Development, validation and application of a GC-MS method for quantification of glucose and lactate in vitreous humor

Celine Gys¹, Karolien Van Puyvelde¹, Sofie Abrahams¹, Eleanor Berry¹, Alexander van Nuijs¹, Adrian Covaci¹

¹Toxicological Centre, University of Antwerp, Antwerp, Belgium

Introduction

Glucose & lactate measurement

- Routine forensic toxicological screening
- Vitreous humor
 - Assessment of hypo-, normo- or hyperglycaemic status before death
- No in-house chromatographic method available
 - Diluted vitreous humor samples analysed by external laboratory
 - Spectrophotometric method not validated for vitreous humor

Methods

Sample preparation adapted from (1)

Aims

- Development & validation of a straightforward method for quantifying glucose and lactate simultaneously in vitreous humor
 - Two-step derivatisation (necessary for glucose)
 - GC-MS based
- Application of the method to an archive of authentic vitreous humor samples & comparison with spectrophotometric method

vitreous humor

+ 20 μL IS + 20 μL vitreous + 500 μL EtOH

+ 100 µL methylhydroxylamine HCl in pyridine (2% m/V)

- . + 50 mine HCl m/V)
 - + 50 μL BSTFA

Analytical method

Compound	RT (min)	Q ion (<i>m/z</i>)	q1 ion (<i>m/z</i>)	q2 ion (<i>m/z</i>)
Lactate	5.26	117	191	
Lactate- ¹³ C ₃	5.26	119	193	
Glucose	10.87	217	205	319
Glucose- ¹³ C ₆	10.87	220	323	207

- Agilent 6890N GC 5973N single quadrupole MS
- DB-5MS column 30 m x 0.25 mm x 0.25 μm
- Pulsed split mode

Calibration & quality control

- 6 calibration levels: 12.5 250 mg/dL
- Linear no weighing
- $R^2 > 0.99$
- 3 blanks per batch
- 3 internal QC samples per batch

Validation

- Guidelines European Medicines Agency
- **LLOQ** = 12.5 mg/dL
 - Hypoglycaemia if Σ (glucose + lactate) < 160 mg/dL
- **Carry-over** < 20%

Application

- Archived authentic vitreous humor samples: n = 118
- Spearman correlation between results of both methods
- Glucose ρ = 0.930 (p < 0.001)</p>
- Lactate ρ = 0.840 (p < 0.001)</p>

- Accuracy 85-115%
- **Precision** RSD < 20%
- Bland-Altman plots
 - Outliers
 - storage conditions > -20 °C
 - storage time too long?

Future perspectives

- External QCs: artificial vitreous humor was tested = inappropriate
- Matrix effects: difficult matrix (small volume, large variability)
- Stability: storage conditions, time
- Continued analysis of authentic vitreous humour samples

Lactate Glucose

0 ∈ 95% CI mean difference

D Toxicological CentreUniversity of Antwerp

1. Shojaee-Moradie et al., Journal of Mass Spectrometry, 1996, 31, 961-966. Figures created using BioRender.com

