td>3908</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>3798</td>
<td>3533</td>
<td>3356</td>
<td>3179</td>
<td>2914</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>4453</td>
<td>4570</td>
<td>4649</td>
<td>4727</td>
<td>4844</td>
</tr>
<tr>
<td>Cluster 5</td>
<td>6108</td>
<td>5934</td>
<td>5819</td>
<td>5703</td>
<td>5550</td>
</tr>
<tr>
<td>Cluster 6</td>
<td>3424</td>
<td>3418</td>
<td>3414</td>
<td>3410</td>
<td>3404</td>
</tr>
<tr>
<td>Cluster 7</td>
<td>2991</td>
<td>3012</td>
<td>3026</td>
<td>3040</td>
<td>3061</td>
</tr>
<tr>
<td>Cluster 8</td>
<td>3253</td>
<td>3276</td>
<td>3290</td>
<td>3305</td>
<td>3327</td>
</tr>
<tr>
<td>Flanders</td>
<td>3780</td>
<td>3780</td>
<td>3780</td>
<td>3780</td>
<td>3780</td>
</tr>
</tbody>
</table>

Table 5.C: Grants per capita for proposal 3 (standard tax revenue)

<table>
<thead>
<tr>
<th>Cluster</th>
<th>100/0</th>
<th>70/30</th>
<th>50/50</th>
<th>30/70</th>
<th>0/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>4351</td>
<td>3766</td>
<td>3377</td>
<td>2988</td>
<td>2404</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>3798</td>
<td>3597</td>
<td>3462</td>
<td>3328</td>
<td>3126</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>4453</td>
<td>3561</td>
<td>2967</td>
<td>2373</td>
<td>1481</td>
</tr>
<tr>
<td>Cluster 5</td>
<td>6108</td>
<td>4862</td>
<td>4032</td>
<td>3201</td>
<td>1955</td>
</tr>
<tr>
<td>Cluster 6</td>
<td>3424</td>
<td>3680</td>
<td>3851</td>
<td>4022</td>
<td>4279</td>
</tr>
<tr>
<td>Cluster 7</td>
<td>2991</td>
<td>4374</td>
<td>5296</td>
<td>6217</td>
<td>7600</td>
</tr>
<tr>
<td>Cluster 8</td>
<td>3253</td>
<td>3650</td>
<td>3914</td>
<td>4178</td>
<td>4574</td>
</tr>
<tr>
<td>Flanders</td>
<td>3780</td>
<td>3780</td>
<td>3780</td>
<td>3780</td>
<td>3780</td>
</tr>
</tbody>
</table>
5. CONCLUSION AND POLICY IMPLICATIONS

The purpose of this research memorandum was to present grant allocation mechanisms which take account of both the efficiency and the equity reasons involved in grant distribution. Efficiency considerations were incorporated by allocating part of the grant on the basis of 'standard' municipal expenditures, reflecting the demand for local public services and the impact of spillover effects on municipal outlays. Equity considerations were captured by reserving part of the grant budget for redistributive purposes. Three alternative specifications for the equity component of our grant proposal were suggested. The basic idea behind each of them is to correct for differences in local taxbases.

We simulated the outcome of three specific proposals and compared the results both with the existing grant allocation mechanism and with a recent policy proposal formulated by the Ministry of Internal Affairs. The main conclusions are easily summarized as follows. First, compared to the current system our proposals would generally imply a redistribution of grants from municipalities in an urban environment and from regional urban centres towards rural and low-income municipalities. In addition, a number of coastal communities would gain from the introduction of the allocations suggested in this paper. Second, our proposals and the one formulated by the Ministry redistribute in the same direction except for the urban centres and the municipalities situated along the coast. However, the latter proposal implies much less variation in per capita grants than does the former.

The policy implications of the above results can be easily summarised. First, the implications of these three specific proposals for the distribution of block grants from the Flemish government to local authorities in Flanders have
been fully explored at the aggregate level. Second, the proposals consisted of explicit efficiency and equity shares in the grant budget so as to take account of the corrective role of grants stressed in the economic literature. This explicit nature of the efficiency-equity trade-off is in sharp contrast to the implicit choices in the current system as well as in a recent policy proposal. Third, again unlike the current grant allocation system and the recent proposal, these schemes satisfied both some further theoretical criteria - independence of spending and taxing decisions, respect for horizontal equity - and some practical design criteria - continuity, positive monotonicity. In short, it has been shown that the family of grant allocation mechanisms suggested in this paper can be implemented easily and that they share some attractive features.
APPENDIX A : THE ANALYSIS AND DETECTION OF OUTLIERS

Methods to detect outliers (see, e.g., Atkinson (1985), Belsley et al (1980)) can be divided in two categories, viz. those that detect extreme observations and those that detect influential observations. The latter refer to observations which have a decisive influence on the value and significance of some parameter(s) or on the model specification as such. In this paper we used the method of Studentized residuals to eliminate influential observations. The purpose of this appendix is to briefly outline the procedure used and to present the results of its application to our sample.

The i-th observation of a linear regression model can in vector notation be written as $y_i = x_i'\beta + e_i$. It seems reasonable to define outliers on the basis of the magnitude of the estimated residuals \hat{e}_i. Confidence intervals can in principle be used to identify outliers. Unfortunately, the properties of the untransformed residuals e_i imply that this procedure is inappropriate. Indeed, it can be shown that

$$\text{var } e_i = \sigma^2(1 - h_i) \quad [A.1]$$

where e_i is the true residual for observation i

σ^2 is the unknown population variance

$h_i = x_i(X'X)x_i'$ is the leverage value, where X is the matrix of independent variables.

Therefore the variance of the residuals is not constant and depends on the leverage value h_i. The leverage value h_i is an indicator of the weight observation i has in the data matrix X : it measures the remoteness of observation i in the space spanned by the k independent variables x. It can be shown that $0 \leq h_i \leq 1$ (see Belsley (1980), p.17). Hence h_i reaches a maximum value of 1 for extreme observations. In that case the variance of e_i is 0. Thus, using standard
confidence intervals on the estimated residual \(e_i \) would leave the outlier undetected. The method of Studentized residuals transforms the original residuals so that they do have a constant variance.

These transformed residuals are defined as

\[
e_i^* = \frac{e_i}{s(i) (1 - h_i)^{1/2}} \tag{A.2}
\]

where \(s(i) \) is the estimated population variance with observation \(i \) deleted. The \(e_i^* \) follows a t-distribution and can be shown to have constant variance. Outliers can therefore be detected by defining confidence intervals for the appropriate t-values.

Ordinary Least Squares estimation of the model discussed in Section 2.1 on the basis of the complete sample yielded the following results:

\[
\text{Exp} = 4.82 \text{ Constant} + .12 \text{ Houses} + .58 \text{ Old} + .23 \text{ Industry} \\
\quad \quad \quad (.36)^* \quad (.02)^* \quad (.38) \quad (.15) \\
+ 28.47 \text{ Spillover} + 72.11 \text{ Density} + .36 \text{ Wealth} + .09 \text{ Poor} \\
\quad \quad \quad (14.70)^* \quad (28.23)^* \quad (.039)^* \quad (.03)^* \\
R^2 = .63 \\
\text{SER} = .18 \\
N = 308 \tag{A.3}
\]

where standard errors are between brackets and the * and ** indicate significance at respectively the 90% level and the 99% level.

The application of a 99% confidence interval on the data matrix of the regression [A.3] resulted in the detection of the following list of outliers:

- ANTWERPEN: Cell 14, Cluster 3
- ZWIJNDECHT: Cell 9, Cluster 1
- MECHelen: Cell 13, Cluster 4
- WESTERLO: Cell 8, Cluster 8
- SPIERE-HELKIJN: Cell 1, Cluster 7
<table>
<thead>
<tr>
<th>Location</th>
<th>Cell</th>
<th>Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIEUWPOORT</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>GENT</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>DILSEN</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>HERSTAPPE</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

These municipalities were eliminated from the sample. Note that this implies that our analysis will have nothing to say about the effect of alternative grant allocations schemes for three large Flemish cities, viz. Antwerp, Ghent and Mechelen.
APPENDIX B : NORMAL PROBABILITY PLOTS AND TESTING FOR HOMOSKEDASTICITY

1. Standardized residuals are defined as:

\[e_i' = \frac{e_i}{s(1 - h_i)^{1/2}} \] \hspace{1cm} [B.1]

where \(s \) is the estimator of the population variance. Note the minor difference with [A.1]. These standardized residuals can now be shown to be normally distributed. Hence a plot of the calculated standardized residuals from the sample against the normal distribution is useful to reveal deviations from normality. The normal probability plots for both the original regression [A.3] and for the regression on the restricted sample (see equation (2)) are presented in Figure 1 and 2 below. These plots clearly do not suggest important deviations from normality.

Fig 1 : Normal Probability Plot Standardized Residuals (N=308)
2. Application of White's test for heteroscedasticity (see Amemyia (1985), p. 200) involves estimation of an auxiliary regression. The squared residuals of equation (2) were regressed on a constant, all independent variables, their squares and their cross products. The number of observations times the unadjusted R-squared is distributed chi-squared with degrees of freedom equal to the number of coefficients in the auxiliary regression, excluding the constant. The auxiliary regression yielded an R-squared of 0.075 and the sample size was 299. The resulting test statistic is 22.61. The critical value for the chi-squared distribution at the 5 % level with 35 d.f. is well above 53. Therefore the null hypothesis that all coefficients in the auxiliary regression equal zero and hence that there is no heteroskedasticity cannot be rejected.
REFERENCES

CADEPS (1989) *Typologie des Communes Belges* (rapport pour le Credit Communal), Bruxelles, U.L.B.

LIJST VAN RECENTE SESO-RAPPORTEN

COUDER J. o.l.v. A. VERBRUGGEN en G. ERREYGERS, Technico-economisch evaluatiemodel van de bestrijding van rookgasemissies - modelbeschrijving en toepassingen, mei 1989, 88 blz. (89/233)

KESENM S., Market labor supply, informal work and the basic income proposal, June 1989, 29 blz. (89/234)

VAN POECK A., Wage formation, labor market characteristics and the EMS, February 1989, 42 blz. (89/235)

MOESEN W., VANNESTE J. en Y. VANSINA, De ontwikkeling van de collectieve uitgavenquote en de ombuigingen in de gemeentelijke financiën, juni 1989, 32 blz. (89/236).

BOESMANS P., DE GRAEVE D. en G. CARRIN, Lezersonderzoek naar de geneesmiddelenwijzer, oktober 1989, 39 blz. (89/238)

DE GRAEVE D. en G. CARRIN, Costs, benefits and effects on prescribing of a drug information campaign, an experiment with respect to benzodiazepines, November 1989, 35 blz. (89/240)

DE GRAEVE D., Economische evaluatie van in-vitro fertilisatie, augustus 1990, 32 blz. (90/244)

TORMANS G., CARRIN G., LAUWERS P. en L. MARTENS, The costs of coronary heart diseases, August 1990, 53 blz. (90/245)