Investigation of legacy and emerging PFAS in wastewater samples through target and suspect screening: an unclosed mass balance

Francesca Cappelli^{1*}, Lennert Dockx ², Yunsun Jeong^{1,3}, Adrian Covaci¹, Alexander L.N. van Nuijs¹

University of Antwerp Toxicological Centre

Aquafin

¹Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium ²Aquafin NV, Dijkstraat 8, 2630 Aartselaar, Belgium

³Division for Environmental Health, Korea Environment Institute (KEI), Sejong, 30147, Republic of Korea

francesca.cappelli@uantwerpen.be

Introduction and aims

Wastewaters can represent a continuous source of PFAS in the environment, and in addition to legacy PFAS, new alternatives and emerging PFAS may pose additional risks as conventional treatment plants are unable to remove these recalcitrant and persistent compounds.

The assessment of this group of heterogeneous compounds requires an analytical effort that cannot be limited to a target analysis, which is why a suspect screening was carried out in parallel with the target analysis in this study, with the aim of fully characterizing the PFAS contamination profile in the influent and effluent of a Belgian urban wastewater treatment plant (WWTP).

Results

Materials and methods

ingluent quanty characteristics									
COD	mg/L	434 ± 151							
TSS	mg/L	257 ± 149							
Total N	mg/L	64 ± 6							
NH ₄ -N	mg/L	49 ± 3							
Total P	mg/L	11 ± 4							
Flow rate	m³/day	77.648							
Population		102 226							
equivalent		192.220							

- The results of the target analysis showed that in the influents only PFHxA was detected above the LOQ (20 ng/L) and the concentration ranged between <LOQ to 55 ng/L.
- In the effluents, PFPeA, PFHxA, PFOA, PFDA and PFOS were detected in a total concentration range of 188 to 301 ng/L and PFDA was the most predominant.

Suspect screening results and semi-quantification

- The semi-quantification was performed for newly found PFAS identified at confidence level^[3] CL2 (MS² spectra match) and high-scoring CL4 chemicals, specifically chemicals with a MassHunter Qualitative score >90 (i.e., high isotope pattern and delta mass <5ppm).
- For the semi-quantification, these chemicals were matched with target PFAS according to molecular weight, RT, and functional group **similarity**.
- The ratio of newly identified PFAS peak area divided by that of matched target PFAS was then multiplied by the concentration of he target DEAS quantified. Three concentration ranges were us

Concentration ranges:

Conc < 10 ng/L10<Conc<100 ng/L Conc >100 ng/L

 $\overline{}$

	the target into quantified. The concentration ranges were used.										
	Chemical name	Acronym	Formula	CAS N°	CL	Occurr INFL	Occurr EFFL	Matching compound	Highest conc. INF (ng/L)	Highest conc. EFFL (ng/L)	
	6:2 Fluorotelomer sulfonamide betaine (Capostone B)	6:2 FTAB	C15H19F13N2 O4S	34455-29-3	2 a	0/5	5/5	PFHxS	n.d.	3	
	Perfluorooctanesulfinic acid	PFOSi	C8HF17O2S	647-29-0	2b	0/5	5/5	PFOS	n.d.	3	
	1:2 H-substituted per-fluoroalkyl ether sulfonate	1:2 H-PFESA	C3H2O4F6S	/	2 b	5/5	5/5	PFBS	23	1	
	2-(Nonafluorobutyl)-4H-1- benzopyran-4-one		C13H5F9O2	304877-96-1	4	2/5	0/5	PFPeA	25	n.d.	
	4-[(1,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9- Heptadecafluoronon-1-en-1- yl)oxy]benzene-1-sulfonic acid		C15H5F17O4S	71212-45-8	4	0/5	5 / 5	PFOS	n.d.	1	
)	4-(1,1,2,3,3,3-Hexafluoropropoxy)- 1,1'-biphenyl		C15H10F6O	175838-51-4	4	5/5	5 / 5	PFPeA	68	18	
	3-Amino-3-[4-(1,1,2,2- tetrafluoroethoxy)phenyl]propanoi c acid		C11H11F4NO3	773122-82-0	4	5 / 5	5 / 5	PFPeA	290	276	
	3,4,4,5,5,6,6,6-octafluorohex-2- enoic acid	4:2 FTUCA	C6H2F8O2	70887-90-0	4	2/5	5/5	PFPeA	9	11	
	4-(Pentafluoroethyl)-2,3-dihydro- 1H-inden-1-one		C11H7F5O	1380390-11- 3	4	5/5	5/5	PFPeA	127	263	
)	1,1'-(1,1,2,2-Tetrafluoroethane-1,2- diyl)di(pyrrolidin-2-one)		C10H12F4N2O 2	143697-60-3	4	1/5	1/5	PFPeA	66	5	
1	1-(1,3-Dimethylbutoxy)-2- (perfluorohexyl)ethane		C14H17F13O	210896-25-6	4	2/5	0/5	PFOA	10	n.d.	
2	[4-[3-(4-acetyloxyphenyl)- 1,1,2,2,3,3- hexafluoropropyl]phenyl] acetate		C19H14F6O4	21250-00-0	4	2 / 5	0/5	PFPeA	9	n.d.	
3	1,1,1,2,2,3,3,4-Octafluorohexane		C6H6F8	154275-19-1	4	5/5	1/5	PFPeA	36	1	

Conclusions

· Concentrations of target compounds were consistent with those of a previous study^[4] conducted in the influents of the same WWTP in 2020, and the results showed that the concentrations of target compounds were higher in the effluents, resulting in a **negative removal efficiency**. - The presence of precursors compounds in the influents could explain a higher rate of target PFAS in the effluents, due to the **degradation of precursors** during the treatment processes. Suspect screening revealed the presence of emerging PFAS that are precursors of perfluoroalkyl acids such as the perlfuorooctanesulfinic acid (PFOSi) and the 6:2 FTAB (trade name Capstone B), which have been shown to degrade respectively into PFOS and short-chain PFAS like PFBA and PFPeA^[5]. However, the semi-quantification results showed similar concentrations of emerging compounds and not such a marked discrepancy between influents and effluents. This can point out that precursors are in other fractions of material, such as sludges, and that once degraded, the perfluoroalkyl acids go into the effluents. Further investigations, also considering other type of samples, are necessary to close the mass balance and explain the higher rate of PFAS in the effluents.

References

43rd International Symposium on Halogenated Persistent Organic Pollutants (POPs)

[1] WAC/IV/A/025: Bepaling van per- en polyfluoralkylverbindingen (PFAS) in water met LC-MS/MS (vito.be) [2] Liu et al., 2019: doi.org/10.1016/j.trac.2019.02.021 **[3]** Schymanski et al., 2014: doi.org/10.1021/es5002105 [4] Jeong et al., 2022: doi.org/10.1016/j.jhazmat.2022.129378 [5] D'Agostino & Mabury 2017. 10.1002/etc.3750

Toxicological Centre

Toxicological Centre UA