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1. List of all abbreviations in the paper 

Table S1. List of all abbreviations 
Original description Abbreviations 
Dry reforming of methane DRM 
Microwave discharge MW 
Dielectric barrier discharge DBD 
Artificial intelligence AI 
Machine learning ML 
Supervised learning SL 
Reinforcement learning RL 
Artificial neural network ANN 
Mean square error MSE 
Coefficient of determination R2 
Reinforcement learning controllers RLC 
Energy cost EC 
Backpropagation BP 
Pearson’s Correlation Coefficient PCC 
Proximal Policy Optimization PPO 
Actor-Critic AC 
Energy yield EY 
Atmospheric pressure glow discharge APGD 
Temporal difference TD 
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2. Experimental setup  
Fig. S1 shows the schematic overview of the experimental setup, which was detailly 
described in Ref. [1]. The catalyst preparation and reaction performance diagnostics 
were described in detail in Ref. [2].  

 
Fig. S1. Schematic overview of the experimental setup [2]. 

3. The database for the ML model development 

Table S2. Operating parameters for the plasma-catalytic DRM process 

No. 
Ni loading 

(wt%) 
Discharge Power 

(W) 
CO2/CH4  

molar ratio 
Total flow rate 

(mL/min) 
1 5 20 1 75 
2 7.5 20 1 75 
3 10 20 1 75 
4 12.5 20 1 75 
5 15 20 1 75 
6 5 20 1.25 75 
7 7.5 20 1.25 75 
8 10 20 1.25 75 
9 12.5 20 1.25 75 
10 15 20 1.25 75 
11 5 20 1.5 75 
12 7.5 20 1.5 75 
13 10 20 1.5 75 
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14 12.5 20 1.5 75 
15 15 20 1.5 75 
16 5 20 0.75 75 
17 7.5 20 0.75 75 
18 10 20 0.75 75 
19 12.5 20 0.75 75 
20 15 20 0.75 75 
21 5 20 0.5 75 
22 7.5 20 0.5 75 
23 10 20 0.5 75 
24 12.5 20 0.5 75 
25 15 20 0.5 75 
26 10 20 1 75 
27 7.5 30 1.25 100 
28 7.5 30 0.75 100 
29 12.5 30 0.75 100 
30 12.5 30 1.25 100 
31 7.5 30 0.75 50 
32 7.5 30 1.25 50 
33 12.5 30 0.75 50 
34 10 40 1.5 75 
35 10 40 0.5 75 
36 10 40 1 75 
37 10 40 1 75 
38 15 40 1 75 
39 5 40 0.5 25 
40 7.5 40 0.5 25 
41 10 40 0.5 25 
42 12.5 40 0.5 25 
43 15 40 0.5 25 
44 5 40 0.75 25 
45 7.5 40 0.75 25 
46 10 40 0.75 25 
47 12.5 40 0.75 25 
48 15 40 0.75 25 
49 5 40 1.5 25 
50 7.5 40 1.5 25 
51 10 40 1.5 25 
52 12.5 40 1.5 25 
53 15 40 1.5 25 
54 5 40 1.25 25 
55 7.5 40 1.25 25 
56 10 40 1.25 25 
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57 12.5 40 1.25 25 
58 15 40 1.25 25 
59 5 40 1 25 
60 7.5 40 1 25 
61 10 40 1 25 
62 12.5 40 1 25 
63 15 40 1 25 
64 7.5 40 0.5 125 
65 7.5 40 0.75 125 
66 7.5 40 1 125 
67 7.5 40 1.25 125 
68 7.5 40 1.5 125 
69 15 40 0.5 125 
70 15 40 0.75 125 
71 15 40 1 125 
72 15 40 1.25 125 
73 15 40 1.5 125 
74 5 40 0.5 125 
75 5 40 0.75 125 
76 5 40 1 125 
77 5 40 1.25 125 
78 5 40 1.5 125 
79 12.5 40 0.5 125 
80 12.5 40 0.75 125 
81 12.5 40 1 125 
82 12.5 40 1.25 125 
83 12.5 40 1.5 125 
84 10 40 0.5 125 
85 10 40 0.75 125 
86 10 40 1 125 
87 10 40 1.25 125 
88 10 40 1.5 125 
89 15 40 1 75 
90 7.5 50 1.25 50 
91 12.5 50 0.75 100 
92 7.5 50 0.75 100 
93 7.5 50 0.75 50 
94 7.5 50 1.25 100 
95 12.5 50 1.25 100 
96 12.5 50 1.25 50 
97 7.5 60 1 75 
98 7.5 60 1.5 75 
99 10 60 1 75 
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Table S3. Experimental results for the plasma-catalytic DRM process 

No. 
CO yield 

(%) 
H2 yield 

(%) 
CO2  

conversion (%) 
CH4  

conversion (%) 
Total 

conversion (%) 
Energy cost 
(eV/molec) 

1 8.4 6.5 13.3 20.1 16.7 23.87604731 
2 9.5 7.2 14.8 21.4 18.1 22.02928122 
3 9.9 7.4 15.2 21 18.1 22.02928122 
4 9.3 7 14.5 19 16.75 23.80477552 
5 7.9 6.1 12.8 15.4 14.1 28.2787227 
6 9.8 7.9 11.7 25 17.552 22.71706871 
7 11 8.6 13.3 25.7 18.756 21.25879665 
8 11.3 8.7 13.7 24.9 18.628 21.40487385 
9 10.7 8.3 13.1 22.4 17.192 23.1927635 

10 9.3 7.4 11.3 18.4 14.424 27.64351012 
11 11 9.1 9.7 29.5 17.62 22.62939785 
12 12.1 9.7 11.3 29.8 18.7 21.32245936 
13 12.3 9.9 11.8 28.5 18.48 21.57629816 
14 11.7 9.4 11.2 25.6 16.96 23.510023 
15 10.3 8.5 9.4 21 14.04 28.39957194 
16 6.5 4.9 14.4 15 14.742 27.04721137 
17 7.7 5.6 15.9 16.6 16.299 24.4634634 
18 8.1 5.8 16.3 16.7 16.528 24.12451537 
19 7.6 5.5 15.6 15.2 15.372 25.9387191 
20 6.2 4.6 13.8 12 12.774 31.21418428 
21 4.3 3.1 15.1 9.4 11.281 35.34526993 
22 5.6 3.9 16.6 11.6 13.25 30.09282944 
23 6 4.1 16.9 12.1 13.684 29.13840909 
24 5.5 3.8 16.2 11 12.716 31.35655788 
25 4.1 3 14.3 8.4 10.347 38.53580652 
26 9.8 7.3 15.5 21 18.25 21.84821863 
27 9.8 7.4 11.4 22.5 16.284 27.54674765 
28 6.7 4.7 14 14.2 14.114 31.78200643 
29 6.6 4.6 13.7 14.2 13.985 32.07516902 
30 9.5 7.2 11.2 20.6 15.336 29.24955913 
31 10.9 9.3 23.5 26.2 25.039 35.82980461 
32 14.7 12.5 19.7 37.1 27.356 32.79508984 
33 10.7 9 23 24.3 23.741 37.78874005 
34 15.4 12.8 15.8 37.8 24.6 32.41707236 
35 8.4 6.9 23.3 19.4 20.687 38.54884614 
36 12.6 10.2 20.5 29.3 24.9 32.02650522 
37 12.6 10.2 20.5 29.3 24.9 32.02650522 
38 10.6 8.9 17.8 24.8 21.3 37.43943568 
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39 12.8 12 33.7 29.8 31.087 76.95756877 
40 13.9 12.6 34.9 31.6 32.689 73.18608523 
41 14.2 12.7 35.1 31.7 32.822 72.8895235 
42 13.6 12.2 34.1 30.3 31.554 75.8185948 
43 12.1 11.3 32 27.2 28.784 83.11492288 
44 15.4 14.1 31.8 37.2 34.878 68.59280751 
45 16.5 14.7 33.1 38.5 36.178 66.12803196 
46 16.8 14.7 33.2 38.2 36.05 66.36282775 
47 16.2 14.3 32.3 36.3 34.58 69.18391961 
48 14.7 13.2 30.2 32.8 31.682 75.51227638 
49 21.3 19.3 23.5 57.3 37.02 64.62398542 
50 22.3 19.8 24.8 57.2 37.76 63.3575196 
51 22.5 19.8 25.1 55.5 37.26 64.20772786 
52 21.8 19.2 24.2 52.2 35.4 67.58135424 
53 20.2 18.1 22.3 47.3 32.3 74.06749041 
54 19.7 17.7 26.7 50.9 37.348 64.05644051 
55 20.8 18.3 28 51.3 38.252 62.54261059 
56 20.9 18.3 28.2 50.1 37.836 63.23025532 
57 20.3 17.7 27.3 47.3 36.1 66.27091247 
58 18.7 16.6 25.4 42.8 33.056 72.37354611 
59 17.8 16 29.5 44.2 36.85 64.92211507 
60 18.8 16.6 30.8 45.1 37.95 63.04031463 
61 19 16.6 31 44.3 37.65 63.54262789 
62 18.4 16.1 30 41.9 35.95 66.54742532 
63 16.9 15 28 38 33 72.49636182 
64 2.6 1.5 11.6 7.9 9.121 52.45872032 
65 4.6 3.1 10.9 12.1 11.584 41.30490228 
66 6.2 4.4 9.9 15.9 12.9 37.09116186 
67 7.5 5.6 8.4 19.4 13.24 36.13866979 
68 8.5 6.5 6.4 22.6 12.88 37.14875684 
69 1.3 0.8 9.5 9 9.165 52.20687267 
70 3.2 2.2 9 11.8 10.596 45.15628426 
71 4.8 3.5 8 14.3 11.15 42.91264467 
72 6 4.5 6.6 16.5 10.956 43.67250712 
73 6.8 5.4 4.7 18.3 10.14 47.18698107 
74 1.3 0.7 10.1 4.3 6.214 76.99967622 
75 3.3 2.3 9.4 8.9 9.115 52.49325157 
76 5 3.6 8.3 13.2 10.75 44.50939424 
77 6.3 4.8 6.8 17.2 11.376 42.06012553 
78 7.3 5.8 4.8 20.9 11.24 42.56903808 
79 2.6 1.6 11.3 10.2 10.563 45.29735757 
80 4.5 3.1 10.7 13.5 12.296 38.91314151 
81 6.1 4.3 9.7 16.5 13.1 36.52488458 



9 
 

82 7.3 5.4 8.3 19.1 13.052 36.6592084 
83 8.2 6.3 6.4 21.3 12.36 38.71164952 
84 3 1.8 12 9.8 10.526 45.45658256 
85 5 3.3 11.4 13.6 12.654 37.81223234 
86 6.6 4.6 10.4 17 13.7 34.9252546 
87 7.9 5.7 8.9 20 13.784 34.71241933 
88 8.8 6.7 7 22.8 13.32 35.92162072 
89 11 9 18.1 25.4 21.75 36.66482667 
90 20.5 17.4 26.5 48.4 36.136 41.37805686 
91 8.6 6.8 18.6 23 21.108 35.41873846 
92 8.8 7 19 21.9 20.653 36.19903798 
93 16.5 14 31.6 36.4 34.336 43.5472234 
94 12.2 9.8 15.2 31.1 22.196 33.68258836 
95 11.9 9.5 14.9 30.4 21.72 34.4207519 
96 20.1 16.9 25.9 45.8 34.656 43.14512531 
97 17.5 14.4 26.7 40.3 33.5 35.70716329 
98 20.7 17.2 20.8 50.7 32.76 36.51373535 
99 17.8 14.4 27 41 34 35.18205794 
100 13.2 11 31 30.1 30.397 39.35223772 

4. Data processing  

To normalize the input and output data, the linear function method was used to 
transform the sample data into the interval [0,1]: 

  (1) 

where Xnorm denotes the normalized input parameters and predicted output; X denotes 
the original input parameters and actual output; Xmax and Xmin denotes the maximum 
and minimum value of the data, respectively. The inverse normalization formula for the 
predicted output is: 

  (2) 

where Ynorm denotes the normalized predicted value; Y denotes the inverse normalized 
predicted value; and Ymax and Ymin denote the maximum and minimum values of the 
data, respectively. 

5. Hyperparameters optimization 

Hyperparameters are parameters that are set before the actual learning process begins. 
For an artificial neural network (ANN) model, the number of hidden layers and neurons 
determine the capacity of the network. More layers and neurons can increase the 
model's ability to learn complex patterns but may also increase the risk of overfitting. 
Therefore, it was optimized by the grid search method to find the optimal combination 
within the specified ranges. For the reinforcement learning (RL) model, the 
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hyperparameter selection was optimized by a random search method: 1) Define a search 
space for each hyperparameter; 2) Generate multiple configurations by randomly 
sampling from the defined search space; 3) Train the RL model with each configuration, 
and then evaluate the performance of each configuration using a validation metric (e.g., 
accumulative reward); 4) Choose the configuration that performs best based on the 
evaluation metric, and consider running additional simulations with slight variations 
around the best configuration to refine the results. 

6. Artificial neural network model  

An ANN is a common SL model [3,4]. Indeed, it can be viewed as a sophisticated 
function [5]. The goal of ANN training process is to find optimum weight and bias 
values to reduce the discrepancy between predicted and actual values. The loss function 
at the output serves as an adjustment signal to constantly optimize the weights in the 
direction of the input and will reduce to an acceptable level or within a specified number 
of training epochs (where epoch is defined as one complete cycle of training data being 
processed through the algorithm). Fig. S2 presented the example of this process. The 
MSE of the network decreases continuously during the training and converges at about 
60 epochs. Once the loss function is computed, the partial derivatives of the weights 
are determined by using the chain rule, then we use gradient descent method to update 
the network parameters.  

 
Fig. S2. MSE of the best fitness value in each epoch for ANN 

 
 
 
 
 
 
 

7. Relative significance of different parameters 
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Fig. S3. Importance analysis between reaction performance and four different operating parameters. 

8. Reinforcement learning model 

8.1 Basic concepts 
RL aims to formalize the decision-process based on experience through interaction with 
the world. The decision-maker or learner is called as agent while the environment 
encompasses everything the agent interacts with. At any time step t, the agent observes 
the environment, represented as state st, and it must choose an action a(t), and it also 
receives some rewards, r(t). Through this action, it reaches new state (st+1). The 
objective is to develop a policy π (a|s), in order to maximize the expected cumulative 
future reward. Thus, the reward signal determines which actions are good or bad, 
guiding the agent’s subsequent actions. Fig. S4 shows such a closed-loop operation. In 
the next, we will present fundamental RL concepts and explain how to train the RL 
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controller (RLC) for plasma-catalytic DRM process discussed in this paper. 

 
Fig. S4. Schematic principle of RL. 

8.2 States, actions, and rewards 

The states and actions are defined by the four operating parameters described in the 
main paper. It should be noted that the agent's actions must remain within the defined 
limits when considering the model within investigated range. The reward function is 
employed to guide optimization toward the best possible outcome. In our case, we aim 
to maximize the reaction performance (gas conversion and product yield) while 
minimizing the EC. Therefore, the reward function is determined by the value 
difference between current time step and previous time step during the iteration. 
Specifically, the higher the reaction performance and lower the energy cost, the higher 
is the reward. 

8.3 Actor-critic framework 

The Actor-critic (AC) algorithm is an extension of the idea of gradient bandit methods 
[6]. The actor is responsible for choosing actions, represented by the policy and the 
critic is used to evaluate the quality of actions made by the actor. The working process 
of AC framework is presented in Fig. S7:  
(1) The actor selects an action at by using its policy πθ(at|st) 
(2) According to the current state st, leading to a new state st+1 and a reward rt;  
(3) Based on the reward, the critic compares the value of the new state V(st+1) with the 
previous state V(st) by evaluating the temporal difference (TD) error: 

  (3) 

where γ denotes the discount factor (0,1).  
(4) The critic's value function is updated by gradient descent to minimize TD error: 

  (4) 

where αc and θc are the learning rate and parameters for the critic network, respectively.  
(5) Based on the feedback from the critic, the actor's policy is updated by policy 
gradient [7]: 

  (5) 

The actor updates the policy according to the critic's evaluation, to favor actions that 
are more likely to yield higher rewards: 
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  (6) 

where αa and θ are the learning rate and parameters for the actor network, respectively.  
The process is repeated for step (1) to (5) in the episode, continuously updating the 

actor and critic until convergence or until the end of the episode. 

 
Fig. S5: The actor–critic architecture. 

8.4 Proximal policy optimization algorithm  

Proximal policy optimization (PPO) is a specific algorithm built on the AC framework, 
designed to improve the stability and performance by constraining policy updates 
through clipping. The PPO algorithm updates its critic network similarly to the AC 
algorithm, but it features two types of policies in its actor network, which are called the 
target policy and the current policy, respectively. The current policy is used to generate 
the batch of trajectories (sequences of states, actions, and rewards), and the target policy 
updates the gradient according to these data and updates the current strategy at the end 
of each iteration cycle. The probability ratio rt (θ) measures the divergence between the 
new policy πθ (at|st) and the old one πθ_old (at|st) for a given action by importance 
sampling： 

  (7) 

The TD error is then multiplied by the probability ratio to update the target policy, thus 
transforming the AC algorithm from an On policy to Off policy. The PPO's objective 
function is designed to maximize the expected reward, while keeping the target policy 
close to the current policy. Therefore, the loss function is clipped in the PPO algorithm 
as follows: 

  (8) 

where ε denotes a hyperparameter that determines the clipping range, restricting rt(θ) 
to the interval [1−ε,1+ε]. 

8.5 Network structure for RL agent training 
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Fig. S6. Block diagram representation of the network structure. 

The block diagram of the PPO algorithm is shown in Fig. S8. Each iteration cycle needs 
to generate a batch of training data (N = 200 roll-outs and T = 300 time steps) based on 
the current actor policy to update current weight. At the start of each roll-out, we 
randomly select a new setpoint from the uniform distribution, χsp ~ u [7,8]. In each actor 
training step, we perform 10 times updates of the critic target values, with the critic 
network being updated 1 gradient steps per target update. Based on the optimised crtic 
network, the target actor network is updated with 1 gradient steps. 

Table S4. Detailed parameters of the RL controller 
Parameter Actor network Critic network 
Number of input layers 4 4 
Number of hidden layer  16 16 
Number of output layers 4 1 
Activation function tanh softplus 
Learning rate α 1e-3 1e-2 
Discount γ 0.98 
Scaling factor  0.95 
Clipped factor ε 0.2 

The parameters of the RLC are shown in Table S4. The input layer of the network 
contains one hidden layer with 16 neurons. The output layer of the actor network 
contains 4 nodes, represented by the probability distribution of the four action 
parameters. The activation function for the mean parameter is a tanh function. The 
sampled action values are controlled by clipping in the range of [0,1]. The softplus 
activation function is used for the critic network.  

 

9. Comparative analysis of the predicted and experimental results 
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Fig. S7. Comparison of predicted values with available experimental data, using 7.5 wt% Ni/Al2O3 

for total conversion (a, c, e) and energy cost (b, d, f). 
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Fig. S8. Comparison of predicted values and unseen experimental data, using 7.5 wt% Ni/Al2O3 for 
model generalization evaluation: (a) Total conversion; (b) Energy cost. 

10. RL agents training results 

The maximum training iterations for the agent is 300. Before training, the two RLC will 
generate 1 random number uniformly distributed within their limited interval, and each 
random number will be trained for 200 rounds. Therefore, in each iteration cycle, 200 
data are used to train the critic network. The training results of CO2 conversion and total 
conversion within investigated range are shown in Figure S9. The average return of 
both agents in each iteration converges to the maximum value 23 after about 25 
iterations. 

 
Fig. S9. Trainning curve of CO2 conversion and total conversion RL agent. 

 
 
 
 
 
 
 

11. A visualization figure of the input distribution for the SL model 
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Fig. S10. Prediction results of input distribution including discharge power, CO2/CH4 ratio, and total 
flow rate on the performance of plasma-catalytic DRM process using 7.5 wt% Ni/Al2O3. (a) CO2 
conversion; (b) CH4 conversion; (c) CO yield; (d) H2 yield; (e) Total conversion; (f) EC. 
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