Metabolic Signature of Ethanol-Induced Hepatotoxicity in HepaRG Cells by LC-MS-based Untargeted Metabolomics

<u>Elias Iturrospe^{1,2}, Katyeny Manuela da Silva¹, Rani Robeyns¹, Maria van de Lavoir¹,</u> Tamara Vanhaecke², Alexander L.N. van Nuijs¹, Adrian Covaci¹

¹ Toxicological Center, University of Antwerp, 2610 Antwerp, Belgium

² Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium

Introduction

- Alcoholic liver disease (ALD) is highly prevalent but poorly identified and characterized with lack of sensitive and specific early biomarkers for ALD
- Excessive alcohol consumption leads to progressive intracellular lipid accumulation resulting in **alcoholic fatty liver disease**
- As metabolic alterations are reflected in the phenotype and vice versa, metabolomics can help to identify early-stage indicators of alcoholic fatty liver disease

Objectives

- Mechanistic elucidation of ethanol-induced hepatotoxicity at the cellular level using the human HepaRG liver cell line
- Generation of hypotheses on the **mechanism of action** of ALD
- Showcase potential **diagnostic biomarkers** for early ALD

Approach

Exposure conditions

LC-MS based metabolomics

- 1 x 10⁶ HepaRG cells per sample
- 7 days of incubation to develop co-culture of hepatocyte-like cells and biliary-like cells
- 4 sample groups
 - Exposure to **ethanol at IC**₁₀ (n = 6)
 - Exposure to ethanol at 1/10 of IC₁₀ (n = 6)
 - Unexposed **controls** (n = 6)
 - Extraction blanks (n = 2)
- 2 exposure times
 - 24 h and 48 h \bullet
- 2 sample types
 - Intracellular and extracellular extracts were harvested \bullet
- 2 batches
 - Entire experimental set-up was repeated for **validation** of metabolomics results

Apolar extracts

- **RPLC-ESI-DTIM-QToF-HRMS** (Agilent 6560)
- UPLC BEH C18 column in ESI+ and ESI-
- Drift tube ion mobility to increase annotation confidence

Polar extracts

- HILIC-ESI-QToF-HRMS (Agilent 6530)
- iHILIC-Fusion column in ESI+
- iHILIC-Fusion(P) column in ESI-

Data processing

Preprocessing and pretreatment

- Peak picking & alignment
- **Deisotoping**, duplicate removal & drift correction
- Filtering (e.g. mRSD < 30%)
- Random forest **imputation**
- Log transformation
- **PQN** normalization
- Pareto scaling

Worklist

- System suitability
- Conditioning •
- Random injection order
- QC_{pooled} at regular intervals
- Samples in MS1
- QC in MS1/MS2/DTIM
- Iterative exclusion DDA

Statistics and annotation

- PLS-DA & random forest binary classifier \bullet -VIP > 1 & MDA > 0.1
- Mann-Whitney U Student t -p < 0.05 & FC > 5 < 0.2
- Boxplots to confirm feature importance \bullet
- MS-DIAL, MS-Finder, MassBank, NIST, METLIN, GNPS, LipidMatch, LipidHunter for annotations & manual confirmation

PCA and microscopic evaluation

Intracellular sample fraction

- 94 altered intracellular metabolites & 23 altered extracellular metabolites
- $\mathbf{\psi}$ PC: $\mathbf{\psi}$ formation due to $\mathbf{\psi}$ conversion from PE and $\mathbf{\psi}$ methyl transfer due to $\mathbf{\psi}$ SAM, ↑ consumption for production of PEth, DG and subsequent TG
- **\downarrowLPC & GPC**: \downarrow PC catabolism and \uparrow intrahepatic LPC uptake for compensation
- $\mathbf{\mathbf{VPE}}$: corresponds to $\mathbf{\mathbf{\uparrow precursors}}$ EtOP and DG, $\mathbf{\mathbf{\uparrow extracellular}}$ PE due to

Extracellular sample fraction

- PCA plots indicate strong metabolic impact of ethanol exposure
 - Clear separation IC_{10} (H) CTL (C)
 - More overlap $1/10 \text{ IC}_{10} (\text{L}) \text{C}$
- Morphological differences C H •
 - Faded lining polarized hepatocyte colonies
 - **Impaired organization** of hepatic clusters & accumulated debris
- No clear morphological differences C L •

↑secretion

- \downarrow SM: \uparrow hydrolysis to ChOP and Cer (d18:1)
- **↓Cer (d18:2)**: unknown mechanism
- \downarrow CAR: \downarrow biosynthesis impairs mitochondrial β -oxidation
- **\uparrow medium chain CAR**: incomplete oxidation products of peroxisomal β -oxidation can not be processed by impaired mitochondrial β -oxidation
- Ethoxylated phosphorylcholine (EtoChoP) might be a new marker of ethanol exposure
 - Absence in control samples
 - Similar fold change as PEth 16:0_18:1
 - Unlike PEth 16:0_18:1, EtoChoP was found intra- and extracellularly

Conclusions

- Minor effect of exposure time
- Major effect of exposure concentration
- Multiple altered metabolites consistent with steatotic image
- Cer (d18:2), Cr, EtOP, Ach and medium chain CAR as additional markers of toxicity
- EtoChOP is a potential new marker of ethanol exposure

Conflicts of interest: None. Acknowledgements: Funding E.I.: FWO (1161620N), K.M.d.S.: UA (Antigoon 46315), Further funding: UA & VUB. Hepatocyte Figure was provided by Biorender license no. 2641-5211.

Opening new horizons

