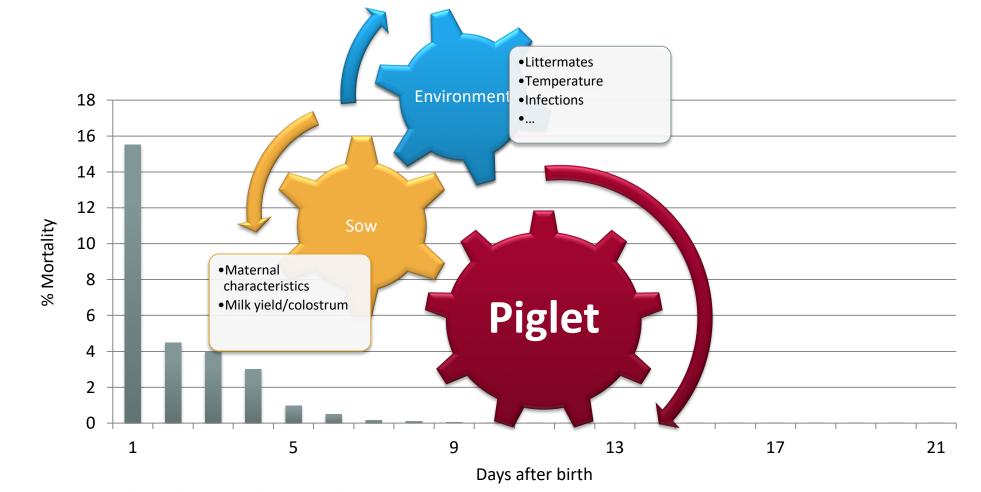
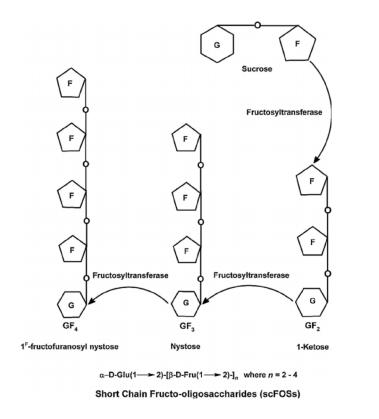

Effect of short-chain fructo-oligosacharides supplementation on performance and gut health of pigs.

C. Van Ginneken¹, M. Ayuso¹, S. Lebeer², L. Peelman³, J Michiels⁴


¹ Department of Veterinary Medicine, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, ² Department of Bioengineering, Faculty of Sciences, University of Antwerp, ³Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, ⁴Departement of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, University of Ghent, Belgium

Introduction

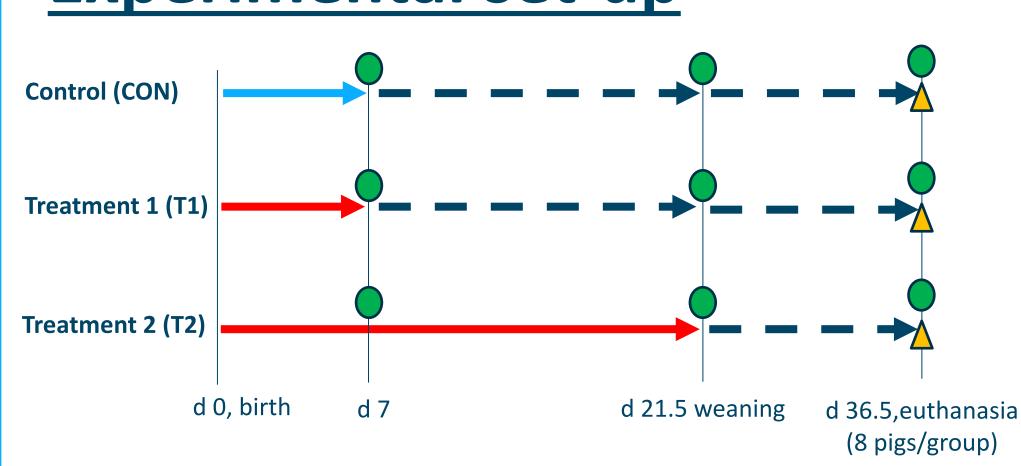
Increasing litter size leads to


- higher preweaning mortality
- higher incidence of less resilient low birth weight (LBW) piglets

Low birth weight **piglets**

- have impaired gut functions and
- risk long-lasting suboptimal growth performance.

However, some pigs show the ability to compensate for a LBW which provides an opportunity for supporting these pigs so as to improve their performance.


Short chain fructooligosaccharides (scFOS), given to the sow improved

- the piglet's gut function,
- the piglet's immune system, and
- the piglet's performance

via

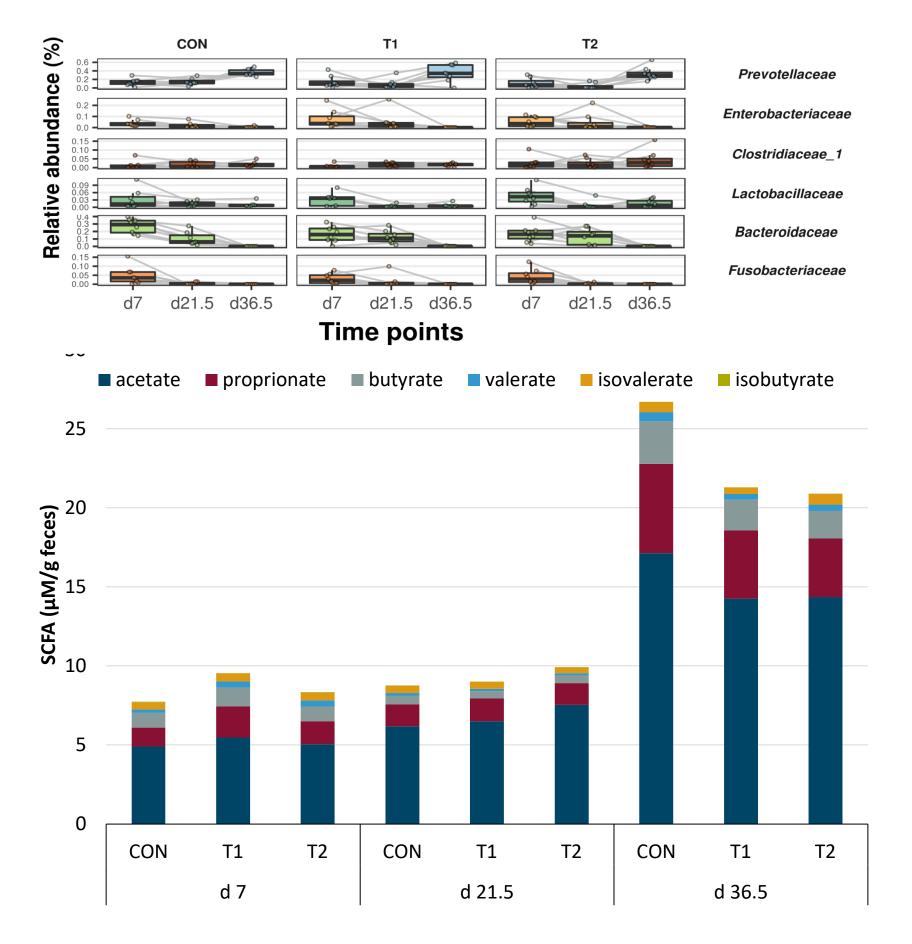
- increased **IgG** content in colostrum,
- a shift in the maternal microbiome,
- an improved piglet's intestinal morphology and gene expression.

Experimental set-up

Intervention (field trial)(n=number of animals included in the groups)

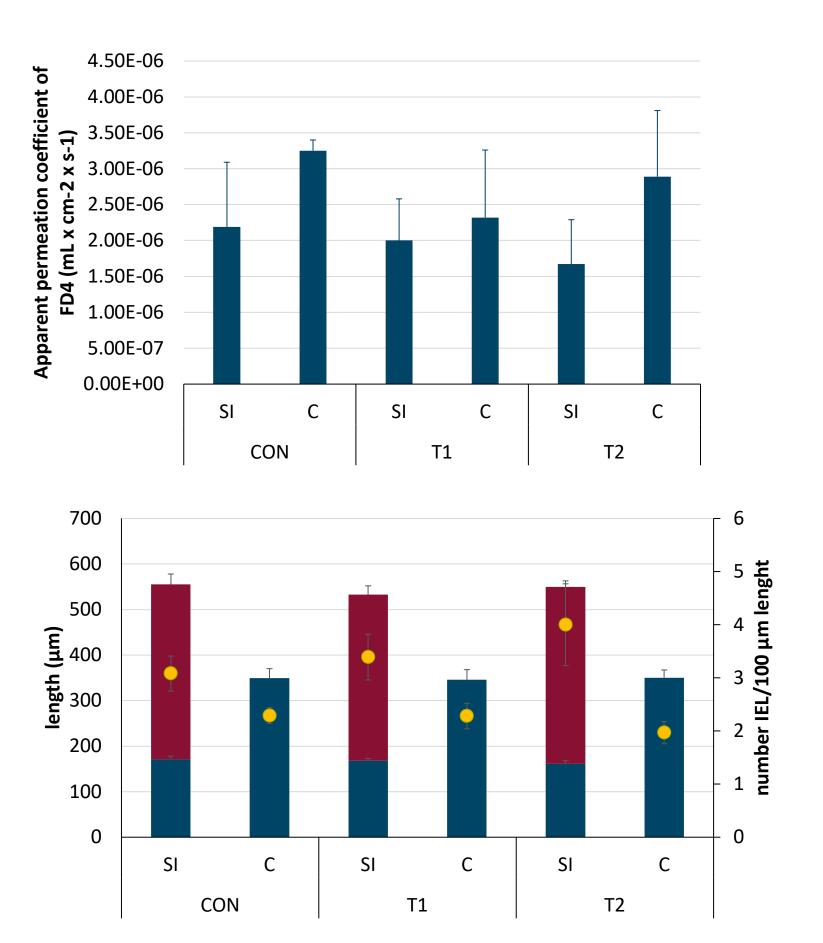
- No intervention (— ►)
- Sham drenching (2 mL lukewarm tap water)(———)
- Daily supplementation (drenching) of 1 g scFOS (Tereos)(
 Measurements/samples
- Average daily gain, mortality, overall health (daily)
- Faecal samples ()(microbiome NGS, short chain fatty acids (SCFAs)
- Digesta (△) (SCFA's)
- Intestinal samples (▲) (Ussing chamber, morphology)(SI: small intestine, C: large intestine)

Mixed modelling (different superscript letters indicate differences p<0.05)(means ± SE)


Results

Growth performance and mortality

PERFORMANCE	CON	T1	T2
Item	Mean ± SE	Mean ± SE	Mean ± SE
BW, kg			
d 0 (n)	1.36 ± 0.04 (53)	1.34 ± 0.03 (53)	1.38 ± 0.04 (51)
d 1 (n)	1.44 ± 0.04 (53)	1.41 ± 0.04 (50)	1.44 ± 0.04 (51)
d 2 (n)	1.54 ± 0.04 (53)	1.50 ± 0.04 (49)	1.53 ± 0.04 (51)
d 7 (n)	2.27 ± 0.09 (50)	2.14 ± 0.07 (46)	2.34 ± 0.08 (48)
d 21.5 (weaning) (n)	5.45 ± 0.25 (44)	5.33 ± 0.18 (42)	5.86 ± 0.17 (46)
d 36.5 (post-weaning) (n)	8.29 ± 0.24 (38)	7.80 ± 0.22 (41)	8.16 ± 0.25 (46)
ADG, g/d			
d 0 to d 7	128.2 ± 9.4	117.0 ± 7.9	135.9 ± 8.8
d 7 to d 21.5	214.7 ± 13.1	219.4 ± 9.6	242.4 ± 8.1
d 0 to d 21.5	189.9 ± 11.6	188.4 ± 8.3	209.6 ± 7.2
d 21.5 to d 36.5	153.7 ± 9.1	152.1 ± 7.2	146.1 ± 10.2
d 0 to d 36.5	184.5 ± 6.2	173.3 ± 5.4	182.2 ± 5.9
Mortality, %			
d 0 to d 7	5.7	13.2	5.8
d 7 to d 21.5	12.0	8.7	4.2
d 0 to d 21.5	17.0	20.8	9.8
d 21.5 to d 36.5	13.6ª	2.4 ^b	0.0 ^b
d 0 to d 36.5	28.3ª	22.6 a,b	9.8 ^b


- No effect on ADG (P = 0.40)
- No effect on BW (P = 0.19)
- Post-weaning mortality was higher in the CON group compared to T1 and T2 (P = 0.0078).

Microbiota and metabolic profile

- scFOS treatment had no effect on the relative abundance of several taxa commonly associated with fiber consumption.
- **Bacteroides** seems to be temporarily reduced by scFOS supplementation in the first week of life
- Alloprevotella seems increased in the scFOS treated group.
- The total concentration of SCFAs was unaffected by scFOS (P= 0.22)
- None of the individual SCFAs differed between the treatment groups (acetate P = 0.49; proprionate P = 0.67; butyrate P = 0.32; valerate P = 0.82).

Intestinal permeability and structure

- The Papp of FD4 did not differ between treatment groups (*P* = 0.96).
- Villus length (red bar) was not affected by scFOS (P = 0.62)
- Crypt depth (blue bar) was not affected by scFOS (P = 0.52)
- The density of intra-epithelial lymfocytes (IELs) (yellow dot) was not affected by scFOS supplementation (P = 0.94)

Conclusion:

The supplementation of a low dose of short-chain fructooligosaccharides to healthy piglets improved their survival without explicitely affecting gut health. The supplementation of (higher dosages) of scFOS to underprivileged piglets seems promising in increasing their resilience.