

# A High-throughput 96-well Elution Protocol for the Quantification of Psychoactive Substances in Influent Wastewater as an Alternative for Traditional Solid-Phase Extraction.

Natan Van Wichelen<sup>1</sup>, Maarten Quireyns<sup>1</sup>, Tim Boogaerts<sup>1</sup>, Florence Maes<sup>1</sup>, Maria Laimou-Geraniou<sup>2,3</sup>, Ester Heath<sup>2,3</sup>, Bram Pussig<sup>4</sup>, Bert Aertgeerts<sup>4</sup>, Adrian Covaci<sup>1</sup>, Alexander L.N. van Nuijs<sup>1</sup> <sup>1</sup>Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium; natan.vanwichelen@uantwerpen.be <sup>2</sup>Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia

University of Antwerp **I** Toxicological Centre

### Introduction

- There is an increasing need for high resolution temporal data in wastewater-based epidemiology (WBE), e.g. Sewage analysis CORe group (SCORE) Monitoring campaign uses 7 datapoints per year
- Due to the complex wastewater matrix, it is crucial to have sensitive analytical procedures available
- To enhance the usefulness of WBE as a complementary epidemiological source, there is a growing pressure to analyse more compounds, more locations and more samples
- Additionally, the demand for more green chemistry is rising  $\rightarrow$  Objective: development of a more efficient and high-troughput sample preparation procedure

### Methods

- A high-troughput method based on 96-well Oasis MCX solid-phase extraction (SPE) was developed in accordance to the European Medicine Agence (EMA) guidelines with minor adjustments (*Figure 1*) • LC-MS/MS: Waters Atlantis T3 (150 x 2.1 mm, 3 μm), Agilent 6495 Triple Quadrupole MS/MS • Mobile phase A:  $H_20 + 0.1\%$  formic acid (v/v), Mobile phase B: MeOH + 0.1% formic acid (v/v)
- External quality control was performed through participation in interlab study by SCORE
- The validated method was **applied to influent wastewater samples (n=496**) of Leuven, Belgium to analyse the use of amphetamine, cocaine (through benzoylecgonine) and 3,4methylenedioxymethamphetamine (MDMA) from september 2019 to april 2022.



*Figure 1*. Comparison between traditional SPE and 96-well SPE

<sup>3</sup>Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

<sup>4</sup>Academic Centre for General Practice, KU Leuven, Leuven, Belgium

# Results

- Validation was succesful for 28 parent drugs and metabolites of antidepressants (e.g. mirtazapine), opioids (e.g. tramadol) and stimulants (e.g. amphetamine) (*Figure 3*)
- Lower limit of quantification (**LLOQ**) ranged from 1 30 ng/L (except tramadol, 100 ng/L) • Highest opioid and antidepressant population normalized mass load (PNML) were measured for
- Capable of monitoring high resolution temporal trends in the use of stimulants and pharmaceuticals (see *Figure 2 for stimulants*)



*Figure 2.* Temporal analysis (n=496) of amphetamine, cocaine (through enzoylecgonine) and 3,4-methylenedioxymethamphetamine (MDMA) using 96-well extraction. Weekly averages, based on three data points per week (monday-wednesday-saturday) were used. Teal colour shows an interpolated week. The population size was estimated based on mobile phone data. Methamphetamine was also analysed, but values were below LLOQ.

# Conclusion

- The 96-well SPE has demonstrated its ability as an **alternative for the traditional SPE method**
- **samples** and thereby scaling up the spatio-temporal analysis possibilities



tramadol (1096 mg/day/1000p) and O-desmethylvenlafaxine (754 mg/day/1000p) respectively

| Opioids             |
|---------------------|
| 2-ethylidene-1,5-   |
| dimethyl-3,3-       |
| diphenylpyrrolidine |
| (EDDP)              |
| Codeine             |
| Dihydrocodeine      |
| Hydromorphone       |
| Methadone           |
| Morphine            |
| Normorphine         |
| Noroxycodone        |
| Nortilidine         |
| O-desmethyltramadol |
| (ODT)               |
| Oxycodone           |
| Tilidine            |
| Tramadol            |
| Antidepressants     |
| Amitriptyline       |
| Bupropion           |
| Bupropion-OH        |
| Citalopram          |
| M-chlorophenyl      |
| piperazine (MCPP)   |
| Melitracen          |
| Moclobemide         |
| Norcitalopram       |
| Normirtazapine      |
| O-desmethyl         |
| venlafaxine (O-DMV) |
| Irazodone           |
| Venlafaxine         |
| Stimulants          |
| 3,4-methylenedioxy_ |
| methamphetamine     |
| (MDMA)              |
| Amphetamine         |
| Benzoylecgonine     |
| Methamphetamine     |
|                     |

Figure 3. List of inlcuded parent drugs and metabolites

• The validated method which employed a 96-well solid-phase extraction process proved to be **more** efficient than the traditional SPE, requiring less time, sample volume and organic solvents (*Figure 1*) • The method was applied to 496 samples, showing its capability of analysing a large amount of