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0. Introduction

Optimal solution methods for the vehicle routing and scheduling problem (VRSP) are of practical
use only for small problems (see e.g. LAPORTE and NOBERT [1987], MAGNANTI [1981] and
CHRISTOFIDES et al. [1981]). Scientific literature has focused on heuristics to solve problems of
moderate and of large size. Further improvements to the obtained sub-optimum can be reached by

the use of local or global search methods.

Local search methods have been used successfully in the Travelling Salesman Problem (TSP).
Methods, generally known as the 7-opt methods exchange » edges in the graph representation of a
TSP (e.g. LIN and KERNIGHAN [1973]). In a feasible tour edges are exchanged for 7 edges not in
that solution as long as the result remains a tour and the length of that tour is less than the length of
the previous tour (GOLDEN and STEWART [1985]). The value of 7 is chosen to be two or three.
From each move a feasible tour is generated. If one extends this idea towards exchange of arcs for

the VRSP, as OSMAN [1993] does, an additional problem appears.

Arcs exchanges between two distinct routes can cause unfeasibility in the generated solutions. The
vehicle capacity constraint in one of the routes can be violated. This means that the neighbourhood
search terrain is very rugged because it contains many infeasible moves, while it is claimed that the

terrain should be smooth.



As a solution to this indesirable effect, several solutions can be proposed. Firstly, a check on the
feasibility can be done after each move. This extensive checking increases however the run-time of
the algorithm. By using a range limiter the neighbourhood size is diminished, i.e. the number of
moves is limited by a problem characteristic. By this the number of infeasible moves which are
generated should be limited. The idea originiates from CASOTTO et al. [1987] and is used for the

VRSP in JANSSENS and VAN BREEDAM [1995].

A second approach includes the overcapacity as a penalty in the objective function. Penalty terms
are added to the cost to make unfeasible solutions less attractive. This method surely smooths the

neighbourhood terrain but endangers the convergence.

As a third method, we propose to enforce the feasibility by modifying the neighbourhood moving
strategy. Neighbourhood solutions are not generated from the solution but from an inverse
transformation of the solution. If from an inverse transformation always a feasible solution of the
original problem can be found, the problem of infeasible solutions is avoided. This technique is
applied by ALFA et al. [1991] for the VRSP. They first obtain a giant tour. The tour is split in a left
to right direction in such a way that a new route starts whenever the capacity of the previous tour is
exceeded. Their results turn out to be good for very small problems (which also could be solved
optimally) but are poor for larger problems. Our method fits in this class, but is based on totally
different principles. It not only generates a feasible solution at all times but also guarantees a
smooth neighbourhood. The drawback of the procedure is its increased complexity of the move

increasing the run-time.

1. A chain partition-formulation of the VRSP

The basic step in the heuristic is an optimal chain partition of a tree. This step will be dealt with in

detail before embedding it into the heuristic.

The formulation of the VRSP is based on the definition of the chain of nodes of a tree, as
introduced by MISRA and TARJAN [1975]. Let T = (V,E) be a tree with vertex set V and edge set E.

A rooted tree (T,r) is a tree with a distinguished vertex r called the root. If v and w are vertices in a




rooted tree (T,r) and if v is contained in the path from r to w, it is said that v is an ancestor of w
and w is a descendant of v

(notation: v =>w).

Ifv —> w and {v,w} is an edge of T, it is said that v is the father of w and w is the son of v

(notation: v — w).

As a graphical example can serve the tree in fig. 1.

V= {l‘, V1, V2, V3, V4, V5, Vg, V7}
E= {el, €, €3, €4, €5, €, 67}
Father-son relationships: vi —> V2, Vi = V4, Vg —> V7, T —> Vg, amongst others.

Ancestor-descendant relationships: r =vz, vi = Vs, I =>V7, V6 = V7, amongst others.




Definition (MISRA and TARJAN [1975]) © A chain partition of a rooted tree (T,r) is a collection E' of

edges such that, for any vertex v, E' contains at most one edge {v,w} withv —> w.

This means that, as for any vertex in a chain only one descendant can appear in the same chain, a
chain is a set of edges which define a simple path in T. (notation: P;, where iis the index identifying

the path). By this:

k
£=U#,
=1

where the edges of P; have no vertices in common with those of P; (1 # 7).

Making abstraction of the depot location, i.e. the place where all routes in the schedule start and
end, a relation exists between a tree and its chain partition, and a set of routes. The set of vertices
corresponds to the set of customers to be visited. The set of edges corresponds to a possible set of
two-customer sequences, i.e. if {v,w} is an edge in T, then customer v is visited just before or just
after customer w. A chain relates to two VRP-concepts: (1) the edges of a chain determine the
sequence of customers to be visited in one tour, or (2) the vertices included in the chain determine
the set of customers in the tour without specifying a sequence. In both cases the chain is interpreted

as a vehicle route.

Given the definition of a chain, MISRA and TARJAN [1975] define the optimal chain partition
problem. A non-negative cost ¢i(v) is associated with each vertex v € V, and there exists a

maximum cost

m> max ¢, (v)
vel

An unrestricted real-valued cost c,(v,w) is associated with each edge (v,w) € E. The optimal chain

partition problem is the problem of finding a chain partition

k
c=\Jr
i=1




of maximum total edge cost, satisfying

> q)ysm, (i=1,...k)

von P,

The relation between the optimal chain partition problem and the VRSP can be extended as
follows. Let c1(v) be the demand at each customer's site v, being less than the vehicle's capacity m.
The constraint

Z c, (v)<m

vonP,

assures that the total demand to be collected on route i does not exceed the vehicle capacity. The
edge cost corresponds to the distance (or time) traveled. By this, the total edge cost corresponds

nearly to the total distance traveled.

Some small changes have to be made in order to use the optimal chain partition (OCP) algorithm to

generate feasible VRSP solutions:

(1) the OCP-algorithm obtains a chain partition with maximal cost. The VRP requires a minimal
total distance or time traveled. If d.y is the distance between customers v and w, the edge cost used
in the OCP-algorithm should be

co v,w)=M-d,,

where M 1s a large number,

M >>vglvaé<E c, (v,w)

(2) Only one chain contains the root node r , while as being interpreted as a route starting from the
depot all chains should do. The solution to this problem depends on the interpretation of the chain.
If the chain is interpreted as a sequence of customers to be visited in a route, the least cost edge is
added connecting the root node with one of both chain nodes having degree one. If the chain is

interpreted as a unordered set of customers in a route without specification of a sequence, the root




node is added to the set for further processing in a sequencing algorithm. In the following we will

assume the latter interpretation.

The algorithm can be summarized as follows:

Given a graph G=(V,E), a 'demand' function D : V — R and a 'distance' functiond : E — R
1. Construct a spanning tree

Relabel the nodes with a postorder notation

Execute the OCP-algorithm

Complete the solution to obtain a feasible set of routes

AN

Optimise the sequences within the routes.

A short explanation of the steps in the procedure follows.

The first step aims to obtain a rooted tree on which the OCP-algorithm can work. Any rooted tree
is a feasible starting point. In terms of the objective function a minimum spanning tree could be a
reasonable starting point. In terms of an estimate of number of routes (or some lower bound on it)
a spanning tree with a fixed degree constraint on the root node can be an alternative. Our

implementation uses a minimum spanning tree.

The second step is required by the OCP-algorithm in order to have a numbering of vertices such
that each vertex has a smaller number than its father. The pseudocode written in the MISRA and

TARJAN [1975] article is the basis for a recursive procedure.

The third step is the heart of the procedure. The procedure outlined in fig. 1 of the MISRA and
TARJAN [1975] article is followed. The procedure is adapted to cope with the type of objective

function, i.e. minimal instead of maximal total edge cost.

In the fourth step the root node is added to the sets of vertices in the chain, in which it is not yet
included. A distance matrix is prepared to obtain an optimal sequence within the set of customers

of each route.




The fifth step uses an exact Travelling Salesman Problem-algorithm to obtain a minimum distance

objective.

2. Embedding the optimal chain partition into a descent method

A descent method is an iterative technique exploring a set of solutions denoted by X, by repeatedly

making moves from one solution s to another s”in the neighbourhood N(s) of's.

Let a descent method be generally formulated as follows (GLOVER et al. [1993]):
begin '
Choose an initial solution s in X’

stop = false

repeat
Generate a sample V' " of solutions in N(s)
Find a best s'in V'~
if f{s) = f{s)  then stop = true
elses =5
until stop

end.

The initial solution s is found using the five step procedure described in the previous section starting

from a symmetric distance matrix, e.g. generated from a coordinates vector of # customers.

The neighbourhood of a solution is defined in terms of the tree on which the OCP-algorithm works.
In the tree, generating the current solution, altemately each of the n-/ edges is forbidden. A
neighbourhood tree is generated by putting the distance equal to infinity an by reproducing a
minimum spanning tree. All trees obtained in this way are investigated, i.. V' = N() If an
improvement is found further edges are forbidden without restoring the original distances for the

set of earlier forbidden edges. The procedure stops if no improvement is found or if no spanning




tree can be generated. The latter happens when the graph of non-forbidden edges, from which the

spanning tree has to be generated, is not connected.

3. An example problem

The chain partitioning procedure and its embedding into the descent heuristic will be explained
using a playtoy example. In the book by EILON et al. [1971, chapter 9] on distribution management ten
vehicle routing problems are investigated. For the case of illustration their problem no. 3 is used.
This problem is a 21-customer problem with one depot taken from an article by GASKELL [1967].
The original problem includes a drop time at each customer’s site and a limit on the maximal route
distance. These additional constraints are neglected in this example problem. The objective function
is to minimise the total distance travelled, using straight line distances and taking into consideration

a finite vehicle capacity.

In a first step a minimum spanning tree is set up using the pairs of arcs (in increasing order of
straight line distance; each pair has smallest customer index first) : (3,4), (5,7), (14,16), (7.9),
(0,14), (6,8), (1,2), (8,10), (0,12), (17,20), (12,15), (18,20), (19,21), (17,21), (16,17), (13,16),
(2,5), (9,10), (8,11), (10,12) and (3,6). The resulting spanning tree is shown in figure 2.

The post order numbering of the set of nodes is (in each pair mentioned the first element indicates
the original number, the second the post order number ): (0,21), (1,14), (2,15), (3,10), (4,9),
(5,16), (6,11), (7,17), (8,13), (9,18), (10,19), (11,12), (12,20), (13,5), (14,7), (15,8), (16,6), (17,4),
(18,0), (19,2), (20,1) and (21,3). The tree with post order numbering is shown in figure 3.
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The chains generated by the OCP-algorithm (ordered in increasing post order number and

connected to the root node) together with their TSP solution are:

(0,1,4,21) 74
(2,3,21) 77
(9,10,21) 86
(12,21) 46
(14,15,16,17,18,21) 112
(11,13,19,21) 63
(8,20,21) 43
(5,6,7,21) 42
Total 543

The chains generated are shown in figure 4. The edges not in the chains are crossed.

The initial number of tours is equal to eight.

4. Conclusion

A correspondence between the vehicle routing problem and the optimal chain partitioning of a tree
is formulated. Its main advantage is that neighbourhood search always generates a feasible solution
for the vehicle routing problem. Neighbourhood search methods (as descent methods, tabu search
and simulated annealing) for problems with constraints have low efficiency because they generate
infeasible solutions. The method is illustrated on a small example. Further experimentation is

required to evaluate the method’s capability of generating high quality solutions.
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