Metabolic Alterations of HepaRG Cells in **Response to Ethanol and TNF-α Co-exposure**

Elias Iturrospe^{1,2}, Rani Robeyns¹, Katyeny Manuela da Silva¹, Maria van de Lavoir¹, Joost Boeckmans², Tamara Vanhaecke²,

Alexander L.N. van Nuijs¹, Adrian Covaci¹

¹ Toxicological Center, University of Antwerp, 2610 Antwerp, Belgium

² Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium

INTRODUCTION

- Alcoholic liver disease (ALD) is highly prevalent but poorly identified and characterized with lack of sensitive and specific early biomarkers
- Early-stage ALD is characterized by progressive intracellular lipid accumulation resulting in alcoholic fatty liver disease
- **Inflammation** of the liver is triggered by upregulation of **TNF-\alpha** produced by Kupffer cells in response to ethanol and lipopolysaccharide exposure
- The **HepaRG** hepatic cell line provides an interesting alternative to primary hepatocytes due • to low variability and long-term stability while maintaining most liver-specific functions
- As metabolic alterations are reflected in the phenotype and vice versa, metabolomics can help to identify early-stage indicators of alcoholic fatty liver disease

Exposure and sample preparation

- HepaRG: co-culture of hepatocyte- and biliary-like cells after 7 days of incubation
- 1 x 10⁶ HepaRG cells per sample

Exposure group 1 (n=7): 24h exposure to ethanol at IC_{10} (368 mM) **Exposure group 2** (n=7): 24h exposure to ethanol at IC₁₀ (368 mM) + TNF- α (50 ng/mL) **Negative control** (n=7): 24h incubation without ethanol and TNF- α **Extraction blank** (n=3): 24h incubation without cells, ethanol and TNF- α \rightarrow Experiment was repeated with 2nd batch HepaRG cells for validation

Statistics and annotation

- **PLS-DA & random forest** binary classifier: VIP > 1 & MDA > 0.1
- Mann-Whitney U Student t: **p < 0.05 & FC > 5 | < 0.2**
- Boxplots to confirm feature importance
- MS-DIAL, MS-Finder, MassBank, NIST, LipidMatch, LipidHunter, LipoStar for annotations

LC-MS based analyses

- **RPLC-ESI-DTIM-QToF-HRMS** (Agilent 6560) for **non-polar** extracts
 - UPLC BEH **C18** in ESI+ and ESI-
 - Drift tube ion mobility to increase annotation confidence
 - Comparison of experimental ^{DT}CCS_{N2}
 - Iterative exclusion DDA to improve MS2 coverage
- HILIC-ESI-QToF-HRMS (Agilent 6530) for polar extracts

• iHILIC-Fusion(P) (polymer, zwitterionic) in ESI-

• iHILIC-Fusion (silica, zwitterionic) in ESI+

- Quality Assurance (QA)/Quality Control (QC) procedures
 - Pooled QC samples, system suitability mixture, usage of internal standards, SOPs,...

Data preprocessing and pretreatment

- Peak picking, alignment, deisotoping, duplicate removal & drift correction
- **Filtering** (e.g. mRSD intensity < 30%)
- Random forest **imputation** for missing values
- Log transformation, probalistic quotient normalization & Pareto scaling

& manual confirmation

RESULTS & DISCUSSION

PCA and microscopic evaluation

Metabolic alterations

- \checkmark Short chain carnitines (c_2 - c_5): \checkmark biosynthesis impairs mitochondrial β -oxidation
- **\uparrow Medium chain carnitines (C₆-C₁₃):** incomplete oxidation products of peroxisomal β -oxidation can not be processed by impaired mitochondrial β-oxidation
- **Ethoxylated phosphorylcholine (EtoChoP)** might be a new marker of ethanol exposure
- **↓Phosphatidylcholines**: ↓ formation due to \downarrow conversion from phosphatidylethanolamines and \downarrow methyl transfer due to \downarrow Sadenosylmethionine, \uparrow consumption for production of phosphatidylethanol, diglycerides and subsequent triglycerides
- **↓Phosphatidylethanolamines**: corresponds to \uparrow precursors O-phosphoethanolamine and diglycerides
- Number of double bonds determines direction of alteration (phosphatidylcholines & phosphatidylglycerols)
- **Triglycerides** strongly influenced by inflammation

- PCA plots indicate strong metabolic impact of ethanol and ethanol + TNF- α exposure
 - Clear separation all groups (except overlap EtOH – EtOH+TNF- α in polar ESI+)
- Morphological differences control vs. exposed cells
 - **Faded lining** polarized hepatocyte colonies
 - **Impaired organization** of hepatic clusters

Phosphatidylcholines (< 5 DB) Phosphatidylcholines ($\geq 5 DB$) Phosphatidylethanolamines Phosphatidylethanols *Phosphatidylglycerol (< 4 DB)* Phosphatidylglycerol ($\geq 4 \text{ DB}$) Sphingomyelins

Diacylglycerols Triacylglycerols

ctiol

CONCLUSIONS

- Metabolomic alterations (>100 annotations) can **distinguish** hepatic **exposure** to ethanol and co-exposure to ethanol and TNF- α
- **Steatotic image** is **enlarged** by co-exposure to inflammatory cytokine **TNF-\alpha**
- **EtoChOP** is a potential new marker of ethanol exposure
- Future perspectives
 - Elucidate metabolic footprint
 - Deepen biological interpretations
 - In vivo exploration

Conflicts of interest: None. Acknowledgements: Funding E.I.: FWO (1161620N), R.R.: UA (Antigoon 36893), M.v.d.L.: UA (Antigo

