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NETWORK PRICING IN ELECTRICITY
INTRODUCTTION

Network pricing 1is an important regulatory 1issue in the
European electricity industry, especially since the industry
is staged for gradual unbundling of production  and
transmission. Consequently, power and transmission will have
to be priced separately. This paper discusses pricing rules

with special reference to electricity networks.

Section I reviews the basic model and some 1implementation
problems of regulatory pricing in a multi-product firm. In
section II access pricing 1is discussed. In section III a
specific model, including main features of electricity
production and transmission, 1s ©presented and analyzed.
Finally, practical implementatidn issues for an integrated as

well as unbundled industry are derived.




I. Regulatory pricing in a multi-product firm!

Electric utilities are multi-product firms as they generate
power at different times of the day and for residential as
well as industrial customers. There are two kinds of issues 1in
regulating multi-product- firms considered in modern regulatory
economic theory i.e. pricing and incentives. Pricing is the
subject of traditional regulatory theory, focusing on proper
price discrimination and proper pricing in case of competitors
or industry links. "New" regulatory economics also 1includes
the analysis of asymmetry of information between regulator and
the regulated industry, and consequently, focuses on incentive
mechanisms to correct for this asymmetry and moral hazard. In
this paper we consider primarily the problem of proper price

discrimination.

1. Generalized Boiteux-Ramsey rule

In regulation four parties are involved: the regulator,
taxpayers, consumers and the firm. The regulator is assumed to
be "benevolent", maximizing total surplus in society.
Consumers of the regulated firm's output derive value of use
of the firm's output in return for part of their income. The
fiym - i.e. its shareholders or other residual claimants -
retain profits. Finally, in case subsidies are required to
sustain the financial viability of the firm, taxpayers carry
the burden of difference between revenues and cost plus
profit. In the case of taxed profits, taxpa&ers enjoy tax

revenue.

If q is a vector of outputs of a regulated multi-product firm,

total surplus 1s as follows.

I ¢fy Laffont & Tirole (1994) Chapter 3




Consumers of the firm's outputs enjoy a surplus equal to

S(q) -R(q)
with S(gq) gross consumer value of wuse of outputs and
'R(q)=2pi.qi or revenue. Note that p;=8S(q)/8q,;=S;(g) or the

inverse demand curve for output 1.

If the firm is left a rent t, then taxpayers have to foot the
following bill

Clag)+t-R(q)
Money spent by the government is raised by distortionary taxes
on labor, capital or consumption. A dollar raised costs the

economy 1+A with A the shadow cost of public funds (A>0)2.

Consequently the social value of the taxpayers' bill equals
(l+k)[C(q)+t—R(q)}
Hence, the regulator maximizes total welfare W equal to
W = S(qg)-R(q) + t - (1+4)[C(q)+t=R(q)]
= S(q)-C(q) + A[R(g)-C(g)-t]

Note that in the above formulation the shadow cost of public

funds A 1s exogenous and that rent of the firm is endogenous.

If transfers from the regulator to the regulatee are

unacceptable, an alternative approach 1s to preset the rent of

° The shadow cost of public funds is an economy-wide
parameter and depends on tax rates, elasticities of demand and
supply for consumption and factors of production. A typical
estimate for the US is A=0.3 (Ballard, Shoven & Walley 1985;
Hausman & Poterba 1987). The shadow cost of public funds 1is
likely to be higher 1in EU countries since tax rates are
higher. '
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the firm. In most cases revenue reconciliation is the norm and
the rent is targeted to be zero. In this case A is endogenous
and equals the shadow cost of profit or total surplus forgone
. for an extra dollar of rent left to the firm. In this case the
regulator maximizes social surplus or the difference between
consumer value and resource costs, subject to the profit
constraint. This yields the same objective function as the one
formulated above, but with A a variable rather than a preset

value.

First order conditions for an optimum are

op;
=0=5_ - C, + A .+ . l -C
og; d; a; (p; ; d; dq; qi)

from which follows the generalized Ramsey-Boiteux pricing rule

viz.

Pi~Cq__ A .Z_@_épj:, A1
T DP; dqg; 1+ n;

The generalized pricing rule states that the Lerner index of
good i (price minus marginal cost as a fraction of price)
equals the Ramsey number A/(l+i) times the (negative) 1inverse

of the "super-elasticity" n of good 1i.

The "super-elasticity" of good 1 equals (Brown and Sibley
1985)




with r;,=(p;q;)/(p:q;) and €5=1(8q;/q;) / (8ps/py) or the cross-price
elasticities of 1. A "super-elasticity" does not only
consider the own quantity reactions of consumers in "taxing" a
specific commodity to generate revenue, but also includes the
quantity reactions for substitutes or complements to determine

the proper Lerner-index.

The above rule includes several well-known rules such as the
standard "inverse elasticity" rule, or Boiteux-Steiner "peak-

load" pricing.

The above generalized Ramsey-Bolteux pricing rule is
equivalent to the familiar "inverse elasticity" rule if demand
functions are independent. In this case "super-elasticity"

reduces to the own price elasticity of demand (or N.=€;) .

Peak-load pricing or time dependent prices can equally be
formulated in terms of the generalized rule. If demand
functions for specific time periods are specified, and
assuming time independent demand functions, the generalized
Boiteux-Ramsey rule also covers peak¥load pricing or spot

pricing. In this case, the generalized rule reduces to

Dje~mCie _ A 1
D¢ 1+A €55,
where prices, marginal costs and elasticities are time

dependent.




Example. Two-product firm

Suppose a regulated firm produces two products (e.g. off-peak
and on-peak electricity or commercial and household
electricity demand) with linear inverse demand functions

p;=30-q,-0.25q, and p,=20-0.25q,-0.5q;

Inverse demand functions express marginal willingness to pay
by consumers for given levels of quantities available. Note
that inverse demand function are symmetric in cross-quantity
effects or 8q,/8p,=064d,/0p;.

Total consumer valuation in this case 1s
S(ql,q3)=30q1+20q2—0.5(q12+0.5q22+0.5q1qg
since 8S/8q,=p, and 65/8g,=p;.

Product 1 has total cost C,=25+10q, and product 2 costs
C.=10+5q-.

Given that this firm has decreasing average costs, it would
not cover fixed costs under first-best marginal cost pricing.

If the regulator fixes prices so that total surplus 1s
maximized but subject to revenue reconciliation his
appropriate objective function 1s

W=S{qg;,g9-) -C;-C,*A (p.q;+p29:-C,-C,)

Solving first-order conditions for outputs and A yields
optimal values :

q,=13.44

q,=21.50
Corresponding prices are

p,;=11.18

p,= 5.89

Lerner indices i.e. the excess of price over marginal cost in
terms of price are

L,=0.1058

L.=0.1508.
The price-cost margin on product 2 is higher than on 1 as the
super-elasticity of 2 turns out to be -0.42 (own price
elasticity =-0.55) compared to -0.59 (own price elasticity -
0.83) of product 1, and the most elastic product 1is "taxed"
least to generate revenue.

In this case total surplus equals 278.18 and the firm's
revenue equals total costs or 276.92.




2. Implementation issues
- Principal problems

Real world implementation of Ramsey-Boiteux pricing 1is far

more complex than solving an example.

First, the model assumes a penevolent and 1ndependent
requlator. In practice, independence and benevolence of
regulators 1s not guaranteed. Regulators are rent-seekers,

influenced by long-run direct rewards (Chicago view, Kahn

(1971), Stigler (1971)) or indirect rewards (Virginian school,
Buchanan (1972). It 1s not evident to design appropriate
institutions to constrain rent-seeking discretion of

regulators to realign their conduct in the public iInterest.

Second, optimal pricing also assumes that the regulator has a
vast knowledge on costs and demand. In reality, asymmetry of
information is typical of the regulator-regulatee setting. The
regulator's main source of information is the regulatee, whose
profit incentive will induce him to present information
selectively. Regulatory capture, arising when control of
information is complete so that the regulator acts in line
with the interests of the regulatee, 1s an extreme case
(Stigler 1971). In practice, institutional provisions are made

to weaken the regulatee's informational grip by requiring

independent cost audits, yardstick ~competition (Schleifer
1985), etc.
Third, Ramsey-Boiteux pricing assumes exogenous cost

functions, implying that the managers and employees of the
regulated firm have no effect on costs. This means that the
requlated firm buys 1nput prices at competitive prices and
select the cost minimizing input combination. However, a
practical system of rate setting is based on expected costs,
consisting of operating and capital cost. Regulated firms will

tend to inflate costs and the relative importance given to
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operating and capital costs in rate making will not escape the
regulatee's attention. The Averch-Johnson (1962) model shows
how rate-of-return regulation induces the reqgulated firm to
extend the rate base and to select excessive capital-labor
ratios. Rate-of-return regulation 1in electricity e.g. would
induce the industry to resist peak-load pricing, power
pooling, and similar policies reducing the need for capacity.
On the other hand high standards of reliability and other
policies or norms boosting capital expenditure would be

stimulated.

Finally, Ramsey-Boiteux  pricing implies rigorous price
discrimination based on marginal cost and taking into account
willingness (ability) to pay. This might conflict with the
principle of nondiscrimination among consumers on equity
grounds even if consumers have widely different marginal costs

(e.g. rural vs urban consumers) .
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- Implementation mechanisms

- Apart from extensive modeling of aspects such as the
information asymmetry and regqulatee incentives, different
mechanisms have been proposed in the literature to induce a

regulated firm to approximate Ramsey-Boiteux pricing.

A mechanism proposed by Laffont and Tirole (Laffont & Tirole
1994) is the so-called price tax. In the Laffont and Tirole
reqgulatory environment A is an economy-wide exogenous cost of

public funds. Consider the simple case of a single product

firm. A welfare optimum requires maximization of
W = S(g)-C(g)+A[pg-C{q)-t]

yielding an optimality condition (from dwW/dg=0) that can be

written as

(p-mc) (1+A)+Agp'=0
with p'=dp/dg.
In the Laffont-Tirole proposal the regqulated firm is allowed
to determine price but a price tax q°/(1+A) is imposed, where
q° is an estimate made by the regulator from survey or time

series data of the gquantity demanded at the optimal price.

The regulated firm determines price by maximizing 1ts profits

but subject to the price-tax or
max w=pg-C(q)-plg®/(1+4)]
From the first-order condition (dn/dp=0) it follows that

(p-mc) (1+A) +Agp'+(g-q°)p'=0
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If the estimated quantity at optimal prices 1is approximately
equal to the effective quantity, profit maximization under a
price tax regime yields the welfare maximizing price as

optimality conditlons are identical in that case.

In the case no transfers between regulator and regulatee are
allowed and A 1s dependent upon a profit constraint and
consequently endogenous, a dynamic mechanism, such as
suggested by Vogelsang ‘and Finsinger (1979), induces the
regulated firm to .move, over time, to Ramseyb prices and

outputs.

The mechanism is simple and 1is based on historical information
readily available to the regulator viz. the price and quantity
of each good and total cost 1in the previous period. Price
determination is left to the regulated firm put subject to the

following constraint:

Ip.Qe-1<Cen

with p. the vector of current prices and g,

the vector of quantities in the previous period and C., total
cost in the previous period. Hence, the regulated firm 1s
allowed to determine prices but the output produced 1in a
previous period valued at current prices should not exceed

costs in the previous period.

In determining current prices, the firm maximizes current
period profit subject to the above constraint or maximizes the

following Lagrangean

L=Lp.q.-C (g.) tu [Ct—l—zptqt—l ]

First-order conditions (8L/dp.,=0) and rewriting p=1/(1+1),
leads to the following equality
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(p.~mc,) (1+A) +Aq.P '+ (qe=Gey) Pe ' =0

with p,'=dp./dq..

A welfare optimum (see above) requires that.
(p-mc) (1+A)+Agp'=0

which is reached by this mechanism in steady state (p.=p..i=P

and g,=9.-,=9d)

The common characteristic of the Vogelsang-Finsinger mechanism
and the price-tax suggested by Laffont-Tirole 1is that both
mechanisms are negative price incentive schemes. The firm 1is
penalized for increasing its prices. In the Laffont-Tirole
case an economy-wide shadow cost of public funds 1is used,
whereas the Vogelsang-Finsinger mechanism uses a firm specific

implicit shadow cost.

Strategic misrepresentation of costs is not eliminated by
these mechanisms. Overstatement of costs slows the move
towards optimum prices. Also, 1f costs depends on a cost-
reducing activity (e.g. negotiating competitive input prices,
introducing new technology, etc.) this will be undersupplied.
Cost auditing with penalties for misreporting (see Train 1995)
or yardstick competition is required to counter these perverse

effects.

All regulatory systems must set or constrain prices and use
specific 1institutional designs to accomplish this. In some
systems one relies on rate-of-return regulation (e.g. US)
whereby prices are fixed soO that a "fair" rate—of—return on
capital invested 1s guaranteed. Rate-of-return regulation does
not mean (although it 1s sometimes presented that way) that

costs are automatically passed on in prices. Costs are
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thoroughly audited and excessive returns are corrected. 1In
other settings (e.g. UK) price caps for broad commodity groups
are fixed and pricing of commodities within this group 1is
decentralized. UK practice of "RPI-X" 1is typical, indexing
price caps to the retail price index (RPI) minus some growth
factor X, fixed by the regulator, whereby X reflects
productivity gains through technological progress or scale
ecopomies realized through demand growth. Whatever system 1s
used, all regulators have to coOpe with the information
asymmetry and the almost information monopoly of the regulatee

and the incentive problems leading to regulatory failures.
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II. Access pricing

Relaxing complete vertical integration 1in electricity and
competition through entry of independent producers poses the
problem of pricing access and use of the transmission network

operated by the integrated producer.

1. A model of optimal access pricing

This section analyzes this problem in a more general framework
viz. the appropriate pricing of an 1input (e.g. the access
charge to use a common network) used and produced by an
integrated regulated firm but also used by firms competing in
the final product market of the regulated firm’. Incentive
problems and complications of asymmetric information are left
out and a '"perfect" (1.e. a perfectly informed and benevolent)

regulator 1s assumed.

Suppose the regulated firm and its competitors produce final
commodities 1in quantities g, and g, with specific total costs
(exclusive of the cost of the common resource) of C,(q,) and
C,(qg,). Final products are assumed to be close but not perfect
substitutes. Further, assume that each unit of g, and each unit
of g, requires one unit of the common resource produced by the
regulated firm so that total production of the common input is

Q=q,+q, which costs C,(Q).

Suppose the competitors of the regulated firm are a
cbmpetitive fringe with free entry and exit. These firms will
act as price takers in maximizing profits and adjust output so
that price p, equals overall marginal cost, being the sum of
the marginal cost of production c¢,;=3C,/8g, and the access (and

user) charge p,. Also, profits for a firm in the competitive

P Crf. Laffont & Tirole (1994). Chapter 5
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fringe will be =zero so that revenue equals total "access

charges (A=p,.g-.) plus production costs C..

What 1s the regulator's appropriate objective function in this

case”?
Again, two approaches are possible yielding a formally
equivalent objective function. First, transfers to the

regulated firm are possible and the shadow cost of public
funds 1is exogenously fixed. Alternatively, no transfers are
possible but revenue reconciliation (or some other profit

target) 1s required so that the shadow cost of funds 1is

endogenous.

Suppose transfers are possible and the shadow cost of public

funds is fixed.
Consumers enjoy a net surplus equivalent to
S(d;,d:) - (RitR;)
S being gross consumer value and R expenditures (revenue).
If the requlated firm gets a transfer t, and as the
competitive fringe has zero profits, taxpayers also have to

finance, 1in addition to profits, costs of the regulated firm

minus 1ts revenues. Tax payers face a bill equal to

C,+C,+t-R.-A
or

Cy+Cy+C,+t-R,-R,
as A=R,-C,.

This amount enters the regulator's objective function at
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social cost i.e. each dollar augmented with the shadow cost of

taxation.

Consequently, the regulator's objective function is:
W = S(dy,q:) - (Ry+Ry) +t= (1+A) (Co+C,+Co+t-R;-Ry)

or after rearranging

W = S(ql,qg)—(CO+C1+C3)+A.[(R1+R2)—(CO+C1+C3)—t]

If transfers are not allowed but profits of the regulated firm
should equal a pre-fixed level t, the reqgulator's objective 1is

to maximize
W = S(q,,q:) —(C+Cy+Cy)

subject however to the profit constraint of the regulated firm

or
R,+A-C,-C.=t

but since A=R.-C,, this 1s equivalent to
R,+R,~C,-C,-C,=t

The Lagrangean of this objective function 1is identical to the

objective function formulated above.

First, note that the regulator's objective function in case of
a common input is identical to the objective function obtained
by considering the industry as a single multi-product firm
with two outputs, taking into account an additional joint cost
component. This leads to the first conclusion, viz. in case of
a competitive fringe and a common 1input, the regulator should

set prices for final outputs as 1if this industry is a multi-
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product firm. The generalized Ramsey-Boiteux pricing rule
derived in the previous paragraph shows how to determine these

prices.

Second, the appropriate access price can be derived. The
competitive fringe produces at prices equal to marginal cost

inclusive of the access charge or

p2zc2+pa

Also, the proper price for p, is such that the Lerner 1index
(L.) or (p.-mc,)/p, equals the Ramsey number times the
(negative) inverse of the super-elasticity 1.. Note that
mc.=cy,+c. or overall marginal cost of a fringe competitor
equals the marginal cost of the common input plus the marginal
cost of production. From these conditions, the appropriate

value for the access charge p, can be derived viz.

Co T LG

Pa =777,

As the Lerner index L, 2 is positive, it follows that the

optimal access charge will exceed the marginal cost of access.
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Example 2. Common costs and access to rivals

Reconsider example 1 where two products 1 and 2 with inverse
demand functions

p;=30-q,-0.25q; and p,=20-0.25q,-0.5q;

were produced by a single multi-product firm. These products
are imperfect substitutes. In example 1 costs were

C,=25+10q; and C.=10+5q,

These costs are decomposed as follows. Suppose product 1 1is
produced by a regulated firm and product 2 by a competitive
fringe and that both products regquire a common input, produced
by firm 1. Say that the common input has a constant marginal
cost of 2 and a fixed cost of 15. The industry has the
following cost structure

firm 1: C,=20+8q; and C,=15+2 (q;+q-)
or C';=35+10q,+29;

Firm 2 faces constant average production cost of 3 per unit
produced. Also it has to buy a unit of the common input from
firm 1 at price p, (access price). Firm 2's cost are

C,tag,=(5+p,) qz-

Optimal regulation requires that the regulator considers the
industry as a multi-product firm. He maximizes social wvalue of
output (gross consumer value minus total production cost
inclusive the common input) subject to an overall profit
constraint or

max W = S (ql’ qz) - (CO+C1+C:) +A (R1+R2_CO_C1_C2>

This yields Ramsey-Boiteux prices identical with example 1 as
demand and total cost are identical or

p,=11.18 and p,= 5.89
with Lerner-indices equal to
1,=0.1058 and L,=0.1508

The optimal access prices equals (co+L-.c.)/(1-L,) or p,=2.89
which is larger than the marginal cost c¢,=2 and than the
average cost Cy/(qg,+q,)=2.43 of producing " the common input.
Actually the Lerner index of the optimal access price 1is
0.3074.
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2. Implementation problems

In principle, the information required to apply the optimal
rule derived above 1is not readily available. Therefore,
practical and more easily applicable rules are proposed,
maintaining however broad efficiency requirements. A rule
advocated in pricing telephone networks (Baumol & Sidak 1994)
is the so-called efficient component-pricing rule. The rule
states that the optimal price of the common input equals the
sum of marginal cost of production of the common input plus
the opportunity cost to the input supplier of the sale of a
unit of input. The latter component equals foregone profit or
forgone contribution to fixed costs due to enabling a rival to

sell in the final market.

Say a regulated firm and a competitor produce a perfect

substitute, so that inverse demand 1is P=P(Q)=P(qg;+q.).

The regulated firm produces a common input, each unit of the
final output g reqguiring one unit of the common input. Total
costs of the common output, production by the regulated firm
and its competitor are resp. C;, C, and C,. Total fixed cost of
the regulated firm are equal to F. Note that total fixed costs

include fixed costs of production and of producing the common

input.
Suppose now the regulator fixes - using one or another welfare
criterion - an optimal price of the final output, say P°. Once

this price 1is fixed, total market quantity demanded is given
by 0°=p!'(P°), where P! 1is the inverse function of P(Q).
According to the efficient component-pricing rule the optimal

price for the common input equals

dg,
= mc, -~ (P°-mc,-mc,) ——
pa 0 ( Q 1) dq2
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or the marginal cost of producing the common input plus
forgone marginal profit due to substitution 1in the final
market. Note that p,=mc,+L.P° or marginal cost of the common
input plus the Lerner-index L in the final market times price
of the final good. Also, in case of a perfect substitute

dq,/dg,=-1, so that the optimal input price is simply p,=P-mc,.

The efficient component-price rule is efficient as 1t ensures
that total production Q° 1is produced at minimum cost to

society at the regulated price P°. Profit functions are
=P °q,+p,q:-C, (Q°) -C1 (qy) -F

and
m.=P°q:-C (q:) ~p,a;

Profits are maximized if both firms produces an output so that
mc,=mc.=P-p,

implying equality of marginal cost 1in both firms ensuring

production at minimum societal cost.

Furthermore, under this rule, firm 1 1s 1indifferent to
providing access to a rival or producing a unit of final
output itself. The effect of extra production of g, on profits
of firm 1 is zero as the loss of profits due to loss of sales
of final output is compensated by the price paid for increased

sales of the common input.
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Example 3. Efficient component pricing

Suppose inverse demand for a final product is P=30-Q. Say the
product 1is produced by a monopoly. To produce a unit of the
- final output, one unit of a specific input must be produced.
The marginal cost of this input 1s 2 per unit and the
additional marginal cost to produce the final output is 8 per
unit. Suppose the firm has fixed costs of 40. The monopoly 1is
regulated and the requlator fixes price so that the monopoly
earns zero profits. It 1s weasily calculated by equating
revenue (PQ) to total costs (100Q0+40) and solving for P and Q
that P°=12.254 and Q°=17.746. Total revenue 1is 217.46 and

equals total costs.

Now a competitor enters the industry. He has a more favorable
production technique for a small volume of output as his
marginal costs are 2q,. From a socletal point of view, a
welfare gain 1is possible by having a volume up to 4 units
produced by this competitor and the remainder by the (former)
monopoly.

The regulator coerces the monopoly to yield the competitor
access to the common input and fixes a price equal to marginal
cost of production of the common 1input (2) plus the profit
contribution of the monopoly's output or 2.254 (price minus
marginal cost). Consequently, the price put on a unit of the
common input is 4.254. ' '

The new entrant, faced with a price of 12.254 for final output
and a cost of 4.254 for the common input, will maximize his
profits at a production level of 4. His marginal profit will
be zero as marginal cost - including the cost of the common
input - will be 8+4.254 or equal to the price of the final
output. He will earn a profit of 16. -

What is the profit position of the former monopoly? This will
remain unchanged. Output will now be less (viz. 13.746 versus
17.746) but revenues from output and from sales of the common
input will exactly cover production cost of output, of the
common input and fixed cost. However, total revenue (and total
cost) will be at a lower level (185.46 vs. 217.46).

In sum, pricing a common input at cost plus opportunity cost
due to foregone contribution to fixed cost (or forgone profit)
is a rule that 1is 1incentive compatible with allocating
production at minimum cost. Also, informational requirements
to impute this rule are reasonable.
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ITI. Pricing of electricity network use

In previous sections, the models did not explicitly considered
the specific characteristics of electricity production,
transmission and distribution. Extensive theoretical work on
peak-load pricing, pricing under stochastic demand, etc. (see
e.g. Bos 1994, Berg & Tschirhart 1988) relevant to electricity
pricing and capital budgeting usually ignore network costs and
pricing. A particularly useful theory of electricity pricing
that reflects the physical properties of electricity was
developed by Bohn, Caramanis and Schweppe (1984). The next
section is based on this model, omitting however stochastic

demand but adding revenue reconciliation.

1. A model of optimal pricing in electrical networks

Models of electricity pricing wusually focus on temporal
differentiation. However, prices should also be spatially
differentiated. Transportation of electricity 1s not costless
and for every unit injected at one end of the network, less
than one unit can be removed at another node, the difference
being transmission losses. Also, maximum capaclities must be
observed in transmission lines, also adding to spatially
differentiation of cost. Consequently, prices p;. should be
defined for a specific location 1 and a specific time spot

(spot pricing) or time period (peak-load pricing) t.

Say a utility operates J generating units. Production at time
t of a unit located at j 1s denoted by y;.. Each unit has
marginal operating costs c; (fuel and variable maintenance
costs) and capacity Y,. For simplicity, all units are indexed

according to merit order i.e. c¢;<c,<...<c;.

The network serves I customers. Each customer has a demand at
time t of x,,, depending upon price p;, and with a gross value

to the consumer of S, (x,.). Note that 8S/0x=p or the inverse
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demand function. For simplicity, demand at 1 and t 1s assumed

to depend solely on p;..

The electricity network consists of K lines, each line having
a maximum safety capacity of Z,. The flow along a 1line k at
time t are z,. depends upon the net injections or withdrawals
at each node, network configuration and line capacities so
that

Zktzzkt (x/ Y a)

where a 1s a vector of network characteristics. This
relationship can be further specified using electrical laws
and assuming approximate relationships (see e.g. Bohn et. al.

Appendix) .

The flows 1in the network determine total power losses L or
Characteristic for an -electric system 1s that an energy
balance must be maintained at all times as excess or
insufficient generation would almost instantaneously result in

breakdown and power failure. Energy balance requires that

Ly¥45:=0i % tLe

The regulator's objective 1is the standard welfare criterion
l.e. maximizing total surplus or consumer value minus, however
subject to a profit constraint viz.

with F fixed costs of generation and transmission.

This yields the following Lagrangean (¥9) to be maximized

total surplus IS (x50) —ZiCyys,

energy balance constraint +0, (Zyy5.-Iix; - L)
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generating unit capacities DB (Vs Y5)
network link capacities -I,n.(z,-2,)
profit constraint } A (TiPieX;:—55C5 Yy~ Fem )

The -first-order condition for an optimum (and omitting the

subscript t for convenience) yields

0L _ _ o OL B dz, dp;

6Xl~— 0 B 96—){_1- © Z K8 x A lpyrx; Aéxl} 0
and

8L _ o - - COLy Ly g 0%

5y, 0 = -c.+0(1 éyy) M §:1h<6yj Ac; =0

After rearranging the following price rule is obtained

Sz,
Kox,

]

p; = u;18(1+2L)+ 3 n

1

with

and
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0z

(1+/\)cj+pj+znk€_k

0 - 7
_dL
1--2=
dy;

The Lagrangean multiplier 6 1is a value which 1is equal to all
customers and 1s interpreted as the shadow cost on demand. The
numerator of this expression consists of the marginal cost of
production (fuel) of the marginal unit j, valued at social
cost (i.e. augmented with the shadow cost of profits). If
capacity constrains production, p is positive and equal to the
premium required to curtail demand to capacity of the marginal
unit. If network flows are constrained by link capacity, n 1s
positive on these flows so that the summation term expresses
the shadow cost of transmission constraints. The denominator
augments the numerator since less than one unit produced 1is
available to consumers due to losses generated by the marginal

increase in production.

It is easy to see that 1if there 1s excess capaclty in
production (p=0) and transmission (n=0) and losses are
trivial, the shadow cost on demand 1s simply the short term

marginal cost of production valued at social cost.

This shadow cost on demand (®) 1s the basis of pricing a
consumer at location 1, as can be seen from the price rule.
First, the shadow cost on demand, equal for all customers, 1is
augmented with the cost of losses due the marginal increase in
demand at 1. Additionally, increased demand at 1 might cause
capacity problems in the network. On those lines n 1s positive
and consumer 1 has to pay the cost of these constraints.
Finally, in order to maintain profits at a specific level,
total shadow cost of demand on point 1 1s augmented by a
factor, taking into account the 1inverse of elasticity of

demand 1.
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It 1is easily verified that 1in the absence of losses and
network constraints, the price rule simply reduces to Ramsey-
Boiteux ©prices, with Lerner indices proportional to the

inverse elasticity of demand.

Another interesting conclusion is that, in the absence of line
capacity constraints (n=0), optimal price at point 1 1is
approximately linear in line flows. Say a point i 1s connected
with a line k. Using a DC network as an approximation, network
losses are a quadratic function of flows. Hence, 0L/8x;=2R,.z,
with R resistance on 1line k 1linking customer 1 with the

network. Optimal price 1is then

p; = a;0(1+2R, z,)

so that price at point 1 is a linear function of the flow on

the line connecting customer 1 with the line.
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2. Implementation problems

- Integrated utility

The above model assumes a fully integrated regulated utility.

Practical implementation of the above model in an integrated
utility would require some simplifications to adapt it to
available information and reduce its dimensions to make it
computational. Also, the model assumes full spot pricing but
in a practical setting periodical time-of-day pricing seems a
more plausible arrangement. Prices could be recalculated
periodically and announced for the next period. This would
guarantee customers some price stability, avoiding unduly
transaction costs and allowing customers to take into account

price information in long range decision.

Apart from demand elasticities, most other information
required to solve the model, such as network characteristics,
short-run production costs, etc. should be available to a
utility. Demand information could be introduced for broad

categories of consumers.
- Unbundling and competition

The model also provides useful insights to price the use of
transmission services in a partially integrated industry or in
case of complete unbundling. Consider the following drastic
simplification of the model, whereby capacity constraints are
reflected in costs and losses. V, is gross consumer value of
demand x; at location 1 and C; is total cost of production Y-
at locaticon Jj. Losses L are a function of demand x and
production y. A (first best) social optimum and maintaining
energy balance requires optimization of the following

Lagrangean
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Apart from the energy balance constraints, first-order

conditions require that

oL

dx;

p;=60+8

and

oL

Again O may be construed as a system wide cost of electricity
or the cost of electricity at a "swing bus". Consumer 1 should
buy electricity up to the point where the price he is willing
to pay equals the system wide cost augmented with the value of
increased (or decreased) losses at the margin. Producer j
should produce electricity up to the point where the marginal
cost of production equals the system wide cost less the value
of decreased (or increased) losses at the margin. Combining

both equations yield

1+ oL
dx;
pi_cj 6L = Cj(1+Tij)
1- 2L
6yj
with
8L OL
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This latter term, T, Mmay be interpreted as a cost of

transportation between producer 3 and consumer i.

Suppose the industry would consist of competitive producers
and a network operator. A network operator can ensure a first
best optimum by charging a price for use of his network equal
to the term t. He could establish this by fixing a swing bus
or reference point and charging consumers and producers the

value of the marginal contribution to losses.

It can be shown (for a DC network) that nature allocates flows
by minimizing losses. Losses increase linearly with resistance
(approximated with distance) and are gquadratic in flows.
Consequently, the values of the terms 5L/8x and O8L/dy can be
found in a practical way by solving the following quadratic
programming problem ‘

i i ] = . . P 2
minimize L=yL,X;d;y24

subject to

=X Vi

where z;; is the flow between nodes i and j, d;; the distance,
x, demand in node i, y; supply in node j and y a scaling factor
converting the value of the objective function to the total
value of losses of the system. The dual values of the
constraints are the resulting losses. This model could be

extended with capacity constraints on links 1if applicable e.g.

13- 71]

If these constraints are binding, dual values could be added

to the cost of transmission use.

This quadratic programming problem could be solved on a
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regular basis to determine marginal cost of network use,
informing consumers and producers of the location advantages

or disadvantages of their particular position in the network.

In a second-best optimization, the network operator could
achieve revenue reconciliation by using Ramsey pricing
equating the product of the Lerner-index and price elasticity

in all locations.

In a "partially" unbundled industry i.e. an industry with a
reqgulated vertically integrated producer/network operator and
competitive producers, the information on the marginal costs
of network use should be used in combination with the
efficient component pricing rule. The proper price of network
use would be equal to the cost of use (component t) plus the
opportunity cost or forgone contribution to fixed (production)

cCosts.
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Example 4. Network pricing (unbundled environment)

Say a network of 5 nodes. Nodes 1 to 3 are net producers (Y).
Nodes 4 and 5 have net demand (X). Production, demand and
distances are given 1in the table below. E.g. production in
node 2 is 1000. The distance from production node 3 to demand
node 5 is 100.

node 4 5
X1 X2 output
1 Y1l 50 100 250
2 Y2 25 80 1000
3 Y3 20 100 750
demand | 1200 800 2000

In this example capacity on all lines 1s assumed to be very
large. Solving the following quadratic programming problem

min EId:.z;.?
subject to L.z..=Y;

yields a value for the objective function equal to 0.356(10;)
and the optimal flow values given in the following table.

X1 X2 dual mc;
Y1 71 179 -24175 -1.358
Y2 625 375 0 0
Y3 505 245 -11036 -0.620
dual 31230 60065
mc; +1.754 3.374

E.g. Flows from production node Y2 to demand node X1 are 625
and to demand equal to total

production at node YZ viz.

node X2 375, the

1000.

sum being

The table also lists the dual values of the restrictions.

an additional unit of production in node 3 yields a reduction
in the objective function of 11036 units

in a DC network is proportional to losses).

The units of the objective

monetary values.
valued at 2000.
is easily converted

(d.z?)

function can be

Say that total losses 1n monetary units are
The unit of measure of the objective function
in monetary units by multiplying

(distance*flow?

converted into

which
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with 2000/(0.356%10°%) or 5.618(107°). Hence, converting the
dual values of the constraints yields the marginal cost (or
gain) of an extra unit demand (or production).

Note that in this example production node 2 operates as a
"swing bus" or reference ©point. Spatially differentiated
prices are calculated on the basis of these marginal cost
estimates.
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IV. Conclusions

Although the real world 1is far more complex than the
theoretical environment envisaged in regulatory theory,
optimal pricing theory offers some guidelines in developing

practical pricing principles in alternative industry settings.

In a wvertically integrated electricity industry with, a
monopoly covering distribution, production and transmission,
the generalized Boiteux-Ramsey rule - i.e. price
discrimination so that the Lerner index of each good times its
"super-elasticity" 1is equal for all goods - discussed in
section I, 1s a fundamental guideline for establishing
efficient prices. Although incentive and information problems
(such as non-benevolent regulators, asymmetry of information
between regulator and regulatee, non-cost minimizing regulatee
behavior, etc.) may hamper full implementation, institutional
designs such as negative price incentive schemes and price
capping, may over time yield sufficiently approximate

solutions.

A more specific model discussed in section III, explicitly
taking into account the specific characteristics of
electricity production, transmission and distribution (e.g.
capacity constraints, maintenance of energy balance at all
time and losses due to transmission), yields even more precise
pricing guidelines for a fully integrated regulated monopoly.
Ramsey-Boiteux prices should not only be temporally
differentiated, but also spatially, with prices depending upon
the (system) cost of electricity but also upon the value of
marginal losses and the shadow cost of net capacity

constraints.

The models discussed in section II are relevant to an
electricity industry with incomplete vertical integration. In
this setting, apart from independent electricity producers, a
reqgulated firm not only produces electricity but also acts as
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grid operator for the industry and hence producing
transmission services as a common input. First, the model
discussed shows that the regulator should consider the
industry as a multi-product firm and consequently apply
Boiteux-Ramsey prices for all outputs and firms operating in
the industry. Second, the model shows that 1ndependent
producers should get access to the transmission system but at

a price that exceeds the marginal cost of net use.

An operational rule used in telephone network pricing, the so-
called efficient component rule, which is compatible with a
regulatory strategy of price capping of final outputs, puts
the difference between proper access price and marginal cost
of net use at the opportunity cost of the foregone
contribution to fixed costs. In case production capacity of
the vertically integrated firm is optimal relative to demand,
enabling new rivals access to the final market through the use
of the common transmission net, leads to surplus production
capacity, stranded investment and hence, non-recoverable fixed
cost. This foregone contribution to fixed cost, due to missed

sales, should be added to marginal cost of net use.

Finally, section III also offers some guidelines to analyze
optimal network pricing in & fully unbundled industry. The
basic idea of unbundling production and transmission, 1s that
"workable competition"” in production 1s feasible and,
consequently can be derequlated, whereas transmission should
be monopolized and subject to regulation in view of economies
of scale and scope. In a competitive production market for
electricity, transmission _costs keep prices consumers are
willing to pay (in the absence of consumer monopsony power)
from equalizing marginal costs of production (in the absence
of producer monopoly power). An optimai allocation of
resources requires minimization of transmission costs. A
quadratic programming problem - minimizing the sum of 1link
distance times link flow squared - is suggested as a possible

approach of finding the marginal cost of use of transmission
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at a specific node in the network, taking into account losses
as well as shadow costs of link capacity constraints. Such
guadratic programming problem ylelds flows in a DC
approximation of the network and dual values associated with
constraints yield proper estimates of marginal costs of net
use. It should be noted that such model studies marginal
transformations and vyields cost effects of increases or
decreases of demand or production in specific nodes at the
margin. Also, link capacities are assumed given and close to
an optimal design. Large variations in node net demand or
production (e.g. important new producers or consumers entering
the market) should be considered as structural
transformations, requiring perhaps | re-optimation of net
structure and incremental cost analysis rather than marginal

cost estimates.

Walter NONNEMAN
Emiel VAN BROEKHOVEN

Antwerp, October 1996
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