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Abstract

In the Fleet Size and Mix Vehicle Routing Problem with Time Windows
(FSMVRPTW) customers need to be serviced in their time windows at
minimal costs by a heterogeneous fleet. In this paper new heuristics for
the FSMVRPTW are developed. The performance of the heuristics is
shown to be significantly higher than that of any previous heuristic ap-
proach. .

1 Introduction

Although often assumed in theory, a trucking firm's vehicle fleet is rarely ho-
mogeneous. Vehicles differ in their equipment, carrying capacity, age and cost
structure. The need to be active in different market segments (2.g. container
and bulk transport) causes firms to buy vehicles with a container chassis, duwmp
installation ete. Vehicles of different carrying capacity allow a dispatcher to
maximize capacity utilization by deploying smaller vehicles in areas with a lower




concentration of customers. Moreover it is also possible to service customers re-
cuiring small vehicles because of accessibility restrietions (see e.g. Semet {1995),
Rochat and Semet (1994)). The differences in aquipment, carrying capacity and
the fact that vehicles might dlﬁer in age, causes them to have a different cost
structure.

- Congrary to the classical Vehicle Routing Problem with Tlme Windows

(VRPTW), the objective of the Fleel Sive and Mix VRPTW (FSMVRPTW) is
to minimize hoth routing costs end vehicle costs {incurred by acquiring vehicles)
of 2 heterogenous fleet. Liu and Shen (1998) designed the first initial heuristics
for the FSMVRPTW, yielding good feasible solutions. Their parallel savings
heuristics are inspired by Solomon's (1887) scquential insertion heuristics, In-
stead of linking routes, one route is inserted into another. Qur approach to
the FSMVRPTW is sequential insertivn-based. By extending Solomon’s (1987)
sequential insertlon heuristic I1 with vehicle insertion savings, based on Golden
et al. {1084}, significantly better solutions are cbtained.
The paper is organized as follows. In Section 2 the FSMVRPTW is formulated.
Section 3 gives a brief review of the FSMVRP(TW) literaturc. Scction 4 de-
seribes our sequential insertion heuristic for the FSMVRI'TW. Computational
. results are reported in Section 5 and conclusions are made in Seclion G.

2  Problem formulation

In the FSMVRPTW heterogeneously capacitated vehicles located at a depot are
required to service gengraphically scattered customers over a limited scheduling
period (e.g. a day). Lhe distance di; between each pair of customers is given.
Fach customer i has a known demand g; to be serviced at time 6, chosen by the
carrier. If time windows are hard, b; is chosen within a time window, starting at
‘the earliest time e; and ending at the latest time I; that custorner ¢ permits the
start of service. In the soft time window case, a vehicle is allowed Lo arrive lwo
late at a customer but a penalty is incurred. In both cases, a vehicle arriving
too early at customer 7, has to wait until e;. In this paper, we will assume time
‘windows are hard. If t;; represents the direct travel time from customer ¢ to
customer j, and s; the service time at customer 4, then the moment at which
service begins at customer j, by, equals max{e;, b; + 55 + t3;} and the waiting
time w; is equal to max{0, e; — (by+=;+15;)}. A e window can also be defined
for the depat in order to define a ‘scheduling horizon’ in which each route must
start and end (Potvin and Rousseau, 1993).

The objective of the FSMVRPTW is to minimize the sum of travel costs and -
fixed vehicle costs of servicing the customers within the time window limits. The
vehicle Beet consists of K different types of vehicles. ay is the capacity of the
vehicles of type k (o1 < ap < ... < ag), fr is the fixed acquisilion cosl of a

_vehicle of type &k (fi1 < fa <... < fi). Without loss of generality, the cost of
travelling a unit of time or distance is assurned to be equal to one.

Because the Vehicle Routing Problem (VRP) is N'P-hard, the ¥SMVRP
and the FSMVRPTW are AN'P-hard by restriction. This implics that problems
of real-lilfe dimensions can only efficiently be sclved by heuristic algorithms.
Gheysens et al. (1084) present a mathematical programming formulation fur

‘the feet: size and mix vehicle routing prohlem. This formulation is an extension
of the standard VRP formulation, in that a second term is added to the objective




finction in order to cope with the fixed {or avquisition) cust of the vehicle fleet.

3 Literature review for the FSMVRP (TW)

In the literature § types of heuristic approaches to the traditional FSMVRT are
distinguished {Qolden et al., 1984; Liu and Shen, 1999).

Adaptations of the Clarke and Wright (1964) sauings clgorithm start by
generating a separate route for each customer. At each step, two routes are
combined into one according to a savings criterion. For the FSMVRP, the
concept of savings not ouly includes savings in routing costs, but also savings in
fixed vehicle costs and so-called opportunity savings developed by Golden el al,
(1984). ‘These opportunity savings, discussed in Section 4.2, can result from
replacing two vehicles (routes) by one—possibly larger—vehicle.

The matching based savings heuristic dovaloped by Desrochers and Verhoog
{1991) is a paralle] route building heuristic. The matching based savings algo-
rithm concept for the classical VRP (Desrochers and Verhoog, 1988) considers
the savings associated with all feasible combinations of two routes by using a
weighted matching problem to select them. This algorithm is adapted to the
FSMVRP by using the opportunity savings criteria of Golden et al. (1984) (see
section 4.2).

Giant Tour Algorithms (Golden et al., 1984) ave examples of “route first—
cluster second” henristics. They start by generating a single tour that visits
all customers (for example by a 1'SP algorithm). This tour is then divided info
subtours, until all problem constraints are satisfied. The subtours are contiguous
segments of the origiral tour with the first and the last customer connected to
the depot. In & subsequent step, the solution obtained by one of these algorithms
can be enhanced through an improverment post-processur such ag 2-opt (Linw and
Kernighan, 1973) ar Or-opt (Or, 1976).

A two-stage general assignment based heuristic is developed by Gheysens
ot al. {1086). This beuristic uses Golden et al.’s (1984) lower bound procedure to
determine the fleet composition to be used in a generalized assignment heuristic
{Fisher and Juikutuar, 1981} in the second phase.

Salhi and Rand (1993) develop a seven-phase heuristic approach which tries

to improve the current solution at each phase. Their improvement modules .

aftempt to (1) match the total demand of a route to an appropriate vehicle, (2)
eliminate an entire route by inserting its customers in another route, (3) move
customers from a certain route to another one if this means that the former
route can be serviced by a smaller vehicle, (4) combine routes with smalier
demand into larger ones and (5) split large routes into smaller ones. Moreover,
a relaxation procedure is implemented that permits a more flexible merging and
splitting of the routes. )

Given the complexity of all variants of the VRP, several meta-heuristic proce-
dures hiave been proposad for the FSMVRYP and other similar problems. Semet
and Taillard (1993) develop and implement a tabu search metaheuristic for solv-
ing real-life vehicle routing problems. Their tabu search procedure is very fexi-
ble in that it allows for time windows, heterogeneous vehicles, vehicle-depsndent
utilization costs, accessibility and other restrictions. Rochat and Semet {1994)
develop a tabu search approach for & FSMVRIPTW which takes drivers’ breaks
and aceessibility restriclions iuto account. Rochat and Taillard (1995) develop a
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probabilistic diversification and intensification technique to improve local search
methods for vehicle routing problems. Brandio and Mercer {1897) develop a
tulu sesveh procedure for the multi-trip vehicle routing and scheduling prob-
lem (MTVRSP), in which each vehicle can make several trips per day. Besidoes

"the constraints cominan bu the REMVRPTW, their algorithm allows for both

weight and volume capacity restrictions on Lhe vehicles. Mozeover, aocess can

be restricted for some vehicles to some customers, and driver’s sehedules have

to respect maximum driving times.

Recently soveral authors have pointed out the importance of the quality of
injtial heuristics on the performance of motaheuristics, Liu and Shen (1999) con-
clide from the results reported by Garcia et al. (1994), Thompson and Psaraftis
(1993), and Potvin and Roussean (1995) that algorithma that only concentrate
on improving a poor initial solution do not perform very well within a lim-

ited computation time. Louis el al. (1999) report on the impact of good Ini-

tislization on solution quality and computational speed for genelic algorithms,
Van Breedam (2001) demonstrates the dependence of descent heuristics and
tabu search on the quality of the initial solution. '

To alleviste this problem, Liu and Shen (1999) develop a number of insertion-
based parallel savings heusistics capable of generating feasible solutions. Instead
of merging individual routes, the insertion of each route -in its original or re
versed order— is evaluated in all possible insertion places in all other routes
for different pararmeler settings. To take possible savings in vehicle acquisition
costs into account, Golden et al.'s (1884} suvings criteria are modified. Solution
quality can be enhanced by a composite impravemnent scherre.

4 A sequential insertion heuristic for the FS-
MVRPTW :

In this section, three new heuristics are developed lor the FSMVRPTW., First,
the general outline of the beuristics is presented. Second, the vehicle savings
criteria used in the first part, are elaborated on.

4.1 The general outline

Because Liu and Shen's (1899) heuristics evaluate the insertion of each route—in
it original or roversed order—in all possible insertion places in all other routes
for different parameter settings, the houristic is computationally expensive. We
extend Solomon’s (1987) sequential insertion heuristic to build a straightforward
and effective henristic for the FSMYRPTW.

The sequential insertion henristic starts by initializing the current route for

the smallest vehicle type. Routes can be initialived with the customer farthest -

from the depot or the one with the earliest deadline. After starting the cur-
rent route with the initialization criterion, the sequential insertion heuristic uses
the insertion criterion ep{4,u, ) to calculate for each unrouted stop w the best
place and associsted cost for insertion between two adjacent customers 1 and
§ in the current partial route (in,41, ... im) in which iy and 4, Tepresent the
origin and destination location of the vehicle (c.g the depot). Insertion crite-
rien ey (4, 1, 7) has to take into account both the additional distance e11(3, 4, J)




and time ¢12(4, u, ) needed to serve customer u plus the possible change in ve-
hicle costs. Solomon (1987) equals the additional time needed, e1a{t, u, 5), to
the difference between the new time at which service begins at customer j after
inserting u, 1%V, and the original start of service at 7, b;. We extend Solomon's
(1987) sequential insertion heuristic by adding a third component to the inser-
tion eriterion ¢;(3,u, ). The vehicle savings inserfion ¢13(i, 4, 7) 18 equal to one

- of the adapted sevings concepts defined in Section 4.2. The cheapest insertion

cost and the associated insertion place is determined for each unrouted customer
U as

C1 (7:7 u,j) = m’}ﬂlﬁl (lp 15Uy 7"p)]y p=1l..m (l)

in which

2
=

c1ldy u, ) = onen{i,u, §) + aversli, v, §) 1 oaciald,u, 5) with (
c1a{f, 1, §) = dy + dug — pdig, p = 0

cy{iyu, ) = 03 — b;

eraliy ) = ACS, AOOS, AROS

As opposed to Solomon {1987) we no longer requive the weighting factors oz
to sum.up to 1.
In a sccond step, the customer that is best according to the selection criberion
c2{5,u, 7} is selected. The selected customer w* is then inserted in the route
between ¢ and .

es(i, v, j) = n{:ax[c;(i,u, 4)]  w unrouted and feasible . (3

ea(t,u, 7)) = Mdou + tou) + sy + Flgu) — ca(,u, ), A 2 0 where (4)
5y = service bme of eustomer u

F{gy) = lixed cost of the smallest vehicle capable of moving a load gy,

T no remaining unrouted customer has a feasible insertion place, a new route
is indtialized and identified as the current route.

The iusertion criterion ¢, (5, %, 7) looks for that insertion place that minimizes '

a weighted aversge of the additional distance and time needed to include a
customer in the current parbial route, laking into account the effect on vehicle
costs. The weighting factors o; are used to guide the heuristic Lo different (local)
optiman. The selection criterion ca(i, u, §) tries to maximize the benefit derived
from inserting a customer in the current partial route rather than on & new,
direct route. Hollowing Ghoysens et al. (1984), F(g,) denotes the fixed cost of
the smallest vehicle capable of moving a load gy.

4.2 Specification of the vehicle savings insertion criteria

Golden et -al. (1984) define three approaches to vehicle costs from a parallel
savings perspective: Combined Savings, Optimistic Opportunity Savings and
Realistic Opportunity Savings. The Combined Savings (CS) approach extends




the Clarke and Wright (19684) heuristic by taking the #mmediale vehicle cost
savings by joilning two subtows ¢ and j. Let F{z) be the fixed cost of the
sinallesth vehicle that can service & demand of size z for a subtour. Then the
combined savings ;5 are defined as

Rig = 8i5 + Iz) + Fz5) — Flai+ 25) with (8)
855 = Coi + o5 — Gy (6)

Both the Optimistic Opportunity Savings (00S) Leuristic and the Realistic
Opportunity Savings (ROS) heuristic extend the Combined Savings concept by
vahiing Whe unused capacity of the vehicle servicing the combined subtours. The
008 heuristic «f; assnmes that in a future combination of routes, tho smallest
vehicle that can service the unused capacity, IP(z), can be absorbed.

sy = 8y + F(P(x +25) — 5 — =) @ .

The ROS heuristic s;j expects that only the largest vehicle that fits in the
unused capacity can be eliminnted. To this end, F/(2) is defined as the fixed
cost of the largest vehicle whose capacity is less than or equal to 2. The binary
variable w makes that opportunity savings are only talen inlu acrount when the
combination of two subtours requires a larger vehicle. If this is not the case, it is
unnecessary to use opportunity savings to encourage the use of laxger vehicles.

, s;j =&y + S(w)E (P(z; + ;) — 2 — #;) in which (8)
w = Pl + 2;) — P(max{z, z;}) o
0 if w=0
oo {71 o

To adapt Golden et al.’s (1984) savings concepts for ihe insertion heuristic,
the load of a vehicle and its maximum capacity are denoted by @ and & respes-
tively. The new load of the vehicle and its possibly new capacity after inserting
& new customer is reprosentod by @PY and QQP°¥, respectively. ]

The Adapted Combined Savings (ACS) concept is defined as the difference
Tsetween the fixed costs of the vehicle capable of transporting the load of the
route after and befofe inserting customer u, (F{Q"™) — £(Q))-

To reflect the original notion of Golden et al’s (1984) Optimistic Oppar-
tunity Savings, the Adapted Optimistic Opportunity Savings (AQOS) concept
extends the ACS by subtracting F(Q"*® — Q). This is the fixed cost of the
smallost vehicle that can service the unused capacity Q7 — Q™.

The Adapted Realistic Opportunity Savings (AROS) concept takes the fixed
cost of the largest vehicle smaller than or equal to the unused capacity, F/ {(Qrew —
Qr%), into account as opportunity saving. It only does so if & larger vehicle
is recruired to service the current tour after o new customer has been inserted.
The savings criteria are summarized in Table 1. )

5 Computational results

Recause we wanl fo eompare our heuristic's performance to Liu and Shen's
(1999) heuristics, we used the same Solomaon (1987) problem sets, vehicle ca-




Table 1: Savings insertion criteria

ALGORITHM Goupen Br AL, (1984) SAVINGS FORMULA

cw S35 == €04 T Coj — Cij

GS Sy = 8y FF(2) + Flzy) = Fz + )
1008 51j—SzJ“1'(P(4¢| %)~ % - %)

ROS sy =Byt SVF (Plz + 75) — 2 — %)

ALGORITHM ADAPTED SAVINGS INSERTION FORMULA

ATS . Flg™) — F(@)

AQOS . [F(Qne\V) — F(Q)] _ F(sz_w - Qnew)

AROS [F(Q™) = F(@)] = S(w)F (@™ — ™)

pacities and costs {see Appendix). Note that because Liu and Shen (1999) do
not specify distance or time coefficients to value distance and time, they are
implicitly valued at 1. Solomon's (1987) problem sets for the VRP'TW consist
of 56 instances of 100 customers with randomly generaled coordinates (set R},
clustered coordinates (set C) or both {the so-called seri-clustered sets RC). The
R1, C1 end RC1 problem sets have a smaller average number of customers per
route than the R2, C2 and RC2 sets because of their shorter scheduling horizon
and smaller vehlcle capacities,

An extended set of Solomon's (1987) original paramcter settings is used to

test our heuristic. Solomon (1987) uses two initialization criferia: the far-
thest unrouted customer and the enstomer with the earliest deadline, and four
(1, A, 01, @) settings: (1,1,1,0), (1,2,1,0), (1,1,0,1), and (1,2,0,1). By
adding an additional term c3(i, %, 5) to the iuserlion criterion, a new weight
factor g is needed. As opposed to Solomon (1987), we no luuger require that
the woighting factors oy sum up to 1. The following o; combinations are comsid-
ered: (1,0,1), (0,1,1) and (1,1, 1). In each of the three o; combinations, ag = 1
to allow different solutions for the different savings approaches. If a'=(1,1,1)
equal weights are given to the distance, time and vehicle savings related com-
ponent of an insertion.

Tits and Shen (1999) use the total schedule time of a sofution {excluding the
service times of (he customers) to measure solution quality. Therefore we se-
lected the run with the lowesl schedule time of each of the 12 runs per problem
instance. Liu'and Shen (1999) obtained the best resulits on Selomon’s (1987)
problem instances with their modified heuristics MCS_»—r,, MOOS_, , and
MROS.5—p. Tho route shape parameter A is due to Golden et al. (1984) and
gives a different weight to the additional distance needed to combine two in-
dividual routes. The parameter 7 is used to control the construction of routes
during the parallel copstruction.

Our sequential heuristics clearly dominate Lin and Shen's ( Y99) best heuris-
sics for cost struclimes A and B (see Tables 2 and 3 and the Appendix), In
several cases the sequential inserbion heuristic using ACS, AOOS or AROS is
able to reduce total schiedule Lime with more than 50%, even if an improvement
heuristic was invoked (MCS%, _, MOOSZ,_ , and MROSZ, ). Ior cost
structure ¢, cost differences with Liu and Shen (199@) are smaller, but still sig-
nificant. Our heuristics are clearly more robust than MCS* Zaemo MOOS* Nt




Table 2:. Comparison of our henristic to Liu and Shen's (1999) modified heuris-
bics (botal schedule time excluding service times)

Ser | MCS_, 4 | MCSE, ACS A% A%
RIA 1562 4398 1665.32 63.50 62.13
Rip 2155 2066 1617.10 24.98 21.73
Rlo 1799 1716 1689.12 6.11 157
MOOS_,_,; MOOS*, | AOOS A% A%

Ria 4575 2401 T548.53 66.16 64.81
RiB 2152 2054 1574.66 26.83 23.34
R1c 1802 1700 1576.58 12.51 7.26
MROS_», MROS:, | ARDS | A% A%

‘Rla 4564 44034# 1556.14 65.90 64.66
Ris 2149 2068 1557.38 27,53 24.69
Ric 1788 1706 1557.85 12.87 8.68
Ser | MCS_,—, | MCS%,_, ACS A% A%
Cla 8042 8007 1247.52 84.49 84,47
Cle 2803 2661 1163.78 58.48 |- 56.27
Clc 1886 1749 1435.32 23.90 17.93
MQOS_a—q MOOS™, | AOOS A% [ A%

Cla 8515 8205 | 124752 8549 §4.96
Cie | 2626 2485 | 1126.01 58.48 54.69
Cio 1870 1705 1282.51 23.90 24.78
MROS_,_,| MROS*,_ | AROS A% A%

Cia | 8042 8007 1166.09 85.50 85.44
Cis 2803 2661 1131,02 59,65 57.50
Cic | | 1886 1749 | 1155.485 38.74 33,94
Swr | MCS_,_, [ MOSE, | ATS A% A%
RCia | 5483 5262 1777.62 8758 6622
RCIB | 2366 2253 1780.94 24.73 20.95
RClc | 1926 1853 1887.07 2.02 -1.84
MOOS_s_f MOOST, ] AOOS A% A%

RCIa| 5538 5184 1686.95 69.54 67.46
RCIB | 2359 2252 | 1697.08 28.06 24.64
RClo | 1933 1859 1744.71 9.74 6.15
| BMROS_,—, MROST, | AROS A% A%
RCIa | 5429 5108 1666.04 69.33 67.97
RCis | 2342 2235 1680.55 28,24 24.81
RClc | 1929 1849 1689.92 12.39 8.60

T (Modified Savings — Adapted Savings)/(Modified Savings) x 100
* After Invoking an improvement heuristic




* Table 3: Comparison of our heuristic to Liu and Shen’s (1998) modified heuris-
sics (total schedule time excluding service times)

SET | MCS_»_; | MCS*, , [ ACS ' A%t A%
R2A 3855 3809 144371 G2.55 62.10
R2EB 1915 1816 1456.78 23.03 19.78
R2C 1589 1513 1438.65 9.46 4.91
MOOS_»-,] MOOSS,_|  AOOS A% A%
R24 4077 3975 1435.33 64.79 63.89
R2B 1924 1797 1431.49 25.60 20.34
R2C 1610 1530 1419.81 11.81 7.20
MROS_». MROS?,_ | AROS A% A%
R2A 3855 3809 1426.52 £3.00 62.55
R2B | - 1915 1816 1446.10 24.49 20.37
| R2c 1589 1513 1445.27 9.05 448
SET MCS_aen | MCSL, ACS A% - AR
C2A 7058 6717 821.38 [ 8R.A36 87.77
Cis 2054 1978 §21.38 60.01 58.47
ople 1373 1288 811.16 40.92 37.02
MOOS_,_,] MOOS-, | AOOS A% A
| (24 7354 3889 1072.28 85.42 72.43
28 2093 1970 931.89 F5.48 52.70
Czc 1383 1300 | 828.13 40.12 36.30
MROS_,_| MROSL, _,| AROS A% A%
C2a 7058 §717 104342 85.22 84.47
028 2054 1978 1043.42 49.20 47.25
C2c 1373 1288 1029.44 25.02 20,07
Ser | MCS_y_, | MCS*, ACS A% A%
RC24 5518 5324 180171 | 6735 66.16
RC28 2469 2339 1741.97 29.45 25.53 .
RC2C 2101 1994 175432 | 16.50 12.02
MOOS-,_,| MOOS",_ | AOOS A% &7%
RC2a | 5381 5273 TRO0.82 66.53 65.85
RC28 2432 2338 1783.61 26.60 23.71
RC2c 2086 1978 1741.75 15.69 11.94
MROS_,_,| MROS®, ,| "AROS A% N%
RC24 5518 5324 1804.56 67.30 66.11
RC28 2462 2324 1770.23 28.10 23.83
RC2¢ 2101 1988 1962.27 16.12 11.35

T (Modificd Savings — Adapted Savings)/(Modified Savings) x 100
* After invoking an improvement heuristic



Tahle 4: Hour and time cocfficients in Euros for 1999 (Blauwens et al., 2001)

Carrying capacity hour coefficient kilometer coefficient
| delivery van Q.5 & 16.03 0.10
lorry 5 % ' 17.14 - 0.15
lorry 8 4 18.06 0.17
lorry 20 ¢ ] 20.88 - 0.21
truck and trailer 28 ¢ 21.75 0.24 B

Table 5 Cost structure in Turos for 1999 based on Table 4

Carrying capacity Vehicle cost Hour Kilometer
coeflicient coefficient
delivery van 0.5 4 144.27 0.27 0.10
lorry 5 ¢ 154.26 0.2¢ 0.15
lorry 8 ¢ 162.54 : 0.30 0.17
lorry 20t 187.92 038 - 0.21
truck and trailer 28 ¢ 195.75 0.36 0.24

and MROSZ,_,. Liu ami Shen’s (1999) modified heuristics” solution quality
is highly dependent on the cost structure used. Our results are in line with
Solomon's (1987) results! on the problem instances after removing service times
from the published total schedule time.

Because Lin and Shen (1999) do not specify a time and distance coefficient, .

physical time and distance units arc used in the analysis. In cost structure C
the cost of possessing a vehicle of type A equals 3 units. Given that the implicit
cost of ong unit of time or distance equals 1 and that & vehicle can be used

during 230 units of time (ie. the length of the scheduling horizon in R1), cost

structure ¢ can be considered o he highly nnusual.

To illustrate this point, consider Tables 4 and 5. The fignres in Table 4
are averages of sample data from different companies of vehicles with different
engino powers. They are calculated for firms respecting all statutory regulations
with ‘wage-earning truck drivers. .

Given the traditional assumption from the VRPTW that one unit of distance
equals one unit of time(Solomon, 1987}, the figures from the above table have
to be slightly modified to become comparable to Liu and Shen’s (1699) cost
structure. Bucause a velicle's fixed costs are expressed per hour, they have to
be multiplied with the maximum slatutory driving time (9 houxs) to obtain the
daily cost of owning the vehicle. If we sssunie an avirage speed of 60 km/h, the
hour and time coefficients are obtained as follows. The hour coefficienl from
Blauwens ot al. (2001) is divided by 60 to approximate the time coefficient &,
expressing the opportunity cost of time. Indeed, in the long run the average
opportunity cost of time equals the avorage cost of owning a vehicle, In the short
run, the opportunity cost depends on the carrier's potential customers of that
moment, meking it higher during peak periods than during off-peak periods.
The distance coefficient s equaled to the kilometer coefficient. Notice the level
of the different cosh components and the presence of pronounced economies of

1Tor all problem sets except C1, the homogencous vehicle Heet in Selomon (1YB7) consists
of the largest vehicle type from Tin and Shen (1999). .
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scale in Table 5. Tho cost of owning a vehicle with a carrying capacity of 2z
costs o lot less than two times the costs of an z-ton vehicle. In Liu and Shen’s
(1999) nost structure there are no econornies of scale. Given the cost structure
in real-life FSMVRPTW problems, the advantege of our heuristics over Liu and .
Shen’s (1899) can be expected to be importent. ‘

6 Conclusion

Our new heuristics for the FSMVRPTW are shown to significantly outperform
Lin and Shen's (1998) heuristics. Depending on the cosb-slructnre used, solution
improvements of more than 50% can be easily attained. ‘Because the solution
improvements arc the largest for the more realistic cost structures, we believe
that the heuristics can be used to gonerate high-guality initial solutions for
real-life FSMVRPTW metaheuristics.
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Appeudix: Liu & Shen’s (1999) problem set data

VenicLe CAPACQITY Rila Rls Ric
A 30 50 10 5
B : 50 80 16 8
C 80 140 ©a8 14
D 120 250 50 25
B 200 500 100 50

VEHICLE GAPACITY Cla Cls Cic
A - 100 300 G0 30
B 200 200 160 80
C 300 1350 270 135

VEHICLE CAPACITY RC14 RCin RClc
A 40 60 , 121 6
B 80 150 30 16
< 150 300 60 30

D 200 450 90 45

VEHICLE CATACITY R2a R2n R2c
A 300 450 . 90 45
B 400 700 140 70
C 600 1200 240 120
D 1000 ~ 2500 500 250

VEHICLE CAPACITY C2A Can Cac
A 400 1000 200 100
B 500 1400 280 140
¢ 600 2000 400 200
c 700 2700 540 270

VEHICLE CAPACITY RCO24A R(2B RC2¢
4 100 150 T 15
B 200 350 ' 70 35
¢ 300 : 550 110 55
D 400 | BOU 160 80
b 500 1100 | - 220 110
F 1000 2500 500 250
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