

Complementing Traditional Demand-based Approaches: Wastewater-based Epidemiology for Illicit Drug Market Size Estimation Maarten Quireyns¹, Tim Boogaerts¹, Natan Van Wichelen¹, Tim Surmont², João Pedro Matias², Andrew Cunningham², Adrian Covaci¹, Alexander L.N. van Nuijs¹

BACKGROUND AND AIMS

- "The drug market size refers to the estimated value and quantity of specific illicit drugs • that are available to, or consumed by, a given population during a specified period"¹
- Useful indicator when combined with other metrics¹⁻³ ullet
 - Relative "importance" of different drugs
 - Prioritise interventions, aid policy decisions (4)
 - > and later evaluate impact of interventions/new policies
 - Provides comparative measure to law enforcement activities
 - > seizure of product (e.g., is 1 kg cocaine significant?)
 - > dismantling of drug network
 - Provides revenue estimation of organised crime networks

WASTEWATER-BASED EPIDEMIOLOGY

Influent wastewater contains a wealth of information about the population connected to a wastewater treatment plant (WWTP)

- After humans have been exposed to xenobiotics, metabolic excretion products (biomarkers) are released, transported, and pooled in the sewer system
- Daily, 24-h composite, influent wastewater samples are analysed for these biomarkers, and measured concentrations are back-calculated to mass loads

BACK-CALCULATION

Aim: assess the use of **wastewater-based epidemiology (WBE)** as a **complementary** \bullet approach to traditional techniques of estimating the illicit drug market size

(TRADITIONAL) ESTIMATION TECHNIQUES

top-down, supply side²

 (\mathfrak{S})

Consumed = (Drug Produced – Seized – Loss) * Purity Market Value = Consumed * Price

- Starts from quantity of drug produced (e.g., geoimaging)
- > little evidence-based
- > many uncertainties (e.g., yield, fertiliser used)

bottom-up, demand side²

Consumed = Number of Users * Frequency of Use * Average Used Each Time Market Value = Consumed * Price

- Starts from drug consumers (e.g., surveys)
 - > uncertainties: misreporting, non-response, hidden population, ...

More similar to **demand-based** approach \approx consumption; at least fraction that ends up in the sewer

MATERIALS AND METHODS

- Yearly annual baseline estimates from influent wastewater \odot
 - obtained through **score** network (score-network.eu)
 - **137** cities in Europe analysed

Analysed period: 2015-2021

Drugs analysed	Correction Factor	<u>Reference</u>
Amphetamine	2.77	(Gracia-Lor et al., 2016)
Cocaine	3.59	(Castiglioni et al., 2013)

> high spatial resolution compared to other techniques > other data sources are needed for purity and price > measuring retail market size of cities (no extrapolation to country level)

(via benzoylecgonine)		
MDMA	4.40	(Gracia-Lor et al., 2016)
Methamphetamine	2.44	(Gracia-Lor et al., 2016)

Drug pricing and purity data

Statistical bulletin 2022 published by EMCDDA⁴, data until 2020

RESULTS: COCAINE IN 2020

DISCUSSION AND CONCLUSIONS

L1: calculation **pure drug**

- "Normal" week to assess baseline consumption \Rightarrow likely underestimation
 - E.g., drug tourism, seasonal drug consumption, COVID-19
- Overlapping metabolization pathways (methamphetamine \Rightarrow amphetamine)
- Influence of licit drug use (e.g., amphetamine for ADHD)

L2: calculation **retail drug**

R

• Drug purity ~ based on limited number of seizures

L3: calculation market share

• Drug price ~ based on limited number of studies, or simply not available

Challenges to improving spatio-temporal comparison

- Drug purity and pricing at **country level**
- Different **priorities:** e.g., law enforcement focussed on different tasks **legislations:** e.g., tolerated drug use vs "crackdown" recording of data: e.g., only if exceeded certain amount seized

Conclusion

- Need for more, and more representative, price and purity data
- WBE has potential as **complementary approach** to traditional, demand-based

Contact maarten.quireyns@uantwerpen.be

Acknowledgements

alexander.vannuijs@uantwerpen.be This study was funded FWO (G060920N).

Affiliations

1 – Toxicological Centre, University of Antwerp, Wilrijk, Belgium 2 – European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), Lisbon, Portugal

References

 ECMDDA, 2019 - Estimating the size of the main illicit retail drug markets in Europe: an update. 2 Udrisard et al, 2022- Improving the estimation of the size of the European drug market Been et al, 2016 - Analysis of illicit drugs in wastewater – Is there an added value for law enforcement? EMCDDA, Statistical Bulletin 2022 — price, purity and potency