The chromatic polynomial and its roots

Boris Fransen

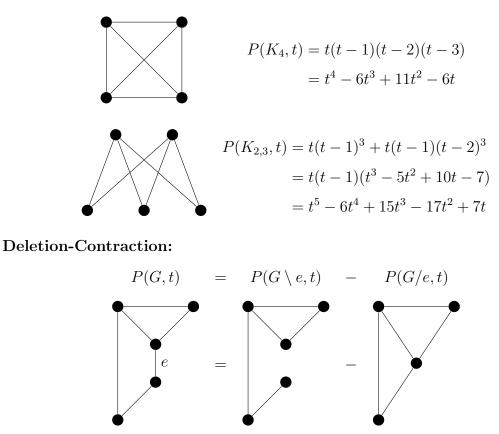
February 21, 2025

The chromatic polynomial

A colouring of a graph G = (V, E) is a function $c : V \to S_c$ such that $\forall uv \in E : c(u) \neq c(v)$.

P(G,t) = Number of colourings of G using at most t colours.

Examples:



By induction on |E|, P(G, t) is a polynomial!

Exercise – Explain: Why is it enough to consider simple graphs?

The structure of a chromatic polynomial

Using the deletion-contraction relation, we can prove many facts about the chromatic polynomial:

$$P(G,t) = \sum_{i=0}^{n} a_i t^i$$

- n = |V| and $a_n = 1, a_{n-1} = -|E|$
- The a_i alternate in sign and are whole numbers.
- $a_0 = 0$ and $a_i = 0 \Rightarrow a_{i-1} = 0$
- $\min\{i \mid a_i \neq 0\}$ is the number of connected components of G.
- . . .

Log-Concavity (Huh, 2012):

$$a_i^2 > |a_{i+1}a_{i-1}|$$

P(G,t) holds much information on G, leading to the following open problems:

- For a polynomial $p, \exists G : p = P(G, t)$?
- (Chromatic unicity) For which graphs $G: P(G,t) = P(H,t) \Rightarrow G \simeq H$?

Exercise – Construct two graphs $G \not\simeq H$ with P(G, t) = P(H, t).

Zeroes of Chromatic Polynomials

A complex number z is a chromatic root if \exists a graph G : P(G, z) = 0.

(Jackson, 1993) 1 is the only chromatic root in $(0, \frac{32}{27}]$.

(Thomassen, 1996) Chromatic roots are dense in the interval $(\frac{32}{27}, +\infty)$.

(Sokal, 2000) Chromatic roots are dense in the complex plane.

(Cameron & Morgan, 2016) Conjecture: For an algebraic integer α , $\exists n \in \mathbb{N}$: $\alpha + n$ is a chromatic root.

Exercise – Use a property of the chromatic polynomial to prove there are no chromatic roots in $(-\infty, 0)$.