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Multiscope: A User-Friendly Multi-Label Text 

Classification Dashboard 

Jens Van Nooten and Walter Daelemans 

University of Antwerp (CLiPS) 

Abstract. We present Multiscope, a user-friendly tool for training and applying Multi-

Label Text Classification (MLTC) models to datasets of choice. MLTC is a complex, yet vital 

component of analyzing large corpora that aims to assign multiple labels to a single text. 

However, compared to more traditional classification approaches, training, evaluating and 

deploying MLTC models can be challenging because of the nature of the task. Multiscope 

provides a complete pipeline for this classification problem, starting with data 

stratification, providing insights into the label distribution and interactions between 

labels. The tool also provides a framework for fine-tuning state-of-the-art transformer 

models and training classical Machine Learning models. The trained models can be 

evaluated using multi-label classification metrics. 

Keywords: Multi-label text classification, NLP for the humanities 

 

1 Introduction 

Natural Language Processing has seen rapid developments in the past few years with the 

introduction of the transformers model architecture and Large Language Models (LLMs). These 

developments lead to improved results for a multitude of NLP tasks, including text classification, 

which is a valuable asset to analyzing large text corpora. A complex subproblem in text 

classification is Multi-Label Text Classification (MLTC), which aims to assign multiple labels to a 

single text. This differs from single-label classification problems (binary and multi-class 

classification), which assign one to each text. Use cases of MLTC include topic classification and 

emotion classification.  

 

The aforementioned developments in NLP inspired applications for Digital Humanities research, 

which is stimulated and facilitated by the CLARIAH-Flanders project.  Multiscope aims to bridge 

the gap between NLP and Digital Humanities research by introducing a user-friendly GUI to aid 

researchers with developing multi-label text classifiers. The tool was developed in Python and 

can be used from a user interface developed with Gradio (Abid, 2019). The code and installation 

instructions can be found on GitHub: https://github.com/clips/multiscope.  

 

https://clariahvl.hypotheses.org/
https://github.com/clips/multiscope
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The remainder of this report details general user guidelines for Multiscope. Demonstrations are 

provided through screenshots from the application. 

 

2 Multi-Label Text Classification 

Setting up an environment for developing and evaluating MLTC models raises a few challenges. 

The first challenge arises when creating train, validation and test splits for the models to be 

trained on. Since multiple labels are assigned to a single text at once, one cannot rely on 

traditional stratification methods. The second challenge pertains to the training procedure of 

MLTC models. Traditional Support Vector Machines (SVMs) and Transformers -or neural 

networks in general- have to be adapted to accommodate the complex label space during training 

and inference by transforming the classification problem or by adjusting the model’s architecture. 

The final challenge is related to the evaluation of such models, since traditional metrics like 

precision, recall and F1 are interpreted differently. Moreover, such multi-label models also have 

to be evaluated with specific metrics that deal with the complexity of multiple predicted labels. 

Additionally, the notion of a confusion matrix becomes more complex in this setting, since it is 

unclear which labels are confused when incorrect labels are predicted or not all correct labels are 

predicted. Solutions to these challenges are addressed in the following sections.  

 

Data stratification Data stratification is essential to developing well-calibrated classifiers when 

a dataset is imbalanced: It ensures that models are evaluated on data samples that are 

representative of a source dataset by approximating its label distribution when creating a 

validation or test dataset. This is especially important for cross-validation experiments. While 

ensuring an equal label distribution is straightforward for single-label classification, it becomes 

more complicated for MLTC. Sechidis et al. (2011) propose an iterative stratification method that 

not only takes the occurrences of labels in isolation into account, but also co-occurrences between 

labels. This provides a more reliable approximation of the original dataset’s distribution when 

creating sub-samples.  

 

Classifier Adaptation In traditional Machine Learning (ML) research, MLTC is often 

reinterpreted as multiple binary classification problems (binary relevance). Neural networks, 

especially transformers, tend to leverage  a sigmoid activation layer on top of output logits to 

accommodate multiple predictions for a single instance. This yields a probability for each label 

independently. 
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Model Evaluation Traditional evaluation metrics such as precision, recall and F1-scores must be 

reinterpreted for MLTC. In essence, F1-scores per class are calculated by taking the harmonic 

mean of precision and recall of the positive class, i.e. the cases where a label is assigned to a text. 

While F1-scores provide an accurate estimation of a model’s performance, other metrics catered 

to MLTC are required in an evaluation setup. Examples of such metrics are the following: 

- Exact Match Ratio (EMR): the proportion of instances where all labels are predicted 

correctly. 

- Hamming Loss (HL): the average of labels that are predicted incorrectly per instance.  

- Normalized Discounted Cumulative Gain at K (nDCG@k): measures the ranking 

quality of predictions by comparing the ranking of predictions with the ‘ideal’ ranking. 

Heydarian et al. (2022) introduced a multi-label confusion matrix, which allows for confusion 

between classes to be visualized more easily. The novelty of this approach lies in the addition of 

an extra row (No True Label; NTL) and an extra column (No Predicted Label; NPL), which take 

missing labels from prediction sets and superfluous predictions into account (cf. Figure 8). 

3 Multiscope 

I. Loading data 

Users will first need to determine whether they want to upload their data from a local file (as a 

JSON, CSV or Excel file) (1) or use a dataset that is publicly available on the Huggingface hub (Wolf 

et al. 2020) (2). When using Huggingface, the user must specify the dataset identifier, text column 

name (defaults to ‘text’), label column name (defaults to ‘labels’) and, if applicable, the relevant 

subset of the data. Then, the dashboard leverages the datasets library (Lhoest et al. 2021) to load 

the data. It should be noted that these datasets can vary in structure. It is recommended that a 

local version of the data is made that fits the structure criteria that are described below. 

 

JSON files should adhere to the following structure: 

{ 

        data:{  

'train': [{'id': ID_1, 'text': TEXT_1, 'labels': [LABELS]}, ..., {'id': ID_N, 'text': TEXT_N, 'labels': [LABELS]} ],  

'val': [{'id': ID_1, 'text': TEXT_1, 'labels': [LABELS]}, ..., {'id': ID_N, 'text': TEXT_N, 'labels': [LABELS]} ],   

(if present)  

'test':  [{'id': ID_1, 'text': TEXT_1, 'labels': [LABELS]}, ..., {'id': ID_N, 'text': TEXT_N, 'labels': [LABELS]} ]  

(remove 'labels' if not present in test set) 

            }  

    }             

 

 

https://huggingface.co/docs/datasets/index
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Excel and CSV files should adhere to the following structure. The “text” column should contain 

strings of texts. “Labels” should contain lists of strings or integers and “split” should contain 

strings (“train”, “val” or “test”) indicating to which split of the dataset the corresponding text 

belongs. 

text labels split 

“Text 1” [L1, L2] “train” 

“Text 2” [L1, L2, L3] “train” 

“Text 3” [L3, L4] “val” 

“Text 4” [L1, L2, L4…] “test” 

… … … 

 

Below are a few examples taken from the SemEval2018 dataset (Mohammad et al. 2018): 

text labels split 

“Worry is a down payment on a problem 

you may never have'.  Joyce Meyer. 

#motivation #leadership #worry 

[anticipation, 

optimism, trust] 

“train” 

“Whatever you decide to do make sure it 

makes you #happy.” 

[joy, love ,optimism] “train” 

I blew that opportunity -__- #mad [anger, disgust, 

sadness] 

“test” 

… … … 

 

(1): 

 

(2): 

 

 

The second step is to select the operations that are to be performed on the data. The user has four 

options, which can all be used in conjunction, or separately:  
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- ‘Train”: Trains a model on the training split of the provided dataset. If selected on its own, 

it will only train a model and not perform inference on a test set. 

- “Test”: If used in conjunction with “Train”, the dashboard automatically evaluates the 

trained model on the provided test split. If specified on its own, it only performs inference 

on the provided test split. If no labels are present in the test split, only inference is 

performed and no performance metrics are calculated. 

- “Make Validation Set”: Creates a stratified validation split (if selected or if a validation 

split is not provided). The use can also define the portion of the training data that should 

be used to create this split. 

-  “Make Test Set”: Creates a stratified test split. The use can also define the portion of the 

training data that should be used to create this split. 

Once the dataset has been loaded, Multiscope provides statistics related to token counts, 

wordpiece token counts (these are relevant for BERT-like models) and the label distribution for 

all provided splits of the data (3). In terms of label-related information, the dashboard provides a 

bar chart showing the label distribution and a co-occurrence matrix, thereby providing insight 

into which labels tend to co-occur in the training data. 

 

(3): 
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II. Training a model 

Once the data has been loaded in, the user can then choose between two classification 

frameworks, namely fine-tuning a BERT-like transformer (Devlin et al. 2019) or training a 

Support Vector Machine (SVM).  

A. Fine-tuning Transformers 

For fine-tuning BERT-like models, the dashboard relies on the transformers library, developed 

by HuggingFace. The user has the option to choose the base model, which can be any fine-tunable 

model available on the HuggingFace hub1 that is compatible with the 

AutoModelForSequenceClassification class. If a model has been chosen, the name of the model as 

it is on the HuggingFace hub needs to be pasted in the relevant text box. In the case of only 

performing inference on the test set, a fine-tuned local (or remote) model can also be loaded by 

entering the path to the model directory.  

 

Additionally, the user has the option to determine the value of selected hyperparameters (4), 

namely batch size, max sequence length, the number of training epochs and the learning rate. The 

recommended values should generally work for most models. Further experimentation with 

these hyperparameters, especially number of epochs and learning rate, is recommended. It 

should be noted that the batch size is heavily dependent on the available GPU memory: A smaller 

batch size equals lower memory usage. 

 

(4): 

 

 

The best performing model, which is selected based on the performance on the validation set 

(macro F1) during training, is automatically saved after training. This model can be loaded later 

to perform inference on a held-out test set, or be used for other applications. 

 

 

 
1 Consult https://huggingface.co/models for a complete list of models. 

https://huggingface.co/models
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B. Training an SVM 

Multi-scope also offers the user the possibility to train an SVM. For this, the dashboard relies on 

the scikit-learn package (Pedregosa et al. 2011). Using the binary relevance approach for MLTC 

(OneVsRestClassifier), it trains a binary classifier for each label separately and concatenates 

predictions. As a data-preprocessing step, stop words are removed from the data. This can be 

done by (optionally) providing the language of the training data or providing a custom list of stop 

words in a TXT file (one word per line). To remove language-specific stop words, the dashboard 

loads the provided lists from the NLTK package (Bird et al. 2009). If a language nor custom stop 

words file are provided, the language defaults to English and loads NLTK stop words. 

 

The user is provided three options for experiments (5), including options to perform Grid Search 

experiments to find the optimal hyperparameter settings for an SVM. The three options are the 

following: An option where no Grid Search is performed and two options where five-fold cross-

validation Grid Search experiments are performed with stratified splits: 

- No Grid Search: The dashboard will not perform Grid Search experiments, but instead 

uses a pipeline with standard hyperparameters. 

- Standard: Performs a basic Grid Search experiment with stratified five-fold cross 

validation. The options for the hyperparameters are determined beforehand. 

- Custom: Allows the user to manually select the hyperparameters and the number of 

options to be considered during the Grid Search experiments (6). In the case highlighted 

below, the N-gram range, max_df and C parameters will be Grid Searched, with four, three 

and six options for each respectively. The more options per hyperparameter are Grid 

Searched, the longer it takes for the model to finish the training procedure. 

If a Grid Search experiment is performed, the dashboard automatically saves the best performing 

model (based on the -averaged F1 score), the best performing parameters and all scores per 

parameter combination. 

 

(5): 
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(6): 

 

III. Evaluating a model 

After training, the selected model is evaluated on the test, if specified (cf. Section 3, I.). Several metrics 

are calculated: 

- Micro/macro-averaged precision 

- Micro/macro-averaged recall 

- Micro/macro-averaged F1 & sample F1 

- Exact Match Ratio 

- Hamming Loss 

- nDCG@k, where k = [1, 3, 5, 10] 

These are provided in a table, in addition to a classification report where the performance on each 

class is shown (precision, recall and F1) (7). 

(7): 

 

Moreover, a multi-label confusion matrix (Heydarian et al. 2022) is also provided (8). 
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(8): 

 

When the user has opted for training an SVM, the most informative features for each class are also 

provided in a table (9). These are extracted based on the features (n-grams) with the highest positive 

and negative coefficients for each class. 

(9): 

 

Multiscope also makes use of Weights and Biases to track the training process of neural networks and 

to report classification metrics on the evaluation set and test set, if applicable. Important to note is 

that the user needs a Weights and Biases account for this2. The project name and run name are 

generated automatically by the script. The dashboard only shows the page for a single run (10). 

However, the user can browse to the project page (11) by clicking “Open page” in the top right corner 

 
2 https://wandb.ai/site/  

https://wandb.ai/site/
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of the embedded report. This page provides an overview of all runs and results thereof. If multiple 

experiments are conducted, W&B provides visualizations that allow for an easy comparison of models 

and setups. 

(10): 

 

 

(11): 

 

 

4 Conclusion 

In this report, we introduced Multiscope, a dashboard for training MLTC models. The dashboard 

provides a complete pipeline for classification, starting with creating a stratified validation split and 

providing informative statistics about the label distribution and interactions between labels. This is 
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followed up by adjusting a transformers model’s/SVM’s architecture for MLTC and, finally, evaluating 

the models with appropriate metrics and a confusion matrix for multi-label classification. The 

dashboard also provides insights into the SVM’s decision-making process by retrieving the most 

informative features per class. 
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