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Abstract

We propose a general hierarchical procedure to address real-life job shop scheduling
problems. The shop typically produces a variety of products, each with its own arrival
stream, its own route through the shop and a given customer due date. The procedure
first determines the manufacturing lot sizes for each product. The objective is to
minimize the expected lead time, and therefore we model the production environment
as a queueing network. Given these lead times, release dates are set dynamically.
This in turn creates a time window for every manufacturing order in which the various
operations have to be sequenced. The sequencing logic is based on an Extended Shifting
Bottleneck Procedure. These three major decisions are next incorporated into a four-
phase, hierarchical, operational implementation scheme. A small numericalv example
is used to illustrate the methodology. The final objective however is to develop a
procedure that is useful for large, real-life shops. We tilerefore report on a real-life

application.
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1 Introduction

The production environment is a multi-operation job shop under an assemble(make)-to-order
policy. Customers arrive dynamically and each customer order is characterized by a certain
volume; mix and an agreed due date. Each order requires several operations on different
machines; the routes, which are characterized by a bill of processes, are not necessarily the
same for each order. We moreover explicitly include the stochastic nature of the production
system, on the level of the customer orders itself (the shop typically produces a large variety
of products each with its own stochastic arrival stream) and on the level of the shop floor,
where processing and setup times are not deterministic due to all sorts of variability and
disruptions. In this paper we propose a general procedure to address this problem. The
situation is similar to the ones described by Wein and Chevalier [25], Shantikumar and
Sumita [21] and Zijm and Buitenhek [27] who consider due date setting whereas we assume
customer confirmed due dates and determine the release date accordingly.

The methodology used is a hierarchical approach in which we link separate applications
into an integrated planning and scheduling system. The hierarchical approach we propose
consists of three important decisions. The first decision is a lot sizing decision. Individual
customer orders for the same product are grouped into manufacturing orders, which minimize
the expected total product lead time. We developed our own queueing network approach
where all parameters are a function of the lqt size (see section 2). This has many advantages:
it explicitly includes the convex relationship between lot sizes and lead times (see e.g. Kar-
markar [14] and Lambrecht and Vandaele [17]); it takes care of congestion phenomena (the

impact of the utilization of the most heavily loaded machines); it quantifies the queueing




delays and it takes into account the stochastic nature of the problem. At this stage we need
estimates of e.g. the customer order arrival rate, the squared coefficient of the customer
order interarrival times, etc. The result of the queueing network is target lot sizes which give
an indication of how customer orders have to be grouped into manufacturing orders. We
group booked customer orders in sﬁch a way that we approach the target lot sizes as close as
possible. Given the time varying nature of the booked customer demands, the manufactur-
ing orders may actually differ from manufacturing order to manufacturing order, but on the
average we aim for lot sizes minimizing the expected lead time (and work-in-process). Most
job shops have the problem of fitting in incoming customer orders quickly. The detailed
real-time scheduling required to manage this, is in our approach integrated with planning
through the target lot sizes and the lead time off-setting (cfr. infra).

The second major decision is the determination of the release date of the manufacturing
orders. The release date is set equal to the due date minus the lead time estimate of the
manufacturing order (a grouping of booked customer orders). The estimate of the lead time
is equal to the expected lead time plus a safety lead time. The safety lead time depends
on the customer service. The lead time estimate is such that we expect to satisfy customer
orders on time, P% of the time. This of course requires knowledge of the variance and the
probability distribution of the lead time.

The third major decision concerns the sequencing policy. In the previous step a time
window (expected lead time plus safety time) is created for every manufacturing order.
Within these time windows (one for every manufacturing order) we now have to sequence
all operations in detail. We opted for the shifting bottleneck procedure (Adams, Balas and

Zawack [1]) for various reasons, one being its excellent performance as described by Ivens
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and Lambrecht [13]. The shifting bottleneck procedure has to be adapted so that it can be
used to sequence the operations for our general job shop environment including assembly
operations, release dates, due dates, overlapping operations, multiple resources (machines
and labour force), setup times, calendars and many other real-life features. The ESBP (Ex-
tended Shifting Bottleneck procedure) is described in section 3.. This sequencing application
can clearly be interpreted as a deterministic real-time scheduler. There is no conflict with
the two previously described stochastic applications. The stochastic applications result in
realistic estimates of time windows. Real-time scheduling is a very dynamic process which
will need (due to many changes) frequent rescheduling. It is hoped for that the estimates of
the time windows are robust so that most of the due dates are finally met.

This methodology, based on three major decisions (the lot size decision, the release
decision and the sequencing decision), is next transformed into a ihierarchical, four phase,
operational implementation scheme as summarized in figure 1. Phase one is the lead time
estimation and lot sizing step. In this phase the manufacturing system is transformed into a
queueing network. The outcomes are lot sizes and lead time estimations. The second step is
a tuning phase where management intervention is required. Management may consider the
lead times as unacceptable and may decide to adjust the capacity structure (e.g. overtime,
capacity expansion), to off-load heavily loaded resources, to consider alternative routings,
etc. The adjustments may result in a new run of the queueing model. The actions to be taken
here depend upon the practical situation on hand. The next phase is the scheduling phase,
including (a) the grouping of customer orders into manufacturing orders; (b) determining the
release date for each manufacturing order; and (c) the detailed sequencing of all operétions.
In the final phase, the detailed plans are transferred to the shop floor on a real-time basis.
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Figure 1: The four phase hierarchical approach of ACLIPS

Through electronic data captation, information concerning the execution of the detailed
plan is fed back so that rescheduling can be done. The nature and frequency of rescheduling
heavily depends on the dynamics of the situation and th; level of responsiveness required.
The system described above was named ACLIPS (A Capacity and Lead Time Integrated
Procedure for Scheduling) and has been fully implemented in a metal working company. The
application will be described in section 4.

The objective of our hierarchical approach is to obtain an integrated planning and




scheduling system. Lead times are estimated through a queueing model taking into account
congestion phenomena and the queueing impact of lot sizing (which results in a simultane-
ous treatment of both capacity and material flow). Standard lead time off-setting ( as is
e.g. done in MRP) is replaced by realistic estimates of order release dates. The lead time
estimates include a safety margin so that customer service targets can be specified. The
detailed real-time scheduler operates within time windows allowing to deal explicitly with
the dynamics of the floor. The tuning phase allows a management intervention to cope with
the capacity/inventory(lead time) trade-off.

The remainder of the paper is organized as follows. The lead time estimation and lot
sizing phase is discussed in section 2. The scheduling phase ié explairied in section 3. We

discuss a real-life application in section 4. We draw conclusions in section 5.

2  Lead time estimation and lot sizing phase

2.1 Introduction

Our model clearly builds on well known queueing approximations found in the literature, but
our épproach adds some additional features making it more suitable for practical applications.
The most significant differences with existing approximations are the following. First, our
expressions for the expected lead time and the variance of the lead timeA are written as a
function of the lot size. This allows us to use an optimization routine to find the optimal
lot sizes for all products simultaneously. Second, our model explicitly includes setup times. '

Exact analytic solutions have been proven to be mathematically untractable except for some




very specific problem settings (for more details, see Lambrecht, Chen and Vandaele [16}).
Third, we further extended and adapted existing approximations by including the following
refinements: the average aggregate batch processing time, the sc;/ of the aggregate batch
processing time, the selection of more appropriate weights in the objective function; the
determination of the squared coefficient of variation of the (aggregated) éxternal arrival
stream: a modified approximation for the variance of the lead time; the use of the lognormal
distribution to approximate the lead time distribution function and the introduction of the
concept of customer service. All these refinements enable us to better describe the stochastic
nature of the production environment. Similar approaches are described by Shantikumar
and Buzacott [20] Buzacott and Shantikumar [9], Shantikumar and Sumita [21], Bitran and
Tirupati [6], [7]. Software pacckages include, among others, MPX (Suri and DeTreville [23])
and QNA (Whitt [26]).

In our approach, equations (for the expected lead time and the variance of the lead
time) are derived that capture the dynamics of the system in an aggregate way. The arrival
process for each product is characterized by the expected customer demand and the average
and variance of the order interarrival times. The exogenous arrival rate can be estimated
from historical data or from demand forecasts or even confirmed orders depending on the
availability of data. The other parameters are: the servicg times (average and variance of
both setup and unit processing times) and shop parameters such as routings and calendars.
The outcome of the model are expressions for the expected lead time and variance of the lead
time as a function of the lot size. Although we rely on approximations, simulation studies
(for small examples) turned out that the approximations behave satisfactory (see Vandaele

(24]). The deviations between the approximations and the simulation results are in line with
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other results available in the literature. We assume a constant lot size per product over the
entire routing. Next an optimization routine is used to find the lot sizes that minimize the
expected lead time. We call these lot sizes ‘target lot sizes’. A lognormal distribution is
postulated to characterize the lead time distribution. This in turn allows the user to specify
a lead time, satisfying a pfedetermined customer service (lead time percentile).
Throughout the paper a small example will be used to numerically illustrate the various
steps of our procedure. The shop, a small metal shop, fabricates two products, P and 5, and
has three machine (centers) types: a cutter (C), a grinder (G) and a lathe (L). Product P
has three stages on its route (on machine C, G and L) and product S has two stages (on
machine L and G). The shop runs three shifts per day, seven days a week. There is one
machine available of each type. The customer demands for both products are summarized

in table 1.

Product P Product S

Average interarrival time (hours) 144 48
Variance interarrival time 3744 494
Average order quantity (units) 3 2

Table 1: Demand characteristics for products P and S

Table 1 is interpreted as follows: for product P we e#pect a customer 01‘vder every 144
hours, while the average order size equals 3 units.. The processing and setup times are
summarized in table 2 (all times are expressed in hours). In table 2 it can be seen that both .
the cutter and the lathe have deterministic setup and processing times. The grinder faces

exponentially distributed setup and processing times.




product | operations | machine | setup setup  processing processing
average variance  average variance
Product P 3 cutter 20 0 30 0
grinder 20 400 10 100
lathe 24 0 12 0
Product S 2 lathe 16 0 8 0
grinder 20 400 10 100

Table 2: Production characteristics of the metal shop (expressed in hours)
2.2 Model derivation

We will now discuss the formal treatment of the lead time estimation and lot sizing phase.
Assume k to be the product index (k = 1...K), m the machine index (m=1... M) and
o the operation index for product k& (o = 1...0), where Oy is the number of operations
for product k. Each product k is characterized by an average order quantity 0Q,, an
averége order interarrival time Y, the variance of the order interarrival time Sf,k, the squared
coefficient of the order interarrival time cf,k and the arrival rate A\p =1 /Vk. Tor the smdll
metal shop we assume the following characteristics: Y p = 144 and Y = 48, S%P = 3744
and s, = 494, ¢y, = 13/72 and ¢}, =3/14, dp = 1/144 and As = 1/48, OQp = 3 and
0Qg = 2. ‘-

As far as the production characteristics are concerned, the following is d'eﬁned for product
k and operation o, expressed in hours: Tj,, setup time random variable; Xy, unit processing -
time random variable; Tk,, expected setup time; X1o. expected unit processing time; [iko, '

unit processing rate (= 1/Xk); SQTkO, variance of the setup time; s?yko, variance of the unit.




processing time; C%"w scv of the setup time; c§<ko, scv of the unit processing time. In addition,

define dxom = 1 if operation o for product k is on machine m and 0 otherwise. The routing
of the metal shop consequently results in: dp1c =1, pag = 1, 8par = 1, 8511 = 1, dg0c = 1
and all other 8z0m’s equal 0.

At this point all the input parameters are given. We use a queueing ﬁetwork approach
—to model the job shop. FEach machine is modelled as a multi product lot sizing model
with queueing delays. The multiple arrival processes of the k& products are superposed into
one aggregate arrival process. All characteristics of the aggregate arrival process and the
aggregate production process are functions of the lot sizes Q)x. Note that we express Q. as
a multiplier of the average order quantity OQ,. For each machine m we have to obtain: [,
the aggregate batch arrival rate; ca?,, the scv of the aggregate batch interarrival time; ca’ ,Qn,
the scv of the external aggregate batch interarrival time; u,,, the aggregate batch processing
rate; cs?,, the scv of the aggregate batch processing time; g/, the adapted traffic intensity.

The aggregate arrival process at machine m is characterized by the average and the scv
of the aggregate batch interarrival times. Note that the batch arrival rate of product & at
the first machine of its routing equals Ay, = Ax/@ which is a result of grouping the order
quantities into a manufacturing batch of size Q,OQ, (expressed in units). The aggregate

Oy
batch arrival rate of product &£ at machine m equals [,,;, = Z AbOkom- Then the aggregate

“o=1
K O

batch arrival rate at machine m equals [, = Z Z Aby, Okom Which includes both the internal
k=1o0=1
and the external batch arrivals at machine m. The external aggregate batch arrival rate at
K

machine m equals I/, = Z b Ok1m. For our numerical example we obtain Ay, = 1/144Qp,
k=1

)\bs = 1/48@5 and lc - 1/144@}3; lG - 1/144Qp + 1/48625, lL = 1/144Qp -+ 1/48@5 and

10




= 1/144Qp, l;; = 0, I}, = 1/48Qs.

We now turn to the production process at machine m. The aggregate batch processing

. . 777 A 6 om
time on machine m equals 1/u,, = Z u Z b" k (Tro + QrOQ X o) Where Lk /Ly, is

'mo—

the probability that a randomly picked product in front of machine m is of product type k.
The expression for 1/u, is a weighted average over product batch processing times, which
are in turn weighted averages of the operations on machine m for the same product. For the »
numerical example we obtain 7}; = 20+90Qp, ;% = @Q—ﬁ%@;(20+30QP)+W?ﬁ%@—p(2O+

48 144
20Qs) and L = 5188 —(24 + 36Qp) + TFoe—(16 + 16Qs).

Along the same lines, we obtain the scv of the aggregate batch processing time

K Oy PV
csfn = Z ll Lbk Zkom
k=1 lm o=1 l"'"’"
‘ Z Lk Z )\bkékom STk -+ QkOQkSXk ] (1)
'm o=1 'mk [Tko + QkOQkao]

kB T o+ QuOQ X kol | 12, — 1

Applied for the small metal shop

(204909p)% _ 1 1 g =

CSc = (20+90Qp)?
48Qg 144Qp
cs2, = BQstlidop (20+30Qp)* + g ritigy (20+20Qs)°
G - 48Q 144Q T
__l440p
[m(2O+BOQF’)+4SQS+M4Q (204‘20@5)}
+ 48Qs [4OO+300Q}1] + 144Qp [4OO+200Q5}
48Q05+144Qp | (20430Qp)2 48Qs+144Qp | (20+20Qs)2
48Qg 144Qp s
2 __  _48Qg+144Qp (24+36Qp)* +48QS+144QP (16+16Qs)
€L = 48Q 1440 s —14+0
o= __1440p
[48Qs+144€>}> (24+36Qp)+ g5 riaaap (16“6@5)}

When setup times are included in the machine utilization, we define the adapted traffic
intensity p’, which includes both the utilization due to setups and the utilization due to
processing. The utilization without setup is the traditional traffic intensity p. Now we can

determine the adapted traffic intensity for machine m

[ K O K Oy
P = P =55 NoSkom[Tho + QOQXro) = 2 > Aoybkom Lo + P (2)
m k=1o0=1 k=1 o0=1
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and applied for the metal shop: pp = §é§cﬁ + 2 pp = %%; + 17%—5 + % and o} =

t-+5

_1
6Qp 3Qs

Further define fon, the proportion of batches from outside and going to machine n, fmn, the
proportion of batches leaving machine m and going to machine 7, fmo, the proportion of

batches leaving machine m and going outside, and F, the transition matrix of fmn (m,n =

0...M). Solving the following set of linear equations yields the M unknowns ca’,, m =

1,...,M:
M M
— S L f2 (1= p)cal + lmca Zz o (Famfy 082 + 1 = fam) + lnca'n, (3)

n=1

Equations (3) are a slightly adapted version (in terms of general exogenous arrivals in-

stead of Poisson arrivals) of the results obtained by Shantikumar and Buzacott (20]. The

M

entrances of the transition matrix F are obtained as follows: fon = I/ Z U fom =
K Out m=1

(1/[ Z Z )\bk5kom5ko+1m fmo = 1/l Z /\bkékokm fornm=1...M and m = 1...M.
k=1 l=1 k=1

Note that in our model, due to the fact that the routings are given, we face deterministic
routing. Therefore, the transition matrix F' can be derived in the way described above.

Returning to the small metal shop we have the following transition matrix F:

0 C G L
‘ 48Qs5+144Qp 48Qs+144Qp
C 0 0 1 0
G 144 0 0 48Qs
48Qs+144Qp 48Qs+144Qp
I 48Qs 0 144Qp 0
48Qs+144Qp 48Qs+144Qp




K

To obtain ca ~we use the following approximation: if Z Ok1m > 2, then
k=1

2 K 5k]_'m c:)z/k 1 2 X bkéklm C%/k
ce 52 2 3Ti4 L o

I Gk

0

K 2
If kz:léklm = 1 then ca’fn = 5’7:—

The approximation for ca is the sum of a constant and a weighted average of the scv’s
of all the external batch\ arrivals at machine m. It is an interpolation between compléte
deterministic arrivals (where the aggregate scv is approximated by the scv of a uniform
distribution U[0,2/1,] and the scv of Poisson arrivals (where all scv’s equal one). The latter
is the only known exact result in the literature for the superposition of arrival processes.
The weights 1/3 and 2/3 in the expression for ca’?, are a particular instance of a general
approximation described by Albin 12].

2 _ 131 2

For our illustrative example we obtain ca'sz = 3557 ca G =0,cd] = %él—— Then finally

the lead time for product k on machine m for operation o is
M

EWio) = 5. E(Wqm)bkom + Tho + Qr0Q, X ko

m=1

with

E(qu) _ 4 2§cam+csm exp{ 2(1—pp (1= caml_} if ca gn <1

21m(1 ) 3p,, (ca?,+cs2,)

r 2

EWqn) = bl (CT %) oTnE _J;Tc:) if caZ, > 1

This approximation is based on the well-known Kraemer-Lagenbach-Belz [15] approxi-
mation, which has been tested widely in the literature (see e.g. Shantikumar and Buzacott
[19]). Although some authors suggest modifications to this basic approximation (see e.g.
Bitran and Tirupati [6]), we found that the baisc Kraemer-Lagenbach-Belz approxirﬁation
perfofms well for our purposes.
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The aggregated objective function for machine m can be stated as follows

Oy
M OQ 1 kom ——
) K Z k Qk kom. Ok /\kOQk(Skom
E(Wuy,) = E(Wqm) +Z oy

ESTY T M0Qbkom o= ‘Z A:0Qbkom

k=1o0=1

{Tko + Qk.@@—k-X_ko]

This objective function for machine m is the weighted average over the products visiting

machine m, which on their turn are weighted averages over the operations on machine m

K O
for product k. Note that weight Z MeOQ6kom/ Z Z AeOQ0kom is independent from the
o=1 k=1 o0=1

manufacturing lot size multiplier. It measures the relative importance of product k for
machine m.

The objective function for the total job shop becomes

S K \0Q, (0@, —1Y
EW) = 3 EWgn)+> 2 [Qx S Ve
m=1 k=1 Z /\k—Q—k k
k=1

Oy .
v ok D MOQbkom |0, | A

0= - A OQ ] om. —_— —

5 S ik [Ty, + Q0@ Ko | (4)

ZAkOQkékom o=t Z/\kOQkékom

=1

3

Il

i

-l

il

i
x
lLM*

K
The weight \;0Q;/ Z MOQ, takes care of the relative importance of product k for the
k=1

total job shop. The second sum of equation (4) measures the average waiting time of finished
batches until their due date. For the metal shop the objective function (as a function of the

lot size multiplier Q) for the entire job shop equals

' 1 2
E(W) = E(Wg)+ E(Wy.) + E(W,,)+20+90Qp + 5(20 +30Qp) + 5(20 +20Q5s)

1 2 ‘
+§(24 +36Qp) + 5(16 +16Qs) +8(3Qp — 1) +8(2Qs — 1)
At this point the formulation of the job shop is complete.
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2.3 Optimization and decomposition

The minimization problem involves a non-linear objective function and a set of simultaneous,
non-linear constraints. A dedicated optimization routine has been developed to solve the
problem and is described in Vandaele [24]. The optimal lot sizes for the small metal shop are
Q}@—C_jp = 4 and Q30Qg = 6. Note that when we use the term optimal, we refer to the values
minimizing the objective function (the objective function of course being an approximation).
The decomposition, after the optimization, can be summarized as follows. - The optimal
multipliers Qi (or the vector Q*) for each product are used to calculate the expected lead
time of operation o of product k on machine m, E(Wk,) = f: E(Wqm(Q"))bkom + Tho +
m=1

Q:0Q, Xko. The first term is clearly common for all products using machine m. The total

Jead time of product k (for the whole routing) is given by

Yo Lva Oy M _ o
E(W,) = (QkO%_Q_ DY 5 (Z E(Wgn(Q))6kom + Tho + Q,’;OQkao> (5)
k m=1

o=1

The numerical outcomes are summarized in table 3. From this table it can be seen that
there is a small queue in front of the cutter. On the other hand, both the grinder and the
lathe face long waiting times compared to their processing times. This is mainly due to the
high adapted traffic intensities. The waiting time for the grinder is even larger. This is due
to the stochastic nature of that machine. The operation f;tock’ is the average time that a

particular customer order (as part of a manufacturing batch) has to wait until its due date.

The variance of the total lead time of product & 1s approximated by

Q0@ — 1 , (Qr0Q; — Q00 + 1)72

VW, = ———5S58y, T —— -+
(W) 200, 1200- *
Ox Ok Ok -
SV (Wam(QT))bkom + Sosk o+ Q:0Qrs%,, (6)
o=1 o=1 o=1
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product | optimal operation adapted traffic waiting setup processing lead
lot size intensity (%) time  time time time-

P .4 cutter 73 7 20 120 147
grinder 87 109 20 40 169

lathe 82 42 24 48 114

stock 72

total 502

S 6 lathe 82 42 16 48 106
grinder 87 109 20 60 189

stock ’ 60

total 355

Table 3: Optimal lot size and lead time for the metal shop

The term V(Wgpn) is given in Vandaele [24]. For our example, the standard deviation of
the total lead time is 158 hours for product P and 154 hours for product S which suggests
that the lead times are highly variable. If the lognormal distribution is assumed, then the

arameters are O = In B, and 2 = In (LWl 1 1), The lead times, includin
p B < Z7Y Tk (E(Wk)2 > &
safety time, are obtained in the following way. Wp, is the total lead time guaranteeing a

service of P,%. This means that the manufacturer will satisfy this lead time Px% of the

time for product k. Then

W, = exp {Bx + 2,7} (7)

where zp, can be obtained from the standard normal table ( P is the required percehtile for

product k). Subsequentially we will call Wp, the planned lead time, because it will be used
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to fix the planned release date. For our example, we show the planned lead time for some

values of P in table 4.

Py 80% 90% 95% 99%

Product P | 621 710 794 980

Product S | 463 554 644 835

Table 4: Some lead time percentiles, including stock time

3 Scheduling Phase

3.1 Grouping of Customer Orders into Manufacturing Orders

The problem addressed here is the grouping of Cj customer orders of product k, characterized
by an order quantity OQkc (1 <c<Cy) and a due date DDy, (1 <c < Cy), into a number
of manufacturing orders Ly (I =1,. .., Sk) of which the number of units ideally approach the
previously fixed target lotsize Q;. In table 5 we give the various booked customer orders.
covering roughly a time period of one month. As can be seen, we have 5 customer orders
for product P and 15 orders for product S. Bach order is characterized by an order quantity
and a due date. Table 5 has to be interpreted as follows: one unit of product P has to be
delivered at day 22, 5 units at day 28, 3 units at day 37, é.tc.

For each product k, we first fix the number of setups Sy = \‘—Ql—ziOch} where |z 1s
the largest integer smaller than or equal to z. This is a conservative rounding precluding

infeasibility. In our case, Sp equals 3 (115/4]) and S5 equals 5 (130/6}). The grouping

into manufacturing lots can be done in several ways. It is clear that this problem can
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Product P quantities 1 5 3 2 4

due dates (days) | 22 28 37 41 44

Product S quantities 1 3 2 3 1 1 3% 2 3 1 2 3 3 1 1

due dates (days) | 17 18 19 22 24 26 27 30 33 34 35 36 39 42 44

Table 5: Booked orders for products P and S

be formulated as an integer programming model or, more elegantly, transformed into a
dynamic program. Given the standard nature of this problem we omit the formulation. It
is however important to mention that the objective function we used minimizes the number
of inventory-days. In table 6 we summarize the results for our illustrative case where Q) Ly
stands for the lot size of the new manufa;:turing orders. It should be clear that as long as
the manufacturing lots are not physically released, the optimal grouping can be recalculated
when new information becomes available. In this way we are able to react fast to changing
circumstances, enabling the planner to fit in quickly new incoming orders. However, if the
changes are drastic, such as a significant increase or decrease in the size and the number of
customer orders, we opt for re-optimizing the target lot sizes, so that these changes will be

reflected in the lead time estimates.

product | Ly | Grouped Customer Orders (QLk)

P | Lp | 1-2(6),34(5),5 (4)

S Ls | 1-2-3 (6), 4-5-6 (5), 7-8 (5), 9-10-11-12 (9), 13-14-15 (5)

Table 6: The manufacturing lot sizes
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3.2 Release of New Manufacturing Orders

For the newly determined manufacturing order quantities, QLy, we have to compute the
corresponding expected lead time and the planned lead time (expected lead time plus safety
time). Because each manufacturing order is due at the due date of the first customer order

from this manufacturing order, we have to remove the terms accounting for the stock time

O M
from the equations (5) and (6) as E(Wy) = > <Z E(Wgm(Q"))0kom + Tro + le-—X—ko> and

o=1 \m=1

Ox Ox o
V(W) = zkl V(W qm(Q"))bkom + Zkls%w + il Qusk,, respectively.
o= o= o=
Next, the planned lead time (70% service) is obtained using expression (7) from section
2.3. Subsequently, the p‘ianned lead times are deducted from the due dates to obtain the
release dates for each manufacturing order. These results are summarized in table 7. The
due date for Lp; is day 22 (it includes customer orders 1 and 2) so the due date equals 528
hours from now. The expected lead time is calculated for each manufacturing batch. Across
manufacturing batches for the same product, the waiting time and setﬁp time are equal but
the batch production times differ due to the different manufacturing quantities. The same
is true for the lead time variance so that each manufacturing batch of a given lot size ends
up with its own planned lead time (these planned lead times do not coincide with the lead
time percentiles from table 4 because at this point now we do not include the stock time).
The planned lead time is substracted from the due date and the release date is obtained.
Negative release dates mean that the guaranteed seryice level wﬂl not be reached because
the batch can only be released at the current moment. Due to the fact that the planned lead

time incorporates both waiting time and safety time it is still possible, but less likely, that

the manufacturing order is finished before the due date.
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To conclude, this phase has set the time windows (planned lead time between release date

and due date) for each manufacturing order. The various operations of each manufacturing

order will be sequenced within these time windows. This will be covered in the next phase,

the detailed scheduling phase.

Manufacturing | Due | BExpected Planned | Release
Lot Date | Lead Time | Lead Time | Date
Lp1(6) 528 534 593 -65
Lpa(5) 888 482 539 349
Lp3(4) 1056 430 484 572
Ls:1(6) 408 295 338 70
Lgso(5) 528 277 318 210
Ls3(5) 648 277 318 330
Ls4(9) 792 349 398 394
Ls5(5) 936 277 318 618

Table 7: Release Dates of the Manufacturing Orders, expressed in hours

3.3 Detailed Scheduling of the Operations

At this stage of our procedure, all non-completed operations of manufacturing orders are

scheduled between the release date (or the current moment if the order is overdue) and the

due date of the order. Detailed scheduling requires to specify for each operation of each

manufacturing order when it has to be performed and by what resource, explicitly taking

into account the limited availability of the various resources and many other constraints such

as precedence among operations, release dates and due dates. A schedule needs to optimize a
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predetermined objective. Many production managers strive for due date performance, short
lead times and low in-process inventory levels.

The well known job shop scheduling problem is the theoretical abstraction of this prob-
lem and has been subject of numerous research efforts. Both optimal and heuristic solution
procedures are proposed in the literature. Recent integer prograﬁlmmg based models can
be found in Applegate and Cook (3]. Among others, Carlier and Pinson [11] and Brucker,
Jurisch and Sievers (8] propose implicit enumeration methods for solving the job shop prob-
lem. Unfortunately, the job shop scheduling problem is NP-hard in the strong sense. This
implies that there is little hope to find optimal solutions to large real-life scheduling problems
within reasonable computer time. For practical applications heuristic schedule generation
procedures with priority dispatching rules are often used (First Come First Served, Short-
est Processing Time, Earliest Due Date, Most Work Remaining, Critical Ratio,...). Other
approaches exist such as tabu search, genetic algorithms and simulated annealing.

Adams, Balas and Zawack [1] introduced the Shifting Bottleneck Procedure (SBP), a
new, powerful heuristic for the job shop scheduling problem. Dauzere-Péres and Lasserre
[12] and Balas, Lenstra and Vazacopoulos [4] increased its performance and their experiments
indicated that the SBP offers exceptionally good results compared to other heuristics such as
priority dispatching rules. Other work on the shifting bott_leneck procedure can be found in
the recent book of Ovacik and Uzoy [18], which covers the research progress on the shifting
bottleneck method. Because of the SBP’s good balance between computational complexity
and the quality of the generated schedules, we héwe chosen this procedure as the engine of

our detailed scheduling phase.
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3.3.1 The Extended Shifting Bottleneck Procedure (ESBP)

However, the scope of the theoretical job shop scheduling problem is far too limited to be
applicable in practical environments. We therefore extended the SBP so that non-standard
features such as release dates, due dates, assembly structures, split structures, overlapping
operations, setup times, transportation times, parallel machines and in-process inventory can
be modelled. For an in-depth treatment of these extensions we refer to Ivens and Lambrecht
[13]. Other work in this area is offered by Schutten, Van de Velde and Zijm [22]. The
extensions are modelled by an Extended Disjunctive Graph (EDG). This representation is
similar to the disjunctive graph (Adams, Balas and Zawack [1]), but arcs can have labels
to represent general precedence relationships, e.g. to allow overlapping, forced delays and
waiting times. Product assemblies and splits can easily be modelled by allowing multiple
predecessors and successors. Customer or manufacturing lots have a release date and a due
date. We also allow restrictions on starting times or finishing times of individual operations
(e.g. due to temporary unavailability of raw materials, labor, tools, etc...). Some resources
are available in multiple units (i.e. parallel machines). Thus, in addition to’;equencing, an
assignment of operations to resources has to be done. Recent extensions include the use of
resource calendars and the possibility that operations require more than one resoufce at a
time. In addition, other performance criteria could be considered. In this paper we use the
minimal maximum lateness criterion. For many practical applications, we. found out that

computer time needed for the machine problems constitutes no problem.

22




| 1 L 4

10 20 30 40
operation j of order 1 of product P

operation j of oxder i of product S

Figure 2: The Gantt chart of the detailed schedule

3.3.2 The Metal Shop Example

We will now illustrate the ESBP for the small metal shop example. The eight manufacturing
orders from table 6 have to be scheduled. Currently, two previously released manufacturing
orders reside on the shop floor. In addition to the vtwo in—procéss orders, there are three
manufacturing orders P with three operations and five manufacturing orders S with two

operations. The output of the ESBP is visualized in figure 2 as a Gantt-chart. The Gantt-




chart shows the two manufacturing orders already in process (the unlabeled blocks) and the
eight newly released manufacturing orders. The shaded blocks stand for product P while
the blank blocks visualize product S. Next, for each manufacturing order the time window
(planned lead time) is shown. The release and due date for each order can be seen. Although
order P1 could not start on its release date (as it is already late), due to the safety time, the
order can still be finished on time. From the Gantt chart it can also be seen that the orders
are scheduled as early as possible in their respective time windows (cf. minimal lateness
criterion). Of course the sequencing of the various operations causes some operations to
start later than the release date (S2). These time windows have been designed is such a
way that the deterministic schedule will not be useless as soon as disruptions occur; the
in-build slack (safety) time will absorb the impact of variability. The in-build slack is clearly

visualized in figure 2. A re-optimization may be required in case there are too many changes.

3.3.3 The Execution Phase

In this phase, the detailed schedule will be executed and dispatching and picking lists can be
obtained. A data captation system can transmit information concerning work progression
back to ACLIPS. From time to time, a ‘recalculation of the detailed schedule will be necessary
because of the numerous changes on the shop floor. The frequency of recalculati'on is of course
a function of the dynamics of the shop. A re-optimization of the lot sizing and lead time
estimation phase will also be required now and then but, of course, less fréquently. The lot
sizing and lead time estimation phase is on an aggregate level and focuses more on a long
term planning horizon. The information needed for this phase does not change very quickly.

It also allows the user to evaluate what-if questions. Of course we have to avoid reschedulin‘g :
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each time that a single disruption occurs. That’s where we benefit from the safety time

included in the time windows.

4 An Application

The methodology outlined in this paper is well suited for real-life applications. In this
section we report on an implementation in a medium-sized metal working company. We will
stress the applicability of our approach and focus on the resulting benefits and savings. The
quality of our approach can be demonstrated by comparing current lot sizing practice and
the current scheduling practice with the lot sizes and schedules proposed by ACLIPS.

The metal working company we consider produces transmissions for off-road vehicles.
Our application focuses on the shop where raw steel components are transformed into shafts
and gears. The shop orders stem directly from the MRP requirements demanded by the
next department, a furnace. In the future ACLIPS will be expanded to all shops, making
the current MRP system of the company superfluous. The subsystem we consider consists
of 70 machines and 556 different components which results in 3,484 different operations. On
a yearly basis, this metal shop handles about 10,000 customer orders.

We realize that it is difficult to verify the performance of the ACLIPS approach. We
therefore conducted the following experiments. In the first experiment we use‘d ACLIPS to
simulate the impact of the current planning practice. Current practice involves the use of
heuristically determined company lot sizes (fixed at 1, 2, 4, 6, 8, 12 or 16 weeks of supply)
and second it involves thé use of a total slack based priority rule for scheduling. ‘Feeding

these parameters in ACLIPS resulted in the performance indicators given in column 1 of
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table 8.

In the second experiment, we again used our ACLIPS model but now fed with parameter
values obtained through the methodology explained in this paper. That means, we searched
for the target lot sizes (minimizing the expected lead time) and we applied the ESBP (section
(3.3.1)). Consequently we optimized the lot sizes éf the 556 products on a Pentium 60 Mhz
PC (the optimization was stopped whenever the objective function did not change by more
then 10710, clearly an accuracy level not required for a practical application). We used the
minimal maximum lateness criterion for the ESBP routine. The results of this experiment
are displayed in column 2 of table 8. So, for both experiments we predicted the performance
based on the ACLIPS routine but each time with another parameter setting. We did not use
a discrete event type of simulation tool given the extremely high dimension of the problem
at hand.

The summary of the performance is given in table 8. The upper part of the table refers
to the expected lead time performance, and the lower part refers to the projected scheduling
performance. We refer to current practice when we discuss experiment 1, and to the opti-
mized (improved) environment when we discuss experiment 2. The average lead time per
operation decreased from 68 hours to 99 hours. In our our case study there are on average 3.4
operations per product (order), so we project an average le.é.ad time per order of 227 hours in
experiment 1 and 78 hours in experiment 2. This 66% lead time reduction clearly illustrates
the significance of the lot sizing and the lead time estimation phase. The avefage planned
lead time (including safety time to guarantee a 95% service level) per order equals 486 hours
in experiment 1 and 163 hours in experiment 2. This measure gives us an idea of the .Width
of the time windows.
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In the scheduling phase, we group the various customer orders and forecasts (for a one-
year time horizon) into manufacturing orders for both experiments. After determining the
release dates for each manufacturing order we ran a total slack rule (experiment 1) and an
ESBP rule (minimize maximum lateness, experiment 2). This resulted in a huge detailed
scheduling problem of approximately 30,000 operations. The results are .ShOWIl in the lower
part of table 8. Based on a deterministic schedule We expect an average shop lead time of
139 hours in experiment 1 (note an improvement compared to the 227 hours, due to the
slack based priority rule which outperforms the First Come, First Serve rule implied in the
queueing model). The average shop lead time in experiment 2 equals 55 hours. This is again
a significant improvement compared to 78 hours (also the Shifting Bottleneck Procedure is
performing much better the FCFS rule embedded in the queueing model). Three numbers
are of importance. The current practice lot sizes (experiment 1) result in an expected lead
time of 227 hours, this can be reduced to 78 hours by using better target lot sizes (experiment
2). The 78 hours can be further improved to 55 hours by using the ESBP. In this experiment
the improvement from 227 hours to 55 hours is for 87% due to a better lot sizing policy and
for 13% due to improved scheduling. In table 8 we further give details on the maximum
lateness, the average lateness and the average tardiness.

On all performance measures, the ACLIPS routine (with the optimized parameter set-
tings) outperformed current practice. Consequently the company decided to implement the
ACLIPS model and we observed the behavior of the system during a 3 month period. During
this 3 month period several other tests were performed, one involving the installation of a
second shift for one of the bottleneck machines. This can be interpreted as an application
of the tuning phase discussed earlier. This additional shift had the potential to reduce the
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Experiment 1 | Experiment 2
Lead Time Average lead time per operation 68 hours 22 hours
Performance Average lead time per order 227 hours 78 hours
(queueing) | Average planned lead time per order (95%) 486 hours 163 hours
Average (deterministic) shop lead time 139 hours 55 hours
Schedule Maximum lateness 470 hours 89 hours
Performance Average lateness - 477 hours - 120 hours
Average tardiness 5 hours 3 hours

Table 8: Summary of the ACLIPS Performance

average lead time per order to 60 hours (as compared to the original 78 hours).

In order to fully obtain the benefits of the proposed hierarchical approach suggested in
this paper one has to focus on data accuracy and on some behavioral aspects of schedul-
ing. Current practice is based on priority rules. This myopic approach has to be replaced
by a computerized scheduler looking at all machines simultaneously. This results in a dis-
patch sequence which is not always preferred by the operators who are used to set priorities
autonomously. In order to overcome this, one has to spend a lot of time on the floor to
introduce this overall approach and to make sure everybody is confident with the proposed

priorities.

5 Conclusion

In this paper we proposed a general methodology to analyze and to schedule a job shop. A

four phase methodology is proposed including a lot sizing and lead time estimation phase,
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a tuning phase, a scheduling phase and an execution phase. In each phase we use analytic
approaches which are suitable for practical applications. The methodology is illustrated
with an example and an application is given. The ACLIPS methodology is embedded in a
software package. Our experience indicates that our approach has great potential both in

terms of computational effort required and in terms of the quality of the generated schedules.
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