
ABSTRACT 

 

In this paper, the choice between different freight transportation modes is analyzed 

from the viewpoint of a shipper/receiver. The analysis is based on the concept of 

total logistics costs. This means that, when comparing different transportation 

modes, not only the cost of transportation itself should be considered by the shipper, 

but also all other costs in the supply chain that are affected by the choice of 

transportation mode. 

 

The concept of total logistics costs is illustrated by means of a case study, in which a 

comparison is made between road haulage and inland navigation for the transport of 

bulk goods. The trade-off between transportation costs and inventory costs is made 

explicit, i.e. while inland navigation has lower transportation costs than road 

haulage, its inventory costs are higher. Due to the fact that the goods considered are 

of relatively high value, the lower transportation costs of inland navigation are more 

than offset by its higher inventory costs. 
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1. INTRODUCTION1  

 

Models of modal choice in freight transportation can be categorized into different areas. 

Cunningham (1982, p. 66) distinguishes the following four categories: (i) the traditional 

approach, (ii) the revealed preference approach, (iii) the behavioural approach and (iv) the 

inventory-theoretic approach. This paper exclusively deals with those models belonging to 

Cunningham’s (1982) fourth category [1]. An inventory-theoretic model of freight 

transportation is a model that attempts to analyze modal choice based on the concept of 

total logistics costs (cf. Ballou, 1999; Coyle et al., 1996). This means that, when 

comparing different freight transportation modes, a shipper/receiver should not only 

consider the cost of transportation itself, but also take into account all other costs in the 

supply chain that are affected by the choice of transportation mode. Examples of these so-

called non-transportation logistics costs are the costs of goods handling, packaging, 

inventory carrying, stock-outs, facility location, etc [2]. 

 

Or stated in the words of De Hayes (1969): “The choice of transport mode directly affects 

all other elements of the logistics system (e.g. packaging, production, planning, 

warehousing, facility location, information processing and inventory control). 

Consequently, the transport method must be selected to provide for efficient operation of 

the entire system.” (quoted in Bardi, 1973, p. 23-24). 

 

In a study conducted by the Flemish Economic Alliance (1999) with respect to the so-

called alternative modes for freight transportation [3], it is shown that, besides the pure 

transportation costs, shippers also consider reliability, flexibility and average delivery time 

of a transportation mode as being very important factors when making a modal choice 

decision. Factors of secondary importance are safety, capacity, density of the transport 

network, regulation/legislation and environmental considerations [4]. 

  

While it is clear that not all of these elements can be expressed and modelled in terms of 

logistics costs, some elements can. This will be illustrated in the following sections. In 

                                                           
1 The authors would like to thank Prof. dr. E. Van de Voorde, Prof. dr. G. Blauwens and drs. W. Dullaert for 
their useful suggestions and comments on an earlier version of this paper. All errors remain the sole 
responsibility of the authors. Research funded by the UFSIA-RUCA Faculty of Applied Economics (Grant 
No TPROZR23000) and by the Fund for Scientific Research of the Flemish Community (Grant No 
TPROZF58000). 
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section two, a literature review is given on the inventory-theoretic approach towards modal 

choice in freight transportation. This literature review will lead us to the development of a 

total logistics costs model.  The resulting model will in turn be used in section 3, in which 

a case study, partially based on real-market company data, is presented. In section 4 the 

main findings will be summarized and some avenues for further research suggested. 

 

 

2. LITERATURE REVIEW 

 

The work by Baumol and Vinod (1970) on the inventory-theoretic approach towards modal 

choice in freight transportation may be considered pathfinding. In their paper, the choice 

process of a transportation mode is shown to involve a trade-off among the following 

variables: (i) freight rates, (ii) average delivery time, and (iii) variance in delivery time.  

 

The total logistics costs (TLC) of a transportation mode are formulated as follows (Baumol 

and Vinod, 1970, p. 419): 

 

TLC = r.T + u.t.T + 
s
a  + 

2
.. Tsw  + w.K Tts ).( +   (1) 

 

Where TLC =  total logistics costs of a transportation mode (on an annual basis) 

r    =  transportation cost per unit (including freight rate, loading and unloading,  

insurance,…) 

 T   =  total amount transported per year (in units) 

u   =  in-transit carrying cost per unit per year 

t   =  average time needed to complete a shipment (in years)  

a   =   cost of ordering and processing per shipment  

s   =  average time between shipments (in years) 

 w   =  warehouse carrying cost per unit per year  

K   =  a constant, depending on the specified probability of no stock-outs during  

lead time 

 

The first term in relation (1) refers to the annual transportation costs incurred by the 

shipper (sometimes these costs are referred to as the out-of-pocket costs). In the second 
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term the annual in-transit carrying costs are added. The next term indicates the annual 

ordering costs. The fourth term points to the inventory carrying costs at the destination, 

excluding the costs of safety stock. These costs of safety stock are given in the last term.  

 

Clearly, Baumol and Vinod’s (1970) approach takes account of both transportation costs 

and inventory costs. In what follows, the different components of the total logistics costs 

will be briefly discussed. Emphasis is placed on the relation between these costs and the 

modal choice decision. 

 

2.1 Transportation costs 

 

As far as the transportation costs are concerned, Baumol and Vinod (1970) assume a 

constant shipping cost r per unit. In other words, transportation costs do not vary with 

volume per shipment or with distance. Obviously, this assumption is not very realistic. In 

reality, due to the existence of economies of scale, transportation costs per unit decrease 

with increasing shipment size [5].  

 

In order to solve this problem, Langley (1980) adapts the model of Baumol and Vinod 

(1970) by describing a number of alternative relationships between the quantity shipped 

and the transportation cost per unit. If Q represents the Economic Order Quantity (EOQ), 

the following relationships can be formulated (Langley, 1980, pp. 112-117): 

 

(i) a proportional relationship:  r = a – bQ  

(ii) an exponential relationship: r = a + b   with 0 < c < 1  Qc

(iii) an inverse relationship: r = a + 
Q
b  

(iv) a discrete relationship, where per unit transportation rates are constant over specific 

ranges of Q, and decrease as certain minimum shipment volumes are reached [6]. 

 

It is obvious that from the viewpoint of the transportation costs only, a rational shipper 

would always choose the mode with the lowest transportation costs. As mentioned before, 

however, a comparison of different modes should not be limited to a comparison of just 

one criterion (i.e. transportation costs). Other logistics costs have to be taken into 
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consideration as well. A good example of these so-called non-transportation logistics costs 

are the inventory costs.  

 

2.2 Inventory costs 

 

The total inventory costs consist of four elements, i.e. (i) order costs, (ii) costs of inventory 

in transit, (iii) cycle stock costs, and (iv) safety stock costs.  

 

2.2.1 order costs 

 

The calculation of the annual order costs is rather straightforward: since s is the average 

time between shipments (in years), 1/s orders are placed every year, with an associated 

order and processing cost of a per order.  

 

Clearly, one can reduce the annual order costs by keeping the annual number of orders 

low, i.e. shipping goods in large quantities. The impact of these costs, however, should not 

be overestimated. In most cases nowadays, the order and processing costs only play a 

minor role in the total logistics costs. With the introduction of large-scale automation and 

computerization in logistics, ordering and processing have indeed become much less 

labour-intensive (Blauwens et al., 2001, p. 263). 

 

Another way to reduce the order costs, is grouping orders for different parts into one large 

shipment (consolidation). In this case, the aggregate order cost is less than the sum of the 

individual order costs when the items are ordered separately.  

 

However, when considering whether or not to consolidate items into a larger shipment 

size, one has to keep in mind that this has an effect on a whole series of logistics costs. Not 

only the order costs are affected, but also transportation costs and inventory costs [7].  

 

2.2.2 costs of inventory in transit 

 

According to Baumol and Vinod (1970, p. 415), “freight in transit can be considered to be, 

in effect, an inventory on wheels, a working capital inventory perfectly analogous with 

goods in process in the factory”.  
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The calculation of these costs is also straightforward. Multiplying the in-transit inventory 

cost per unit per year u by the average time (in years) to complete a shipment t yields the 

in-transit inventory cost per shipment. Multiplying this figure by the number of shipments 

yields the annual in-transit inventory costs. 

 

It is obvious that the in-transit inventory costs encourage the use of fast transportation 

modes, such as road haulage or air transport. The premium one normally has to pay for this 

faster service is a higher transportation cost, as compared to, for example, rail transport or 

inland navigation (see also Ballou, 1999, p. 139).   

 

2.2.3 cycle stock costs 

 

As can be noted in relation (1), average cycle stock at the destination is equal to half the 

shipment size: s.T units are delivered each time, with these units gradually being used up 

until the next shipment arrives [8]. Multiplying this average inventory by the annual 

warehouse carrying cost w gives us the annual cycle stock costs at the destination. In the 

case where there exists cycle stock at the origin as well (e.g. as a result from goods being 

assembled and waiting to be shipped to the destination), the fourth term in (1) would 

double to w.s.T. (see also Larson, 1988). 

 

Baumol and Vinod (1970) do not include cycle stock at the origin in their cost model. In 

this respect, Sheffi et al. (1988) argue that, if the origin is sending goods to many different 

destinations, resulting in an outbound shipment frequency that is much higher than the 

inbound shipment frequency at each of the destinations, cycle stock at the origin can 

indeed be neglected (Sheffi et al., 1988, p. 144-145) [9]. 

 

While the in-transit inventory carrying costs encourage the use of fast transportation modes 

(cf. supra), the cycle stock costs encourage the use of transportation modes with small 

capacities. After all, the use of such modes decreases the average time between shipments 

s, which in turn decreases the cycle stock costs (cf. (1)). Given that fast transportation 

modes normally transport small quantities (e.g. air transport), the distinction between these 

two logistics costs is not always clear. In essence, however, these two elements are of a 

completely different nature and should not be confused (Blauwens et al., 2001, p. 248). 
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2.2.4 safety stock costs 

 

A final element of the inventory costs are the costs incurred by holding safety stock or 

buffer stock at the destination. The safety stock is the inventory a company holds in 

addition to cycle stock as a buffer against delays in receipt of orders or changes in 

customer buying patterns. Holding safety stock may help a firm to avoid the negative, 

customer-related consequences of being out of stock (Coyle et al., 1996). 

 

Assuming that the stochastic elements in their problem satisfy a Poisson distribution, 

Baumol and Vinod (1970) calculate the safety stock as follows (see also Whitin, 1953, p. 

42-56): 

 

K . Tts ).( +   (2) 

 

Two important parameters for determining the safety stock are the average lead time t and 

the average time between shipments s. The larger these two variables, ceteris paribus, the 

larger the safety stock. The parameter K is a so-called Poisson multiplier (Larson, 1988, p. 

43). 

 

Das (1974, p. 183) argues that the Poisson-assumption may be inaccurate and, if not 

satisfied, results in an overestimation of the required level of safety stock. Therefore, an 

alternative way to compute the safety stock is needed. A useful approach is to assume that 

the safety stock is a function of demand during lead time, which in turn is dependent on the 

distribution of lead times and the distribution of demand during a fixed interval, assuming 

that all distributions are stationary and independent (Cawdery, 1976, p. 971) [10]. 

 

Under the assumptions that demand during lead time is normally distributed [11] and that 

the shortage criterion is to keep the probability of stock-out during any lead time period 

below a specified value p, the level of safety stock can be calculated as follows (see also 

Fetter and Dalleck, 1961, pp. 105-108):  

 

SS = K . σ (3) 
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Where  SS = safety stock 

K = the so-called safety factor, i.e. the value such that the area under the 

standard normal curve to the right of K is equal to p (defined above) 

σ = the standard deviation of demand during lead time 

 

In essence, the calculation of safety stock involves the computation of two elements: K and 

σ.  

 

 computation of K 

 

It is obvious that the necessary level of safety stock increases with decreasing probabilities 

of stock-out during lead time and vice versa. To illustrate, table I gives an overview of 

some values for p and K.  

 

TABLE I: SOME VALUES FOR P AND K 

 

p K p K
50% 0,00 4% 1,75
40% 0,25 3% 1,88
30% 0,52 2% 2,05
20% 0,84 1% 2,33
10% 1,28 0,50% 2,58
5% 1,64 0,05% 3,30

 

Source: Blauwens et al., 2001, p. 256 

 

From table I, it can be seen that if one is willing to accept a stock-out during lead time with 

a probability of 50%, there is no need to hold any safety stock (K = 0). In this case, a 

shipment is planned to arrive when inventory level has fallen to zero. Hence, in one out of 

two cases, there will be a shortage prior to shipment arrival. 

 

Reducing the probability of stocking out during lead time to 40% requires a safety stock 

that is 0,25 times the standard deviation of demand during lead time. Reducing it even 

further to 30% requires about a doubling of this safety stock level (K-value of 0,52). If a 

stock-out may only occur in 5% of the cases, the safety stock increases to 1,64 times the 

standard deviation of demand during lead time. If one is only willing to accept a risk of 
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stock-out of e.g. 0,05% (i.e. a stock-out only occurs once every 2.000 deliveries), safety 

stock should be equal to 3,30 times the standard deviation of demand during lead time. 

 

 computation of σ 

 

The standard deviation of demand during lead time can be computed as a function of four 

variables, namely (i) average lead time , (ii) variance of lead time V , (iii) average 

demand  and (iv) variance of demand V . In essence, two cases can be distinguished. 

tM

d

t

dM

 

 (i) lead time is independent from demand 

 

If lead time is independent from demand and demand itself is not autocorrelated [12], the 

standard deviation of demand during lead time can be computed as follows (Das, 1974, p. 

184): 

σ = tddt VMVM 2+   (4) 

 

Gross and Soriano (1969, p. 68-69) provide another way of determining the standard 

deviation of demand during lead time. It is computed as follows: 

 

σ  = dµ
222
ttdt vv µµ +  (5) 

 

Where tµ  = average lead time 

 =  coefficient of variation of the lead time (not to confuse with V ) tv t

 dµ = average demand 

  = coefficient of variation of demand (not to confuse with V ) dv d

 

In contrast to the standard deviation (.)σ , which is an absolute measure of the dispersion 

of a set of numbers, the coefficient of variation  is a relative measure of this dispersion. 

It allows us to consider the dispersion as a proportion of the mean (Aczel, 1993, p. 38). 

The formula for  is equal to 

(.)v

(.)v
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(.)v  = 
average

deviation standard  = 
(.)
(.)

u
σ  (6) 

 

A large v-value characterizes a situation where the fluctuations in the variable considered 

are large in comparison to the average of the variable. From the above formulas it is clear 

that even if lead time variability increases sligthly, the resulting increase in safety stock 

should not be neglected (see also Bramson, 1962; Zinn and Marmorstein, 1990). 

 

It is easy to verify that formulas (4) and (5) are exactly the same. If we replace v  by t
t

t

M
V

 

and  by dv
d

d

M
V

, we obtain 

 

σ  = dM
2

2

2











+











t

t
t

d

d
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V
M

M
V

M  

 

which leads to 

 

σ  = 
2

22

2

2











+











t

t
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d

d
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M
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MM  = tddt VMVM 2+  

 

 

(ii) lead time is not independent from demand 

 

If lead time is not independent from demand, the computation of σ  is somewhat different, 

namely (Allen et al., 1985, p. 455): 

 

σ = dttddt VMVM σσ++ 22   (7) 

 

Where tσ  and dσ  represent the standard deviation of lead time and of demand, 

respectively, and all other elements are defined above. 
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Formulas (4) and (7) show the impact of both the speed and the reliability of a transport 

mode on safety stock: the faster and the more reliable a transport mode (the smaller  

and V ), ceteris paribus, the smaller the safety stock which is needed at the destination (see 

also Tyworth, 1991). If, in the extreme (but unrealistic) case,  and V  would both be 

equal to zero, there would be no need to hold safety stock (cf. the concept of just-in time 

deliveries). It is obvious that a stockout during lead time cannot occur in a situation where 

lead time is always zero. In this case, order arrivals would coincide with the point in time 

where stock level reaches zero (Howard, 1974/75, p. 97). 

tM

t

tM t

 

 using the variance of forecast errors instead of the variance of demand 

 

Zinn and Marmorstein (1990) compare two alternative methods to determine the level of 

safety stock. In the first method, the so-called Demand System, the level of safety stock 

depends on the variability of demand. It is computed as K.σ  with σ  determined as in 

relation (4). 

 

The second method, called the Forecast System, uses the variability of demand forecast 

errors as a basis to determine safety stock levels. Safety stock is computed as 

 

K . tdft VMVM 2+   (8)  

 

Where V  represents the variance of forecast errors (the other elements are defined above). 

As one can see, the only difference is that, in the second method, the variance of demand 

 is substituted by the variance of the forecast errors V . All other parameters remain the 

same. Nevertheless, the authors argue that there is a substantial difference between the two 

systems: “Simulation results indicate that the Forecast System, albeit less prominent in the 

logistics literature, typically requires about 15% less safety stock to provide the same level 

of customer service” (Zinn and Marmorstein, 1990, p. 96) [13].  

f

dV f
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 the assumption of normality of demand during lead time 

 

From the above, it is clear that modelling the distribution of demand during lead time is 

essential to evaluate the effects of speed and consistency of delivery on inventory holding 

costs (Tyworth, 1991, p. 304).  

 

In the inventory literature, two basic methods of modelling the lead time demand 

distribution are identified. One method is to model this distribution directly from empirical 

data. Although this can be a reasonable approach, potential limitations make it undesirable 

for theoretical and practical reasons (Tyworth, 1991; Bagchi et al., 1984; Silver and 

Peterson, 1985). 

 

The other method is to model the lead time and demand elements individually, and then 

construct a compound statistical distribution of demand during lead time (Tyworth, 1991; 

Tyworth, 1992; McFadden, 1972; Mentzer and Krishnan, 1985; Bagchi and Ord, 1983; 

Bagchi et al., 1984; Bagchi et al., 1986). In this respect, Lu et al. (1962, p. 503) argue that 

“if both demand and lead time are stochastic, it is usually more convenient to collect the 

necessary data for estimating the means of demand (per unit time) and lead time than 

estimating directly the mean and the standard deviation of demand during lead time”. 

 

The conventional procedure used in transportation selection models to estimate the effects 

of average lead time and lead time variability on inventory costs is as follows (Tyworth, 

1991, p. 304): assuming that demand during lead time is normally distributed, Fetter and 

Dalleck’s (1961) “numerical method” can be used to calculate the mean and standard 

deviation of demand during lead time. Following inventory theory, the safety stock can 

then be calculated as proportionate to the standard deviation of demand during lead time 

(see relation (4)). 

 

Although widely used in the literature, Tyworth (1991) indicates some important 

conceptual and practical limitations to this second approach.  

 

First of all, “almost all transportation selection models that deal with stochastic lead time 

and demand, bypass efforts to model demand and lead time to construct the compound 

distribution of demand during lead time”. Instead, “they directly assume that demand 
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during lead time is normally distributed and that one can estimate the mean and variance of 

both lead time and demand (…) This approach is very useful from a practical viewpoint, 

since it eliminates the need to model the functional form of demand and lead time to 

construct lead time demand” (Tyworth, 1991, p.308) [14].  

 

However, “the use of the normal distribution to characterize lead time demand is, in 

general, unwarranted”. In effect, “the theoretical or empirical justification for the general 

use of the normal distribution assumption is lacking”. Moreover, “incorrectly assuming 

that demand during lead time is normally distributed can be costly” (Tyworth, 1991, p. 

308-309) [15].  

 

According to Tyworth (1992, p. 102), “the difficulties involved in evaluating non-normal 

shapes of the lead time demand distribution through the use of convolution procedures 

makes the normal distribution a convenient refuge.” However, “the lead time demand 

distribution is prone to have a non-normal shape. Studies show, for example, that the 

distributions of transit time are often positively skewed and are subject to systematic 

‘weekend’ effects – two characteristics that undermine the normality assumption [of 

demand during lead time]”. 

 

In this respect, Mentzer and Krishnan (1985) argue that the assumption of a normal 

distribution for the demand during lead time is not valid, since the normal distribution is 

defined between –∞ and +∞ and this can create the probability of negative demand [16]. 

 

Therefore, there exist many other assumptions concerning the distribution of demand 

during lead time. Examples include the negative binomial distribution, resulting from a 

poisson distributed demand and a gamma distributed lead time (Cawdery, 1976) [17] and 

an approximate gamma distribution, resulting from a normally distributed demand and 

gamma distributed lead time (Tyworth, 1991) [18].  

 

Kottas and Lau (1979) have developed an approach in which a four-parameter distribution 

is used to characterize demand during lead time. Such a distribution has more capability to 

fit diverse non-normal shapes than distributions with fewer parameters (Tyworth, 1992, p. 

102). Tyworth (1992) goes a step further, in that he presents a “paradigm shift” in which 

the technically difficult task of constructing a compound distribution of demand during 
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lead time is no longer required. Instead, his method is based on the convex combination of 

period demand distributions constructed over the range of possible lead times. When 

certain conditions are met, Tyworth’s (1992) approach enables one to accurately estimate 

the effects of speed and consistency on safety stock without knowledge of the shape of the 

lead time demand distribution. This is a major advance (Keaton, 1995, p. 107). 

 

Second, Tyworth (1991, p. 311) argues that an explicit distinction should be made between 

shipping time and lead time: “lead time includes both ordering time and shipping time. 

Ordering time, which comprises preparation, transmittal and processing elements, may 

represent 40 per cent or more of the lead time”. Therefore, “by treating shipping time as 

lead time, transportation selection models underestimate lead time and thus the standard 

deviation of demand during lead time (…) The result is an underestimation of safety stock 

costs” [19]. 

  

2.3 Trade-offs between transportation and inventory costs 

 

From the above discussion it should be clear that, in many cases, a trade-off exists between 

transportation costs and inventory costs: if one wants to cut transportation costs by 

shipping in large quantities with a slow transportation mode (for example inland navigation 

instead of road haulage), one has to keep in mind that this leads to an increase in both the 

in-transit inventory costs and the inventory costs at the destination (i.e. cycle stock and 

safety stock) [20]. For an overview of other cost trade-offs in logistics, the reader is 

referred to Herron (1975, p. 253). 

 

Lang et al. (2000) analyze the trade-off between transportation costs and inventory 

carrying costs for the case of road haulage versus rail transport. They argue that “if the rate 

of use of the product is high and the value of the product is relatively low, the additional 

inventory associated with the larger rail shipment sizes can be more than offset by their 

lower transport costs. If, on the other hand, the value of the product is high and it is used 

slowly, the cost of additional inventory associated with a large rail shipment size may 

exceed the differential in transport rates between truck and rail” (Lang et al., 2000, p. 4; 

see also Swan and Tyworth, 2001). In the present paper, the effect of the value of the 

goods on the total logistics costs is analyzed in the case study (see section 3). 
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Similar “Total Logistics Costs” models as the one developed by Baumol and Vinod (1970) 

can be found in Buffa and Reynolds (1977), Constable and Whybark (1978), Liberatore 

(1979), Buffa and Reynolds (1979), Langley (1980), Blumenfeld et al. (1985a), Allen et al. 

(1985), McFadden et al. (1985), Buffa (1986a), Sheffi et al. (1988), Larson (1988), Perl 

and Sirisoponsilp (1988), Tersine et al. (1989), Tyworth (1991), Allen and Liu (1993), 

Tyworth and O’Neill (1997), Tyworth and Zeng (1998) and Swan and Tyworth (2001).  

 

The model developed by Constable and Whybark (1978) is very similar to that of Baumol 

and Vinod (1970). However, there is one big difference as far as the safety stock is 

concerned. Rather than assuming the existence of a specific level of safety stock to account 

for uncertainty in demand forecasts and delivery time, Constable and Whybark (1978) 

incorporate a backorder cost function in their model (Langley, 1980, p. 109) [21]. 

 

 In Blumenfeld et al. (1985a) a distinction is made between direct shipping from origin to 

destination on the one hand and shipping via a consolidation terminal on the other. Transit 

times and demands are assumed fixed, so safety stock issues are not considered explicitly. 

Buffa (1986a) also evaluates alternative plans to consolidate inbound freight. His total 

logistics cost model includes (i) transportation costs (i.e., shipping cost and in-transit 

holding cost), (ii) consolidation costs (order cost and handling and storage costs at the 

consolidation terminal), and (iii) inventory costs (purchasing, ordering, holding and 

stockout costs). Three alternative plans for consolidation are studied, with each plan having 

a different impact on total logistics costs [22].  

 

 

3. A CASE STUDY 

 

In this section, a case study is presented in which the concept of total logistics costs is 

illustrated. The case study deals with a shipper who currently uses road haulage for 

incoming bulk goods, but who is planning to switch modes to inland navigation for some 

of these goods flows. The case study is partially based on real-market company data. Due 

to confidentiality reasons, the name of the company and the commodity type cannot be 

disclosed. 
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Whether or not the modal shift to inland navigation is justified from the viewpoint of total 

logistics costs will be analyzed in the following paragraphs. First, the transportation costs 

of both modes are discussed. Then the inventory carrying costs are calculated. The fixed 

costs are discussed thereafter. The starting data are presented in table II. 

 

 

TABLE II : CASE STUDY DATA 

  

Road haulage Inland navigation

Shipment size 25 tonnes 1,200 tonnes

Transportation costs 10.91 euro per tonne 8.43 euro per tonne

Average lead time 0.19 days 4.48 days

Lead time variance

Value of the goods

Inventory costs

fixed costs 0.09 euro per tonne 0.45 euro per tonne

Annual volume 55,000 tonnes

proportionate with average lead time

620 euro per tonne

93 euro per tonne

Note: 1 euro ≅ 0.9 US $ 

 

 

3.1 Transportation costs 

 

As can be seen from table II, a modal shift from road haulage to inland navigation enables 

the shipper to economize on the transportation costs. Shipping the goods in a 1,200-tonne 

barge is more than 20% cheaper than road haulage. 

 

Hence, based on the transportation costs only, no rational shipper would choose to 

transport the goods by truck in this specific situation. As mentioned before, however, a 

comparison of freight transportation modes should not be limited to a comparison of their 

transportation costs. There are other costs in the supply chain that are affected by the 
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choice of transportation mode and that have to be taken into consideration as well. In the 

following paragraphs, we discuss the inventory carrying costs and the fixed costs. It will be 

shown that these costs, contrary to the transportation costs, play to the disadvantage of 

inland navigation. 

 

3.2 Inventory costs 

 

The cost of keeping goods in inventory comprises four elements (Blauwens et al., 2001; 

Lambrecht, 1999; van Goor et al., 2000): (i) interest costs, (ii) depreciation costs, (iii) 

insurance costs and (iv) warehousing costs.  

 

In this specific case study, the annual inventory costs amount to 15% of the value of the 

goods. Since this value is 620 euro per tonne, inventory costs are 93 euro per tonne per 

year. This amount applies both to the inventory in transit and the inventory at the 

destination. We can now calculate the in-transit inventory costs, the cycle stock costs and 

the costs of safety stock. 

  

3.2.1 in-transit inventory costs 

 

The average lead time of road haulage, loading and unloading included, is about 4.5 hours 

or approximately 0.19 days. The in-transit inventory costs are therefore 

 

0.19 days x 
365
93  euro per tonne per day = 0.05 euro per tonne. 

 

Of course, transport by inland navigation requires a longer transit time. Based on revealed 

facts, the average lead time of this transportation mode amounts to 4.48 days, loading and 

unloading included. This rather long lead time can be explained by the fact that the barge 

has to pass quite a lot of locks on its route, which inevitably leads to waiting times. In 

addition, there are waiting times due to regulations that prohibit navigation on the channels 

on particular days of the week. The in-transit inventory costs for inland navigation can be 

calculated in the same manner as we did for road haulage. They amount to 1.14 euro per 

tonne. 
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3.2.2 cycle stock costs 

 

As discussed above (see relation (1)), the average cycle stock at the destination is equal to 

half the shipment size. It is clear that this has an impact on the modal choice decision. In 

the current situation, i.e. using road haulage in 25-tonne trucks, the average cycle stock is 

12.5 tonnes. This leads to cycle stock costs of  

 

12.5 tonnes x 93 euro per tonne per year = 1,163 euro per year. 

 

Since the annual volume to be transported is 55,000 tonnes, the cycle stock costs are 0.02 

euro per tonne. 

 

When switching to inland navigation, cycle stock costs will of course rise. Shipping in 

quantities of 1,200 tonnes makes that on average 600 tonnes are in cycle stock. This in turn 

leads to cycle stock costs of 55,800 euro per year or 1.01 euro per tonne. 

 

3.2.3 safety stock costs 

 

In the current situation, the safety stock at the shipper’s premises is 250 tonnes. This safety 

stock should be seen in relation to the total incoming goods flow, which is 127,000 tonnes. 

Safety stock costs are therefore equal to 23,250 euro per year or 0.18 euro per tonne. 

 

We now have to calculate how this safety stock should be adapted when the shipper 

decides to make the modal shift to inland navigation. Assuming that demand during lead 

time is normally distributed and that the shipper does not wish to accept a higher risk of 

running out of stock when making the modal shift, the safety stock for inland navigation 

can easily be derived from the safety stock for road haulage. This is illustrated in the 

following calculations. 

 

Recall from relations (2) and (3) that the level of safety stock can be calculated as  

 

SS = K. σ 
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Where  SS = safety stock 

K = the safety factor 

σ = the standard deviation of demand during lead time = tddt VMVM 2+  

  

Switching from road haulage to inland navigation only affects the average lead time  

and the lead time variance V . There is no reason to assume that average demand  and 

variance in demand V  will be affected by the modal choice decision. 

tM

t dM

d

 

Since we have no data on the lead time variance for road haulage, we make the (neutral) 

assumption that this lead time variance is proportionate to the average lead time.  

 

Since the average lead time increases from 0.19 days to 4.48 days when switching from 

road haulage to inland navigation, both  and V  are multiplied by (4.48/0.19) = 23.58. 

As a consequence, the standard deviation of demand during lead time is multiplied 

by

tM t

58.23  = 4.86. 

 

This means that, in order to keep the risk of a stockout constant, the safety stock should be 

increased from 250 tonnes in the case of road haulage to (250 x 4.86) = 1,214 tonnes in the 

case of inland navigation. This leads to safety stock costs of 112,902 euro per year or 0.89 

euro per tonne. 

 

3.3 Fixed costs 

 

A final element of the total logistics costs are fixed costs, i.e. costs that do not vary with 

the level of stock. These costs consist of investments in infrastructure (construction of an 

unloading quay) and superstructure (unloading equipment and a large warehouse to store 

the goods) and warehouse insurance costs [23]. Taking into account these investments and 

the appropriate depreciation terms, it was found that fixed costs equalled 0.09 euro per 

tonne for road haulage and 0.45 euro per tonne for inland navigation (see table II). 
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3.4 Total logistics costs 

 

On the basis of the elements described and calculated above, we can now calculate the total 

logistics costs for road haulage and inland navigation. These total logistics costs, which 

comprise transportation costs, inventory costs and fixed costs, are presented in table III. 

 

TABLE III : TOTAL LOGISTICS COSTS FOR ROAD HAULAGE AND INLAND NAVIGATION  

(ALL COSTS ARE PER TONNE) 

 

Road haulage Inland navigation

Transportation costs 10.91 euro 8.43 euro

In-transit inventory costs 0.05 euro 1.14 euro

Cycle stock costs 0.02 euro 1.01 euro

Safety stock costs 0.18 euro 0.89 euro

Fixed costs 0.09 euro 0.45 euro

Total Logistics Costs 11.25 euro 11.92 euro
 

 

It can be seen from table III that, despite its significantly lower transportation costs, inland 

navigation turns out to be the more expensive transportation mode from the viewpoint of 

total logistics costs. Its advantage in transportation costs is more than offset by its 

disadvantage in inventory costs. This can be explained by the fact that the bulk goods 

considered are of relatively high value (620 euro per tonne). 

 

Table IV indeed shows that for goods with a lower value, transport by inland navigation is 

actually cheaper than road haulage. In the case of bulk goods with a value of 50 euro per 

tonne, e.g., inland navigation is about 17% cheaper than road haulage. As the value of the 

goods increases, the gap between both transportation modes narrows. The break-even 

value of the goods, i.e. the value where both modes have the same total logistics costs, is 

about 470 euro per tonne. From this point onwards, the balance turns in favour of road 

haulage (see also figure 1). For bulk goods with a value of 1.000 euro per tonne, e.g., 
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inland navigation would be about 20% more expensive than road haulage in this specific 

situation. 

 

TABLE IV : TOTAL LOGISTICS COSTS (TLC) AS A FUNCTION OF THE VALUE OF THE GOODS 

Value TLC TLC ∆ TLC
(euro per Road Inland (euro per

tonne) haulage navigation tonne)

50 11.02 9.13 17.19%
100 11.04 9.37 15.12%
150 11.06 9.62 13.06%
200 11.08 9.86 11.00%
250 11.10 10.11 8.95%
300 11.12 10.35 6.91%
350 11.14 10.60 4.88%
400 11.16 10.84 2.85%
450 11.18 11.09 0.83%
500 11.20 11.34 -1.18%
550 11.22 11.58 -3.18%
600 11.24 11.83 -5.18%
650 11.26 12.07 -7.17%
700 11.29 12.32 -9.15%
750 11.31 12.56 -11.13%
800 11.33 12.81 -13.09%
850 11.35 13.05 -15.06%
900 11.37 13.30 -17.01%
950 11.39 13.55 -18.96%

1.000 11.41 13.79 -20.90%
 

Note: ∆ TLC = 
haulage road TLC

navigation inland TLC - haulage road TLC
 x 100 % 
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FIGURE 1: TOTAL LOGISTICS COSTS AS A FUNCTION OF THE VALUE OF THE GOODS 
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4. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

 

In this paper, the choice between different freight transportation modes was analyzed from 

an inventory-theoretic perspective. The analysis was based on the concept of total logistics 

costs, which means that all costs in the supply chain that are affected by the choice of 

transportation mode should be taken into consideration when making a modal choice 

decision. 

 

The concept of total logistics costs was illustrated by means of a case study, in which a 

comparison was made between road haulage and inland navigation for the transport of bulk 

goods. The trade-off between transportation costs and inventory costs was shown: while 

inland navigation had lower transportation costs than road haulage, its inventory costs were 

higher. Due to the fact that the goods considered were of relatively high value, the lower 

transportation costs of inland navigation were more than offset by its higher inventory 

costs. 
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A crucial assumption underlying the total logistics costs model presented at the beginning 

of this paper and used in the case study, was the normal distribution of demand during lead 

time. Under this assumption, safety stock could easily be calculated as proportionate to the 

standard deviation of demand during lead time.  

 

However, a number of previous studies have criticized this assumption on the grounds that 

it can lead to serious errors in safety stock. This is certainly an area for further research. In 

further publications, we would therefore like to report on the issue of non-normally 

distributed lead time demand. 

 

Yet, the impact of a misspecification of safety stock on total logistics costs should not be 

overestimated. In the case study, safety stock costs represent only 1,6% and 7,4% of the 

total logistics costs for road haulage and inland navigation, respectively. Even in the case 

of high value bulk goods (i.e. a value of 1,000 euro per tonne), safety stock costs would 

represent only 2,6% and 10,4% of the total logistics costs for road haulage and inland 

navigation, respectively. So even if there is a large misspecification of safety stock, this 

would not seriously affect the total logistics costs. 
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ENDNOTES 
 

[1] For a detailed discussion of all four categories, we refer to Cunningham (1982). Other ways of 

categorizing freight demand models can be found in Winston (1983) or McGinnis (1989). 

 

[2] According to Perl and Sirisoponsilp (1988, p. 22), transportation decisions can be classified into three 

hierarchical levels of managerial logistics decisions. The choice of a transportation mode and the choice of 

type of carriage is considered a strategic transportation decision. The selection of a specific carrier within the 

chosen mode and the determination of shipment frequency (or shipment size) is a tactical transportation 

decision. Finally, typical transportation decisions at the operational level include the assignment of loads to 

vehicles and the routing and scheduling of vehicles and crews. 

 

[3] In the context of freight transportation, an alternative mode is any mode other than road haulage (for 

example inland navigation, rail transport, air transport, shortsea transport, etc).  

 

[4] See also Bardi (1973), Saleh and Das (1974), Evans and Southard (1974), Gilmour (1976), Stock and La 

Londe (1977), Piercy and Ballou (1978), McGinnis et al. (1981), Chow and Poist (1984), Bagchi et al. 

(1987), McGinnis (1989), McGinnis (1990), Jeffs and Hills (1990).  

 

[5] For a discussion of economies of scale in road haulage and inland navigation, see Blauwens et al. (2001, 

p. 127-142). One has to keep in mind that, as far as economies of scale are concerned, there can be 

differences between the user and the producer of transport. After all, the price paid by the shipper is not 

always a function of the cost to the carrier. 

 

[6] For other assumptions regarding transportation costs per unit, see Sheffi et al. (1988), Tersine et al. 

(1989), Tyworth and Zeng (1998). 

 

[7] For an overview of the effects of consolidation on total logistics costs, see Masters (1981), Jackson 

(1985) or Buffa (1986a, 1986b, 1987). 

  

[8] See also Blumenfeld et al. (1985a, p. 364). 

 

[9] See also Blumenfeld et al. (1985a, 1985b), Horowitz and Daganzo (1986) or Blauwens et al. (2001). 

 

[10] See also McFadden (1972) and Danish (1972).  

 

[11] This assumption has been criticized in the literature – cf. infra. 

 

[12] Autocorrelation measures the extent to which values for a single variable are correlated over time. If 

demand is autocorrelated, this means that the demand observed in one particular day depends on the demand 
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in previous days. For a discussion of the effect of autocorrelation on customer service, see Zinn et al. (1992). 

See also Ray (1980). 

 

[13] For other advantages of the Forecast System approach, the reader is referred to Tyworth (1992, p. 108). 

 

[14] See also McFadden (1972), Eppen and Martin (1988), Lau (1989) and Tyworth (1992). 

 

[15] See also Speh and Wagenheim (1978), Nahmias and Demmy (1982), Tadikamalla (1984), Eppen and 

Martin (1988), Lau (1989), Tyworth et al. (1991b), Tyworth (1992), Keaton (1995) and Tyworth and O’Neill 

(1997). 

 

[16] See also Burgin (1975). 

 

[17] See also McFadden (1972), Bagchi et al. (1986) and Danish (1972). It is important to notice that 

Cawdery (1976) and McFadden (1972) analyze lead time in the context of inventory control. Their papers, 

however, do not deal with modal choice in transportation. Lead time therefore does not include transportation 

times – cf infra. 

 

[18] For an overview of other compound distributions of demand during lead time, see Bagchi et al. (1984, 

1986). See also Bott (1977) and Lau (1989). 

 

[19] See also Tyworth and Zeng (1998), Swan and Tyworth (2001) and Lau (1989). 

 

[20] See also Ballou and DeHayes (1967), Buffa and Reynolds (1977), Burns et al. (1985), Blumenfeld et al. 

(1985b), Sheffi et al. (1988), Larson (1988); Arcelus and Rowcroft (1991)  

 

[21] See also Allen et al. (1985), Blumenfeld et al. (1985b). 

 

[22] See also Buffa (1986b) and Buffa (1987). 

 

[23] As far as the construction of the unloading quay is concerned, the shipper can benefit from the so-called 

80/20-regulation. This is a form of public-private partnership (pps) between the shipper and the Flemish 

Government. The Government pays 80% of the investment in the quay, with the shipper paying the 

remaining 20%. In return, the shipper has to guarantee that a certain minimum volume will be transported by 

inland navigation. Through this form of cooperation, the Flemish Government wants to stimulate the 

transport by waterways. 
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