Intro

Approach

Lipidomic biomarkers of ethanol induced hepatotoxicity in human HepaRG liver cells

17th Annual Conference of the Metabolomics Society

METABOLOMICS2021

IN VITRO TOXICOLOGY & RESEARCH GROUP

Elias Iturrospe^{1,2}, Katyeny Manuela da Silva¹, Tamara Vanhaecke², Alexander van Nuijs¹, Adrian Covaci¹

¹ Toxicological Center, University of Antwerp, 2610 Antwerp, Belgium

² Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium

Discussions

Results and

- Lack of sensitive and specific early biomarkers for alcohol-associated liver disease
- Lipidomics offers an interesting approach for biomarker elucidation since early stages are characterized by steatosis and steatohepatitis
- In vivo studies require a large sample size, in vitro studies enable the use of fewer replicates due to lower inter-sample variability

Objective

Elucidation of biomarkers of ethanol exposure in HepaRG cells using LC-MS based lipidomics

Exposure conditions

- Determination of IC10 (24h) using neutral red uptake assay
- Evaluation of ethanol cross-contamination using GC-FID
- Exposure to high (IC10, n=6) and low concentration (1/10 IC10, n=6) vs. no ethanol (n=6)

Sample preparation LLE (MeOH/H₂O/CHCl₃, 3/2/2) evaporate and reconstitute

LC-MS based lipidomics

Mass spectrometry

-MS1 (samples) + MS2 (QC)

-ESI – QToF – HRMS

-Agilent 6560

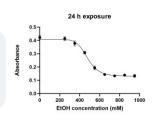
Liquid chromatography

- -UPLC BEH C18
- -A: ACN/buffer* (30/70)
- -B: buffer*/ACN/IPA (2/10/88)
- *5 mM NH4Ac (+0.1% HAc ESI+)

Preprocessing

- -Peak picking & alignment -Deisotoping, duplicate
- removal & drift correction -Filtering (e.g. mRSD < 30%)</p>

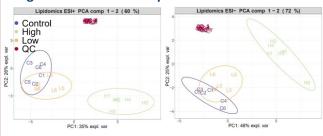
Data processing Pretreatment

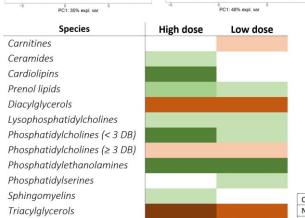

-DDA iterative exclusion

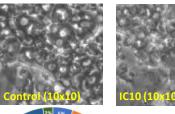
- -Random forest imputation
- -Log transformation
- -PQN normalization -Pareto scaling

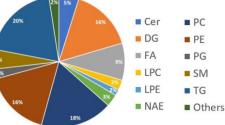
-VIP > 1

Exposure conditions


- IC10 = 368 mM
- Cross-contamination of ethanol to negative controls = 1.3%




HepaRG lipidomic profiling


- 328 annotated lipid species
- MS-DIAL & LipidMatch for MSMS matching
- Manual confirmation using mirror plots
- RT following equivalent carbon number model

Signature of ethanol exposure

- Upregulation of di- and triacylglycerols
 - Steatosis
- Up- or downregulation of phosphatidylcholines
 - No. of double bonds
- · Downregulation of cardiolipins at high exposure concentration
 - Sign of decreased respiratory chain capacity
- · Downregulation of phosphatidylethanolamines
- Ethanol exposure clearly disturbs lipid metabolism
- Need for validation experiment

Color						
Number of species	5-10	1-4	0	1-4	5-10	>10
Abundance	Lower	Lower	NA	Higher	Higher	Higher

Worklist

- -System suitability
- -Conditioning (+DDA)
- -Randomized injection order
- -Pooled QC regular intervals

Statistics

-Mann-Whitney U - Welch T -p < 0.05 & FC > 10 < 0.1-PCA - PLS-DA

IC10: Inhibitory Concentration 10 | GC: Gas Chromatography | FID: Flame Ionization Detection | MeOH: Methanol | ACN: Acetonitrile | IPA: Isopropanol | UPLC: Ultra Performance Liquid Chromatography | BEH: Ethylene Bridged Hybrid | ESI: Electrospray Ionization | QTOF: Quadrupole Time-of-Flight | HRMS: Abbreviations Acquisition | mRSD; median Relative Standard Deviation | PON: Probabilistic Quotient Normalization | FC; Fold Change | PCA; Principal Component Analysis | PIS-DA; Partial Least Squares-Discriminant Analysis | VIP; Variable Importance in Projection | RT; Retention Time | DR; Double Bonds