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Abstract

This paper deals with the optimal timing of replacement invest-
ments under technological progress. The economic life of equipment
is expressed as a function of the ratio of capital and operating costs,
which allows measuring the impact of the intensity equipment is used
with. A new concept of finite planning horizon is introduced within
the infinite time-horizon. A numerical simulation demonstrates how
these findings can be of importance for the determination of economic
life and the existence of second-hand markets.

1 Introduction

Although replacement investments are at least as important as capacity
investments, the focus in economic research is often drawn to capacity in-
vestments. Depreciation and replacement of existing equipment are often
oversimplified in investment models (See e.g. Nickell [9] for an early con-
tribution). Replacement investments became a research item in economic
literature since the first half of this century. Pioneering research in this
field has been done Preinreich [10], inspired by the work of Taylor [12] and
Hotelling [4]. Although in these early studies, some very fundamental con-
clusions were found, it still took some time to let these ideas trickle down to
practical applications in management situations. It were mainly Terborgh
[13], Smith [11] and Alchian [1] who transformed the theory from a purely
academic to a more practical level. Modern replacement theory is based on
the concept of discounted cash-flows. The problem can be solved both in a
profit-maximizing or a cost-minimizing framework. Whereas the analysis of
capacity investments is often focussed on the optimal capacity, replacement
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analysis directs attention to the timing of the investment. For some recent
interesting contributions in replacement analysis, we can refer to Meyer 18],
Howe & McCabe [5] and Mauer & Oftt [7].

In this paper, some new concepts and approaches to the theory of re-
placement investments will be presented. First a basic replacement model
will be described, reviewing standard terminology. The model will be for-
mally presented in a way that allows easy generalization to more complex
situations. The model was originally designed to decide when to replace ex-
isting equipment (called the defender) by other equipment (the challenger)
identical except for its age. However it can also be used to decide if existing
equipment should be replaced by non-identical challengers.

The basic model will then be generalized to find the optimal timing of
replacements in the case where challengers are continuously improving due
to embodied technological progress. It will be demonstrated that when chal-
lenging equipment is continuously growing more efficient, the basic model
of replacement timing will seriously bias the timing of replacements. This
bias is caused by neglecting the value of potential growth in technological
progress, forgone at the time of replacement. It could indeed be argued that
installing a replacement fixes the level of technological progress temporarily
for the duration of the economic life of the equipment. It isn’t until the next
replacement that new technology will be adopted. The model presented

‘here will be constructed in a way that allows it to be used for a very general

range of investments problems.

After discussing the impact of technological progress, we will introduce
the concept of a planning horizon. For replacement problems, it is com-
mon practice to consider an infinite time-horizon, i.e. it is assumed that
the present equipment will be replaced by an infinite chain of successive
challengers. When confronted with rapid technological progress, it may not
be sensible to assume that the present rate of technological progress will
last over the entire time-horizon. Therefore it is suggested that only a fi-
nite number of challengers could be subject to technological progress. The
generalized model is by its recursive structure ideally suited to solve such
problems. Although the influence of technological progress is not new in the
literature on replacement investments (See e.g. the work of Massé [6, p. 66
- 68], Grinyer [3, p.211} and Howe & McCabe [5, p.304]), the specification
used here and the use of a finite planning horizon will allow to derive some
innovating conclusions on the effect of technological progress on economic
life of equipment. ' v

In the remainder of this paper the following notation will be used. Time
will be referred to by ¢, the time of the jth replacement by T;. The economic
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life of the jth machine in a chain of replacements is ATj;. Evidently T =
ATy, Ty = Ty + ATy, ... When only one replacement is considered, the time
of replacement and the economic life will both be referred to by 7'. For the
immediate cashflows we will always use small letters (e.g. k(t) refers to a
cost occurring at time t). The present value of all costs of one machine will
be expressed by a capital (e.g. K = fOT k(t) e~"dt) and a tilde will be used
to refer to the present value of the costs of a chain of successive machines
(e.g. K = > Kje_"TJ'*l). Where necessary, reference will be made to the
defending and challenging equipment with subscripts d and c respectively.

2 Basic terminology

In most cases, the operating costs to keep equipment running (i.e. mainte-
nance and repair, energy, manpower, ...) gradually increase with the age of
the equipment. At a certain point in time, these costs will be considered too
high and the old equipment (called the defender) will be replaced by new
equipment (the challenger). The objective will be to minimize the following

recursive expression: . o
Kyg=Ky(T)+ K™ (1)

in which K4 (T) is the present value of all costs of the defending equipment
over its economic life T, K is the cost of the defender and the cost K. of
the infinite chain of challengers after 7. Assuming that equipment is always
replaced with identical equipment (like-for-like replacement, Ky = K.), the
objective transforms into: :

Kq(T)

Ka(D)=1"—F (2)

Necessary conditions for optimal timing of replacements are:
Ky (T)eT =iKq(T)  Kj(T)>0 (3)

The first condition states that in the optimum, the marginal cost of one extra
time-period of operation equals the equivalent cost of the entire replacement
chain, in which an equivalent cost is defined as a perpetual cost with present
value equal to the cost of the entire chain. The second condition states that
the cost of a marginal period of operation must be rising.

The basic model can easily be generalized in a situation in which the
challenging equipment is not identical to the defender, but more efficient
(i.e. its minimal equivalent cost is lower). For this, consider a challenging




equipment for which the minimum of K, is lower then the minimum of Ed
If such challenging equipment became available, the defending equipment
should be replaced if K/, (T)el = = iK,, this is the moment at which the
marginal cost of the defender intersects with the minimum equivalent cost
of the challenger. Nonetheless the traditional model presented here may be
misguiding in some cases. The implicit assumption in the previous analysis
is that the new challenger is suddenly available and does not change over
time. This assumption may not be very realistic in some cases. Often,
the challenging equipment itself changes continuously over time, because of
technological progress. It will be demonstrated that in this case, neglecting
the continuous progressive nature of technological progress as in the previous
basic model can cause severe bias in the timing of optimal replacement.

3 Technological progress

Consider a form of continuous technological progress, embodied in the chal-
lenging equipment, that transforms the objective-function into:

Ky =Ky(T) + Ke o7 (4)

in which ¢ is the rate of technological progress. In this specification, technol-
ogy reduces the costs of the challenging chain of replacements at a constant
rate ¢. It is important to notice that all costs of the chain of replacements
are affected in the same way, although the cost-structure of the challenging
equipment may or may not be different from the defending equipment.

A necessary condition for the optimal timing T of the replacement for
this case is: :
Ky (T) T = (i +g) Ree " (5)

Despite apparent similarities, this condition is fundamentally different from
condition (3) of the like-for-like replacement model. It states that replace-
ment is due when the marginal cost of an extra time-period of operation
of the defending equipment surpasses some adjusted equivalent cost of the
challenging equipment. In the case at hand, the equivalent cost of the chal-
lenging chain of replacements iKoe 97T i is to be adjusted by a term gK e 97,
Or to express it differently, the marginal cost has to be a factor £ = —’;-‘1
larger then the equivalent cost of the challenger before replacement is due.
It is obvious that the magnitude of £ can be considerable, causing an im-
portant delay in the optimal timing of the replacement.




Since the first term of eq.(5) represents the normal (unadjusted) equiv-
alent cost, the second term can be interpreted as the cost of forgone tech-
nological progress. It could indeed be argued that postponing replacement
allows the operator of the equipment to increase future gains from technolog-
ical progress. At the time of replacement, the technology of the challenger
is fixed and the operator loses the option to choose a technology which is
marginally superior. The value of this option is represented by gKce -7,

It is important to notice that eq.(5) expresses a necessary condition
for a very general class of problems. There are indeed no assumptions on
the nature of the replacement chain, except that its cost is continuously
decreasing. Whatever, the nature of the cost of the chain of challengers, it
has to outperform the defender by a factor { before replacement is due. In
what follows, some special cases will be analyzed.

4 Time horizon and planning horizon

A typical problem with replacement under technological progress is often
that there is little or no information on the technological progress in the more
distant future. The only information available is often the rate of ongoing
technological progress, i.e. the rate at which the immediate challenger of
existing equipment grows more efficient. However it is often practically
impossible to predict the impact of technological progress on evolution of
costs in the long run. The decision-maker is thus confronted with a dilemma.
Although he may want to consider all costs over an infinite period of time
(the time-horizon), he lacks the correct information about the more distant
future.

Therefore he will be forced to make some assumptions, attempting to
approximate the cost of future challengers. Such assumption could be that
chain of challengers consists of an infinite chain of identical machines (See
Grinyer [3] for a formal model using this assumption). In that case, it is likely
that the assumed cost of the challengers overestimates the true cost, since
technological progress after the first replacement is neglected. A different
assumption could be that technology continues to progress at the same rate
after the first replacement, in which case each successive machine in the
replacement chain is different from its predecessor only by a factor e —9T
and K; = K.. The objective then is to minimize Ky = —%f. Such
an assumption would be valid if it is fair to postulate a constant rate of
technological progress over an infinite horizon. However, if the present rate
of technological progress is considerable, it may be reasonable to expect that




such high rate of progress will not continue perpetually. If progress slows
down in a more distant future, costs of the challengers will be underestimated
using the latter assumption. Therefore it may be interesting to consider also
some mixed cases.

5 Planning horizon
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Figure 1: Time-horizon and planning horizon

To explain these cases, we refer to figure 1. It represents the evolution
of the immediate cost of equipment & (I,t) in function of its age I and the
time (read: the level of technological progress) it was installed ¢. Starting
from the left, the upward sloping line represents the cost of the first defender
k (1,0) (installed at ¢ = 0), which rises as the equipment ages. Meanwhile,
technology advances and challengers become more efficient, represented by
the downward sloping line k (0,t). At.the time of replacement 71, the chal-
lenger will be a factor e792T) more efficient. Notice that in figure 1 there
is no technological progress after the fourth replacement. This does not
necessarily refer to the fact that technology stops evolving after Ty, but sim-
ply that the operator does not take into account further progress after this
point. Costs after the fourth replacement are simply approx1mated by the




cost of an infinite like-for-like replacement chain. We will refer to this as
the planning horizon of the operator (indicated by the vertical line). In this
case the planning horizon covers 4 replacements, although the time hori-
zon is infinite. We could refer to the behavior of an operator using a finite
planning horizon as partially myopic. The work of Grinyer cited earlier uses
an extremely short planning horizon of only one replacement. Evidently, as
indicated before, time- and planning-horizon can also coincide.

5 Costs and intensity of utilization

So far it was always avoided making any assumption on the exact specifi-
cation of the underlying cost functions. However, without losing generality,
costs can be split in an operating cost that occurs over the entire economic
life and capital costs that occur only at the time of replacement. The total
present cost of the defending equipment can then be expressed as:

T . i
Ky (T) = /0 m () e~dt + V (0) — V (T) e~ G+97T (6)

The first term is the present value of operating cost m over the economic
life, the second term is the capital cost of new equipment V' (0) and the last
term is the present value of the salvage value (V (T) e~97), regained when the
equipment is replaced. Notice that we assume that there is an additional loss
in salvage value due to technological progress in the challenging equipment.
Using this specification, the cost of a marginal increase of the economic life

KM= @@ gV @] @

in which v (t) = %&l is the rate of depreciation at t. The marginal cost
consists of the cost of operation in the final time-period, the additional
depreciation and the opportunity cost of the capital invested. From eq.(5),
it follows that the optimal time of replacement can be found as the solution
of:

m(T) —v(T)e T+ (i+g) V(T) e = (i +g) Kee™" (8)

In order not to overload the complexity-of the notation and to concentrate
to the problem at hand, we will assume for the rest of the exposition that the
equipment loses all its value above scrap-value immediately once it has been
installed. Also for notational convenience we will assume.that Vj represents
the net-capital cost, i.e. the cost of new equipment less the scrap-value of
the old equipment. '




Now assume that operating costs can be expressed as the product of
the cost of new equipment and a factor expressing the influence of age:
m (t) = mou (t). A similar assumption can be made regarding the evolution
of the salvage value. Then the previous cost function can be expressed as:

Kg(t,moq, Vog) = moakq (t,a) (9)

K. (mOC7 ‘/Oc) = mOcKc (Qc) (10)

in which 2 = -%'—i) Notice that in general, V and mp need not to be equal
for the defending and challenging equipment. In what follows however, it
will be assumed that the costs defender and challengers are identical, except
for the effect of technological progress. Eq.(8) then transforms into:

w(T) = (i+9) Ke (@) ™7 (11)

Since Vj and mgo appear only as ratio {2 = % in eq.(11), the economic life
will be a homogenous function of V and mg of degree zero.

Assume further that the equipment can be used at different intensities,
as most equipment can; machines can vary their speed, trucks and train can
haul light or heavy cargo, equipment can be used for variable fractions of
the day, ... Let ¢ be the intensity of utilization, expressed as a fraction of
the maximum capacity of the equipment (0 < ¢ < 1). The value of new
equipment is unaffected by the intensity it will be used with, and so will
the salvage value since we assumed instant depreciation. Now, assume that
the effect of the intensity of utilization and age on operating costs can be
separated in the following way: m (¢,t) = w(@)m (t) = Tm (t) (let m(t) be
the operating cost when the equipment is used at full capacity). The function
w(p) = U can be normalized without loss of generality so that w(1) = 1.
It is most likely that w is monotonically increasing. In that case the ratio
of the initial capital cost and operating cost depends on the intensity of
utilization as in Q(p) = Q¥~! and economic life will be determined solely
by QL.

6 A numerical simulation

For practical applications, a specific functional form for the cost-function
has to be determined based on the data available. A suitable specification
will often be an exponential function, which is both mathematically elegant
to handle and easy to interpret due to constant growth rates. Therefore

suppose that the operating costs grow at a constant rate: d—@dlﬂrﬁ = p. In
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that case m(t) = Umg.e#. At any stage (e.g. the jth machine), the objective
is to minimize:

v - AT,
By = Vo+ =00 [Lo e (st 4 o ConRG,, 1)

First-order conditions for optimal replacement are now:
moe!AT = (i + g) e N Ky (13)

which is the equivalent of eq.(8).

To demonstrate the numerical characteristics of the model, we can insert
some values in this equation and analyze the corresponding replacement
decision. Let Vy = 1000, mg = 100, or © = 10, which is more relevant to
economic life. Suppose also that the operating cost increases at a continuous
rate of 8%. Finally, let the opportunity cost of capital be 5% (continuous
discounting) and assume that technology grows at a rate of g = 3% per unit
of time. Let Ko be the cost of a like-for-like replacement cycle, the K is the
cost of a cycle with a planning horizon of j replacements and an mﬁmte time-
horizon. To demonstrate the effect of a planning horizon and the principle,
the numerical value of economic life and minimal costs were determined in
a 10-period model (j = 0 — 9). The main results are presented in figures
2 and 3. Figure 2 represents the economic life of equipment for values of
¥ ranging from 1 to .2. The horizontal lines reflect the economic life using
an infinite planning horizon. The first observation is the economic life in an
infinite like-for-like replacement cycle, the second is the economic life using
a planning horizon of one replacement, etc. It is interesting to notice that
in some cases, using a planning horizon of only one replacement can cause
an increased economic life as compared to the like-for-like replacement cycle
(See also Grinyer [3] and the author [2]). For instance, for the case with
full intensity of utilization an economic life of 12.45 units of time was found
for the like-for-like replacement cycle and 13.33 units of time for defender
in a cycle with planning horizon at the first replacement. As it appears, the
rise in economic life due to technological progress, disappears quickly when
the planning horizon is expanded. In this example the endpoint effect of
nearing planning horizon faints quickly after the fifth period. It could be
concluded that if technological progress goes on indefinitely at a constant
rate, truncating the planning horizon unduly after a very limited number of
periods could lead to sericus biases in the determination of economic life.
Nonetheless, if technological progress in the more distant future is likely to
drop substantially, a limited planning horizon may be the better solution.




Economic life

Planning horizon

Figure 2: Economic life in function of planning horizon for different values
of ¥

It can clearly be observed that economic life of equipment can be pro-
longed when using it at a lower intensity. This effect is completely indepen-
dent from the effect of use on the wear of the equipment (since we assumed
constant the growth-rate of operating costs and immediate depreciation).
In the model developed here, the prolonged economic life is solely the con-
sequence from a change in the ratio of capital and operating costs. Such a
potential increase in economic life can be an explanation for the existence of
second-hand markets for certain equipment. Obviously, for equipment that
can be used at various rates of intensity, the economic life is not uniquely
determined by the characteristics of the equ'ipmerit, but also by the charac-
teristics of operation. The extent at which economic life can be prolonged
by lowering the intensity of utilization could be used to explain the degree
in which second-hand markets are developed. Based on the previous find-
ings, it can be argued that second-hand markets are most likely to exist for
equipment that can be used at a wide range of intensities. Also, it appears
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that the economic life is most sensitive to changes in the intensity of uti-
lization when there is no technological progress or when using an infinite
planning horizon. Close to the planning horizon (7 = 2 or 3), economic life
is considerably less sensitive to changes in intensity. Changing ¥ from 1 to
.2 in steps of .2 reveals that the elasticity of the economic life with respect
to U (ef = %%) ranges from —.274 to —.281 for j = 2, and from —.390
to —.353 for an infinite planning horizon. In similar situations when it is
expexred that the present technological progress will not last, second-hand
markets are likely to be less developed. Regardless of the planning horizon
the economic life of the equipment is always prolonged when used at lower
intensity, even in this case where the depreciation process is unaffected by
the intensity of utilization. It was demonstrated elsewhere [2] that prolonged
economic life can be expected as a result of a reduction in the intensity of

utilization for a fairly general class of cost-specifications.

Costs

Planning horizon

Figure 3: Minimal cost in function of planning horizon for different values
of ¥ '

Finally, the minimal cost related to this equipment, using an infinite time
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horizon and a limited planning horizon, is represented in figure 3. Notice
that costs fall with longer planning horizons, which is the expected result
because then more can be gained from technological progress. It is also
obvious that costs should fall with the intensity of utilization (as they do),
but it is interesting to see that the impact of a reduction in the intensity
of utilization is stronger at high values of ¥ and near the planning horizon.
When changing ¥ from 1 to .2 in steps of .2, the elasticity of the minimal
cost with respect to ¥ (E{If = %/%{—) ranges from .599 to .436 for j = 2, and
from .537 to .391 for an infinite planning horizon.

7 Conclusion

This paper dealt with deterministic single-machine replacement under tech-
nological progress and variable intensity of utilization. It was demonstrated
that when technological progress is a continuous growth-process, replace-
ment of existing equipment will be delayed even when the marginal cost of
the equipment is equal to the minimum cost of the challenger. The delay
is caused by the value of forgone technological progress at the time of re-
placement. It can indeed be argued that replacing the defender with the
challenger forces the operator to stick to some type of technology for the
duration of the economic life of the challenger. A formal expression for the
value of this option was presented for very general conditions.

Next, the concept of a planning horizon was introduced. It was ar-
gued that although an infinite time-horizon is used, it may be necessary
to consider the possibility that technological progress does not continue in-
definitely at the same constant rate. Therefore costs of future challengers
may be better approximated using a finite planning horizon, after which
like-for-like replacement occurs. The recursive nature of the optimization
procedure developed before is ideally suited to handle such problems. The
model with ever lasting technological progress and the model using tech-
nological progress ending after the first replacement - both of which occur
frequently in the literature - can be considered as special cases of the model
developed here.

Splitting the cost of equipment into operating costs and capital costs
allowed to detect the influence of a variable intensity of utilization. The
intensity equipment is used with influences both the wear of the equipment,
but also the ratio between capital and operating costs. By assumption, the
influence of use on the salvage value was left out of the model. Such simplifi-
cation is likely to have only a minor and purely numerical impact on results,
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since it is generally agreed in economic literature that the impact of the
salvage value on the replacement decision is rather marginal. This practice
simplified the analysis considerably and allowed to focus on the impact of the
ratio of capital and operating cost, which is surprisingly important. In these
conditions, the timing of the replacement does not depend on the absolute
value of capital costs and operating costs, but solely on the ratio of both
costs. In order to construct a numerical simulation, it was further assumed
that operating costs grow exponentially over time. Although numerical val-
ues used in this simulation are of course partly arbitrary, it is possible for
this type of problem to specify reasonable values of all parameters. Because
of the well-chosen model specification, no absolute cost figures are needed
to draw conclusions on the behavior of economic life. Furthermore it was
found that the general conclusions of the simulation remain stable for a wide
range of values of the simulation parameters.

Optimal economic life was determined for arbitrary finite and infinite
planning-horizons. Near the planning horizon, a special endpoint effect was
observed that consisted of a pronounced prolongation of economic life, pre-
sumably because of the increased opportunity cost of forgone technological
progress. However such endpoint effect seems to be only significant very
close to the planning horizon and for low values of the ratio of capital cost
and operating cost. In any case, the fundamental conclusion that equipment

‘should not be replaced the moment its costs rise above the minimum equiva-

lent cost of the challengers when there is ongoing technological progress, but
much later. The ideal planning horizon depends on the nature of the tech-
nological progress. When progress is expected to last for a very long time,
it may be the simplest just to assume an infinite planning horizon, since the
economic life of the first defender is nearly identical using a long planning
horizon and an infinite planning horizon. If progress is not expected to last,
a finite planning horizon of only 2 or 3 machines may be the better option,
to take fully into account the value of future technological progress forgone
by replacement. Finally, when variable intensity of utilization and techno-
logical progress are melted together in one model it becomes clear that the
intensity of utilization influences the impact of technological progress on the
replacement process and vice versa. It vappea,rs that a reduction of the in-
tensity of utilization has the least impact on'economic life near the planning
horizon. Since an increased economic life due to lowering the intensity of
utilization may give the equipment some value to other operators, the for-
mer conclusions may be of interest for the existence of second-hand markets
for some types of equipment. It is argued that second-hand markets are
more likely to appear for equipment that can be used at different intensities
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and which economic life is the most sensitive to changes in the intensity of
utilization.
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