Philippe Vervliet – philippe.vervliet@uantwerpen.be

Toxicological Centre 6 University of Antwerp

Introduction

Composite resins for dental restorations consist of (BPA-based) monomers, (photo-)initiators and other additives. Common monomers with a BPA core are BisGMA and BisEMA. Commonly used alternatives without BPA core are TEGDMA and UDMA.

During polymerization, the degree of conversion of monomers is around 50-70%, leading to leaching of unreacted monomers. Additive leaching can occur over time due to degradation of the composite restoration.

Aim: Identify leaching monomers and degradation products from *in vitro* saliva degradation

Tested materials

Composite	Material Type	Manufacturer	Chemicals pı Ma [.]							
C1: Gradia Direct Posterior	Composite	GC Europe	UDMA (20-25%), bismethacrylate* (1							
C2: G- ænial Posterior	Composite	GC Europe	UDMA (10-20%), Dimethacrylate (5- Composite filler (30-35%), Pigment (
C3: Filtek Supreme XTE	Composite	3M	UDMA (1-10%), BisEMA-6 (1-10%), E silica (1-10%), Silane treated ceramic							
C4: Ceram.X Universal	Composite	Dentsply Sirona	BisEMA (3-<10%), Urethane modified Ytterbium trifluoride (1-<2.5%), 2,6- 0							
C5: Solitaire 2	Composite	Kulzer	BisGA (5-10%), TEGDMA (5-10%), 2,							
C6: Scotchbond Universal	Adhesive	3M	HEMA (15-25%), BisGMA (15-25%), 2 and phosphorous oxide (10-20%), Ca							
C7: Clearfil SE Bond 2	Adhesive	Kuraray Dental	<u>Bond</u> : BisGMA (25-45%), HEMA dihydrogen phosphate, hydrophobio							
C8: Fissurit FX	Sealant	VOCO	TEGDMA (10-25%), BisGMA (5-10%)							
C9: AH Plus Jet	Root Canal Sealer	Dentsply Sirona	BADGE (25-50%), BFDGE (≥ 2.5 – <							

Compound Formula	- ·	RT		Saliva degradation									
	(min)	MS2 product ions	C1	C2	C3	C4	C5	C6	C7	C8	C9	Specificity	
BADGE	C21 H24 O4	6.95	191.1022; 161.0907; 135.0790									Х	BADGE
BADGE.H2O	C21 H26 O5	5.87	Not Acquired									Х	BADGE
BADGE.H2O.HCl	C21 H27 CI O5	5.94	Not Acquired									Х	BADGE
BFDGE.H2O	C19 H22 O5	5.50	Not Acquired									Х	BFDGE
BFDGE.H2O.HCI	C19 H23 CI O5	5.66	Not Acquired									Х	BFDGE
BFDGE.2H2O	C19 H24 O6	4.85	181.0836; 133.0627; 105.0681									Х	BFDGE
BHM	C16 H24 O3	7.27	161.1273; 133.0970; 91.0518	Х	Х								BHM
∑ BisEMA	Not Applicable (group)	9-10	Not Applicable (group)		Х	X	X				X		BisEMA
∑ BisEMA-H	Not Applicable (group)	7.5-7.8	Not Applicable (group)		Х	Х	X				Х		BisEMA
∑ BisE	Not Applicable (group)	5.8-6.5	Not Applicable (group)		Х	Х	X				Х		BisEMA
BisGA	C27 H32 O8	6.84	Not Acquired					X					BisGA
BisGA-H	C24 H30 O7	5.87	Not Acquired					X					BisGA
BisGMA	C29 H36 O8	7.99	277.1385; 209.1130; 143.0672			Х	X		X	Х	Х		BisGMA
BisGMA-H	C25 H32 O7	6.39	277.1396; 209.1139; 143.0678			Х	X		Х	Х	Х		BisGMA
BisGMA-M	C31 H40 O9	9.75	Not Acquired						X				BisGMA
BisHPPP	C21 H28 O6	5.09	209.1142; 135.0787; 107.0483			X	X	X	X	X	X	Х	BADGE, BisGA, BisGMA
DDDMA	C18 H30 O4	10.61	225.1797; 83.0837; 55.0531						X				DDDMA
DDMMA	C14 H26 O3	7.69	87.0426; 83.0843; 55.0538						X				DDDMA
Decanediol	C10 H22 O2	5.23	83.0845; 69.0696; 55.0542						X				DDDMA
DEG	C4 H10 O3	1.90	91.0503; 65.0373						X				DEGDMA
DEGMMA	C8 H14 O4	4.25	113.0576; 69.0324						X				DEGDMA
DMAB	C9 H11 N O2	4.12	120.0798; 77.0381; 51.0228		Х		X		X	Х	X		EDMAB
DMAEMA	C8 H15 N O2	5.32	Not Acquired						X				DMAEMA
DMPA	C16 H16 O3	6.38	Not Acquired					X					DMPA
EDMAB	C11 H15 N O2	6.20	179.0917; 134.0579; 77.0374		Х		X		X	Х	Х		EDMAB
HMBP	C14 H12 O3	6.91	151.0355; 105.0311; 77.0370				X	X					HMBP
ММНМ	C10 H16 O4	5.73	N.A.	Х	Х			X			Х		MMHM
TCDDMDMA	C20 H28 O4	10.12	247.1640; 161.1290; 133.0979	Х	Х								TCDDMDMA
TCDDMMMA	C16 H24 O3	7.27	179.1376; 161.1273; 133.0970	Х	Х								TCDDMDMA
TCDDM	C12 H20 O2	5.28	116.1062; 77.0399; 55.0552	Х	Х								TCDDMDMA
TEEGDMA	C16 H26 O7	5.53	113.0575; 69.0327			X	X	X			X		TEEGDMA
TEEGMMA	C12 H22 O6	4.48	N.A.			X	X	X			X		TEEGDMA
TEGDMA	C14 H22 O6	5.51	113.0586; 69.0330			X	X	X	X		X		TEGDMA
TEGMMA	C10 H18 O5	4.37	113.0585; 69.0328			X	X	X	X		X		TEGDMA
TEG	C6 H14 O4	2.84	133.0816; 89.0580			X	X	X	X		X		TEGDMA
UDMA	C23 H38 N2 O8	6.62	385.2305; 113.0585; 69.0330	Х	Х	X		X			X		UDMA
UDMA-D1	C19 H34 N2 O7	5.44	273.1780; 113.0584; 69.0332	Х	Х	X		X			X		UDMA
UDMA-D2	C15 H30 N2 O6	4.69	273.1768; 255.1649; 168.1339	Х	Х	X		X			X		UDMA

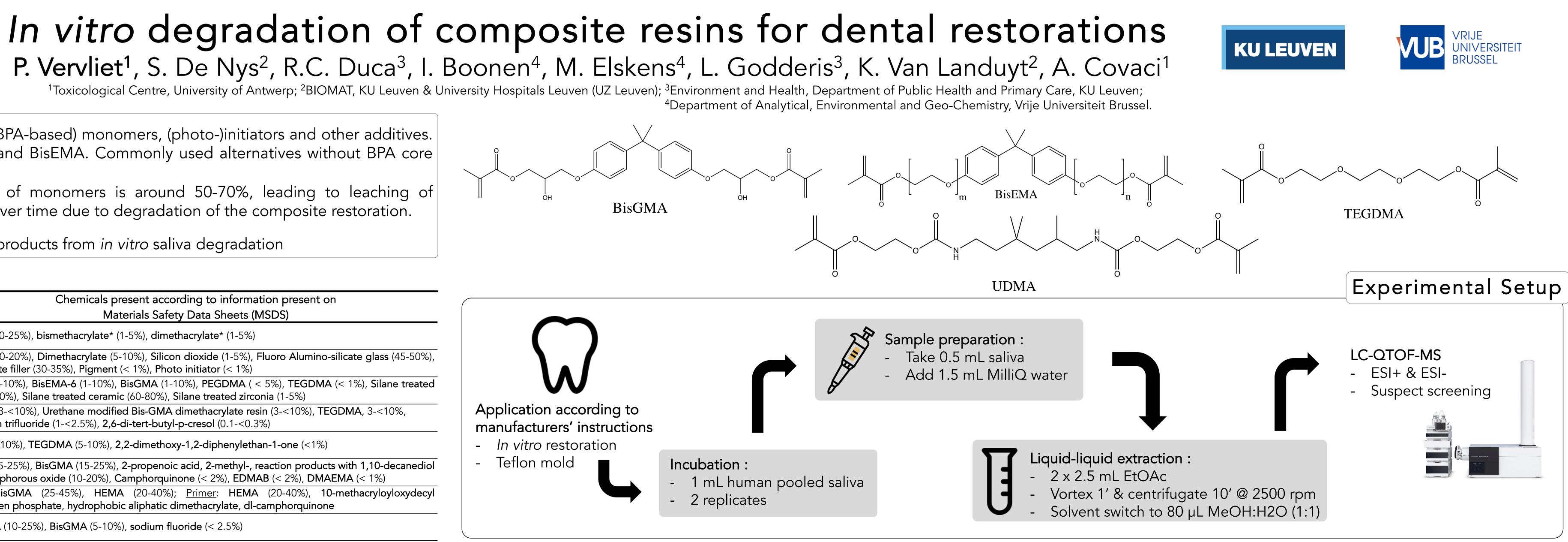
International Society of Exposure Science Virtual Meeting – September 21-22, 2020

present according to information present on aterials Safety Data Sheets (MSDS)

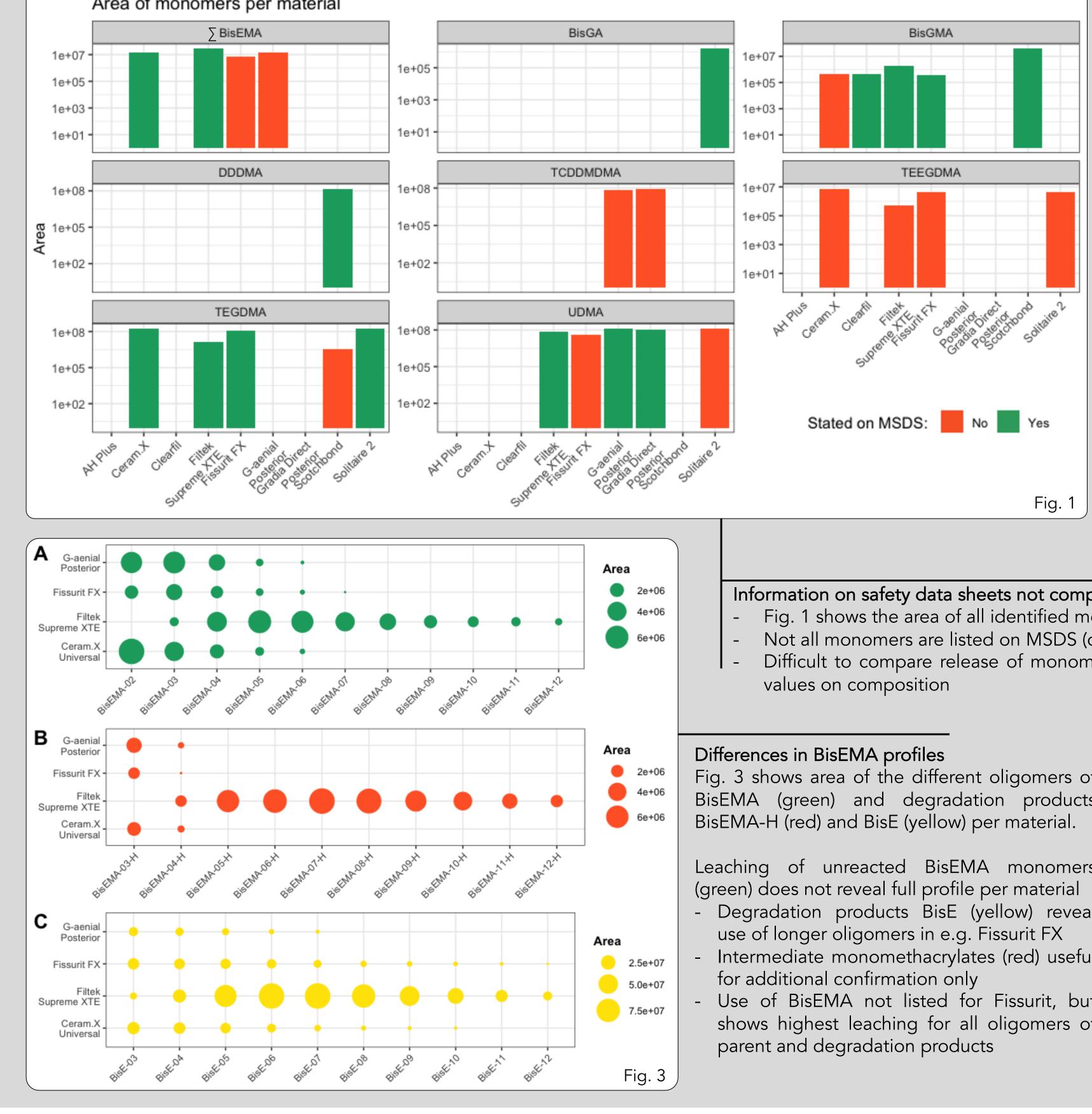
(1-5%), **dimethacrylate*** (1-5%)

5-10%), Silicon dioxide (1-5%), Fluoro Alumino-silicate glass (45-50%), (< 1%), Photo initiator (< 1%)

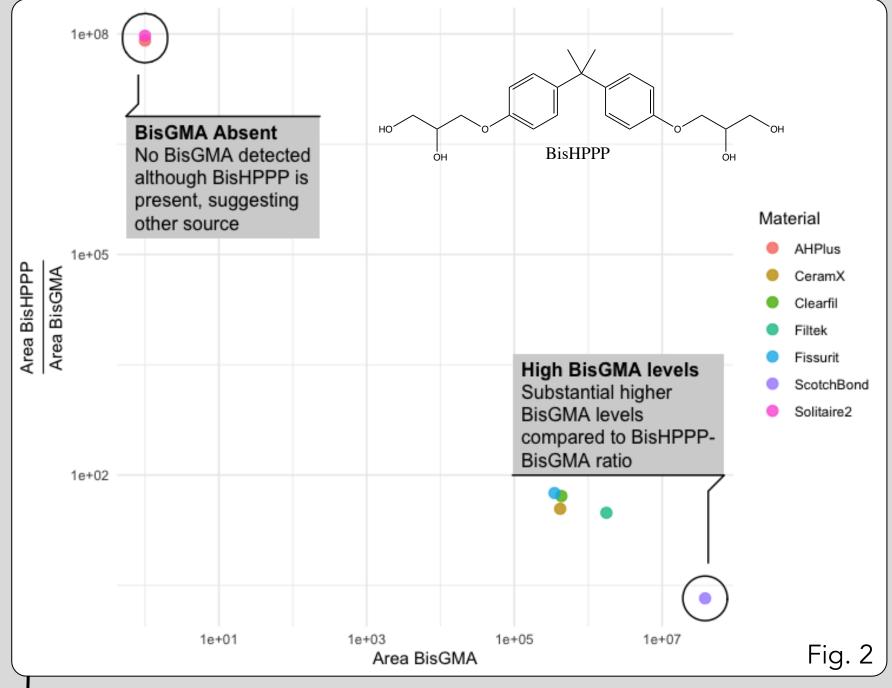
, BisGMA (1-10%), PEGDMA (< 5%), TEGDMA (< 1%), Silane treated iic (60-80%), Silane treated zirconia (1-5%)


ied Bis-GMA dimethacrylate resin (3-<10%), TEGDMA, 3-<10%, -di-tert-butyl-p-cresol (0.1-<0.3%)

2,2-dimethoxy-**1,2-**diphenylethan-**1**-one (<1%)


, 2-propenoic acid, 2-methyl-, reaction products with 1,10-decanediol Camphorquinone (< 2%), EDMAB (< 2%), DMAEMA (< 1%) IA (20-40%); Primer: HEMA (20-40%), 10-methacryloyloxydecyl bic aliphatic dimethacrylate, dl-camphorquinone

%), **sodium fluoride** (< 2.5%)


< 10%)

Suspect Screening: Results

Ratio between monomers and their degradation product(s) in saliva can be used to identify abnormalities - BisGMA absent in AH Plus & Solitaire 2: BisHPPP can also

be formed from BADGE and BisGA

- Release of BisGMA higher in Scotchbond compared to other adhesive or composites

Fig. 1 shows the area of all identified monomers which are not listed on the SDS (\log_{10} scale).

Difficult to compare release of monomers (and degradation products) as manufacturers only give rough

Conclusions • HRMS reveals the true usage of different monomers and additives in composites for dental restorations. • Different monomers, photo initiators and their degradation products were identified in the tested materials, often not listed on MSDS. • Observed degradation products resulted from ester hydrolysis reactions, leading to e.g. removal of (meth)acrylic acid moieties in monomers.

• Although LC-MS can detect most monomers and their degradation products, complementary use of GC-(HR)MS is useful for smaller monomers remaining undetected (e.g. HEMA).