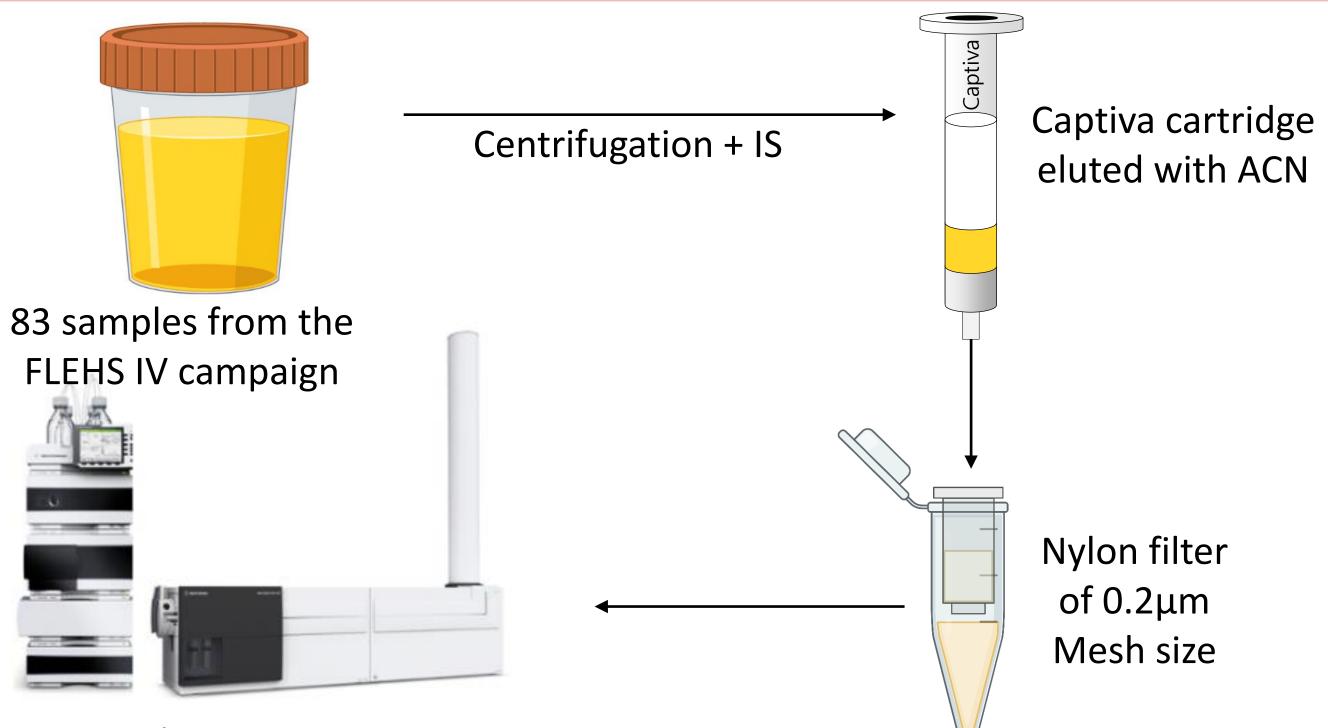

Comprehensive suspect screening for the identification of contaminants of emerging concern in urine of Flemish adolescents by LC-HRMS

Maarten Roggeman^{1,a,*}, Lidia Belova^{1,a}, Sandra F. Fernández², Da-Hye Kim¹, Yunsun Jeong¹, Giulia Poma¹, Silvie Remy³, Veerle J. Verheyen³, Greet Schoeters³, Alexander L.N. van Nuijs¹, Adrian Covaci^{1,*}

¹ Toxicological Centre, University of Antwerp, Antwerp, Belgium, ² Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain, ³ Flemish Institute for Technological Research (VITO), Mol, Belgium, ^A shared first authors

INTRODUCTION


83 urine samples of Flemish adolescents **predicted metabolization reactions**, such The increasing human exposure to were collected in the frame of the FLEHS contaminants of emerging concern (CECs) as hydroxylation, glucuronidation and cannot be fully assessed by targeted **IV study**. Samples were divided in a high methylation. biomonitoring methods alone. and a low exposure group based on the In this study, 68 compounds were Suspect screening approaches allow exposure of 45 known **tentatively identified** at a confidence level overall the simultaneous detection of a high contaminants.¹ Samples were analyzed (CL) of 3 or better, as proposed by number of CECs and/or their predicted using a previously developed method by Schymanski et al.³, with most of the Caballero-Casero et al.² metabolites leading to a comprehensive detected compounds not included in assessment of human exposure to these The applied suspect list contained a current biomonitoring programs.

METHODS

Data analysis

Sample processing

LC/ESI-HRMS

Column: InfinityLab Poroshell 120 EC-C18: 100 mm x 3.7 mm, 2.7 μm Acquisition Mode: Auto MS/MS

Mobile phases ESI+: $(A) H_2O + 0.1\% FA$ (B) Methanol + 0.1% FA **Mobile phases ESI-:** $(A) H_2O + 5 \text{ mM NH}_4Ac$ (B) Methanol+ 5 mM NH_4Ac

Raw dataset RT stability – mass accuracy – stable signal intensities QA/QC Batch recursive feature extraction Peak picking • Peak height > 2,000 counts Deconvolution Mass window = 20 ppm; RT window = 0.3 min Match score > 70 PCA analysis Filtering • Fold change (FC) analysis: FC > 5 between samples and procedural blanks Suspect list with > 12,500 compounds Identification Mass tolerance < 7ppm • Isotope abundance score > 80; overall ident. score > 75 Manual MS² spectra NO **CL 4** checking acquired? ¥ YES **RT difference** Ref. std. YES **CL 1** available? < 0.2 min? ↓ NO Match with Library spectra YES library > available? 70%? YES NO NO Only one possible **CL 2** Match with *in silico* candidate? fragm. or fragments NO explained by structure of NO **CL 4** suspect? YES **CL 3**

RESULTS AND DISCUSSION

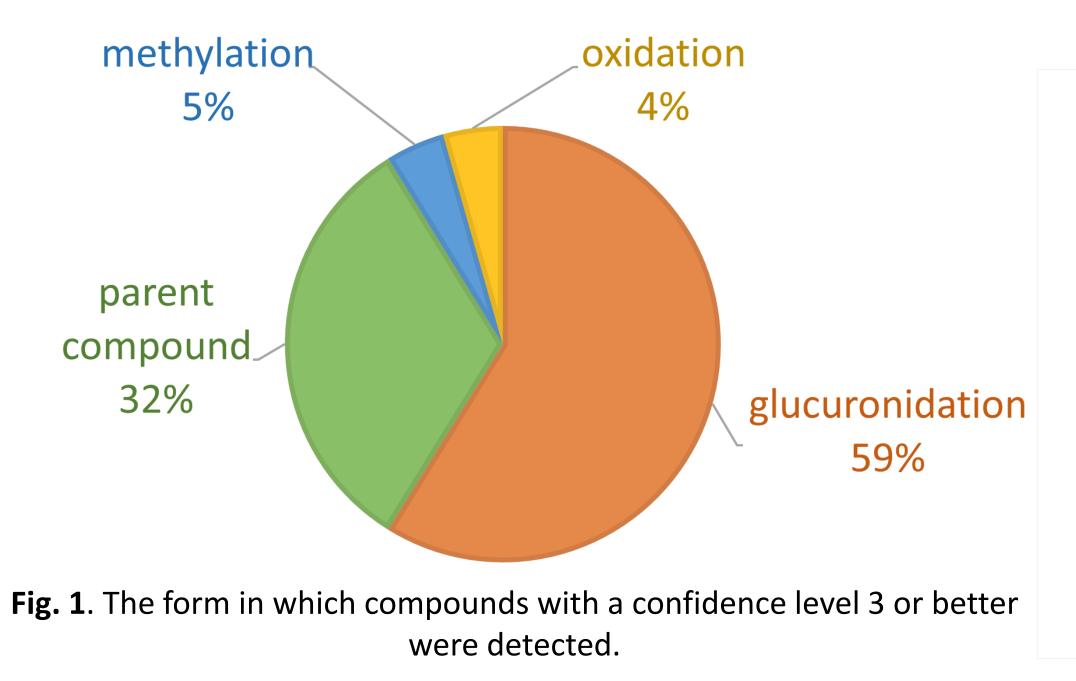


Table. 1. The compounds detected at a confidence level of 2. DF: detection frequency, PCP; personal care products, PFR; phosphate flame retardant

Name	Formula	Compound Class	DF [%]					
L-/D-Pantothenate	C9H17NO5	Personal care procucts	68.7 (CL 2); 16.9 (CL 4)					
4-hydroxy-benzaldehyde	C7H6O2	Personal care procucts	36.1 (CL 2); 49.4 (CL 4)					
Catechol	C6H6O2	Personal care procucts	100 (CL 2)					

- \rightarrow 13 compounds were identified at CL2
- \rightarrow The majority of compounds was detected in their glucuronidated form
- \rightarrow A higher number compounds was detected in the high exposure group as opposed to the low exposure group but only for female participants (p < 0.01).

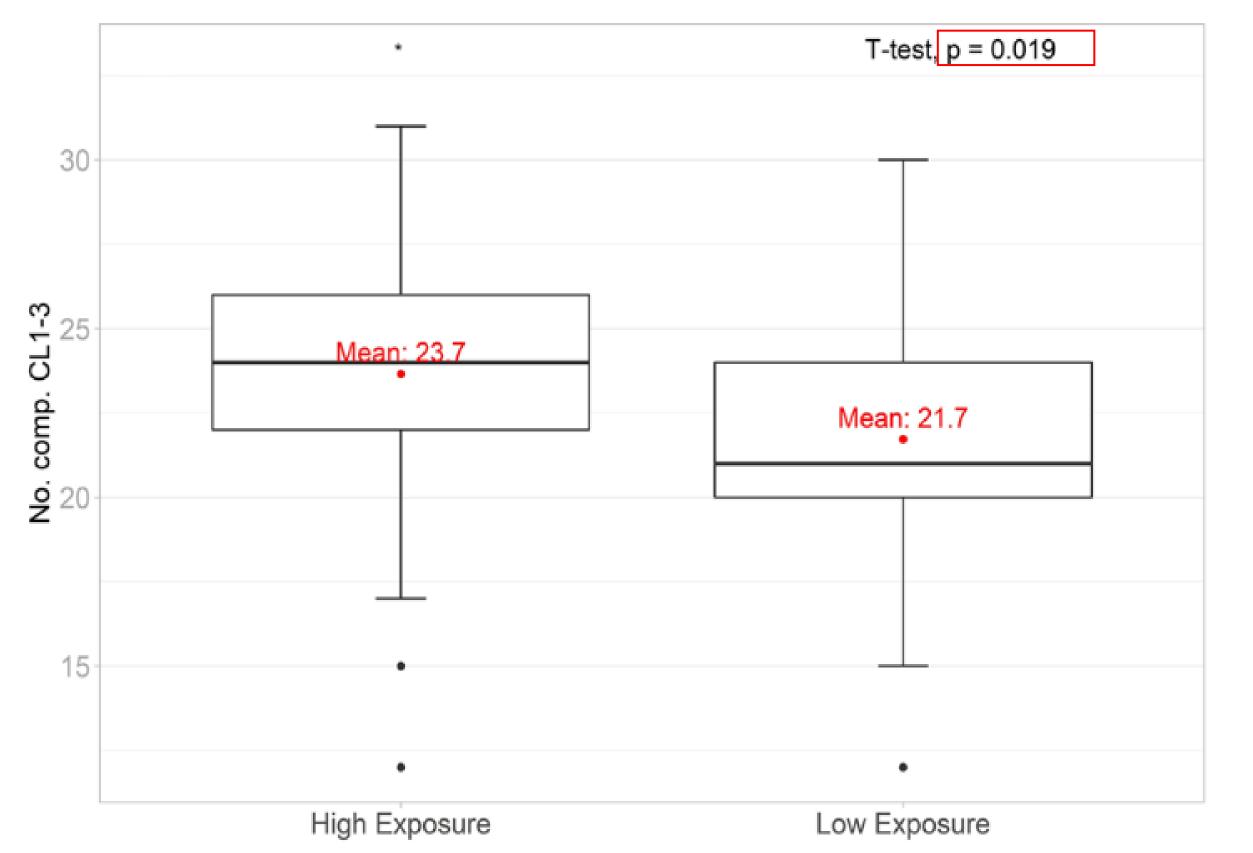


Fig. 2. Boxplots representing the number of identified compounds at CL 3 or better in the low and high exposure load groups.

Benzyl alcohol	C7H8O	Personal care procucts	97.6 (CL 2); 2.4 (CL 4)		T			
Diphenyl hydrogen phosphate	C12H11O4P	Organophosphate flame retardants	43.4 (CL 2)	ကို	Mean: 24.5			T
bis(1,3-dichloro-isopropyl)					•		Mean: 23.1	
phosphate	C6H11Cl4O4	P Organophosphate flame retardants	25.3 (CL 2)	np. (Mean: 22.5
2-ethylhexyl phenyl phosphate	C14H23O4P	Organophosphate flame retardants	1.2 (CL 2)	COL		Mean: 20.9		
Theobromine	C7H8N4O2	Personal care procucts	84.3 (CL 2)	<u>o</u> 20				
Theophylline	C7H8N4O2	Personal care procucts	63.9 (CL 2)					
8-Hydroxy-quinoline	C9H7NO	Other	94.0 (CL 2); 6.0 (CL 4)	15	•			
Phthalic anhydride	C8H4O3	Plasticizers	6.0 (CL 2); 74.7 (CL 4)				•	
Riboflavin	C17H20N4O	6 Personal care procucts	18.1 (CL 2); 39.8 (CL 4)		High Exposure	Low Exposure	High Exposure	Low Exposure
Quinoline,				Fig. 3. Boxplots divided by sex representing the number of identified compounds				
Isoquinoline	C9H7N	Other	25.3 (CL 2); 34.9 (CL 4)	at CL 3 or better in the low and high exposure load groups.				

LITERATURE

1. Buekers, J., et al., Combined chemical exposure using exposure loads on human biomonitoring data of the 4th Flemish Environment and Health Study (FLEHS-4). Int J Hyg Environ Health, 2021. 238: p. 113849. 2. Caballero-Casero, N., et al., Identification of chemicals of emerging concern in urine of Flemish adolescents using a new suspect screening workflow for LC-QTOF-MS. Chemosphere, 2021. 280: p. 130683-130692. 3. Schymanski, E.L., et al., Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol, 2014. 48(4): p. 2097-8.

E-Mail: Maarten.Roggeman@uantwerpen.be

