Modelling and policy: a retrospective look
at the SARS-CoV-2 pandemic in Belgium

Prof. Dr. Niel Hens EpiPse

on behalf of the SIMID group project
ASCID evening symposium on U. >>
COVID-1 9 PANDEMIC 2 YEARS I—ATER Universiteit Simulation Models of Infectious Diseases UHASSELT

14 June 2022 ARTVETpEn



Overview

A brief recap of last year’s ASCID presentation

An eco-system of models

A first qualitative evaluation of the reference model

Further evaluation of the pandemic response



A recap ...

Daniel Bernoulli (1700 — 1782)
mathematical model of smallpox (1760-1766)

Mathematical models
understanding of transmission dynamics
forecasting — ‘prognosis’ — what-if scenarios




A recap ...
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A recap ...

Factors that make an infectious disease
outbreak controllable

Christophe Fraser**, Steven Riley*, Roy M. Anderson, and Neil M. Ferguson
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6 = proportion of infections that occur prior to
symptoms or by asymptomatic infection.

Fig. 2. Parameter estimates. Plausible ranges for the key parameters Ry and 6
(see main text for sources) for four viral infections of public concern are shown as
shaded regions. The size of the shaded area reflects the uncertainties in the
parameter estimates. The areas are color-coded to match the assumed variance
values for B(7) and 5(7) of Fig. 1 appropriate for each disease, for reasons that are
apparent in Fig. 3.
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A recap ...

Implementing Non-Pharmaceutical

Interventions was needed:

- relatively high IFR

- pre & a-symptomatic transmission

- basic reproduction number (Wuhan):
R,=3-3.4
Feb-March 2020: large seeding due to
international travel (spring break)

- lockdown March 2020: advice against
closing schools

Today

Mitigation

The Hammer

3-7 weeks

The Dance



An ecosystem of models

Statistical models YV vodel

develop-

- see e.g. Faes et al. (2021)

Mathematical models

Meta-population model (Coletti et al. 2021) // Intergal \
Individual-based model (Willem et al. 2021) (\ exf;‘ma.

\ /
- Stochastic model (Abrams et al. 2021) ) V°/idation 4

= Belgian reference model

Next generation approach (Franco et al. 2021)
- Contact process models:
schools (Torneri et al. 2021)



Key player: ‘age’

Age-specific features
- burden
- transmission

Burden - mortality:
- IFR - Molenberghs et al., 2022
- excess mortality

Transmission — mixing patterns:
- POLYMOD & sequel (2006, 2011)
- CoMIX
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Figure 4: Benchmark analysis of the link between age and IFR




Mixing patterns = ¥

REVIEW ARTICLE

A Systematic Review of Social Contact Surveys to Inform
Transmission Models of Close-contact Infections

Thang Hoang?, Pietro Coletti*, Alessia Melegaro®, Jacco Wallinga®*, Carlos G. Grijalva®,
John W, Edmunds", Philippe Beutelst, and Niel Hens*¢

with 6% using both for comparison purposes. The definition of a
contact varied among surveys, e.g., a nonphysical contact may re-
quire conversation, close proximity, or both. We identified age, time
schedule (e.g., weekday/weekend), and household size as relevant
determinants of contact patterns across a large number of studies.
Conclusions: We found that the overall features of the contact pat-
terns were remarkably robust across several countries, and irrespec-
tive of the study details. By considering the most common approach
in each aspect of design (e.g., sampling schemes, data collection,
definition of contact), we could identify recommendations for future
contact data surveys that may be used to facilitate comparison be-
tween studies.

hers ingly use social contact data to inform
models for infectious disease spread with the aim of guiding effective
policies about disease prevention and control. In this article, we under-
take a systematic review of the study design, statistical analyses, and
outcomes of the many social contact surveys that have been published.
Methods: We systematically searched PubMed and Web of Science
for articles regarding social contact surveys. We followed the Pre-
ferred ing Items for ic Reviews and Met:
guidelines as closely as possible.
Results: In total, we identified 64 social contact surveys, with more
than 80% of the surveys conducted in high-income countries. Study
settings included general population (58%), schools or universities
(37%), and health care/conference/research institutes (5%). The larg-  Keywords: Behavioral change; Contact data; Contact pattern; Con-
est number of studies did not focus on a specific age group (38%), tact surveys; Infectious diseases
whereas others focused on adults (32%) or children (19%). Retro-
spective (45%) and prospective (41%) designs were used most often (Epidemiology 2019;30: 723-736)

(Hoang et al., Epi, 2019)
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Reference Model

Stochastic compartimentel model (Abrams et al., 2021)

5 Alt)

> integration of different data sources
- Calibration to
hospital admissions
hospital load
early serology
- Further calibration to growth rates
cases
genomic suveillance
- Forecasts based on CoMix data

| uptake

3 uptakey

Figure 4: Schematic overview of compartmental model including vacci-
nation with vaccine-induced protection after 1 and 2 doses and waning
immunity. The gray boxes indicate the duplication we include for the VoC (see
Figure 3).



Modelling SARS-CoV-2: a first evaluation

Scenario’s, no predictions

Spring 2020: lockdown:
succesful exit strategy until July 2020
prognosis: second wave

Autumn and Winter 2020-2021:
a (too) large second wave with high tail
a succesful management of the festive season



Modelling SARS-CoV-2: a first evaluation

Spring 2021
the alpha wave — higher burden - press conference

Summer 2021
projections with large uncertainty
increasing vaccination coverage
penetration of the delta variant



Modelling SARS-CoV-2: a first evaluation

Autumn 2021
fourth wave with regional differences ~ vaccination
initial slower growth because of prudent behaviour
acceleration because of perfect storm: release of measures & delta

Winter and Spring 2021-2022
omicron: bad and good news



Daily hospital admissions with COVID19
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Modelling SARS-CoV-2: where are we now?

b

Reported hospital admissions with COVID19 (2022-06-08)

[—— Waning -60% over 8 months - no future 2nd booster campaign

—— Waning -60% over 8 months — 2nd booster from 15 June to 15 Dec 50% 60+
[—— Waning -60% over 8 months — 2nd booster from 15 Sept to 15 Dec 50% 60+
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The Next Generation Approac

Relative g-susceptibility

Estimation of relative susceptibility by age with time evolution

Nicolas Franco, UHasselt
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+ Waves 12 13 (12/23->01/19) + Waves 16 17 (02/17->03/15) + Waves 20 21 (04/13->05/13) + Waves 24 25 (06/9->07/07) + Waves 28 29 (08/04->09/01)
+ Waves 14 15 (01/19->02/17) + Waves 18 19 (03/15->04/13) + Waves 22 23 (05/13->06/9) + Waves 26 27 (07/07->08/04)
Susceptibility estimated by comparison between CoMix social contact data (using next generation approach) and positive PCR tests.

Susceptibility means here a factor influencing transmission not limited to clinical susceptibility but including effects like risk behavior and vaccination.
Results are relative numbers normalised with [0,6) class constant. Limitation: PCR tests are subject to biases.



The Next Generation Approach

Sensitivity and Stringency Index evolution
Calendar time

N " " " " N\ s A\ VN 1\ Y A\ Y
P WP @ &P P NPT P P P a® ol o @ @ P @ al® oV T T N o

7]
A

Survey1 Survey2 Survey3 - 80

bl

o'a
-]
-4
]
[]

[0.6)
[6.12)
[12.,18)
[18.30)
[30,40)
[40.50)
[50.60)
[60,70)
70+

Age-specific sensitivity

missing data

N2 h B 8 1 B 2 ® AN AT AB AR AR P KL AR AR P 9N g 93 gk g R Gl R 9D D N L P ok P B S P @ D W
Survey wave
contribution to R; in %

Calendar time

i

A e e e

R . S R T - S T T S I T - R

Survey wave

il o & £ P + 3l S a - o i 4 3 o+ o o < ' > -
<A ) <5 B n 3 ) <53 e o <A <8 <5 <8 G oS ) o B )
Survey1 Survey2 Survey3
1.00 - —l
Age
75 -
0.75 I s
M s>
= [12,18)
= [18.30)
050- = [30,40)
% [40.50)
150.60)
B s0.70)
70
0.25- 3
ot e 4 ? : 5 V

0.00 ..I..I.'
. " ' ' . et

~ G o L -



Contact process models

SREN0
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Epidemic dynamics

S = susceptible

E = exposed

I,= asymptomatic
I,,= presymptomatic
I,,= mild symptoms
Is= severe symptoms
Q = quarantine

| = isolation

R = removed

Torneri et al. BMC Medicine (2020) 18:191

hitps://doi.org/10.1186/512916-020-01636-4 B |V| C M ed | Ci ne

A prospect on the use of antiviral drugs to ;')
control local outbreaks of COVID-19 e

Andrea Torneri'", Pieter Libin®**", Joris Vanderlocht?, Anne-Mieke Vandamme®*®, Johan Neyts* and Niel Hens'*"

Infectives are assumed to spread the
infection according to a nonhomogeneous
Poisson Process of rate:

r(t)=A(t)w(t)

Contact rate Infectiousness

Key assumption: Infectiousness described by viral load




Contact process models

We compare three control measures based on contact tracing:

Monitoring ("IAS"): traced individuals are monitored and
quarantined/isolated when showing symptoms

Testing ("IBS"): traced individuals are tested and quarantined/isolated if
testing positive.

Testing + Antivirals ("IBTBS"): traced individuals are tested. If positive
they are quarantined/isolated and an antiviral drug is administered to

them.



Final Size

Contact process models
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A control measure based on testing (green and blue) reduce final size (left panel) and
peak incidence (right panel) compare to a monitoring strategy. In addition, the use of
antiviral (blue) as prophylaxis compound is computed to have a big impact in controlling
local outbreaks.



Contact process models

Limitations:

The model is based on a homogenous population

We inform the antiviral effect using a study for Remdesivir in a murine
model

Not accounting for difficulties in administering Remdesivir
Longitudinal data on the effect of antiviral on the viral load will be

informative, especially when the drug is administered in the early phase of
infection



School simulator ey oo

§© Comment on this paper
Controlling SARS-CoV-2 in schools using repetitive testing strategies

Andrea Torneri, Lander Willem,Vittoria Colizza, Cécile Kremer, Christelle Meuris, Gilles Darcis, Niel Hens,
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Figure 1: We show the base scenario for the Wuhan strain (left panel) and Delta Figure 2: We show the repetitive testing strategy in the context of the Delta
VoC (right panel) for a moderate seeding of 5 seeds per week. In each panel VoC for a moderate seeding of 5 seeds per week, where we consider different
we ?Onsildef thr.ee t.estlng Stfateg}eS: Symlftomatlc testing (SI) J ?Ympmma:tlc class closure thresholds, and no school closure threshold. This experiment shows
testing in combination with reactive screening (ReaS) and repetitive screening that a higher class closure threshold has little effect on the attack rate, yet it
(RepS). For each of the testing strategies we show a boxplot of the attack rate significantly reduces the NSDL

(green boxplot) and NSDL (orange boxplot) together with their mean values
(respectively, yellow and blue dots).



Data science cycle

Methods to understand,
visualise, quantify
users’ context

Wrangle &
Methods for dat
Proof-of-concept (automated) manage datra
software & tools data retrieval & Analyse R

. . data management
Understand Disseminate 9

)

knowledge

— &
Evaluate
-—_
Methods to Methods for (high-dimensional) Data SCIence CyC|e
evaluate model data exploration, modelling,

performance statistics, machine learning, Al (Bron: Data SCience InStitUte, U Hasselt)



Data collection & analysis

* Difficulties
* interdepencies

Chapman & Hall/CRC
Handbooks of Modern

. M()_no_gruphs s
¢ lncomplete data e Statistical Methods
. . .
Observational studies T
: Infectious Disease

* biases Analysis of Data Analysis
* association not causation Infectious
. Disease Data TR HRe

_ Philip O'Neill
Niels G. Becker

Jacco Wallinga

* Scientific principles
* conjecture versus refutation
* Bradford Hill criteria — confidence
—> Robert Koch & microbiology Becker (1989) Held et al. (2019)

@CRC Press
Taylor & Francis Group
A CHAPMAN & HALL BOOK




Lessons learned

Better data

* realtime data

Methodology
* learning from the past

* heterogeneity is key * well-designed surveys

. . . ° i
 validation is key serosurveillance

* optimizing NPIs * genomic surveillance

Multi- & interdisciplinary research is key Open Science
Peacetime research

- (inter)national collaborations should be forched in peacetime
examples

- demography and newly emerging pathogens ~ nursing home

populations
- behavioural epidemiology ~ chronic conditions and acute infections



Lessons learned

Outdated information

When 707 have
shark-proof Suits on,
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Lessons learne

Faulty & misinformation: (non-)intential?

Elements:

uncertainty

lack of scientific foundation
lack of nuance

mix of (in)correct arguments
science advances

speed trumps perfection

PROCEEDINGS B Avoidable errors in the modelling of
outbreaks of emerging pathogens, with

rspb.royalsocietypublishing.org )
special reference to Ebola

a Aaron A. King"23#, Matthieu Domenech de Cellés’, Felicia M. G. Magpantay’
Research CrossMark and Pejman Rohani.24

Gite this article: King AA, Domenech de "Department of Ecology & Evolutionary Biology, “Center for the Study of Complex Systems, and >Department of
Celles M, Magpantay FMG, Rohani P. 2015 Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Avoidable errors in the modelling of outbreaks “Fogarty Intemational Center, National Institutes of Health, Bethesda, MD 20892, USA

of emerging pathogens, with special reference

to Ebola. Proc. R. Soc. B 282: 20150347, As an emergent infectious disease outbreak unfolds, public health response is

reliant on information on key epidemiological quantities, such as trans-

hitp://dx.doi.org/10.1098/rspb.2015.0347 mission potential and serial interval. Increasingly, transmission models fit

Review Medical Decision Making

Medical Decision Making

1-7
The Use and Misuse of Mathematical [hon .
Modeling for Infectious Disease sasepubcomourmals permissions

. . DOI: 10.1177/0272989X21990391

Policymaking: Lessons for the b omoneinin

COVID-19 Pandemic

Lyndon P. James®), Joshua A. Salomon,
Caroline O. Buckee, and Nicolas A. Menzies

Mathematical modeling has played a prominent and necessary role in the current coronavirus disease 2019 (COVID-
19) pandemic, with an increasing number of models being developed to track and project the spread of the disease, as
well as major decisions being made based on the results of these studies. A proliferation of models, often diverging
widely in their projections, has been accompanied by criticism of the validity of modeled analyses and uncertainty as
to when and to what extent results can be trusted. Drawing on examples from COVID-19 and other infectious dis-
eases of global importance, we review key limitations of mathematical modeling as a tool for interpreting empirical
data and informing individual and public decision making. We present several approaches that have been used to
strengthen the validity of inferences drawn from these analyses, approaches that will enable better decision making in
the current COVID-19 crisis and beyond.

Keywords
COVID-19, infectious diseases, mathematical modeling, uncertainty, validation



Paradigma shift?

Rapid ‘Slow’

. . Preparedness
Science Science P

Time pressure More details International community
Context
_ Country comparisons Interdisciplinary research
Assumptions
'early evidence' Generalisability Peace-time efforts

Uncertainty

Example: demography &

Example: behaviour . O
P disease transmission

Example: role of children




Further perspectives

Research themes
further evaluation and perspectives of the management of SARS-CoV-2
further development of an eco-system of models
Al & pandemic preparedness (e.g. Reymond et al. 2022)

Education and science communication
Need for consortia/baseline capacity
Pathogen ‘X’ (see e.g. MPX)



Further debate

Perspectives for debate:

- Clinical versus epidemiological perspectives
Individual versus population perspective

- Activism versus science

- ‘Freedom’

Knowing history would be a good starting point ...



Bradford Hill (1965)

Bradford Hill (1965):

All scientific work is incomplete — whether it be
observation or experimental. All scientific work is liable
to be upset or modified by advancing knowledge. That
does not confer upon us a freedom to ignore the
knowledge we already have, or to postpone the action
that it appears to demand at a given time.
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