In vitro biotransformation of 3-methylmethcathinone (3-MMC) in human liver microsomes and correlation with the *in vivo* situation

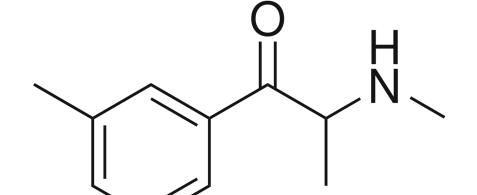
<u>Natan Van Wichelen¹*</u>, Andrea Estévez-Danta², Fatima den Ouden¹, Nick Verougstraete³, Lidia Belova¹, Maarten Roggeman¹, Tim Boogaerts¹, Maarten Quireyns¹, José Benito Quintana², Rosario Rodil², Alexander L.N. van Nuijs¹, Adrian Covaci¹, Celine Gys¹

BJECTIVES

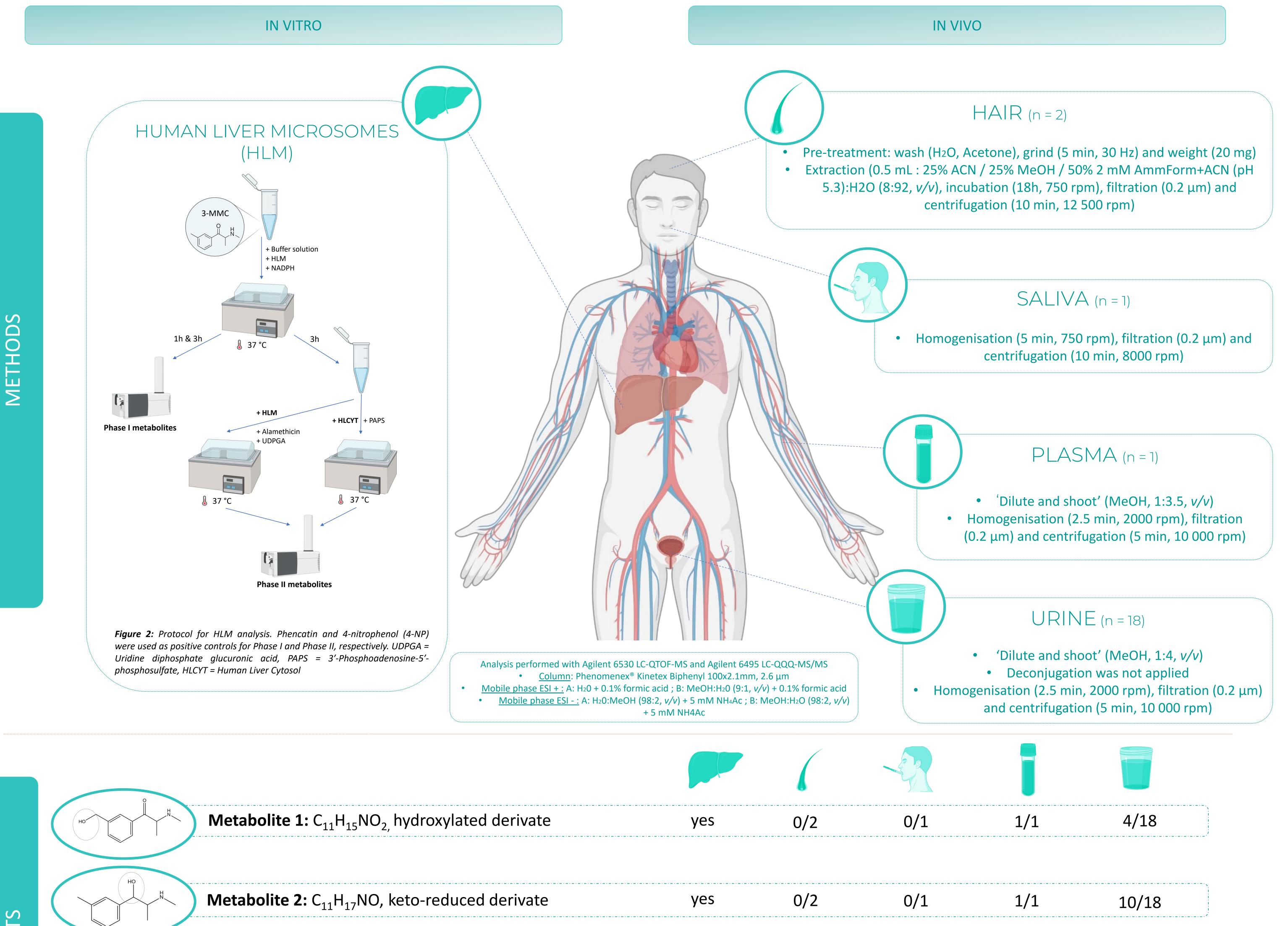
 \bigcirc

*Natan.vanwichelen@uantwerpen.be

¹Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
²Department of Analytical Chemistry, Nutrition and Food Science, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela E-15782, Spain
³Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium



- Synthetic cathinones are the second largest group, after synthetic cannabinoids, of new psychoactive substances (NPS) monitored by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA).
- 3-methylmethcathinone (3-MMC) has recently been introduced into the market but has gained popularity rapidly.
- Due to the scarcity of information, biotransformation pathway information is crucial to understand the pharmacological, pharmacokinetic, and toxicological profile of 3-MMC.
- The identification of valuable human biomarkers is needed to develop analytical detection methods for screening of human matrices.



- Combining suspect screening (suspect list based on literature and *in-silico* software) with (non-) targeted screening approaches to identify 3-MMC metabolites
- Confirm whether *in vitro* results match authentic human samples

Figure 1: Structure of 3-methylmethcathinone (3-MMC)

yes

```
0/1
```

1/1

8/18

• In total three Phase I metabolites were determined as in vitro metabolites of 3-MMC based on in silico predictions and in vitro experiments.

- Additionally, these metabolites were confirmed in real human samples.
- No Phase II metabolites were found.
- Similar metabolites were reported for 4-MMC (Pozo et al., 2014; Pedersen et al., 2012)
- 68% of the analysed human samples were positive for at least one of the three metabolites.
- Interestingly, two urine and one plasma sample were positive for all three metabolites.

- By identifying three metabolites in *in vitro* biotransformation tests and confirming them in real human samples, this research provides new insides into the 3-MMC metabolisation pathways.
- The applicability of using human liver microsomes as an *in vitro* alternative for *in vivo* metabolite screening is illustrated.
- Although *in vitro* results and prediction softwares have proven their usefulness, the importancy of real human matrix screening is demonstrated.

1/2

- Increasing the number of analysed human samples is required to obtain a more representative image of the *in vivo* presence of these metabolites.
- Quantification of these proposed metabolites is imperative in the development of analytical detection methods for screening of human matrices.