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Abstract

In this paper we determine a procedure for the optimal timing of
technology adoptions by a cost minimizing firm, when technological
progress is a gradual and incremental process. Using the format of a
stochastic rotation problem we generalize the baseline case in which the
state of technology has an equal impact on operating costs and switch-
ing costs (discussed in earlier research), to allow for a less restrictive
form of technological progress. Despite this additional complexity a
remarkably clear recursive structure in the optimality conditions could
be detected. Using these new conditions, we confirm an earlier explana-
tion for the delay in the adoption of new technologies in a considerably
more general setting.

1 Introduction

The rotation problem, in which the gain from periodic replacement of some
asset by another is to be optimized, is a classic in economic theory. Its first
appearance in economic theory was probably as the forestry problem (or
Faustmann problem, after Martin Faustmann - See also Scorgie & Kennedy
112]). The forestry problem is about the optimal frequency of harvesting and
replanting of forests, in order to maximize the profits of selling timber. The
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basic problem is simple, its solution often is not. The main difficulty is that

i order to find the optimal timing of the first harvest, it is required to know

future profits which depend on the timing of future harvesting. Therefore,
the entire chain of replacements must be optimized simultaneously, which
is a typical infinite horizon dynamic programming problem. Standard ref-
erences for this problem are Samuelson [11] for a general overview, or Mitra
& Wan [8][9] for a more technical approach.

Nowadays, the importance of the forestry problem is of course rather
academic, but the general nature of a rotation problem isn’t. Many con-
temporary problems in modern economics are related to or can be described
as a rotation problem. Aside from numerous applications in agricultural
economics, the entire problem of depreciation and replacement of capital
equipment is a perfect example of a rotation problem. Wear and tear causes
equipment to become more costly to operate as it ages, which requires pe-
riodic replacement with new equipment. The problem has many practical
applications for all sorts of equipment, ranging from industrial installations
to durable consumer goods (See e.g. Howe & McCabe [6] for an exploration
of the problem in a deterministic setting or more recently Mauer & Ott [7]
for the case in which wear is a stochastic process).

In this paper, we consider the replacement of existing equipment due
to some other reason then wear and tear. Equipment is also frequently re-
placed because the state of the technology embodied in the equipment has
become inferior to more recent equipment. A typical example would be the
replacement of computer equipment. Computers usually are not replaced
because they are worn, but because more efficient equipment has become
available. The question when to adopt these new technologies when techno-
logical progress is stochastic, is the central topic of this paper. It has been
observed that the adoption of new technologies often occurs quite late, i.e.
much later then the traditional npv-rule used to evaluate investments in cap-
ital equipment suggests. Recent findings about real-options and uncertainty
(Dixit & Pindyck [3], Trigeorgis [13]) point out that a probable explana-
tion of this tardy adoption of new technologies could be the value of the
option to postpone investment. Since this option is sacrificed at the time
of replacement, it constitutes an additional cost of investment and hence
warrants additional delay in the adoption of the new technology.

The timing of technology adoption when technology is subject to stochas-
tic movement has been studied by several authors. In their paper on the
replacement problem, Mauer & Ott [7] also allow for a single switch to a
different technology. Their contribution to the issue of technology adoption
is limited however, because they assume that the new technology will remain



in operation perpetually. Technology adoption is thus treated as an optimal
stopping problem, not as a rotation problem. A somewhat similar limitation
occurs in Grenadier & Weiss (5], who consider a technology adoption model
in which an operator has two options to switch to more efficient technology.
An interesting feature of their model is that it allows for "leapfrogging’ (the
operator skips the first option, but uses the second) and "lagging’ (the op-
erator waits to adopt the first technological improvement until the second
improvement has become available). Farzin, Huisman & Kort [4] on the
other hand, present the problem in a true rotation model. They identify
an option value of waiting for the last switch in a sequence, but fail to do
so for earlier technology switches. Their model is also typically suited for
situations in which technological progress is lumpy, i.e. improvements are
sudden and sizable.

A paper in which technological progress is a continuous flow of marginal
improvements is presented in Bethuyne [1]. The model also describes an en-
tire rotation cycle and (contrary to Farzin et al.) identifies an option value
at each technology switch. However, the model is still somewhat limited by
the assumptions on the effect of technological progress on costs. In order to
determine explicit analytic solutions for the optimal switching values, the
model starts from the assumption that the ratio of operating costs of the
new equipment over the net installation cost is unaffected by technological
progress. Yet it is not unlikely that technological progress has a different
effect on both types of costs. In this paper, we will generalize this earlier
model to allow for an unequal effect of the state of technology on operating
and installation costs. A procedure will be developed to determine implicit
conditions for the optimal timing of technology adoptions using less restric-
tive assumptions. We will use the resulting conditions to explore the effect
of different types of technological progress on the simulation results from
previous research. '

This paper is further organized as follows. In the next paragraph we
sketch the main assumptions and briefly explain the basic setup of the solu-
tion method, referring to preliminary research results. The third section then
explores the problem of sequential technology adoption the effect of different
types of technological progress on the optimal switching value. We derive
the optimality conditions for the entire sequence of switches. The fourth
section contains the results from numerical simulations based on these op-
timality conditions. The paper is concluded with a summary of the main
findings.



2 Technological progress

Technological progress can have a qualitative and a quantitative impact on
production. In the first case, the characteristics (quality, durability, ...) of
the output are altered. The latter case refers to changes in productivity.
The present analysis focuses on the quantitative effect, measured as a re-
duction in the unit-cost of production. More specifically, we concentrate
on technological progress characterized by a slow but steady process of cost
reductions. The computer industry is a well-known example of a sector in
which such gradual and continuous progress occurs. Although technology
evolves rapidly in this sector, the difference between two successive genera-
tions of computer hardware is generally rather small'.

We will describe this form of gradual technological progress by a cost
index 6 that follows a geometric Brownian motion df = —gfdt + c6dz,
where dz is a Wiener process. Pindyck [10] uses a similar specification to
describe the input cost uncertainty of technological progress. The negative
sign of the drift-rate refers to the fact that technological progress reduces
costs. Assume that at present, equipment is in operation and let m#g, be
the cost per unit of time of operating this equipment. We normalize 8y =
1. We assume that the state of technological progress is embodied in the
equipment, so that the operating cost of existing equipment does not change
as a result of ongoing technological progress. Meanwhile, more efficient
equipment becomes available. Let 6(t) is the value of the cost index at
some point in time ¢ (for simplicity, we will drop the argument ¢ in further
notation). We then assume that new equipment installed at ¢ costs m# per
unit of time to operate and P to install (« is a parameter). The central
objective in this paper is to determine the optimal time to switch from the
existing equipment of the older technology (the defender) to the new and
more efficient technology (the challenger). We assume that a firm has n
options to switch (n = 1,2, ... co) and seeks to minimize costs over an
infinite time horizon.

The special case in which technological progress has no bearing on the
ratio of operating costs and installation costs (o = 1) has been studied exten-
sively in previous research (See Bethuyne [1]). However, the present setting
allows for technological progress to have an unequal effect on both cost com-

YOf course, the difference between e.g. a 436 processor and a Pentium processor may
seem considerable. However, of each processor type, different subtypes exist. Although the
difference between an average 486 processor and an average pentium is considerable, the
difference between two successive systems (the most efficient 486 and the earliest pentium)
seems rather small.



ponents. Obviously when « < 1 technological progress has a larger impact
on operating costs then on installation costs (and vice versa for @ > 1). Un-
fortunately, this generalization increases the complexity of the optimization
problem considerably. In what follows, a procedure will be developed to
determine the optimal switching values of 6 triggering technology adoption
by a cost-minimizing firm.

In order to do so, consider an operator that currently uses equipment
of technology fg. Assume that the cost of production per unit of time with
this equipment can be expressed as:

m(0p) = mby (1)

where m is a constant. Let C(6;6p) be the expected present value of the
production cost at ¢ over an infinite time-horizon, for an operator using
technology g, when the state of the most recent technology is 8 (6g is a pa-
rameter and will be mentioned only when useful). If the firm cannot switch
to the more advanced technology, C'() will simply be mTGO (in which ¢ is the
interest rate), i.e. the perpetual operating cost of the existing equipment.
However, we will assume that the operator has one or more options to switch
to a more efficient technology (6 < ). Therefore C'(6) will be smaller than
ﬂl@ because of potential gains from the technology switch.

If the state of technology 0 follows a geometric Brownian motion, the
cost of maintaining the present technology (the continuation cost) can be
~described by the following differential equation:

1C(0) = mby + @ (2)

The opportunity cost of operating the present equipment and its future chal-
lengers over an infinite time horizon can be split in immediate (operating)
costs and the expected change in future costs. The source of € [dC (0)] is to
be found in changes in the state of available technology. If there were no op-
portunity to replace the defending technology with a technologically more
advanced challenger, e [dC ()] would simply be zero?. TFor this standard

type of technological progress, the solution of eq.(2) is of the form:

C(0) = Z”Lio + P> (3)

*Notice the analogy with the return on stocks and bonds (which of course
is maximized instead of minimized). The expected return of stocks or bonds
can also be split in an immediate return (dividends or coupons) and the
expected change in value (capital gains).




in which:

1 g 1 g\* 2%
A= -+ = — L - 4
2+02 \/<2+02> +02 (4)

and F'is a constant (See Dixit [2] or Dixit & Pindyck [3] for a general solution
to optimal stopping problems). The first part of eq.(3) reflects the cost of
perpetually operating the defending technology. The second term is negative
and reflects the expected costs savings due to the option to switch to a more
efficient technology. Notice that for § = 8y = 1, the constant F' immediately
reflects the value of expected cost savings due to future technology switches,
at the time the defending equipment is installed.

The option to switch technologies will be exercised when € hits a lower
barrier #*. The present value of all costs occurring from that moment an
are represented by Q(6%) (referred to as the terminal cost), which includes
the immediate switching cost as well as all costs related to operating the
new technology afterwards. When 6 = 6* the following boundary condition
must hold (value-matching condition):

C) = Fo + ﬂ — Q6% (5)

In addition, for the barrier #* to be an optimal stopping point, the con-
tinuation cost is required to be tangent to the terminal cost function (the
smooth-pasting condition).

C'(0%) = AFo* T = (o) (6)

Therefore F and 0" can then be found solving egs.(5) and (6) simultaneously.

Notice that F0* is the cost reduction due to the option to replace the
defender. Obviously when the state of technology degenerates ( — o),
the option becomes worthless. A further comment on the endpoint function
2 (0) is in order now.

3 Sequential technology adoption

As a rule there is no absolute limit to the number of technology switches
a firm can make over an infinite time horizon. For analytical purposes
Lhowever, we will start with the assumption that an operator has a finite
nurmber (n) of options to switch to a new technology. Starting from the
assumption that n—1 of these options have been used already, we determine
the optimal timing to use the remaining option. The solution of this problem




will then serve as a starting point for the problem in which the operator has
two remaining options to adopt a new technology. This backward recursive
solution method will allow to determine the optimal sequence of n switching
values.

In this sequence, the first triggering value is of course by far the most
important one, because we are primarily interested in the replacement timing
of the technology that is currently in operation. All other switching values
in the sequence are only relevant in so far that their value has an impact
on the timing of the first replacement. Due to discounting, the marginal
impact of an additional option to switch technologies on the timing of the
first replacement decreases. As a result, for practical purposes a sufficiently
large n may serve as an acceptable approximation for a chain of infinite
technology switches.

3.1 The nth technology switch

Assume an operator with n options to switch to more efficient technologies
has exercised n — 1 options. When equipment of technology 6,,—1 has just
been installed, the operator has only one option to replace left. Then if the
state of technology is 6, the general form of the present value of all costs is:

mgn—l

Cr1 (0) = F_10™ + (7)

The terminal cost that occurs at the time of technology adoption is:

mo

Qn_l (9) == T + Pea (8)
At the switching value 6 = 67, the following conditions must hold:

1. Value matching condition:

mb,_1

Fpably + = = Qo (67) (9)
2. Smooth pasting condition:
AFafy = (6) (10)

The smooth pasting condition expresses that at the switching technology,
the marginal reduction of the continuation cost due to.technological progress




equals the reduction of the terminal cost. From the smooth pasting condition
we determine:

! 9* _
By = Bt Ol (1)

Substituting in the value matching condition leads to:

/ *
n—1 (9n> * mbn_1
A On 7

g" (971—17 671) = {lp—1 (0:;) - =0 (12)

For this particular terminal cost, the previous expression can be written as:

A—1m8; n A — aPerLa B m@,',,_l

X g h\ ;Y (13)

Since #,,_1 is a constant and the right-hand side of the previous expression
is monotonically increasing in 6 for € > 0, it implicitly determines a unique
triggering value 0, (0,,—1).

The minimal cost at the time the technology of level 0,,_1 has just been
installed is then:

mbn_1 k4 (67) o o>

Oy (Bner) = 2L 4 Sl (14)
which in this case is identical to:
N 0, 1 /m o Wl
) = T L (T apg TR, (9

3.2 The (n— 1)th technology switch

Now consider an operator that uses equipment of technology 8, _o that has
two remaining options to switch to more efficient technologies. If the state
of technology is 8, the general form of the present value of all costs is again:

mgn—Q

Chg (0) = F_20™ + (16)

1

The terminal cost now equals the cost of switching technology the first time
PBA% plus the cost of operating the new technology, including the remaining
option to switch to a more efficient technology in the future. The latter is
exactly the optimal solution of the previous problem C*_, (6,,—1), so:

Q2 (0) = iy (Bu) + PO (17)

At the time of replacement, the following equations must hold:



1. Value matching condition:

" My, *
Fn—QQ;:,/\—l + i 2 = QTL‘Q ( n—l) (18)
2. Smooth pasting condition :
wA—1 ’ *
)\Fn—29n-1 - Qn—Q ( n—l) (19)

As in the problem with only one replacement, the smooth pasting condi-
tion expresses the equal marginal effect of technological progress on contin-
uation and terminal cost in the optimum. This time however, the effect on
the terminal cost is somewhat more complicated, because waiting longer to
make the first technology switch also shifts the second replacement. There-
fore, the derivative Q,_, (0%_;) also contains a term in %, which can be
determined by totally differentiating eq.(13) and rearranging:

’ —1
apejj“l) % (20)

do, <)\—1T+)\—a
dfn1  \ A i A

As before, from the smooth pasting condition we determine £, o as:

RPN

/ *
Fn*Q — n—2 ( nvl) o

Y n—1 (21)
which we substitute in the value matching condition to find:
, y Lo (0 1) MmO,
9" (One2,0n-1,0n) = Qo (0h_1) — %Qn_l - 2=0
(22)

Together with eq.(12), the previous expression implicitly determines both
triggermg values 0,1 and 6, conditional upon the starting value €,,_2. The
corresponding minimal expected cost at the beginning of the cycle is then?:

i / *
771971—2 + Qn—Z <0n—1)
i A
$Strictly speaking, the cost Cy—2 depends on all subsequent switching values (6,—1,x)
and the initial starting value 8, o1 Cp_o (fy—2, 0n—1,0,). However, the optimal switching
values (6;,_1,0;) depend on @n_3, so we can write Ch—2 as a function of O,_o only:

oo (0n—2), the star indicating that all subsequent switches will be chosen optimally.

" K12
g (On—2) = 0 (23)




3.3 A general technology switch

Although the previous procedure remains largely unchanged for a general
problem with n technology switches, the dimension of the problem tends to
increase quickly. The operator who has n options to switch technology is of
course mainly interested in the timing of the first replacement: when should
he switch from the existing technology to a more efficient one? The timing
of all subsequent replacements is only relevant in as much as it influences
the timing of the first replacement. The procedure to determine the optimal
switching value for the kth switch 67 in such a chain, goes as follows.

Assume 634 is the technological cost index of the technology presently
in use. The operator still has n — k + 1 options to switch to more efficient
technologies which can be exercised freely. For this initial situation, the
expected present value of future costs is again of the form:

Oy
Ch1 (0) = Fy_ 0* + 2252

24)
The terminal cost now equals the sum of the switching cost P63 and the
remaining costs of operation including the n — k future switches C} (6) .
Hence:

Qp_1 (8) = Cf (8) + PO™ (25)

Value matching and smooth pasting conditions determine the optimal value
of the first technology switch 05 :

1. Value matching condition:

N mby,.. «
Fr16; + Z.k 5= Oy (67) (26)
2. Smooth pasting condition:
A0 = (67) (27)

From the smooth pasting condition, the constant Fj,_; can be determined

ast

/ *
iy = St O g 29
and substituted in the value matching condition to find:
. y o1 (0%) . mO_
9" (B2, 0k, Onr, ) = 1 (0) = = 1A< Doy -t (o)

10




In terms of C} (0}), this is identical to:

1dCy(67) A—a e mbg_y
— kTR POy —
A dby, T K P

Cr (07) =0 (30)

. . . . . . 4 dCE (0% .
For practical purposes, the difficulty resides in the differential Cél“@(k’“) , since
a marginal change in the switching value 6, also affects C} (6%) indirectly
through shifts in subsequent switching values:

dC; 90T | O~ 9C; dd;

a0, _ o0, +]_ :%1 a6, o,

(31)

The direct effect of a marginal change in the switching value 65 (reflected
by the first term) measures the change in operating cost in the period im-
mediately following replacement and the change in the value of the option
to replace, for a given sequence of future triggering values 7. The second
term captures the effect of changing 6 through the timing of subsequent
replacements. The derivative 9C} /90, is straightforward (and equal to m/i
for j = k); df;/df}, includes all direct and indirect effects of a change in the
first switching value on future switching values and is harder to determine
in terms of computational effort, especially for longer replacement chains.

The value of df;/df can be determined using the optimality conditions
for the remaining n — k switches. For each of the subsequent switches j =
k+1 — n, an implicit optimality condition ¢7 (0;-1,0;,...,0n-1,05) = 0
exists (similar to ¢" and g" ! determined earlier). Let Ji;1 be the Jacobian
matrix for the set of n — k functions ¢/ (0;-1,6;, .., 0n—1,0n):

k+1 kt1 k4l k1
Je+1 Yero - In—1 In
k+2 k+2 k42 k42
Ip41 924_% 92_% 9n
_ -+ o+ k+3
Jk+1 - 0 gk+2 gn——l gn+ <32)
0 0 .og, g

in which (]i = %}Z. Notice gi = 0 for j — k > 1, which means that the

timing of all future technology switches is determined by the state of the
technology presently in operation, but not by anterior technologies. By the
implicit function theorem, the differentials df/; /dfj then can be determined
as:

B

k k
dek pussed _Jk+1 (33)
do,
g, 0

11



Following a similar line of reasoning, we can determine all cross-effects for
the entire replacement chain.

3.4 A general solution

Although it is impossible to derive an analytic solution for the sequence 0,
we can determine a series of implicit optimality conditions for each replace-
ment in the sequence. As stated earlier, the ¢/ (8;_1,0;,...,0n-1,0,) = 0 as
expressed in egs. (12), (22), ..., (29) determine such a sequence of optimality
conditions. The general recursive procedure to determine such optimality
conditions is described in the previous paragraphs and is summarized in
figure 1. Applying this procedure manually requires cumbersome and te-
dious calculations, even for relatively small scale problems with three or
four technology switches. Fortunately, modern mathematical software re-
duces the problem to editing relatively simple program code (an example of
such program code for a problem of five technology switches developed for
Mathematica IV can be found in appendix). Even more fortunate is that
the general form of the optimality condition ¢/ (61,04, ...,0n—1,0,) = 0
that occurs after applying the procedure described above, is highly recur-
rent. Except for the optimality condition governing the last technology
switch ¢" (0,_1,6,) = 0, given in eq.(13), all optimality conditions for ear-
lier technology switches are of the general form:

G (Op_1, 01,00 41) = A g ! m/?k + A QPQZ + @ (lg}ljf\g%ﬂ - 9k~1> =0
i A C 1 \A
(34)
for k = 1 — n—1. For known values of the parameters involved, determining
the solution to this set of n optimality conditions is straightforward.

4 Some numerical simulations

In order to illustrate the characteristics of the solution resulting from the
previous optimality conditions, consider the following numerical example.
Assume a drift-rate of technological progress of ¢ = 3% and a standard
deviation of the Wiener-process o = 5%. The interest-rate is set at 5%.
The operator uses the present technology at a cost of mfy (m = 100 and
fp = 1) and has the option the switch to a new technology at a cost of P0.
The switching cost Pisset at 0, 1, 4, 10 and 25 times the initial operating
cost m. For simulations, the value of & = 1 is used as a baseline reference.
Special consideration goes to the effect of deviations for « ranging from 0

12



mo, _

Value matching: Fk_l();; +

A=l

7\‘}Tk—l e/c

Smooth pasting:

Cross-effects:
de/c-H /de/c g//cc+l
.=
do, / do, 0
. N
L= Qk—l (6;)
= Q'/c—l (e]‘\. )

Terminal cost:

Qi1 (0)=C,(0)+ PO"

A
v

Optimality condition k:

, A Qe ) . me
g/\ (9/{713"”971): Qk—l (e/\')_ k_;\‘( k>e/1r - l-k_l :O
Minimal cost:

mé Q' 167 )
C]'—l (ek—l ) - = + o ( . )ek 617:—1

k . N

NO
B k=k-1

Solve:
0

g"(0,-0,)=0
k=1->n,0,=1

Figure 1: General solution procedure
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to 1.5. We also consider several replacement cycles differing in the number
of technology switches.

The case for @« = 1 is used as a baseline reference for several reasons.
When « = 1 the ratio of installation and operating costs remains unaffected
by technological progress, which implies that the (expected) economic life
of a certain technology is time-independent. Smaller values of « indicate
a reduced impact of technological progress on the switching costs and are
therefore expected to correspond to longer economic life. When operating
costs are sufficiently high relative to the switching cost, this may even lead
to firms not using all their options to switch to new technologies, because
the remaining reductions in operating cost are insufficient to justify the
switching cost. Similarly, higher values of a induce lower switching costs
and therefore corresponds to shorter economic life.

Evidently, economic life as such is not determined explicitly in this
model. The model only results in n optimal switching values 6;. When
the technology cost index @ hits a barriers, the firm switches technologies?.
As an illustration, figure 2 expresses the relative switching values 6, /6;_ for
P/m =10,n=1— 10 and o = 0.50, 1.00 and 1.50. Relative switching val-
ues 0;/60;_1 express the production cost of a new technology relative to the
previous technology installed. For instance, the line ending in point A gives
the relative switching values for a chain of 8 replacements when a = 1.50
and P/m = 10. The first replacement in the chain takes place when the
technological cost index 6 is reduced to 47.74% of its original starting level,
the second switch when 8 is further reduced to 53.33% of the previous level,
etc.  Because in this example switching costs are affected more by 6 then
operating cost, switches initially occur sooner (at higher switching values)
the further in the chain. Near the end of the chain however, when there is
only a limited number of switching-options left, the option value of waiting
forces subsequent switching values down and prolongs the expected period
between the remaining technology switches. Similar results can be found for
sequences of different lengths as well as for « = 1. As could be expected,
when « = 0.50 the firm will only use a limited number of switches. In fact,
for this case the firm will only execute two options to switch to better tech-
nologies (the first at 37.61% of the starting value, the second at 26.52% of
the previous value). A sequence of 4 option will not be exhausted, since the
eains from the last reduction in operating costs will never compensate the

"The expected economic life of a technology is can be derived as the solution of a first-
hitting time problem, namely the expected period of time for a Brownian motion to move
from an initial starting value 8,1 to a predetermined barrier ;.

14
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Figure 2: Relative switching values in a sequence of n for different a.

switching cost.

As argued earlier, the main issue is of course the first switching value in
the sequence. Firms are interested mainly in the timing of the next technol-
ogy switch to come. Other switching values are instrumental in determining
the first switch but are not important as such. Figure 3 therefore focuses on
the gsensitivity of the first switching values to changes in the main parame-
ters in the problem, notably the length of the sequence, the ratio P/m and
the value of a. The previous figure represents five sets of curves (P/m = 0,
1, 4, 10 and 25 respectively). Within each set, the bold line represents the
switching value for o = 1. The two curves above represent a = 1.25 and
1.50, curves below (if any) correspond to e = 0.75, 0.50, 0.25 and 0. Point
B for instance, indicates that in a sequence of 6 technology switches, with
P/m = 25 and o = 1, the first switch occurs when 6 has reached the 34.04%
of the initial starting value. Here also, we can see that for o < 1, all op-
tions to switch may not be exercised. In the same case but for o« = 0.75 for
instance, a sequence of maximum three options will be used.

Figure 3 illustrates the sensitivity of the first technology switch to the

15
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Figure 3: First technology switch in a sequence of n for different P/m and
[

length of the sequence, especially for lower values of P/m. An operator
wishing to find the optimal timing of a technology switch, may find con-
siderably biased results if the true number of switches in the sequence is
underestimated. If for example P/m = 4 and the true number of options
is relatively large (say e.g. 10), then the new technology will be adopted
when its cost is at 58.93% of its starting level (o = 1). The operator that
optimizes the problem while considering only one technology switch would
switch at 50.12%. Aside from the element of uncertainty and the option
value of waiting, neglecting the impact of future technology switches in a
rotation problem may therefore offer an additional explanation for the ap-
parently tardy adoption of new technologies reported in economic literature.
The optimal first switch is mainly sensitive for changes in « when switching
costs are large relative to operating costs. Here, the length of the sequence
seems to be a factor of less importance.
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5 Summary and conclusion

In this paper a procedure is developed to determine necessary conditions
for the optimal timing of technology adoptions in a rotation problem. The
paper builds further on a previous model in which technological progress
has an identical impact on the operating cost of the new equipment and on
the switching cost itself. We relaxed the latter assumption and allow for
technological progress to have a different impact on both cost components.
Although this generalization impedes explicit analytic solutions for the op-
timal switching sequence, the procedure allows to derive analytically a set of
implicit optimality conditions of a remarkable recursive structure. Once this
structure is exposed, the further numerical solution of large scale rotation
problems with long sequences of this nature is straightforward.

For the particular case where the ratio of operating cost and switching
cost is unaffected by technological progress, we showed earlier that neglecting
future technology switches in a sequence may be of great influence on the
timing of the technology adoption. The optimality conditions derived in this
paper for a much more general class of problems still confirms this result. In
addition, the exact nature of technological progress (in terms of its impact
on the ratio of switching cost and operating cost) is shown to have a serious
effect on the timing of technology adoption when the switching cost is large
with respect to the operating cost.
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6 Appendix: Mathematica code for determining

optimality conditions when n =5

(* Meaning of symbols used: «)

(» oni = endpoint function n-i
(» domi = differential of oni
(» donis = idam, sinplified

(* i = constant of integratiom n-i

(* gni = optimality condition n-i
(+* cndl = cost function n-i
(* cids = idem, simplified

(+ Initialisation )

Clear[x, m, D, i, g, S, A, a, tnd, tul, tn2, tn3, tnd, 5, n)

(* Terminal value x)

cnl[x | s=m+x/1

(* Replacement n *)

onlisx ] := cnO[x] + pxX*a

donl[x ] := DEt[onl[¥] , X, Constants— (m, P, 1, A, &} ]

donl[tn0) ;
donls - Simplify [%)

agnl = onl[tnl] - dmls~tnl/ A- m+« tnl/ i;

gnls = Fullsimplify[%)

il = dond{tn0] «tndA (1- 1) / A
cnl[x ] := flxxA A+ mas/ i
cnls = Fullsimplify[enl[tni)]
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(*+ Replacement n-1 »)

Clear[x, a, tn0, tnl, tn2, tn3, tnd)
ai2[x ] := cnl[x] + prxXta

dnfnl= (-1) » D[gn0s, tnl] / D{gn0s, tn] ;

don2(x ] := Db[on2[x] , X, Constants - (m, p, i, A, a}]
don2[tnl] /. De[tn0, tnl, Constants - (a, i, m, p, A}] - dnlnl;
don2s = FullSimplify [%]

onl-cn2[tnl] - don2s - tnl/ A -m«tn2/1;

gnls = FullSimplify[%)

fn2 = don2s s tnld (1-2) / 2

cr2[® ] = 2+ xA e mex/1

cn2s = FullSinplify(cn2(tn2] ]

(*' Replacanent n-2 »)

ca3[x ]| := Ccn2[X| + pxX*a

M2 - ( Dignls, tnl] D[gnls, tn0) )
Dign0s, tnl] D[gn0s, tn0]

(oo

antz ) =~ Tvezsel2) . PEHG T )

don3[x ] := Db[on3[x] , X, Constants - {m, D, 1, X, a)]

don3[tn2) /. (Dt[tnl, tn2, Constants- (&, i, m, p, A}] - dnin2,
Diitng, tn2, Constants- {a, i, m, p, A}] » dnln2y;

don3s = Simplify [%)

gn2 = on3[tn2) - demBs+tn2/ A-m« tn3/ i;

on2s = Sinplify[%)

fn3 = dom3s« 24 (1- 2) /7 2

en3[X ] = 3« XA A+ max/ i

cn3s = Simplify|en3[tn3] ]

°
7

(* Replacement n-3 i)

ond[x 1 := cn3(x] + prX*a
Dign2s, tn2] Dign2s, tnl] D[gn2s, tnl)
Mn3 = | D[gnls, tn2] D[gnls, tnl] Dignls, tn0] |;
0 Dlanls, tnl] D[gn0s, tnl]
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7

0
o

dond[x ) := De[ond[x] , X, Constants - (m, P, 1, A, a}]

dond[tn3] /. {DE[tn2, tn3, Constants - {a, 1, m, D, A}] - dn2n3,
Dtitnl, tn3, Constants - {(a, i, m, P, A}] - dnin3,
Dttnl, tn3, Constants - (a, i, m, p, A}] - dnln3} ;

donds = Simplify [%] ,

gn3d3=- ced[tn3] -donds«tn3/ A-m« tnd/ i;

on3s = Sinplify[%)

14 - donds«tn34 (1- )/ 2

crdix ] 3= bt A max/ i

cnds = Sinplify[cnd[tnd] ]

dn2n3 Dignds, tn3]
[dn:l:ﬁ) = - Inverse[Mn3] . )
dnin3

(+ Replacement n-4 «)

anbx ] := cad[¥] + DxX*a

Dign3s, tu3] D[gn3s, tn2] D[gn3s, tnl] Dign3s; tnl]
DignZs, tn3] D[gn2s, tn2] D[gn2s, tnl] Dign2s, tnl]

Mnd - ;
0 Dignis, tn2] Dignls, tnl] D[gnls, tn0]
0 0 Dign0s, tnl] Dignls, tn0)
dn3nd D[gn3s, tnd)
dn2nd 0
| = - Imverse[ Mnd] . 0 ;
dnlnd 0

denSix ] := Db[on5[¥] , %, Constants - {(m, P, 1, A, a}]

donStnd] /. {De[tn3, td, Constants- {a, 1, m, p, A}] - dn3n4d,
Dt[tn2, tnd, Constamts- (a, i, m, D, A}] - dn2nd,
Detnl, tnd, Constants— (a, 1, m, D, 2}] -» dnlnd,
Detnl, tnd, Constants - {a, 1, m, p, A}] - dnlnd) ¢

donSs = Simplify (%]

gnd = anS5[trd] - donSs«tnd / A - ms tn5/ i;

ogrds = Simplify[%)

S - dnbSs« tnd4 (1- 1) / A

cnS(x ] := S+ xA A+ max/ i

cn5s = Simplify|cnS[tn5) |
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