Identification and semi-quantification of known and novel contaminants in indoor dust by ion-mobility high-resolution mass spectrometry and estimation of risks for human exposure

Lidia Belova1, Maarten Roggeman1, Giulia Poma1, Yu Ait Bamai1, Celine Gys1, Paulien Cleys2, Fatima den Ouden1, Patrick Berghmans2, Jan Peters2, Alexander L. N. van Nuijs3, Adrian Covaci1

1Toxicological centre, University of Antwerp, Antwerp, Belgium; 2Flemish Institute for Technological Research, Mol, Belgium.

INTRODUCTION

- Dust is important for exposure since humans spend 80% of their time indoors
- Toddlers are a highly exposed risk group due to hand-to-mouth contact
- Dust functions as a sink of indoor contaminants which has been underlined by the results of quantification studies on several classes of contaminants
- Due to the ever-evolving chemical exposure there is a complementary need for the identification of contaminants of emerging concern (CECs)
- Screening of 46 Flemish dust samples from houses, offices, and leisure venues
- Drift tube ion-mobility (IM) mass spectrometry (MS) was applied as an additional separation dimension to liquid chromatography (LC) and high-resolution mass spectrometry (HRMS)
- IM-MS allows for the calculation of collision cross-section values (CCS) to further increase identification confidence.

MATERIALS AND METHODS

Sample Preparation

- 20 mg dust (25-50 μm)
- Spoke internal standards 0.1-0.5 μg
- 2x2.5 mL n-Hexane/Acetone 0.5 mL Toluene
- GC-QqQ data not included

Instrumentation

- Agilent 6560 HPLC-IM- QTOF
- Column: InfinityLab Poroshell 120 EC-C18
- ESI+ (A) H2O + 0.3% FA
- (B) MeOH + 0.1% FA
- Mass range: m/z 100-1500
- Acquisition: QTOF only – data dependent acquisition and IM-MS 4bit multiplexing
- Software: Mass Profiler Professional, Agilent MassHunter, IM Browser

Data Processing

- QC and IS
 - RT stability - mass accuracy – stable signal intensities
 - Target screening with in-house standards
 - Suspect list with known and novel CECs (n > 4000)
- IM-MS analysis
 - CCS values for all compounds
 - [M+H]/[M+Na]+ adducts
 - Match with established database (CCS < 2%) and m/z
 - Comparison with m/z-CCS trends

RESULTS

Phthalate identification

<table>
<thead>
<tr>
<th>Compound</th>
<th>DF (%)</th>
<th>CL</th>
<th>Estimated Conc. (µg/g)</th>
<th>EDI (mg/kg bw/day)</th>
<th>HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diisodicyl phthalate (DIDP)</td>
<td>97.8</td>
<td>CL 1</td>
<td>3.2-90</td>
<td>5.71±0.5</td>
<td>-</td>
</tr>
<tr>
<td>Diisononyl phthalate (DINP)</td>
<td>100</td>
<td>CL 1</td>
<td>12.7-437</td>
<td>5.71±0.5</td>
<td>2.49±0.3</td>
</tr>
<tr>
<td>Diethylhexyl phthalate (DEHP)</td>
<td>91.3</td>
<td>CL 1</td>
<td>0.8-448</td>
<td>1.62±0.4</td>
<td>8.10±0.4</td>
</tr>
<tr>
<td>Decyl nonyl phthalate</td>
<td>93.5</td>
<td>CL 3</td>
<td>2.5-645</td>
<td>9.77±0.7</td>
<td>4.89±0.3</td>
</tr>
<tr>
<td>Decyl undecyl phthalate</td>
<td>82.6</td>
<td>CL 3</td>
<td>1.7-478</td>
<td>3.65±0.5</td>
<td>1.82±0.3</td>
</tr>
<tr>
<td>Undecyl dodecyl phthalate</td>
<td>4.3</td>
<td>CL 3</td>
<td>6.4-31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diundecyl phthalate</td>
<td>45.7</td>
<td>CL 3</td>
<td>0.5-122</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diheptyl phthalate</td>
<td>89.2</td>
<td>CL 3</td>
<td>0.7-50</td>
<td>1.34±0.5</td>
<td>6.7±0.4</td>
</tr>
</tbody>
</table>

DISCUSSION AND CONCLUSIONS

- 55 compounds from various classes were detected in dust
- Detected phthalates with uneven side chains show unstudied variability for the class of phthalates
- Concentration of novel phthalates in the same order as the concentration of well-known reference phthalates
- ΔCCSMM can function as an additional identification parameter by matching with established CCS-m/z trends
- Semi-quantification allows exposure assessment by giving an indication of concentration
- Exposure to phthalates through dust ingestion did result in no potential risk for toddlers, the most exposed group

Fig. 1: compounds detected in the dust with confidence level 1-3 and the subcategories they belong to. With PFR: phosphate flame retardant; PCP: personal care products.

Fig. 2: Comparison of ΔCCSMM values obtained for suspect phthalates with the CCS-m/z trendline established from ref. ΔCCSMM values of known phthalates and their metabolites (acetab). CL3 with uncertain alkyl chain branching.