
Copyright © 2024 CLiPS Research Center, all rights reserved.

CLiPS Technical Report 11
COMPUTATIONAL LINGUISTICS & PSYCHOLINGUISTICS

TECHNICAL REPORT SERIES, CTRS-011, January 2025

www.uantwerpen.be/clips

ISSN 2033-3544

Multiscope: A User-Friendly Multi-Label Text Classification
Dashboard

Jens Van Nooten and Walter Daelemans

Multiscope: A User-Friendly Multi-Label Text

Classification Dashboard

Computational Linguistics, Psycholinguistics and Sociolinguistics Research Center

CLiPS Technical Report Series (CTRS)

December, 2024

CTRS-011

Authors

Jens Van Nooten

CLiPS Research Center, University of Antwerp (BE)

jens.vannooten@uantwerpen.be

Walter Daelemans

CLiPS Research Center, University of Antwerp (BE)

walter.daelemans@uantwerpen.be

Copyright © 2025 CLiPS Research Center, University of Antwerp

Prinsstraat 13, 2000 Antwerp, Belgium

+32 (0)3 265 52 22

CTRS-011 1/29

Multiscope: A User-Friendly Multi-Label Text

Classification Dashboard

Jens Van Nooten and Walter Daelemans

University of Antwerp (CLiPS)

Abstract. We present Multiscope, a user-friendly tool for training and applying Multi-

Label Text Classification (MLTC) models to datasets of choice. MLTC is a complex, yet vital

component of analyzing large corpora that aims to assign multiple labels to a single text.

However, compared to more traditional classification approaches, training, evaluating and

deploying MLTC models can be challenging because of the nature of the task. Multiscope

provides a complete pipeline for this classification problem, starting with data

stratification, providing insights into the label distribution and interactions between

labels. The tool also provides a framework for fine-tuning state-of-the-art transformer

models and training classical Machine Learning models. The trained models can be

evaluated using multi-label classification metrics.

Keywords: Multi-label text classification, NLP for the humanities

1 Introduction

Natural Language Processing has seen rapid developments in the past few years with the

introduction of the transformers model architecture and Large Language Models (LLMs). These

developments lead to improved results for a multitude of NLP tasks, including text classification,

which is a valuable asset to analyzing large text corpora. A complex subproblem in text

classification is Multi-Label Text Classification (MLTC), which aims to assign multiple labels to a

single text. This differs from single-label classification problems (binary and multi-class

classification), which assign one to each text. Use cases of MLTC include topic classification and

emotion classification.

The aforementioned developments in NLP inspired applications for Digital Humanities research,

which is stimulated and facilitated by the CLARIAH-Flanders project. Multiscope aims to bridge

the gap between NLP and Digital Humanities research by introducing a user-friendly GUI to aid

researchers with developing multi-label text classifiers. The tool was developed in Python and

can be used from a user interface developed with Gradio (Abid, 2019). The code and installation

instructions can be found on GitHub: https://github.com/clips/multiscope.

https://clariahvl.hypotheses.org/
https://github.com/clips/multiscope

CTRS-011 1/29

The remainder of this report details general user guidelines for Multiscope. Demonstrations are

provided through screenshots from the application.

2 Multi-Label Text Classification

Setting up an environment for developing and evaluating MLTC models raises a few challenges.

The first challenge arises when creating train, validation and test splits for the models to be

trained on. Since multiple labels are assigned to a single text at once, one cannot rely on

traditional stratification methods. The second challenge pertains to the training procedure of

MLTC models. Traditional Support Vector Machines (SVMs) and Transformers -or neural

networks in general- have to be adapted to accommodate the complex label space during training

and inference by transforming the classification problem or by adjusting the model’s architecture.

The final challenge is related to the evaluation of such models, since traditional metrics like

precision, recall and F1 are interpreted differently. Moreover, such multi-label models also have

to be evaluated with specific metrics that deal with the complexity of multiple predicted labels.

Additionally, the notion of a confusion matrix becomes more complex in this setting, since it is

unclear which labels are confused when incorrect labels are predicted or not all correct labels are

predicted. Solutions to these challenges are addressed in the following sections.

Data stratification Data stratification is essential to developing well-calibrated classifiers when

a dataset is imbalanced: It ensures that models are evaluated on data samples that are

representative of a source dataset by approximating its label distribution when creating a

validation or test dataset. This is especially important for cross-validation experiments. While

ensuring an equal label distribution is straightforward for single-label classification, it becomes

more complicated for MLTC. Sechidis et al. (2011) propose an iterative stratification method that

not only takes the occurrences of labels in isolation into account, but also co-occurrences between

labels. This provides a more reliable approximation of the original dataset’s distribution when

creating sub-samples.

Classifier Adaptation In traditional Machine Learning (ML) research, MLTC is often

reinterpreted as multiple binary classification problems (binary relevance). Neural networks,

especially transformers, tend to leverage a sigmoid activation layer on top of output logits to

accommodate multiple predictions for a single instance. This yields a probability for each label

independently.

CTRS-011 1/29

Model Evaluation Traditional evaluation metrics such as precision, recall and F1-scores must be

reinterpreted for MLTC. In essence, F1-scores per class are calculated by taking the harmonic

mean of precision and recall of the positive class, i.e. the cases where a label is assigned to a text.

While F1-scores provide an accurate estimation of a model’s performance, other metrics catered

to MLTC are required in an evaluation setup. Examples of such metrics are the following:

- Exact Match Ratio (EMR): the proportion of instances where all labels are predicted

correctly.

- Hamming Loss (HL): the average of labels that are predicted incorrectly per instance.

- Normalized Discounted Cumulative Gain at K (nDCG@k): measures the ranking

quality of predictions by comparing the ranking of predictions with the ‘ideal’ ranking.

Heydarian et al. (2022) introduced a multi-label confusion matrix, which allows for confusion

between classes to be visualized more easily. The novelty of this approach lies in the addition of

an extra row (No True Label; NTL) and an extra column (No Predicted Label; NPL), which take

missing labels from prediction sets and superfluous predictions into account (cf. Figure 8).

3 Multiscope

I. Loading data

Users will first need to determine whether they want to upload their data from a local file (as a

JSON, CSV or Excel file) (1) or use a dataset that is publicly available on the Huggingface hub (Wolf

et al. 2020) (2). When using Huggingface, the user must specify the dataset identifier, text column

name (defaults to ‘text’), label column name (defaults to ‘labels’) and, if applicable, the relevant

subset of the data. Then, the dashboard leverages the datasets library (Lhoest et al. 2021) to load

the data. It should be noted that these datasets can vary in structure. It is recommended that a

local version of the data is made that fits the structure criteria that are described below.

JSON files should adhere to the following structure:

{

 data:{

'train': [{'id': ID_1, 'text': TEXT_1, 'labels': [LABELS]}, ..., {'id': ID_N, 'text': TEXT_N, 'labels': [LABELS]}],

'val': [{'id': ID_1, 'text': TEXT_1, 'labels': [LABELS]}, ..., {'id': ID_N, 'text': TEXT_N, 'labels': [LABELS]}],

(if present)

'test': [{'id': ID_1, 'text': TEXT_1, 'labels': [LABELS]}, ..., {'id': ID_N, 'text': TEXT_N, 'labels': [LABELS]}]

(remove 'labels' if not present in test set)

 }

 }

https://huggingface.co/docs/datasets/index

CTRS-011 1/29

Excel and CSV files should adhere to the following structure. The “text” column should contain

strings of texts. “Labels” should contain lists of strings or integers and “split” should contain

strings (“train”, “val” or “test”) indicating to which split of the dataset the corresponding text

belongs.

text labels split

“Text 1” [L1, L2] “train”

“Text 2” [L1, L2, L3] “train”

“Text 3” [L3, L4] “val”

“Text 4” [L1, L2, L4…] “test”

… … …

Below are a few examples taken from the SemEval2018 dataset (Mohammad et al. 2018):

text labels split

“Worry is a down payment on a problem

you may never have'. Joyce Meyer.

#motivation #leadership #worry

[anticipation,

optimism, trust]

“train”

“Whatever you decide to do make sure it

makes you #happy.”

[joy, love ,optimism] “train”

I blew that opportunity -__- #mad [anger, disgust,

sadness]

“test”

… … …

(1):

(2):

The second step is to select the operations that are to be performed on the data. The user has four

options, which can all be used in conjunction, or separately:

CTRS-011 1/29

- ‘Train”: Trains a model on the training split of the provided dataset. If selected on its own,

it will only train a model and not perform inference on a test set.

- “Test”: If used in conjunction with “Train”, the dashboard automatically evaluates the

trained model on the provided test split. If specified on its own, it only performs inference

on the provided test split. If no labels are present in the test split, only inference is

performed and no performance metrics are calculated.

- “Make Validation Set”: Creates a stratified validation split (if selected or if a validation

split is not provided). The use can also define the portion of the training data that should

be used to create this split.

- “Make Test Set”: Creates a stratified test split. The use can also define the portion of the

training data that should be used to create this split.

Once the dataset has been loaded, Multiscope provides statistics related to token counts,

wordpiece token counts (these are relevant for BERT-like models) and the label distribution for

all provided splits of the data (3). In terms of label-related information, the dashboard provides a

bar chart showing the label distribution and a co-occurrence matrix, thereby providing insight

into which labels tend to co-occur in the training data.

(3):

CTRS-011 1/29

II. Training a model

Once the data has been loaded in, the user can then choose between two classification

frameworks, namely fine-tuning a BERT-like transformer (Devlin et al. 2019) or training a

Support Vector Machine (SVM).

A. Fine-tuning Transformers

For fine-tuning BERT-like models, the dashboard relies on the transformers library, developed

by HuggingFace. The user has the option to choose the base model, which can be any fine-tunable

model available on the HuggingFace hub1 that is compatible with the

AutoModelForSequenceClassification class. If a model has been chosen, the name of the model as

it is on the HuggingFace hub needs to be pasted in the relevant text box. In the case of only

performing inference on the test set, a fine-tuned local (or remote) model can also be loaded by

entering the path to the model directory.

Additionally, the user has the option to determine the value of selected hyperparameters (4),

namely batch size, max sequence length, the number of training epochs and the learning rate. The

recommended values should generally work for most models. Further experimentation with

these hyperparameters, especially number of epochs and learning rate, is recommended. It

should be noted that the batch size is heavily dependent on the available GPU memory: A smaller

batch size equals lower memory usage.

(4):

The best performing model, which is selected based on the performance on the validation set

(macro F1) during training, is automatically saved after training. This model can be loaded later

to perform inference on a held-out test set, or be used for other applications.

1 Consult https://huggingface.co/models for a complete list of models.

https://huggingface.co/models

CTRS-011 1/29

B. Training an SVM

Multi-scope also offers the user the possibility to train an SVM. For this, the dashboard relies on

the scikit-learn package (Pedregosa et al. 2011). Using the binary relevance approach for MLTC

(OneVsRestClassifier), it trains a binary classifier for each label separately and concatenates

predictions. As a data-preprocessing step, stop words are removed from the data. This can be

done by (optionally) providing the language of the training data or providing a custom list of stop

words in a TXT file (one word per line). To remove language-specific stop words, the dashboard

loads the provided lists from the NLTK package (Bird et al. 2009). If a language nor custom stop

words file are provided, the language defaults to English and loads NLTK stop words.

The user is provided three options for experiments (5), including options to perform Grid Search

experiments to find the optimal hyperparameter settings for an SVM. The three options are the

following: An option where no Grid Search is performed and two options where five-fold cross-

validation Grid Search experiments are performed with stratified splits:

- No Grid Search: The dashboard will not perform Grid Search experiments, but instead

uses a pipeline with standard hyperparameters.

- Standard: Performs a basic Grid Search experiment with stratified five-fold cross

validation. The options for the hyperparameters are determined beforehand.

- Custom: Allows the user to manually select the hyperparameters and the number of

options to be considered during the Grid Search experiments (6). In the case highlighted

below, the N-gram range, max_df and C parameters will be Grid Searched, with four, three

and six options for each respectively. The more options per hyperparameter are Grid

Searched, the longer it takes for the model to finish the training procedure.

If a Grid Search experiment is performed, the dashboard automatically saves the best performing

model (based on the -averaged F1 score), the best performing parameters and all scores per

parameter combination.

(5):

CTRS-011 1/29

(6):

III. Evaluating a model

After training, the selected model is evaluated on the test, if specified (cf. Section 3, I.). Several metrics

are calculated:

- Micro/macro-averaged precision

- Micro/macro-averaged recall

- Micro/macro-averaged F1 & sample F1

- Exact Match Ratio

- Hamming Loss

- nDCG@k, where k = [1, 3, 5, 10]

These are provided in a table, in addition to a classification report where the performance on each

class is shown (precision, recall and F1) (7).

(7):

Moreover, a multi-label confusion matrix (Heydarian et al. 2022) is also provided (8).

CTRS-011 1/29

(8):

When the user has opted for training an SVM, the most informative features for each class are also

provided in a table (9). These are extracted based on the features (n-grams) with the highest positive

and negative coefficients for each class.

(9):

Multiscope also makes use of Weights and Biases to track the training process of neural networks and

to report classification metrics on the evaluation set and test set, if applicable. Important to note is

that the user needs a Weights and Biases account for this2. The project name and run name are

generated automatically by the script. The dashboard only shows the page for a single run (10).

However, the user can browse to the project page (11) by clicking “Open page” in the top right corner

2 https://wandb.ai/site/

https://wandb.ai/site/

CTRS-011 1/29

of the embedded report. This page provides an overview of all runs and results thereof. If multiple

experiments are conducted, W&B provides visualizations that allow for an easy comparison of models

and setups.

(10):

(11):

4 Conclusion

In this report, we introduced Multiscope, a dashboard for training MLTC models. The dashboard

provides a complete pipeline for classification, starting with creating a stratified validation split and

providing informative statistics about the label distribution and interactions between labels. This is

CTRS-011 1/29

followed up by adjusting a transformers model’s/SVM’s architecture for MLTC and, finally, evaluating

the models with appropriate metrics and a confusion matrix for multi-label classification. The

dashboard also provides insights into the SVM’s decision-making process by retrieving the most

informative features per class.

How to cite

Jens Van Nooten and Walter Daelemans. 2024. Multiscope: A User-Friendly Multi-Label Text Classification

Dashboard. CLiPS Technical Report Series 11 (CTRS 11). ISSN 2033-3544. Computational Linguistics,

Psycholinguistics, and Sociolinguistics Research Center.

Bibliography

Abubakar Abid, Ali Abdalla, Ali Abid, Dawood Khan, Abdulrahman Alfozan and James Y. Zou. 2019.

Gradio: Hassle-Free Sharing and Testing of ML Models in the Wild. arxiv:1906.02569

Steven Bird, Edward Loper and Ewan Klein. 2009. Natural language processing with Python.

O’Reilly Media Inc.

Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, & Toutanova, Kristina. (2019). BERT: Pre-training of

deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran,

& Thamar Solorio (Eds.), Proceedings of the 2019 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers) (pp. 4171–4186). Minneapolis, Minnesota: Association for

Computational Linguistics. https://doi.org/10.18653/v1/N19-1423

Mohammadreza Heydarian, Thomas E. Doyle and Reza Samavi. 2022. MLCM: Multi-label

confusion matrix. IEEE Access, 10, 19083–19095.

https://doi.org/10.1109/ACCESS.2022.3151048

Pedregosa, Fabian, Varoquaux, Gaël, Gramfort, Alexandre, Michel, Vincent, Thirion, Bertrand,

Grisel, Olivier, Blondel, Mathieu, Prettenhofer, Peter, Weiss, Ron, Dubourg, Vincent,

Vanderplas, Jake, Passos, Alexandre, Cournapeau, David, Brucher, Matthieu, Perrot,

Matthieu, & Duchesnay, Édouard. (2011). Scikit-learn: Machine learning in Python. Journal

of Machine Learning Research, 12(85), 2825–2830. Retrieved from

http://jmlr.org/papers/v12/pedregosa11a.html

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/ACCESS.2022.3151048
http://jmlr.org/papers/v12/pedregosa11a.html

CTRS-011 1/29

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,

Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario

Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh,

Canwen Xu, Nicolas Patry, et al. 2021. Datasets: A Community Library for Natural Language

Processing. Proceedings of the 2021 Conference on Empirical Methods in Natural Language

Processing: System Demonstrations, pp. 175-–184, Punta Cana, Dominican Republic.

Association for Computational Linguistics (ACL).

Konstantinos Sechidis, Grigorios Tsoumakas, and Ioannis Vlahavas. 2011. On the stratification of

multi-label data. Machine Learning and Knowledge Discovery in Databases: ECML PKDD

2011, volume 6913 of Lecture Notes in Computer Science, pp. 145–158. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-23808-6_10

Mohammad, Saif, Bravo-Marquez, Felipe, Salameh, Mohammad, & Kiritchenko, Svetlana. (2018).

SemEval-2018 Task 1: Affect in Tweets. In Marianna Apidianaki, Saif M. Mohammad,

Jonathan May, Ekaterina Shutova, Steven Bethard, & Marine Carpuat (Eds.), Proceedings of

the 12th International Workshop on Semantic Evaluation (pp. 1–17). New Orleans,

Louisiana: Association for Computational Linguistics. https://doi.org/10.18653/v1/S18-

1001

Wolf, Thomas, Debut, Lysandre, Sanh, Victor, Chaumond, Julien, Delangue, Clement, Moi, Anthony,

Cistac, Pierric, Rault, Tim, Louf, Rémi, Funtowicz, Morgan, Davison, Joe, Shleifer, Sam, von

Platen, Patrick, Ma, Clara, Jernite, Yacine, Plu, Julien, Xu, Canwen, Le Scao, Teven, Gugger,

Sylvain, Drame, Mariama, Lhoest, Quentin, & Rush, Alexander M. (2020). HuggingFace's

Transformers: State-of-the-art natural language processing. arXiv.

https://arxiv.org/abs/1910.03771

https://doi.org/10.1007/978-3-642-23808-6_10
https://doi.org/10.18653/v1/S18-1001
https://doi.org/10.18653/v1/S18-1001
https://arxiv.org/abs/1910.03771

