The Neonatal Göttingen Minipig Model for Dose Precision in Perinatal Asphyxia and Therapeutic Hypothermia

Marina-Stefania Stroe¹, Lieselotte Van Bockstal¹, Allan Valenzuela¹, Miriam Ayuso¹, Karen Leys², Pieter Annaert², Sebastien Carpentier², Anne Smits³, Karel Allegaert^{2,3}, Adrian Zeltner⁴, Antonius Mulder⁵, Chris Van Ginneken¹, Steven Van Cruchten¹

¹Comparative Perinatal Development, University of Antwerp, Belgium ²Drug Delivery and Disposition, KU Leuven, Belgium ³UZ Leuven, Leuven, Belgium ⁴Göttingen Minipigs A/S, Dalmose, Denmark ⁵UZ Antwerp, Antwerp, Belgium

Introduction

Perinatal

(PA)

Therapeutic Hypothermia (TH)

asphyxia cooling core body temperature (T°) Decreased body T° at 33.5°C for 72h

preventing further brain damage

Physiology-Based

HYPOXIA (end of insult)

Results

Study procedures were well tolerated for 24h in 24 neonatal Göttingen Minipigs of 551.12g (± 60.32g). TH was easy to control slows metabolic rate, and to maintain at a target rectal temperature of 33.5°C. Hypoxia could be established for 51 (±34.82) min. Increased blood lactate **9.56 (±2.27) mmol/L** and **decreased pH 7.00 (±0.16)** were used as biochemical biomarkers in the hypoxia assessment.

We hypothesized that **TH and PA** have an impact on CYPmediated drug disposition. Because TH and PA cannot be studied separately in the clinical context, we used the **neonatal** Göttingen Minipig as translational model. Methods

Control (n=6): Normothermia (38 - 39.5 °C) & Normoxia (21% Oxygen)

Peripheral catheterization was easiest in the epigastric whereas vein, catheterization of the **umbilical vein** depended on whether the umbilical cord was still wet or not.

Therapeutic hypothermia (n=6): Cooling treatment (33.5°C) & Normoxia (21% Oxygen)

Hypoxia (n=6): Hypoxia (15% Oxygen for ~1h) & Normothermia (38 - 39.5°C)

Hypoxia + Hypothermia (n=6): (15% Oxygen for ~1h) & Cooling treatment (33.5°C)

Hypoxia was induced with a low oxygen gas mix (15% oxygen and 85% nitrogen), or by combining the gas mix with asphyxia, performing the ETT occlusion, for seven min.

Conclusions

We showed that systemic hypoxia can be induced in the neonatal Göttingen Minipig, in a setting comparable to

Central venous catheterization via Modified Seldinger technique, showed to be the main method for vascular access, either for sampling or administration.

human NICU, and the effects of hypoxia and TH on drug **disposition** can be studied separately, **for 24h**.

These data reveal the potential of the neonatal Göttingen Minipig as **promising in vivo animal model** in safety assessment for conditions for the human pediatric population.

Acknowledgements

University of Antwerp **COPED** | Comparative Perinatal Development

ELLEGAARD •• SÖTTINGEN MINIPIC

