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1. Introduction

In recent years a lot of authors have proposed methods to estimate the term structure
of interest rates by means of bond prices. The pioneering work was done by McCulloch
(1971), who used polynomial splines to estimate the discount function. Because of the
exponéntial nature of the discount function Vasicek and Fong (1982) proposed the usage
of exponential splines. Shea (1984, 1985) showed however that spline functions employed
to fit the discount function can generate unstable and widely fluctuating forward rate
curves, a behaviour that is most unlikely to obtain. |

That is why methods immediately fitting the forward rate curve are developed. One of
the first articles using this new approach is Delbaen and Lorimier (1990) who define a
measure of the degree of smoothness of the forward rate curve based on first differences.
In a later work by Lorimier (1995a) the methodology is extended to a continuous time
framework and it is proved that the estimated forward rate curve is a polynomial spline
and is as smooth as possible under some no arbitrage restrictions. In Adams and Van
Deventer (1994) an analogue approach can be found for the continuous time case, but
instead of using first derivatives in the measure of degree of smoothness they employ a

second derivative.

In this paper a method is presented using mth derivatives and differences to measure the
smoothness of a curve in respectively a continuous and discrete time framework.
Furthermore it is show that the solution of the discrete problem converges uniformly to
the one of the continuous problem. Finally some examples compare the results obtained
with the method where m = 1 and m = 2.

2. Description of the method in a continuous time framework

Let P(T1),..., P(Ty) be the prices of N zero-coupon bonds with maturities T} < --- < Ty.
The corresponding yields-to-maturity are Y3,...,Yn with
In P(T;)

Vi= -7

,i=1,...,N.

To estimate the forward rate curve by means of these bond pnces we first of all require
that the following no arbitrage relations are fulfilled:

T
flw)du =Y Ty, k=1,...,N,
0

where f(u), u € [0,T), is the forward rate curve at time ¢ = 0. ,

Next we will impose a smoothness condition on the forward rate curve, expressing the fact
that the forward rates cannot fluctuate much from one. peridd to the next. The measure
of degree of smoothness used is based on the mth derivative and is defined as

T
/0 (F™ ())? du
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where T = Tl.

So the forward rate curve is obtained as a solution of the following minimization problem:

. -
min (™) ())? du i
in [ (F™ )P d (21)

subject to
Tk

f(u)du =Y Ty, k=1,...,N. (2.2)
0 v

In Lorimier (1995b) it is proved that, if N > m, the unique solution of problem (2.1)-(2.2)
is a 2mth degree polynomial spline of the form

m—1 : N
f=> f(i)(O)% + Y aphi(t) (2.3)
1=0 : k=1

with
(1) hi a 2mth degree polynomial on [0, %], C?™~1 over [0, T], with
MW = (@ - 0y [,
RP(0) = T,§+1/(i+1)!, i=0,...,m—1,

fork=1,...,N.
(i) {f®¥(0),i =0,...,m -1} and {ar,k =1,..., N} solution to

N Tz-{-l
k o
Zak,——'zO, i=0,...,m—1, (2.4)
— +1)0 v
m—1 0 Tkz;_|_1 N
Y(0 hihy >m =YiTk, k=1,...,N, 2.5
;f ()(i+1)!+;az< 1 he > 5Tk , (2:5)
where < .,. >p, is the inner product on the Sobolev space Sp, = {g [fori =1,...,m—

1,99 continuous; (™ € L2[0,T]} defined as

m—1 T
<g1,92 >m= Y 9i7(0)g5P(0) + / g\™ (w)gi™ (u) du.
k=0 0

If N < m then the solution is no longer unique. Calculation of the derivatives FO(@),
j < m, shows that in general fU)(0) and fU)(T) are not zero. Because of the first
property the drawback of the method using first derivatives in the measure of degree of
smoothness is no longer valid. But the second property is not quite what we expect. It is
namely logical that for a large horizon T the forward rate curve flattens towards the end.
That is why the method can be adjusted by imposing the additional constraints

fOmr =o0,j=1,...,m-1. (2.6)
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The unique solution of this new problem (2.1)-(2.2), (2.6) is still a 2mth spline and is of
the form

m—1 . 4 N+4+m-—1
=) f(z)(o)ﬂ + ) akhi(?) (2.7)
i=0 ' k=1

with
(i) hr,k=1,...,N, asin (2.3) and hnyr,k = 1,...,m — 1, a (2m — k — 1)th degree
polynomial on [0,T] with

B ) = (T — wym=ht / (m =k — 1)1,

B0 =T [ =), i = kym 1,
h{) (0) =0, i=0,.
(i) {f90),i=0,...,m— 1} and {ar,k=1,...,N 4+ m — 1} solution to.
.
> T =0, (2.8)
k=1
N ]+1 T] k
=0,j=1,. ~-1 2.9
2 +1>'+Z"N+’“<a Dt 29
m—1 T,+1 N+m-—1
> 90 it > w<hyhy>m=YT, k=1,...,N, (210)
1=0 ( + ) =1
m—1 - N4+m—1
()(0 _
;f ()(z &5t Z a1 < hi,hygj >m =0, j=1,. 1. (2.11)

The disadvantage that still exists when using one of the previous methods is that the no
arbitrage relations have to be exactly fulfilled. Because the observed prices are rounded
prices and often the average of bid and ask rates, small deviations in the no arbitrage
relations have to be permitted. Furthermore the market does not always immediately
react to small changes in the price, what causes small errors in the no arbitrage relations.

To avoid this shortcoming we can adjust the previous methods by solving

T N
in (m) 2 du €
min [ (@) a3

subject to
Tk

flu)du + e =Y Ty, k=1,...,N
0

with or without the additional constraints (2.6), or equivalently

T N Ty 2 :
m}n/o (f™ (u))? du + az (Yka -/ f(u) du) ) (2.12)

k=1
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with or without (2.6), where @ = 1/A? and where the introduction of the second term
permits small deviations in the no arbitrage relations. As in the case where m = 1 (see
Lorimier (1995a)) this new problem is a multicriterion problem, where there exists a trade-
off between the exactness and the smoothness of the fit. '

In Lorimier (1995b) it is shown that the solution of problem (2.12) without (2.6) is of the
form (2.3) with {f(9(0),i =0,...,m —1} and {ax,k =1,..., N} solution to

_ k -_ _
O—Zak(i_i_l)!,z—o,...,m 1, o (2.13)

N

ar = a(Y Ty — Zf(z)( )( ) vzal<h1,hk >m), k=1,...,N. (2.14)
=0 =1

If the additional constraints (2.6) also hold, then the solution is of the form (2.7) with
{f%(0),i =0,...,m —1} and {a,k =1,...,N +m — 1} solution to

N i+t J Ti—k .
0=>» ap— + N4k, J=0,...,m—1, 2.15
,; (+1)! ; G- k) (21%)
m-—1 T,‘.H N+m-1
= (Vi Ty — (i) k___ m)y k=1,... :
ar = a(YVi Ty ;f ()(i+1)! IZ; a; < hi,hy >m), k=1,...,N, (2.16)
T__ N4+m—1
0= Z F9(0 )( i + Z ar < hp,hntj >m, j=1,...,m—1. (2.17)

In the next section we will present analogue methods in a discrete time framework.

3. Description of the method in a discrete time framework

Let f; be the forward rate today for the period [jh, (j+1)h] and let T = |Ts/h[, with |z]
the largest integer smaller than z. Define Ag-m), j=1,...,Tny —m, as the mth difference
in the following way:

A§°) = fi_1, (3.1)
A™ = A§1‘1 D abrn), (3.2)

The following lemma states relations that exist between Ag-m) and f;.

Lémma 3.1

1) Ag.m) Z( 1)’“( )fm+] k—1-
J+1 ok
2) fm+j=ZA§cm)(m+lg+1> Z (—1)™~ —k+1 (J +m] k—l) (m+]>fk,

)+1 m—
_JZAW)(mﬂ ) Z (mﬂ)Aﬁk)
RE

k=1 k=




Proof

1) We will proof the statement by means of induction with respect to m. -

For m = 1 it is easily verified that the equality is true. Using (3.2) and the induction
hypothesis for m — 1 we have that

(m) _ A (m=1) (m—1)
AT =AGn T AT,

nf("l)k (mk_ 1) Fmtj—k-1— i(—l)k_l (7;:11>fm+j—k—la

k=0 k=1
=m—1(——1)k [(m—1>+(m—1)]f ko1t f X 1‘(—1)m—1f'
‘ - k E—1 m+j3—k— m—+j— J—1y

what proofs the first statement, because

("2)()-(5)
for all m and k.

2) The first equality will be proved by induction with respect to m. For m = 1 the
statement is true. To proof the equality for m, we use that

fm+j =f(m—1)+(j+1)7 .
J+2 m4j—k ( ) m—2 i+ E—1 4
- - m—1 _1\ym—k m— Kk — m J
=3 (FHI)A +2 (1) ) () #
m+j—k A(m—l)_i_mz_:z(_l)m—k-i-l m+j—k—1 m+j f
j—k+2 )5 T 2E j LA
m-—2 . .
k=0 j+1 LA

2 m—1
m+j—k\ (m-1) _ym=k+1 (M —k—=1) (m+j

k=0

.
+ 1
2o

M

k=1

o,
+

e

=1
m

1 . .
- ) (-pmiH (mj_-}{l_k> (m:]) s

k=0

where the second equality follows from the induction hypothesis and the t‘hjrd one from
(3.3).




Furthermore we have because of (3.3) and (3.2) that
+2 .
]Z(m+]—k>A§Cm—1)
Pt J—k+2
+1 . .
=JZ:A(""1) m+j—k-1 L Alm-y [mtg =1
k=1 e j-k+1 ' J+1 ’
+1 . +1 . .
_]ZA(m—l) m+]_ JZA(m 1) m+.7_k -I-A(m_l) m+j—1
_k_l k+1 J—k+1 J—k+1 1 J+1 ’
= p(m (i~ k (m-1) ((m+j—1 m+j—1
_ m - m—1 - -
=2 () e (7)) (775)
j+1 . .
:JX:A(m) m+] A(m 1) [ m+]
i k k+1 J+1 )
J+1 . 1 .
— (m) (M +] — k(m=1\[m+j
—];Ak (]_k+1 + 1) ( k )(j+1)fm-k—1a

i+l . . . |
_ (m) [ M+ m—k+1 [ M+ ] m+j—k
=34 (]_k+1)+ (1) ( h )( s )fk.

=0

,._.o

The last equality follows from

(n2e2) (520) = (") (73257).

To prove the last statement in 2) we have to show that

o () () B (1)

This can be proved by means of induction with respect to m. Namely, for m = 1 the

m—1

k=0

equality is valid. Because of the relation in 1) and the induction hypothesis, the right-
hand side equals

> ( S A (m ) e ()
B () () (22 o

Fer (@) () )




Because o
m+) m—-1\ _ (m+4+j—k m+j
m—1 k - j+1 k
and (3.3) the last statement is proved.
QED.

To find the forward rate curve by means of N zero-coupon bond prices we again require

that the following no arbitrage relations are fulfilled:

Tk—l
> fih=YiTi, k=1,...,N.

Using lemma 3.1 this is equivalent to

Tr—m~1 i+1 . . m—1 . .
Z Z Z (m) [ M+1—] Z_ mejt1 [0 +Mm—3—1
= J=

1=0

("3} s

or because of lemma A.1 (see appendix),

Tr—m ,— A m—1 Ty—m—1 . . .
h Z( l)AEm)—i—hZ 14 (-1m=i+ (“‘m.‘f'l) (mf”> #
; 7=0 =0 : J
= YTy,
forall k =1,...,N.
Because of lemma A.4 and lemma A.6 the term in f;, j = 0,...,m — 1, can be rewritten
as .
m—1m—1 —
i T i
—1)i—J .
v S (34) (5)
J=0 =7
m—1 T i
_— k l
=132 () Ze (L) #ee
=0 =0
m—1 T— )
_ k i
AE (3

where the last equality follows from lemma 3.1. So the constraints transform into

Ty—m

h Z( ’) A(m)—l—hz< )A(’) ViTk, k=1,...,N  (3.4)

with

(Tk—i)+= (Te—i)r...(Tp—i—m+1)*

m m!
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Therefore the problem to be solved to obtain the forwards f;, j =0,..., Ty — 1, is

T )2
' " 3.5
f0y-I~I}.1fIn11_1 z_: (A] ) ( )
afm) alm)  J=
Ty—m
subject to (3.4).
The forwards fj, j =m,..., Ty ~1 can then be found by means of lemma 3.1. The unique

discrete forward rate curve is then given by

m-1 ) k—m+1
E\ A k-1 m ,
fh(t)sz:E:h’<l>h—1l+ ) <m_1)A§ ) (3.6)
=0 I=1

if ¢ € (kh,(k+1)R) (k =0,...,Ty — 1), with (’;) = 0if k < I, and where A,

[ =0,...,m—1, as function of fo,..., fru—1, and Agm), [ =1,...,Tny —m, are the least
squares solution of problem (3.4)-(3.5).

As in the continuous case we can add the additional constraints
A%)v-j:o’ j=1,...,m—1,

to obtain a flat curve towards Tn. Using the fact that because of lemma 3.1,

‘ i .
A_(Tfl)\r“.? = Z(-l)k <?c) fTN—k—l’

k=0 : ‘
7 . TN—m—k — m=—1 ,—
— k(J m)y (TN —k—1-=1 Tn—k—-1 0
"Z(‘"l) (k) l: Z Al ( m—1 + l A1 ’
k=0 =1 =0 )
Tn—m=—j j ) = =1 1 .
Tw—k-1-1 m
- 3 e () (MU e e (i)
=1 k=0 =0 k=0
m—1 ] . —_
m+l—k—1Y\ ,(m) k(I (Tn=k-=1Y\ .
-1 ) Ty—-m-lI T Z(_l) k ) A1 ’
=0 k=0
?N"'m—] Ty—m
_ Tn—=1—-1=j5Y\ \(m) - Tn—l-=1-7Y A(m
- ( m—j—1 ) AT Z Tn—m—1 A
I=1 , I=Tn—m—j+1
m—1 -
ITy—j-1 0
* ,Z ( [=] )AI ’
=j

where the last equality follows from lemma A.2 and lemma A.3 in the appendix, we can
rewrite the additional constraints as

TN—m — m—1 —
TN—l—j—1> (m) (TN——j——1> ) .
. Al™ 4 . AV =0 j=1,... m—1.
l; ( m—j-1 l 12:; - j ! J m




By performing the following row computatlons on the previous system of equalities: replace

1 m—1
7 Z (:1; ) equation p,

p=Jj

equality j by

and using lemma A.7, the additional constraints transform into

TN—m — m—1 —
1 Ty =1 (m) 1/ Ty O B
> E(m—j—l)‘\‘l +Zh1 [ AV =0,j=1,....m—1. (3.7
I=1 =y \
Thus to find the forward rate curve we now solve problem (3.5) subject to (3.4) and (3.7).

When small errors in the no arbitrage relations are allowed, we obtain the following problem

TN—m (m) 9 N
. m 2
fortm1 Z (Aj ) + E k (3:8)
alm) a(m) J=1 k=1
Ty-m
subject to
TN m

hZ( Z) A(m)—f-hZ( >A(’)+)\ek_Yka,k-—1 LN (3.9)

with or without the additional constraints (3.7), or equivalently

Ty—m

TN—m ,— +
RER D ( 5'”)) +aZ(Yka—h Z < k‘]) Alm

Agm),...,A(m) j=1

with or without (3.7).

The solution of these discrete methods is always unique, because a strictly convex function
is minimized subject to linear constraints, and can be found by standard techmques of

least squares optimization.

4. Convergence of the discrete methods

In this section we will show that the discrete forward rate curve f*(t) = fy, if t € (kh, (k+
1)h), obtained by one of the discrete methods of section 3, converges uniformly to the
continuous forward rate curve f(t), solution of the corresponding continuous problem in
section 2, if h goes to zero.




To proof this relation we will first of all rewrite the discrete problems in matrix notation
and eliminate, by means of the first m constraints, fy,..., fm—1 from the other constraints.

First of all consider problem (3.4)-(3.5). The terms in fo,..., fm—1 are eliminated in the
last N — mn constraints in (3.4) by replacing the equation s, s =m +1,..., N, with

m
Z Xp,s-equation p + X, ;.equation s (4.1)
p=1

withforp=1,...,m

Sy S [ I @

le{1,...p—1,p+1,...,m,s} ‘>’T

Xs,s = (_1)m+2 H Tl . H (Tl - Tr)

le{1,...,m} l,r6{11>,.r..,m}

To see that this elimination works, we will calculate the term in A(] ), 7=0,. —1,1in
equation s =m +1,..., N after applying (4.1). This term equals '

Zh( )Xp, +h(zl>x (4.2)

(Tp —h)... (T, - jh)
=Y G b O I[I = 11 (Ti - T,)
p=1 (J +1)th7 1€{1,...,m,s} A 1>i

T e O | =

(7 +1)!hJ ]
le{l,.--,m;S} ly,‘e{‘]ff.,,m}
=om I o [ @-m
l€{1,---,ma3} I’;e{]_l’?_im,a}

- 9(Tp) 9(Ts) ‘
L)Z::l HlE{l,...,p-—l,p+1,..,,m,s}(TP - Tl) * Hle{l m}(T Tl):l (43)

with the function g(t) defined as

_(t—h)...(t—jh)

Because the expression (4.3) is the divided difference of the function g with respect to
Ti,...,Tm, T, and because g is a polynomial of degree j < m — 1, the expression is zero.
Therefore the terms in A(J ) »J =0,...,m—1, disappear when applying (4.1), what proves
that the elimination works.
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From (4.2) it follows that the coefficients X1 q,...,Xpm 5, X5, s =m +1,..., N, satisfy

Z T1£+1XP,3 + Tsl+1Xs,s =0,1=0,...,m—1. (4.4)
p=1

Rewriting problem (3.4)-(3.5), after applying (4.1), in matrix notation yields

min 2" (43)
subject to
AR)z" =b (4.6)
and with Ag(’),)l, e ,Ag?}l—l) solution to
m—1 T (0 : Ty—m T ] +
' k j k= ho_ —
h (j+1>A1{h+h > ( . ) e =Ty, k=1,...,m. (4.7)

i=0 i=1

The notations used are

B A(m)
om 7o\t mo o\ T
s0ms =300 (P77 2 ()
p=1

m
bicm = Y VT X,i + ViTiXiy,
p=1

fori=m+1,...,Nandj=1,...,Tny —m. »
The super- or subscript h denotes that a discretization step h is used in the discrete
problem.

In the next theorem it is proved that the discrete forward rate curve, as a solution of

(4.5)-(4.7) converges uniformly to the continuous forward rate curve (2.3).
Theorem 4.1

Let (f2,... ,f,’},_l,Agt';l), ... ,A(Trz)_m h) be the solution of problem (4.5)-(4.7), and let the
function f*(t) defined as f*(t) = f,f’, for t € (kh,(k+ 1)h), k =0,...,Ty — 1, be the
unique discrete opti'mal forward rate curve.

Then, if the discretization step h goes to zero, the function f*(t) converges uniformly to

the unique continuous optimal forward rate curve f(t), solution of problem (2.1)-(2.2).

Proof
The solution of (4.5)-(4.6) is given by

2" = A(R)'(A(R)A(R))™1b = A(R)IC(R).
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So we have that for j =1,..., Ty — m,

+ m = N+ N—m
zh = Z h( mk ]) Xmtb,mtkC(R)k + ) B (Tpm ]> > XpmikC(h)s,
p:l k=1
N _ . + . . _ 1 h +
:Zazhm(Tk Jh) (Tk : (]+m ) ) (4..8)
) m!
k=1
with
N—m
C(h);
az - Z XP»m+kh2(mZ1’ p=1,...,m, ' : (4'9>
k=1
C(h
U = Xm+k,m+k—‘“““h2(mzﬁ- (4.10)

Furthermore, if h goes to zero, then the matrix h2™~1(A(h)A(h)!) converges to the matrix

E with elements (1,7 =1,...,N — m)

Eij =ii P,m+z q,m+J/ ((T _U)+)m ((T —U)+)

m!

=1g¢=1

3

(Trmyj —w)t)™ du

/ (Tp —u)+)

m
+ Z Xp,m+iXmtjm+;

p=1
m

m!

((Tm+z — u)+)m

+ZXQT"+J m+, m+z/ ((T ——u)"’)

g=1

m!

m+j u)-}-)m du

Tt — w)T)™
b Xomsi s m+],m+]/ (T ) )™ (T

m!

= Xm+i,m+i(Xm+j,m+j < hm+iahm+j >m + ZXq,m+j < hthm-}—i >m)

g=1

+ ZX mti(Xmpjmts < hpy hmgj >m +ZXq,m+j < hphg >m),

p=1 g=1

where the last equality follows from (4.4). In the same way as in Lorimier (1995a) it can

be shown that the matrix F is strictly positive definite and therefore nonsingular.

So, we have that a;,‘, p=1,...,m, converges to

k=1
and that am+k, k=1,...,N —m, converges to

N—-m

amik = Xmtk,mek Y - Brib;,
J

i=1

12

N—-m
_ -1y .
= E, pym+k E:Ekj bJ
J=1

(4.11)

(4.12)




if h goes to zero.
Remark that because of (4.4) the following relations are valid:

N

ZakTI£=O, Il=1,....m

k=1

From (4.7) it follows that, if h goes to zero, the vector (Ag{i/hj)jﬂ,“_,m_l converges to

(féj) )j:o,,,,,m_l , solution of

m—1 i+
i) T
;fo T +1),+Zal<hz,hk>m—Yka,k—1 , V.
Therefore (fo,.. (m_l) ,a1,...,aN ) satisfy (2.4)-(2.5), what means that the unique op-
timal solution of the continuous problem (2.1)-(2.2) is

ft) = Z f(’)(o + Zakhk(t)

1=0

To prove the theorem we only have to show that

ro==5r ()55 (00)

if ¢ € (kh,(k+1)h), k=0,..., Ty — 1, converges uniformly to f(t). Using the form (4.8)
this can easily be proved. '
QED.

In quite an analogue way the convergence for the problem with the additional constraints
can be proved. Namely, first of all the term in Agl), [=0,...,m—1,is eliminated from the
last N —m constraints in (3.4) as before. To eliminate these terms in the m — 1 additional
constraints (3.7) we again use the first m equations in (3.4) by applying the following row
operations: replace equation j, j =N +1,...,N+m —1in (3.7) by

N4+m—1 .
EX;,, j.equation p + Z hP~1 X, ;.equation p, (4.13)
p=1 p=y

where X, ;, p=1,...,m,j,...,N +m — 1, satisfy

Zlh(l+1> X,;=0,1=0,...,5—N—1,

(T ™ T
P ) N—j N = - —
Zh(l+1)xp,]+2h (l_p+N)Xp,,_o,l_] N,...,m—1.

p=1 p=J

13




It can be shown that this system of equations is equivalent to

m

ZT;"‘IXP,N_{,J':O, l_—_O’__.,j_]_, (414)
p=1
m. T T]l\f_j o
Z (I i 1):XP,N+J‘ + WXNH’NH =0,l=j,...,m—1, (4.15)
p=1 ’ '
CPT'].,P

(—1)p77t XNtyjN+j+ XNipN+; =0, p=J7+1,...,m—1, (4.16)

(p+1)...(7+2)
forall j =1,...,m — 1, where, for ¢ > p,

p—q+1 p—g+2 p

Cop= >, D o Y dtda...ig

11=1 iy=i;+1 ig=tg_1+1

Therefore the coefficients Xy j,..., Xm ;,Xjj,..., XN4m—1,; can be choosen independent
of h.

Rewriting problem (3.5) subject to (3.4), (3.7) in matrix notation after applying the elim-
ination (4.13), yields

min Jo* (417)
subject to
A(R)z" = b (4.18)

with :v;?, A(h)i—m,; and b;—mm for i = m +1,...,N, j =1,..., Ty — m as in (4.6) and,
withfori=N+1,... N+m-1,5=1,...,Tn—m

m = AN m—1 — .
T i Tn-—
A—(h)z’—m,j :Zh( Pm J) Xpi + Z BN (mivp—]l>XN+P’i
p=1 p:z—N

bi-n =) Y,T,X,.
p=1

Furthermore Ag(’),)l, e ,Ag?;_l) are solution to (4.7). _ '
For this new problem the following theorem states that the uniformly convergence still
holds. '

Theorem 4.2

Let (f&,. .. ,f,’,’l_l,Agf'z), ... ,Ag—fz)_m ,) be the solution of problem (4.17)-(4.18), and let
the function f*(¢) defined as f(t) = fk, for t € (kh,(k+1)h), k=0,..., Ty — 1, be the
unique discrete optimal forward rate curve.

Then, if the discretization step h goes to zero, the function f*(t) converges uniformly to

the unique continuous optimal forward rate curve f(t), solution of problem (2.1)-(2.2),
(2.6).
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Proof

In the same way as in theorem 4.1 it can be shown that

_ iazhm(Tk )t (T = (G+m—1)R)*

m!
k=1
+ = ah hm TN _]h) ( (] +m — b— 2)h)
p=1 N+p (m p - 1)
with
N-m
C(h)i C(h);
Z p’m+kh2(m)1 + Z X’m"'khz(m)l’p—l » M,
k=1 k=N-m+1
C(h
afn+k =Xm+k,m+k‘}‘l“2’(n7‘z”;‘, k=1,...,N —m,
C(h)N—m+l

h —1 —
aN+p=ZhP XN+p’N+lw,p——1,...,m—1.
=1

As in theorem 4.1 the matrix A2™~ 1(A(h)A(h) ) converges to the matrix F, with elements
(k=1,...,.N—-1,j=1,...,N—1)

m
Ekj = Xm+k,m+k(Xm+j,m+j < hm+kahm+j >m +ZXq,m+j < hm+k’hq >m)

g=1
m m
+ ZXp,m+k(Xm+j,m+j <hp,hmtj >m + ZXq,mH < hp,hg >m),

p=1 ; g=1

if h goes to zero. Because the matrix E is strictly positive definite, we have that a;’,
p=1,...,m, converges to
m N-1
Xpmtk(B70)+ > Xpmyr(E7Ib),
1 k=N-m+1

N

ap

£
I

that aﬁn+k’ k=1,...,N —m, converges to
amtk = Xmtk,m+k(E D)k
and that a’}\,_l_p, p=1,...,m —1, converges to
AN+p = XN+p,N+p(E_1b)N—m+p-

Using the relations (4.4), (4.14)-(4.15) it can easily be found that

l+ Ti-k

Z k(l_|_1)v+z NHEC k)':o
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foral!=0,..., m—-1.

In an analogue way as in theorem 4.1 it can be shown that (Agt)h/hi)zto,...,m—l converges to
(féi))z-_—_o,”_,m_l, solution to (2.10), and that (fo,..., ém_l),al, ..., @N+m—1) also satisfies
(2.11).

Therefore the unique solution of the continuous problem is of the form

N+m-—1

m—1 :
=3 105+ 3 ()
’ k=1

=0

and in the same way as in theorem 4.1 it follows that the discrete forward rate curve
converges uniformly to f(t).
: QED.

Finally, we will investigate the convergence of the discrete method (3.8)-(3.9), with or
without (3.7), a method that allows small errors in the no arbitrage relations.
Let us first assume that the additional constraints (3.7) are not imposed. Then the mini-

mization problem can be rewritten as

min [la* 3 + ah?™ 15— M(R)A} — A(R)a" 2 (4.19)
zh A2

with, for j=1,.... Ty —m,k=1,....N,I=1,...,m,

:L‘;l = Ag-m),
by = YTy,
T
M(h)kl = hl ( lk> 3
(I-1)
A
By 29
(A= A
— . +
T, —

The superscript h again denotes that a discrete method with discretization step h is used.
Remark also that problem (4.19) uses ah?™~1 instead of a.

The next lemma presents the form of the optimal solution.
Lemma 4.1
1) The optimal solution of problem (4.19) is solution to
et — ah?™ 1 A(R) (b — M(R)AY — A(R)z") =0, (4.20)
M(h) (b~ M(R)A" — A(R)z*) = 0. (4.21)
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2) The optimal solution is given by

et = B2 A(R) et | (4.22)
Al = (MR E(R)7*M(h))* M(h) E(h)™'b (4.23)
with
E(h) = Iy + ah®>™ 1 A(R)A(R)?,
a® = aB(h)7Y(b— M(h)AM).
Proof

1) Follows immediately from the first order conditions.

2) From (4.20) it follows that

ot = ah?™ N (I, _ ., 4 ah*™ TV A(R) A(R))TTA(R) (b — M(R)AY). (4.24)

Substitution in (4.21) yields
M) Iy — ahzm’lA(h)(ITN_m + ah®™ T A(R) A(R))TTAR)) (b — M(R)AY) =0
or
M(R) E(h) " (M(R)AL —b) = 0,
what proves (4.21).
Because of the following matrix relation:
(In + BB*B)™'B' = BY(Iy + SBB")™!,
for all N-by-M matrices B and constants § > 0, we have that (4.24) can be rewritten as

a" = ah®™ 1 A(h) (In + ah®™ T A(R)A(R)Y) ™1 (b — M(R)AR),

what proves (4.20).
| QED.

Using the results in lemma 4.1 the convergence can be proved.
Theorem 4.3

Let (f2,... 7f7’:z—17A§:7;;,)7 . ,A(T";)_m ,) be the solution of problem (4.19), and let the func-
tion f*(t) defined as f*(t) = f}, for,t € (kh,(k+1)h), k=0,...,Tny — 1, be the unique
discrete optimal forward rate curve. »

Then, if the discretization step h goes to zero, the function f*(¢) converges uniformly to

the unique continuous optimal forward rate curve f(¢), solution of problem (2.12).
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Proof

First of all remark that the matrix h2™~?A(h)A(h)! converges to a matrix with elements

/T ((Tx ;1’!1)4')"’ (T —m‘?+)m du = H — (T Tt )i,

for k,I =1,...,N, where H is the Gram-Schmidt matrix of the functions hy, k = 1, R

(defined in section 2) and where
(T i :T,;‘/i!, k=1,...,N,i=1,...,m.

Therefore the matrix E(h) converges to the matrix E = Iy + aH — oT,, T . Because the
matrix H — T, T is strictly positive definite, the matrix E is nonsingular.
Furthermore we have that the matrix M(h) converges to the matrix T, if h goes to zero.

Consequently, the vector A converges to
F=(TLE'T,) T E~ ' (4.25)

h

and the vector a” converges to

a=aE Y (b-T,F). (4.26)
Then we have that
Tta=aT  E~%— (T, E'T,,)F =0,
because of (4.25) and, from (4.26) it also follows that
| (In + aH)a = a(b— T F),

what means that (F)a) satisfy the equations (2.13)-(2.14). Thus the unique optimal solu-
tion of problem (2.12) is of the form (2.3). In the same way as in theorem 4.1 it can be
shown that the optimal discrete forward rate curve converges uniformly to the continuous

one, when h goes to zero.

QED.

Let us now consider problem (3.8)-(3.9) with the additional constraints (3.7), that can be
rewritten as
My(R)z" + My(R)y* =0

with
=k = A",
T |
{ N _ _
0 I=1,...,j—1,
Tn—k
)= (1),

u) = AP /1,




fork=1,...,Ty —m, j=1,...,m — 1. This means that
y" = — My (h) "I My(h)z". (4.27)
Elimination of y” in (3.9) by means of (4.27) yields the following problem in matrix nota-

tion, when ah?™~! instead of « is used:

i [l + k¥ b e+ RODMG (A () — AREHIZ (428)
T ’fo

subject to (4.27), where A(h) is defined as in (4.19), t* = (Th,...,Tn), f& = A§°) and
where . ‘
R(h)y = b+ (T

I+1

The solution is given by:

), k=1,...,.N,I=1,...,m—1.

Lemma 4.2

The optimal solution of (4.28) is given by

z" = ah?™1B(R) E(h) 7 (b — fit), (4.29)
= S (4:30)
e B(h) = A(h) — R(R)My(h)™" Ma(h),
| E(h) = Iy 4+ ah®™ 1 B(h)B(h)t.
Proof

The first order conditions for the minimization problem (4.28) are

2t 4+ ah2™ L (R(R) My ()" My (k) — A(R)) (b — fi+R(R)M;(R)~ My(R)z"

—A(h)z") = 0, (4.31)
16— £0t + R(A)My(h) " My(h)a" — A(R)a") = 0. (4.32)

From the first equality it follows that
et = al®™ NIz, _. + ah®™ " B(R) B(h)) "1 B(h)!(b - fit) (4.33)

Substitution of (4.33) into (4.32) results in

t'(In — ah®™ 7 B(h)(I5, _,, + ah®™ ' B(R)!B(k)) T B(h)")(b — fit) = 0
Because
In — ah®™ ' B(h)(I5, _,, + ah*™ ' B(h)'B(k)) "' B(h)! = (In + ah*™ 1 B(h)B(h)})™

relation (4.30) follows.
In the same way as in lemma 4.1, relation (4.33) also yields (4.29).
QED.

The next theorem shows that the solution still converges to the one of the continuous

counterpart.
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Theorem 4.4

Let (f&,...,fr_,, Ag",?, e ,A(Tm) . h) be the solution of problem (4.27)-(4.28), and let
5 N—m, —

the function f"(?) defined as f2(¢) = f}, for t € (kh,(k +1)h), k=0,...,Tn — 1, be the

unique discrete optimal forward rate curve.

Then, if the discretization step h goes to zero, the function f*(¢) converges uniformly to

the unique continuous optimal forward rate curve f(t), solution of problem (2.12), (2.6).
Proof

First of all remark that from (4.29) it follows that
Il?h — h2m‘—lB(h>tah

with a® = aE(h)~1(b - fit).

Furthermore we have that the matrix R(h) converges to the matrix 1., with (T a1 =
T /(I+ 1), k=1,...,N,1=1,...,m — 1, and that the matrix d(h) with (d(h)); =
My(R)ji/hI converges to the matrix S, with (Sp)ji = T /(I — j)! for I > j and zero

otherwise, if h goes to zero. So we have that
R ((My(R)) T R(B) Jur = ((d(R)") " R(R)")ut,

u=1,...,m—1,1=1,...,N, converges to ((5t )17 ),;.
Therefore the matrix h2™~1A(R)M,(h) (M1 (h)!) 1 R(R)! converges to a matrix with ele-

ments

POUCARLIS O IR IURO i G

L mms mmit ETETT e (i 1)L (i — w))!

= (V&) Tk = (Ta T,

for k,l=1,...,N, with Vi, =< hj, Anpu >m.

In the same way it follows that the matrix h2™ 1 R(h)M; (k)= Ms(h)A(R)! converges to a

matrix with elements
(Tmé;,lvt)k, - (TmT;)kl, kE,l=1,...,N,

and that the matrix h*™~1 R(h)M; (k)= Ma(h)M2(h){ (M1 (h)}) "' R(h)? converges to a ma-

trix with elements

~

(TSR H(S5) T Tkt — T TE )i, ki1 =1,... N,

where H,, =< hN4u,AN+v >m. This proves that the matrix h?™~1B(h)B(h)! converges |
to the matrix

H—tt' — V(8§ )T — T, 872V + T, S A(8E )1 T
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because T, T, — T 1% = ttt. So, we have that the matrix E(h) converges to the matrix
E=1Iy+aH —attt —aV(§)" 1Tt — T, 571V + T, SZLH(S )T
As in the previous theorems it can be proved that the matrix E is nonsingular. Conse-

quently, the value f& converges to

ttE~1h
= — 4.34
o= 551 (4.34)
and the vector a® converges to
a=aE (b~ fot), (4.35)
when h goes to zero.
Define the vector @' = (an+1,---,EN+m—1) a8
a=—(5) T a. (4.36)
Then we have that
Sta+Tta=0 (4.37)
and that
tla =0, (4.38)

what means that (a,a) satisfy (2.15). Furthermore, from (4.27) we have that

y" = —h2™ M, (R) " My (R)B(h)ta®,
= —R*™ 7 My (h) " Ma(R)A(R) a® + RP™ 7 My (R) 7 Mo (h) Mo (h)(My(R)) "1 R(R)ta.

In quite an analogue way as above, we find that the vector y* converges to
G=-5"Via+ S 1H(S ) 1T a, (4.39)

with G* = (F{V, ..., fim=1),
From (4.35) together with (4.36), (4.38) and (4.39) it follows that
“a=ab— fot = TnG— Ha - Va).
This means that relation (2.16) is fulfilled for (fy, G, a,a). Finally it is easy to prove that
5,.G+Va+ Ha=0,
what shows that also relation (2.17) holds. 4
Thus, the unique optimal solution of the continuous problem (2.12), (2.6) is
m-1 ] tz N+m-—1 |
=3 fé”E + Y ah(t).
=0 k=1
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Some calculations then again show that the discrete forward rate curve f%(t) converges
uniformly to the function f(¢).
QED.

5. Comparison between methods using first and second differences

In this section the performance of the methods using first and second differences in the
measure of degree of smoothness is compared in a discrete time framework with discretiza-
tion step h = 1 day. Therefore we will simulate the data needed to estimate the term
structure by means of the CIR-model (see Cox, Ingersoll, Ross (1985)). This means that
the yield-to-maturity Y; of a zero-coupon bond with maturity 7; is calculated as follows:

roB(T;) — In(A(T;))

Y = T (5.1)
with
268/0?
27 exp((k +7)T3/2)
A(Ty) = ,
(7 + s)(exp(yTi) — 1) + 2v
2(exp(vTi) — 1)
B Tz - 9
T = o DT -1+ 2
v =4/K2+ 202,
where k, 8, o are the parameters of the model and ry the current interest rate.
To obtain the corresponding forward rate f; the following formula can be used:
2 :
fi= 47" exp(vTy) + k6B(T)). (5.2)

"k +7)(exp(vT) — 1) + 27)2

Figures 5.1 and 5.2 present the results obtained with method (3.4)-(3.5) with or without
the additional constraints (3.7) for m = 1 and m = 2, when the data consists of the yields-
to-maturity of zero-coupon bonds maturing after 1, 3, 5, 7, 9, 11 months, simulated with
(5.1) for (k,0,0,7¢) = (0.75,0.1,0.15,0.0995). The simulation is performed on May 8th,
1991 |

It is clear that the forward rate curve and the yield curve obtained for m = 2 do not
flatten before the smallest observable maturity; however for m = 1 the flattening effect is
clearly visible. This behaviour was to be expected because in section 2 it was shown that
f'(0) # 0 in general, when m = 2, while in Lorimier (1995a) it followed that for m = 1
the first derivative f'(0) is zero. Finally, we notice that the forward rate curve obtained
by means of the method with m = 1 and m = 2 ,with (3.7), flattens towards the end,
what is caused by the zero derivative f'(T') (see section 2). That this phenomenon creates
a curve not completely coinciding with the exact one is of course due to the fact that the
time horizon of 11 months is to short to notice the flattening effect in the exact curve.
Consequently, the method with m = 2 but without (3.7) gives the best results for this
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situation. However when T is much larger the method with the additional constraint (3.7)
will yield better results than the one without, because now the flattening effect will appear

in the exact curve.

To test the methods allowing small errors in the no arbitrage relations, we have to use
data that are slightly perturbated. That is why we will use yields-to-maturity calculated

as

V=Y +e (5.3)

where Y; are the exact yields obtained with (5.1) and where € is a small error. To decide
. whether the yield is augmented or diminished with ¢, we assume that the probability for an
increase and for a decrease are equal. So for each maturity we generate a discrete uniform
random variate X, with value 1 if a plus sign and value 2 if a minus sign has to be used.

This can be done by means of the following relation:
X = trunc(l + 2U)

with U a uniform [0,1] random variate, and trunc(z) the truncation of the real value =z
(see Devroye (1986)).
The relative error on the price of the corresponding zero-coupon bond P(T}) is then

|P(T;) — P(T;)|

+eT5
= T
P(T)) e |

Of course in practice the difference between the quoted price and the exact (unknown) price
of the bond cannot be larger than, let say, 0.01%. This means, for example for a bond
maturing after 3 months with an exact price of 98.65 (calculated with the CIR-model with
k£ = 0.75, § = 0.1, 0 = 0.105 and ro = 0.05), that the fluctuation ¢ € [—0.0004,0.0004]
and for a bond maturing after 1 year with exact price 93.73 (calculated with the same
CIR-model) we have that e € [—0.0001,0.0001].

For the perturbated data we will use observations with maturities that are no longer
equidistant: yields-to-maturity for 7 days, 14 days, 1 month, 2 months, 3 months, 6 months
and 1 year are simulated with (5.1), for («,6,0,7¢) = (0.75,0.1,0.105,0.05), on May 8th,
1991, and perturbated with e = 510~*. We employ such a large value of ¢, because it
permits us to better understand how the methods behave when the observations are not
exact.

Figures 5.3 and 5.4 present curves obtained with this new data set for the method (3.4)-
(3.5) with m = 2, with or without (3.7), and with m = 1 and the Figures 5.5 and 5.6 give
the results for method (3.8)-(3.9). In the latter case the a-value for the discrete method .
with m = 1 is choosen to be‘equa,l to 16 and for the discrete method with m = 2 to be
equal to 16/133225. Because of this special choice of the values of o, we have that the
continuous problems with m =1 and m = 2, as limits of the discrete problems, use the
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same a-value. Namely, in Lorimier (1995b) it is proved that the discrete problem with
m = 1 and o = 16 converges to the continuous problem with o = 16/h = 5840. On the
other hand from theorem 4.3 and 4.4 it follows that the discrete problem with m = 2 (with
or without the additional constraint f'(T') = 0) and with o = 16/133225 converges to the
continuous problem with o = 16/(133225h%) = 5840. Thus, in the continuous case the
methods with m = 1 and m = 2 use the same A-value in the perturbated no arbitrage

relations
T

f(u) du + Xep =Y Ty .
0

In Figure 5.3 and 5.4 it can be seen that for small maturities all the methods give practically
the same yields and forwards, although for m = 1 the flattening effect is slightly visible.
Furthermore we see that the estimated curve fluctuates around the exact one. This is of
course due to the fact that perturbated data is used in a method which does not allow
errors in the no arbitrage relations. It is also clear that the methods with m = 2 yield
larger fluctuations than the method with m = 1, and that the fluctuations are more distinct
in the forward rate curve than in the yield curve. The latter is caused by the fact that
yields are averaged rates. Finally the forwards obtained with m = 2 without the additional
constraints (3.7) tend to drift of toward large values when T is large. So the constraints
(3.7) are needed to obtain a plausible behaviour of the forward rate curve towards the end.

In Figures 5.5 and 5.6 it is clear that by using method (3.8)-(3.9), which allows small per-

turbations in the no arbitrage relation, the errors in the observations can be compensated.

' For small maturities the yields obtained with the methods with m = 2 are nearer the

exact value than for m = 1, because the curve does not flatten at the beginning. The same
remark can be made for the forward rates. Although the yields are practically the same
for all the methods when the maturity is large, the forwards are better estimated for the
method with m = 2 without the additional constraint than for the other two methods. Of
course, this is to be expected because the horizon T is not very large (only 1 year), what
means that the flattening effect is not yet noticable.

Finally Figures 5.7 and 5.8 show results when some real data is used. The curves are now
fitted by means of the interbank rates on 7 days, 14 days, 1 month, 2 months, 3 months, 6
months and 1 year on December 3, 1990, as can be found in the files of the National Bank
of Belgium.

24




T(t)

()

3.953

9.932

"8.831

39.85
9.949
9.948
9.947
9.946
9.945

9.944

9.955
9.954
9.952

9.95
9.948
9.945
9.944
9.942

9.94
9.938
9.936
9.934
9.932

9.93
9.928
9.926
9.924

Figure 3.1
Yield Curve

0 42 | 34 } ‘IéB t H‘BB } 2%0 l 252 i Zé4 ‘
21 53 105 147 189 231 273 315
X :
exact + m=1 ¢ m=2, without (3.7 & m=2, with (3.7)
Figure 5.2

Forward Rate Curve

T T T T T L ¥ T
0 42 ! 34 126 [ 168 i 210 ! 252 ] 294 [
21 53 1058 147 189 231 273 313
t
exact + m=1 O m=2, without (3.7) A m=2, with (3.7)

25



RALY;

f(t)

5.5
5.4
8.3
8.2
5.1

5.9
5.8
3.7
3.6
5.5
5.4
5.3
5.2
3.1

4.9

8.5

Co

~

8.3

Figure 5.3

Yield Curve
-
T T ¥ T T T T T 1 T
o | 42 | 84 | 126 | 168 | 210 | 252 | 294 | 336 |
21 63 105 147 189 231 273 313 357
t
gxact + m=1 O m=2, without (3.7) & m=2, with (3.7)
Figure 5.4
‘ Forward Rate Curve
i T T T T T T T T
0 l 42 l 34 l 126 | 168 l 210 I 252 | 294 I 336 I
21 83 105 147 189 231 273 318 357
t
exact + m=1 S m=2, without (3.7) A m=2, with (3.7)

26



W

(L)

5.5
8.3
5.4
6.3
8.2
6.1

5.9
5.8
5.7
5.6
5.5
5.4
5.3
3.2
5.1

4.9

5.6
5.4
6.2

5.8
3.6
5.4
5.2

4.3

Figure 5.5

Yield Curve
T , 11 l Hl { T l T { T 1 T ; T { - T 1
s} 42 34 | 126 163 210 252 294 33€
21 B3 108 147 189 231 273 315 357
t
gxact +  m=1 & m=2, without (3.7) A m=2, with {3.7)
Figure 5.6
Forward Rate Curve
T t t 1 T 1] T T T
0 [ 42 I 34 I 126 [ 168 [ 210 [ 252 I 294 [ 336 |
21 63 108 147 189 231 273 318 357
t
exact + =1 o m=2, without (3.7) a =2, with (3.7)

27



()

(1)

0

a

Figure 5.7

Yield Curve

9.6
9.3 —
9.4 —
3.3 —
9.2 —
9.1 -

9 b
3.9
8.8 —

8.7
8—6 T T 7 T T T T 1 | i

0 ’42{84I125[158{210&252'294.336|
21 B3 105 147 189 231 273 318 357
t
m=1,alpha=inf -+ m=2,alpha=int ¢ m=2(3.7),alpha=inf A& m=1,alpha=15
X  m=2,alpha=16h? v m=2(3.7),alpha=16h*
Figure 5.8
Forward Rate Curve

10.5

10 —
3.5 —

9 | -
3.5

8 —
7.5

7 -

5.5 T — T T T T T T T T

0 ‘ 4—2184l126i158‘210(252'294|336[
21 B3 105 147 189 231 273 315 357
t
m=1,alpha=inf + m=2,aiphg=inf ¢ m=2(3.7),alpha=inf &  m=1,alpha=18%
X  m=2,aipha=16h* v m=2(3.7),alpha=16n>

28



To conclude, we can say that the use of the higher order degree of smoothness gives better
results for small maturities, because the forward rate curve no longer flattens. But when
the observations are sparse (as can be in practice for long maturities) the higher order
methods tend to fluctuate much between the observations, what is an unlikely behaviour.
Furthermore, for long maturities the forward rate can drift off, an effect that can be
compensated by imposing the additional constraint (3.7). By using method (3.8)-(3.9)
smoother curves can be obtained, but which method will give the best results cannot be

decided easily.

Conclusions

In this paper a method is presented using higher order derivatives or differences to estimate
the forward rate curve and the yield curve. The most important results are that the discrete
methods give a solution that converges uniformly towards the solution of the continuous
method, when the discretization step is small.

From the few examples presented is this paper it is clear that for small maturities the
method using higher order differences yields better results than the one using first order
differences, because of the flattening effect. On the other hand, the higher order methods
can generate curves that fluctuate more between the observed maturities. Therefore it can
be usefull to create a method that combines first and higher order differences to obtain
curves that do not fluctuate much between the observations and that do not flatten before

the first observation.
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Appendix
Lemma A.1

For all n > m the following equality holds:
nz_in<m+l—l> . (n)
m—1 T \m )7
=0

Proof

The statement is proved by means of induction with respect to n. For n = m the relation

£ ()= (7)),
z(;>.

is true. Furthermore

QED.
Lemma A.2

For all n > j we have that

st () ()~ (az2) o
Proof

The proof is made by means of induction to j. For j = 1 the statement is easily proved.
To proof the statement for j we use that ’

e (1) (3) =S () () g (3 (1),

what can be obtained by applying (3.3) on the first combinatorial.
If I < j —1 the induction hypothesis states that the two sums are zero; if { = j — 1 the two
sums equal one; if I = j we get

Eor @)= (- =

and, if [ > j then

£ (1) ()= (242)-(252)- (=)
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what proves the lemma.

QED.
Lemma A.3
Foral m,j3=1,...,m—1,8=0,...,j we have that

() ()= ()

We use induction with respect to j. For j = 1 the statement is valid for s = 0, 1.
To proof the relation for j, we first of all assume that s # 0,j. Then because of (3.3) the
left-hand side equals

S (7 (2B () (et
_ <m—j+3>_(m—jj—13—1>,
_ (m—nj:-s—1>’

where the second equality follows from the induction hypothesis.

Proof

If s = 0 then both sides of the equality are one and if s = j then the equality follows from
lemma A.2.

QED.
Lemma A .4
Forall n, m=0,...,n—1and j=0,...,m — 1 the following equality holds:

£ () ()£ (75)

n

Proof

The statement is proved by using induction with respect to j. For j = 0 the equality holds
because of lemma A.1. Furthermore we have that the left-hand side equals

kzjol(k+m ]—1) <m+Jk—1>+"Zm:1<k+mk—j—1> (mj—k1—1>
=j!<y—_jlzll>!n§m<m+khl)+§(m 1) (5757),
-(") (R R (),
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where the second equality follows from the induction hypothesis and the last one from

lemma A.1. This proves the lemma.

QED.
Lemma A.5

Foraln>m>1,5=0,...,m~—1,

()-S5 G () -2 () (7)
Proof

We use induction with respect to m. For m = 1 the left- and right-hand side are both
equal to n — 1. To prove the lemma for m, we first assume that j # 0. Then the left-hand

ey () ()

")+ () ()
()7 ) ()

(e ().
-S> (EN (TR,

where the last equality follows from the induction hypothesis.
If j = 0 then the left-hand side equals

() -(a20)=(2),

what equals the right-hand side.

side equals

() (757)+ (G

QED.
Lemma A.6
Forallm,n>m+1,j=0,...,m — 1 the following relation is valid:
7 m—1
_ym—j+1 n—k-—1 m—-—k—-1Y) _ \k—j n k
vy S (M) () = e () (8):
= =J
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Proof

The statement is proved by means of induction with respect to m. For m = 1 it is easy
to show that both sides of the equality equal n. To prove the relation for m we rewrite
the right-hand side by means of the induction hypothesis and by using lemma A.5, what
gives, for j #m — 1,

7%5(—1)” <ki1> <f> Hepm (:1) <m”—1)

k=j

s S () () e () (7).
— 14 (-1 [(:;) (") —;0 (",;’_“_;0 (mj'_kk_l)]
() (5)

This is the left-hand side of the relation to be proved. For j = m — 1 we have, because of
lemma A.1, that the right-hand side equals

what equals the right-hand side.
QED.

" Lemma A.7

Forall n,/=0,...,n—1,5=0,...,] we have that
!
> (5) (201 = (i)
'\ J I-p I-5)

Proof

It is proved by using induction with respect to I. For I = 0 both sides are equal to 1. To
prove the statement for I, we first assume that j # 0,1. Then application of (3.3) and the
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induction hypothesis transforms the left-hand side into

SO« 2 () )
-(275)+(155);
=<l_’_‘j).

If y = O then the left-hand side equals

where the second equality follows from lemma A.1. If j = [ then the left- and the right-hand

side are equal to 1.
QED.
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