Supporting information

Carbon bed post-plasma to enhance the CO_2 conversion and remove O_2 from the product stream

Fanny Girard-Sahun^{1,*}, Omar Biondo^{1,2,*}, Georgi Trenchev¹, Gerard van Rooij^{2,3} and Annemie Bogaerts¹

¹Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk B-2610, Belgium

²DIFFER, 5612AJ Eindhoven, The Netherlands

³Faculty of Science and Engineering, Maastricht University, 6229 GS Maastricht, The Netherlands

*Shared first author

Corresponding authors:

Dr Fanny Girard-Sahun, email: <u>fanny.girard-sahun@uantwerpen.be</u>

Msc Omar Biondo, email: <u>omar.biondo@uantwerpen.be</u>

Pr Annemie Bogaerts, email: <u>annemie.bogaerts@uantwerpen.be</u>

Supporting information includes 1) a scheme of the anode and basket; 2) SEM images for charcoal 1, before and after the gasification reactions; 3) TGA-MS under O_2 atmosphere for charcoal 1 and 2; TGA-MS under argon atmosphere for charcoal 1 4) as received, 5) after 45 s and 6) 7 minutes of reaction; 7) weight loss (TGA) for charcoal 1, before and after reaction; 8) O_2 concentration measured in the carbon bed; 9) the concentration profiles of CO_2 , CO and O_2 and temperature measured in the carbon bed; Rate of the main heterogeneous reactions triggered by the carbon bed with O_2 as feed gas at 10) 1086 K and at 1502 K 11) at the beginning of the treatment and 12) after 10 minutes; 13) Rate of the main heterogeneous reactions triggered by the carbon bed with CO_2 as feed gas at 1412 K.

Figure S1

Figure S1. A. and B. Side view and front view of the anode. C. Anode and basket assembled.

Figure S2

Figure S2. SEM images of charcoal 1, before and after the gasification reaction.

Figure S3

Figure S3. Partial pressure of CO₂ released from TGA-MS under O₂ atmosphere of charcoal 1 (dark blue) and charcoal 2 (light blue) and weight loss for charcoal 1 (orange dashed line) and charcoal 2 (red dashed line), as a function of the temperature and time.

<mark>Figure S4</mark>

Figure S4. TGA-MS under argon atmosphere of charcoal 1 as received.

Figure S5

Figure S5. TGA-MS of charcoal 1, top layer, after 45 s of reaction.

<mark>Figure S6</mark>

Figure S6. TGA-MS of charcoal 1, after 7 minutes of reaction.

Figure S7

Figure S7. TGA of charcoal 1, as received and after 45 s and 7 minutes of reaction.

Figure S<mark>8</mark>

Figure S⁸. O₂ concentration measured in real time with carbon bed, charcoal 1 (zoom in from Figure 5B in the main paper). 10L/min CO₂, SEI = $3.2 \text{ kJ}.\text{L}^{-1}$.

Figure S<mark>9</mark>

Figure S9. CO₂, CO and O₂ concentration profiles compared with the temperature profile obtained in the presence of the carbon bed. Charcoal 1, 10 L.min⁻¹ CO₂, SEI = 3.2 kJ.L⁻¹.

Figure S<mark>10</mark>

Figure S10. Rate of the main heterogeneous reactions triggered by the carbon bed at 1086 K, with O_2 as feed gas (O_2_E) .

Figure S<mark>11</mark>

Figure S11. Rate of the main heterogeneous reactions triggered by the carbon bed at 1502 K, with O_2 as feed gas (O_2 _H).

Figure S¹². Rate of the main heterogeneous reactions triggered by the carbon bed at 1502 K, with O_2 as feed gas, after 10 minutes of treatment (O_2 – H_{600}).

Figure S13. Rate of the main heterogeneous reactions triggered by the carbon bed at 1413 K, with CO_2 as feed gas (CO_2 –H).