A review of the human exposure to persistent and mobile chemicals and their potential health risk assessments

Da-Hye Kim¹, Yu Ait Bamai¹, Lidia Belova¹, Jos Bessems², Giulia Poma¹, Adrian Covaci¹

¹Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium,

² VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium **University of Antwerp**

Kim et al., The Science of the total environment 2023:164764

Introduction

Persistent and mobile chemicals (PMs) are highly polar organic chemicals of anthropogenic origin and are an emerging issue of concern for environmental and human health.

> New hazard classes have been established for PMTs and for vPvMs under the EU Regulation on Classification, Labelling and Packaging (CLP). A substance shall be considered to fulfil the "mobile" (M) and "very mobile" (vM) criterion (vM) when log K_{oc} < 3 and log K_{oc} < 2, respectively (Commission Delegated Regulation (EU) 2023/707 of 19 December 2022). (Table 1)

> This follows a proposal for evaluation of PMs (Neumann and Schliebner, 2019) and a proposal for a list of PMs (Arp and Hale, 2019).

> The REACH revised impact assessment proposed amendments to Article 57 of REACH to add PMT and vPvM as criteria for adding substances to the Registry of Substances of Very High Concern (SVHC) (ECHA, 2021a).

Toxicological Centre

Table 1. New PMTs and for vPvMs criteria established by the EU **Regulation on Classification**, Labelling and Packaging (CLP)

Persistency criteria						
ersistence (P): degradation half-lives						
	Water	Marine	>60 days			
		Fresh or estuarine water	>40 days			
Ρ	Sediment	Marine	>180 days			
		Fresh or estuarine water	>120 days			
	Soil		>120 days			
	Water	Marine	>60 days			

However, comprehensive scientific information regarding the occurrence of PMs in human exposure is still limited. The aim of this work was to review the recent knowledge on human exposure to PMs and to assess potential health

risks based on the relevant published reference values.

Methods

Eight groups of PMs were selected refereeing to the *previous persistency and mobility criteria* provided by Neumann and Schliebner (2019). In total, 28 PMs, including their derivatives that have logD_{ow}/K_{ow} or logD_{ov}/K_{oc} ranging from -3.0 to 2.5, were included in this study:

- Melamine (MEL) and derivatives
- Quaternary ammonium compounds (QACs)
- Benzotriazoles (BTRs) and benzothiazoles (BTHs)
- 1,4-dioxane (1,4-D)
- 1,3-di-o-tolylguanidine (DTG) and 1,3-diphenylguanidine (DPG)
- Trifluoromethane sulfonic acid (TFMS)

Estimated daily intakes (EDIs) from both internal and external exposure

		Fresh or estuarine water	>60 days			
vP	Sediment	Marine Fresh or estuarine water	>180 days >180 days			
	Soil		>180 days			
Mobility criteria						
Mobility (M): the lowest <i>log K_{oc}</i> over the pH = 4 - 9						
Μ		< 3.0				
vM		< 2.0				

The assessments are based on test results on degradation half-lives and/or biodegradability (P, vP) adsorption/desorption testing (M, vM) and/or (Q)SAR models or other suitable and reliable information for P, vP, M and vM.

- Tolerable daily intake (TDI) Acceptable daily intake (ADI)
- Reference dose (RfD)

Results and Discussions

- General adult population was mostly investigated, followed by pregnant women.
- Urine was the most used matrix for human biomonitoring of ΣMELs, BTRs, and BTHs, while

Figure 1. Concentration ranges of PMs in (a) urine, (b) breast milk, and (c) blood reported in previous studies.

blood was the most common matrix for QACs, 1,4-D, DPG, and DTG.

Higher concentrations of ΣMELs and BTH were observed in urine.

- MELs was detected in all urine samples (DF=100%).
- MELs and QACs were detected also in breast milk, whereby 10-fold higher concentration were observed for MELs compared to QACs.
- Both MELs and QACs were higher in urine than in breast milk.

Figure 3. Estimated daily intakes (EDI) of (a) melamine (MEL), (b) cyanuric acid (CYA), (c) benzothiazole (BTH), and (d) benzotriazole (BTR) through internal exposure reported in previous studies.

• Very limited biomonitoring studies on DPG and DTG were available. No reports regarding TFMS were available.

Figure 2. Estimated daily intakes (EDI) of (a) melamine (MEL), (b) cyanuric acid (CYA), (c) ammonium compounds (QACs), (d) 1,4-dioxane (1,4-D), (e) benzothiazole (BTH), and (f) benzotriazole (BTR) through external exposure reported in previous studies.

Conclusions

- EDIs of PMs from internal and external exposure levels were compared to relevant TDI or other RfD, and it was concluded that none of the PMs in this review resulted in EDIs exceeding the TDI or RfD values. • However, exposure levels are unknown for many other PMs and in vulnerable populations. It is necessary to identify and assess the human exposure to other PMs or potential PMs that were not covered in this review to achieve a comprehensive understanding of the potential risks associated with PMs.
- None of the reviewed PMs showed EDIs, calculated from the internal and external exposure levels, exceeding the current TDI or RfD values. Indicating that internal and external exposure levels of these PMs and in the studied general populations are less probable to lead to health effects.
- However, the upper bound measurements of BTH are not more than three-fold below the TDI. If exposure would increase, the EDI would become rather close to or even exceed the TDI.
- Calculation of the EDIs are based on a simple extrapolation from measured HBM values. Dedicated elaboration of health-based HBM Guidance Values (HBM-GV) with additional measurements of human toxicokinetics seems to be warranted in order to reduce significant uncertainties in the internal exposure-based risk assessments.

References:

Fig 1: ¹Liu et al., 2022a; ²Shi et al., 2020; ³Tsai et al., 2021; ⁴Melough et al., 2020; ⁵Zhu and Kannan, 2019a; ⁶Asimakopoulos et al., 2013a; ⁷Asimakopoulos et al., 2013b; ⁸Chen et al., 2022b; ⁹Li et al., 2018; ¹⁰Li et al., 2017; ¹¹Li and Ding, 2021; ¹²Zheng et al., 2022; ¹³Zheng et al., 2021; ¹⁴Tang et al., 2022. Fig 2 (left): ¹Zhu and Kannan, 2020b; ²Zhao et al., 2022; ³Li et al., 2022; ⁴Zhu and Kannan, 2018a; ⁵Zhu and Kannan, 2019b; ⁶Zheng et al., 2020a; ⁷Zheng et al., 2020b; ⁸Zheng and Salamova, 2020; ⁹Zhu and Kannan, 2020a; ¹⁰Zhu and Kannan, 2020b; ¹¹Zheng et al., 2020b; ¹²Lin et al., 2017; *EFSA, 2010; **FDA, 2008 and Hsieh et al., 2009; ***BfR, 2012 and BfR, 2013; ****Nishimura et al., 2004. **Fig 2 (right):** ¹Wang et al., 2022; ²Wang et al., 2013; ³Li et al., 2020a; ⁴Zhang et al., 2018; ⁵Jia et al., 2019; ⁶Trabalon et al., 2017; ⁷Ge et al., 2021; *calculated with an established LO(A)EL and/or NO(A)EL (Ginsberg et

al., 2011). Fig 3: ¹Shi et al., 2020; ²Liu et al., 2022a; ³Zhu and Kannan, 2019a; ⁴Li et al., 2018; ⁵Asimakopoulos et al., 2013b; *EFSA, 2010; **FDA, 2008 and Hsieh et al., 2009; †calculated with an established LO(A) EL and/or NO(A)EL (Ginsberg et al., 2011).