Supplemental Information

Plasma Chemical Looping: Unlocking High-Efficiency

CO² Conversion to Clean CO at Mild Temperatures

Yanhui Long[#], Xingzi Wang[#], Hai Zhang^{*}, Kaiyi Wang, Wee-Liat Ong, Annemie Bogaerts,

Kongzhai Li, Chunqiang Lu, Xiaodong Li, Jianhua Yan*, Xin Tu*, Hao Zhang*

¹State Key Laboratory of Clean Energy Utilization, Zheijang University, Hangzhou 310027, China.

²School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. ³College of Energy Engineering, ZJU-UIUC, Zhejiang University, Hangzhou 310027, China.

⁴Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium.

⁵State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China.

⁶Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK.

⁷Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.

 $*$ The two authors contribute equally to this work.

*Corresponding authors:

zhang hao@zju.edu.cn; xin.tu@liverpool.ac.uk; zhanghai@sjtu.edu.cn; yanjh@zju.edu.cn

Table of contents

Section S1 Experiments .. 3

Figure S1. Schematic of the Plasma Chemical Looping CO² Splitting (PCLCS) setup.

Figure S2. Schematic of the experimental system.

Figure S3. Time-resolved concentrations of the gas products in PCLCS experiments over reduced Ce₁₋ xZr_xO_2 - δ with different Zr content.

Figure S4. Time-resolved concentrations of the gas products in PCLCS experiments without OCs.

Figure S5. CO₂-TPO profile of the reduced $Ce_{0.7}Zr_{0.3}O_{2.δ}$ oxygen carriers.

Figure S6. Redox stability of the PCLCS system over 10 cycles using reduced $Ce_{0.7}Zr_{0.3}O_{2.5}$: (a) CO yield and $CO₂$ conversion; (b) CO purity in the gas product.

Figure S7. (a) XRD patterns and (b) H₂-TPR profiles of fresh and cycled $Ce_{0.7}Zr_{0.3}O_2$. SEM images (1),

TEM images (2), HRTEM images (3-4) and TEM-EDS (5-8) of (c) fresh and (d) cycled $Ce_{0.7}Zr_{0.3}O_2$.

Figure S8. SEM images of the fresh (a) and cycled (b) $Ce_{0.7}Zr_{0.3}O_2$ oxygen carriers.

Figure S9. XRD patterns of various OCs: (a) $Ce_{1-x}Zr_xO_2$ ($x = 0, 0.1, 0.2, 0.3, 0.4, 0.5$), (b) enlarged (111)

reflections of CeO₂, and Rietveld refinement results of XRD patterns: (c) CeO₂, (d) Ce_{0.7}Zr_{0.3}O₂.

Figure S10. (a) H₂-TPR profiles and (b) cumulative H₂ uptake of the prepared $Ce_{1-x}Zr_xO₂ OCs$.

Figure S11. (a)O 1s and (b) Ce 3d XPS spectra of the fresh $Ce_{1-x}Zr_xO_2$ oxygen carriers with different Zr content.

Figure S12. Plasma in situ gas sampling device.

Figure S13. Time-resolved concentrations of the simulated plasma generated gas (4.4 vol% CO₂, 0.6 vol% CO, 0.3 vol% O₂ in Ar) over reduced Ce_{0.7}Zr_{0.3}O₂ at 320 °C in a tube furnace.

Figure S14. O 1s XPS spectra of reduced $Ce_{0.7}Zr_{0.3}O_2$ before and after Ar plasma treatment.

Figure S15. Fraction of electron energy transferred to different channels of CO₂ excitation and ionization, as a function of the reduced electric field (*E/n*).

Table S1. Summary of the PCLCS experimental results over reduced $Ce_{0.7}Zr_{0.3}O_{2.5}$ OCs.

Table S2. Fresh CeO₂ and Ce_{0.7} $Zr_{0.3}O_2$ lattice parameters and refinement factors.

Section S2 DFT Calculations .. 16

Figure S16. Model structures of (a) $CeO₂$ and (b) $Ce_{0.75}Zr_{0.25}O₂$.

Figure S17. Model Structures of (a) $Ce_{0.75}Zr_{0.25}O_2$ 2*2*2 supercell and (b) $Ce_{0.75}Zr_{0.25}O_{2.5}$ 2*2*2 supercell with Vo at $O₂$ site.

Figure S18. Energy potential profile along the $O1 \rightarrow V_{02}$, $O3 \rightarrow V_{02}$ and $O4 \rightarrow V_{02}$ pathways in $Ce_{0.75}Zr_{0.25}O_{2-\delta}$ bulk.

Figure S19. Model Structures of (a) $Ce_{0.75}Zr_{0.25}O_2(111)$ surface, (b) $Ce_{0.75}Zr_{0.25}O_{2.5}(111)$ surface with Vo at O_C site.

Figure S20. Energy potential profile along the $Oa \rightarrow V_{O,C}$, $Ob \rightarrow V_{O,C}$ and $O_c \rightarrow V_{O-C}$ pathways on $Ce_{0.75}Zr_{0.25}O_{2-\delta}(111)$ surface.

Table S3. Computed formation energy of each oxygen vacancy in $Ce_{0.75}Zr_{0.25}O_{2-\delta}$.

Table S4. Computed migration barrier of each oxygen migration to O_2 in $Ce_{0.75}Zr_{0.25}O_{2-\delta}$.

Table S5. Computed formation energy of each oxygen vacancy in $Ce_{0.75}Zr_{0.25}O_{2-\delta}$.

Table S6. Computed migration barrier of each oxygen migration to O_2 in $Ce_{0.75}Zr_{0.25}O_{2-\delta}$.

Table S7. Geometric Properties (explained in Figure 6) of ground state and excited state CO₂^{*} dissolution.

Table S8. Computed adsorption energy of intermediates on Ce_{0.7}Zr_{0.3}O₂ (111) surface.

Section 1. Experiments

Figure S1. Schematic of the Plasma Chemical Looping CO² Splitting (PCLCS) setup.

Figure S2. Schematic of the experimental system.

Figure S3. Time-resolved concentrations of the gas products in PCLCS experiments over reduced Ce1-xZrxO2-δ with different Zr contents.

Figure S4. Time-resolved concentrations of the gas products in PCLCS experiments without OCs.

Figure S5. CO₂-TPO profile of the reduced Ce_{0.7}Zr_{0.3}O_{2-δ} oxygen carrier.

Figure S6. Redox stability of the PCLCS system over 10 cycles using reduced Ce0.7Zr0.3O2-δ: (a) CO yield and CO² conversion; (b) CO purity in the gas product.

Figure S7. (a) XRD patterns and (b) H₂-TPR profiles of fresh and cycled Ce_{0.7}Zr_{0.3}O₂. SEM images (1), TEM images (2), HRTEM images (3-4) and TEM-EDS (5-8) of (c) fresh and (d) cycled Ce0.7Zr0.3O2.

Figure S8. SEM images of the fresh (a) and cycled (b) Ce_{0.7}Zr_{0.3}O₂ oxygen carriers.

Figure S9. XRD patterns of various OCs: (a) $Ce_{1-x}Zr_xO_2$ ($x = 0, 0.1, 0.2, 0.3, 0.4, 0.5)$, (b) enlarged (111) reflections of CeO₂, and Rietveld refinement results of XRD patterns: (c) CeO2, (d) Ce0.7Zr0.3O2.

Figure S10. H2-TPR profiles of the prepared Ce1-xZrxO2 OCs.

Figure S11. (a) O 1s and (b) Ce 3d XPS spectra of the fresh Ce_{1-x}Zr_xO₂ oxygen carriers with different Zr content.

Figure S12. Plasma *in-situ* gas sampling device.

The *in-situ* sampling set was an alumina ceramic tube (inner / outer diameter=1 mm / 2 mm) with a hole of 0.4 mm in diameter in the middle. During the sampling, carrier gas N_2 with a flow rate of 1 L/min was injected into the tube, forming a fast flow (21 m/s) that can extract reactive gas from the chamber into the ceramic tube. In this way, the sampled gas can be *in-situ* diluted and cooled down, thereby "freezing" the chemical composition of the sampled gases by largely inhibiting the secondary reactions during sampling.

Figure S13. Time-resolved concentrations of the simulated plasma generated gas $(4.4$ vol% CO₂, 0.6vol% CO, 0.3vol% O₂ in Ar) over reduced Ce_{0.7}Zr_{0.3}O₂ at 320 °C in a tube furnace.

Figure S14. O 1s XPS spectra of reduced Ce_{0.7}Zr_{0.3}O₂ before and after Ar plasma treatment.

Figure S15. Fraction of electron energy transferred to different channels of CO₂ excitation and ionization, as a function of the reduced electric field (*E/n*). The cross-sections of the electronimpact reactions for the investigated 95 vol% $Ar + 5$ vol% CO_2 are obtained from¹. The *E/n* of the RGA used in PCLCS is around 21-25 Td and is marked in the Figure S14.

The *E/n* was evaluated using the following formulas.

$$
E/n = \frac{U \times T \times k_B}{d \times P} \times 10^{21} \tag{1}
$$

where Td; *U* signifies reactor voltage, V; *d* denotes the discharge gap, m; and P represents atmospheric pressure, 1.01325×10^5 Pa; *k*B corresponds to Boltzmann constant, 1.380649×10⁻²³ $J K^{-1}$; *T* is the reaction temperature, K. The values of *V*, *d* and *T* used in this work are 290-292 V, 0.001 m and 593 K.

Table S1. Summary of the PCLCS experimental results over reduced Ce0.7Zr0.3O2-δ OCs.

	1.0 g OCs^a	1.5 g OCs^a	2.0 g OCs ^a	$1.0g$ OCs ^b
Discharge power (W)	69.0	68.7	69.0	69.0
CO yield (mmol)			2.2	
$CO2$ conversion $(\%)$		8.9		84
Energy efficiency $(\%)$	0.6	135	18.2	6.4

a: gas mixture: pure $CO₂$, 500sccm.

b: gas mixture: 5 vol% $CO₂+95$ vol% Ar, 500 sccm.

Section S2. DFT calculations

S2.1 Model construction, oxygen formation energy and migration barrier calculations of bulk CeO² and Ce0.75Zr0.25O2-δ

The atomic model of pristine $CeO₂$ unit cell is shown in Figure S15(a), the optimized lattice constant is 5.41 Å which is in accordance with the reported experimental 5.41 \AA^2 . The Ce0.75Zr0.25O² unit cell is built by replacing eight Ce atoms by eight Zr atoms, as shown in Figure S15(b). Due to symmetry, the selection of the Zr doping in the CeO₂ unit cell is unique. Subsequently, a $2 \times 2 \times 2$ supercell of Ce_{0.75}Zr_{0.25}O₂ bulk structure is built to avoid artificial interactions induced by the periodic boundary condition. In this model, all 4 non-equivalent oxygen sites depicted in Figure S16 are considered to calculate the oxygen vacancy formation energy (Eo Formation) (Table S3) and the most stable one $(O_2$ site) is chosen for subsequent calculations. The computed lowest $E_{O_formation}$ of $Ce_{0.75}Zr_{0.25}O_{2.5}$ (111) is 2.43 eV, which is much lower than pristine $CeO₂(2.99 eV)$. Upon the formation of one V_O, all adjacent 3 O atoms are considered to migrate to the vacancy site, and the corresponding reaction energies are listed in the Table S4. Then the transition state calculations of the migration these oxygen atoms are performed as shown in Figure S17. The computed lowest migration barrier (0.34 eV) is lower than it is in $CeO₂$ (0.46 eV), suggesting that the oxygen migration is more likely to occur in $Ce_{0.75}Zr_{0.25}O_{2-δ}$ than in CeO₂. It is found that the O atom initially neighboring to three oxygen vacancies is most likely to migrate ($O1 \rightarrow V_{O2}$).

Figure S16. Model structures of (a) $CeO₂$ and (b) $Ce_{0.75}Zr_{0.25}O₂$.

Figure S17. Model Structures of (a) Ce0.75Zr0.25O2 2*2*2 supercell and (b) Ce0.75Zr0.25O2-δ $2 \times 2 \times 2$ supercell with Vo at O₂ site.

Table S3. Computed formation energy of each oxygen vacancy in Ce0.75Zr0.25O2-δ (Eo_Formation = Esubstrate – Esubstrate_vo + EO, where Esubstrate, Esubstrate_vo and EO represents the total energy of the entire system, the total energy of the system with O vacancy and the energy of O in free state vacuum).

Table S4. Computed migration barrier of each oxygen migration to O₂ in Ce_{0.75}Zr_{0.25}O_{2-δ} (Migration barrier Em: same as the activation barrier (general) calculated $E_m = E_{TS} - E_{IS}$, where E_{TS} indicates the total energy of the transition state).

Figure S18. Energy potential profile along the O1→V_{O2}, O3→V_{O2} and O4→V_{O2} pathways in $Ce_{0.75}Zr_{0.25}O_{2-δ} bulk. Among these, the $O1 \rightarrow V_{O2}$ is the most favorable one.$

S2.2 Model construction, oxygen formation energy and migration barrier calculations of Ce0.75Zr0.25O2-δ (111) surface

When it comes to the reaction substrate, the research of Skorodumova et al.³ suggested that the surface energy of the $CeO₂(111)$ is low than that of $CeO₂(110)$ and $CeO₂(100)$ theoretically and experimentally, indicating that $CeO₂$ (111) surface is the most stable one. The atomic model of $CeO₂$ (111) and $Ce_{0.75}Zr_{0.25}O₂$ (111) surface can be directly cleaved from the CeO₂ and Ce_{0.75}Zr_{0.25}O₂ bulk model. Subsequently, the 4-layer 2×2 surface models of both CeO₂ (111) and Ce_{0.75}Zr_{0.25}O₂ (111) are used to avoid artificial interactions induced by the periodic boundary condition as shown in Figure S18. During the DFT calculation, the two bottom layers are restricted while the top two are relaxed. In this model, there are four nonequivalent surface oxygen atom sites, namely O_A, O_B, O_C and O_D. The computed Eo Formation of all sites are lower than that of the pristine $CeO₂(111)$ (2.56 eV). Then we move on to study the migration of adjacent sub-surface oxygens to O_D vacancy sites, which hold the lowest oxygen vacancy formation energy of 2.08 eV (see in Table S5). The corresponding reaction energies of all possible O migration pathways are listed in Table S6, which the location of Oa, Ob, and Oc shown in Figure S18(b). The energy potential surfaces of the migration pathways are further studied as shown in Figure S19. The most favorable pathway ($Oc \rightarrow O(D)$) has a very low barrier of 0.376 eV, which is much lower than $CeO₂$ (111) surface (0.47 eV).

Figure S19. Model Structures of (a) Ce0.75Zr0.25O2 (111) surface, (b) Ce0.75Zr0.25O2-δ (111) surface with Vo at Oc site.

Vacancy Site	$E_{O_Formation}(eV)$		
O A	2.50		
O B	2.29		
O C	2.29		
- D 0	2.08		

Table S5. Computed formation energy of each oxygen vacancy in Ce0.75Zr0.25O₂₋δ.

Table S6. Computed migration barrier of each oxygen migration to O₂ in Ce0.75Zr0.25O2-δ.

Migration pathway	E_m (eV)
$Oa \rightarrow V_0 c$	0.41
$Ob \rightarrow V_0$ c	0.39
$Oc \rightarrow V_0 c$	0.23

Figure S20. Energy potential profile along the Oa→VO_D, Ob→VO_D and Oc→VO_D pathways on Ce0.75Zr0.25O2- δ (111) surface. Among these, the Oc \rightarrow V_{O_D} is the most favorable one.

S2.3 The adsorption of excited state CO_2^* **on the** $Ce_{0.75}Zr_{0.25}O_{2.6}$ **(111) surface**

The adsorption of excited state CO_2^* on $Ce_{0.75}Zr_{0.25}O_{2.5}(111)$ surface is firstly searched on the base of the optimal ground state $CO₂$ adsorption, which turns out to be a linear geometry adsorption (Figure 6). The O vacancy has been proved to be the active site of the $CO₂$ dissolution reaction. Thus, the excited state CO_2^* is manually set to substitute the optimized ground state CO² adsorption site by replacing the C atoms and two O atoms respectively, with the geometry bent structure of excited state CO_2^* contained. The substrates are totally relaxed to reach the optimal structure. The reaction mechanism is well illustrated in Figure 6 with geometric properties listed in Table S7.

Table S7 Geometric Properties (explained in Figure 6) of ground state and excited state CO₂^{*} dissolution.

	$dc-01$	dc -02	$dO2-Zr$	$dc-zr$	α OCO
$IS-VO-e$	1.26	1.26	2.83	$\overline{}$	118.27
$IS-Vo-g$	1.17	1.17	2.78	$\overline{}$	178.40
$TS-Vo-g$	1.36	1.89	$\overline{}$	2.71	$\overline{}$
$FS-VO - g$	1.15	2.72	-	2.58	-

S2.4 The adsorption of O_2/O **and** CO_2 **on the** $Ce_{0.75}Zr_{0.25}O_{2-\delta}$ **(111) surface**

We've calculated the adsorption energy of O_2 and O to the active site (the oxygen vacancy) and found that both O_2 and O are more prone to adsorption than CO_2 (Table S8).

Table S8 Computed adsorption energy of intermediates on Ce0.7Zr0.3O₂ (111) surface

REFERENCES

1. https://fr.lxcat.net/home/.

2. Pugachevskii, M. A.; Chibisov, A. N.; Mamontov, V. A.; Kuzmenko, A. P., Antioxidant Properties of Stabilized CeO² Nanoparticles. *physica status solidi (a)* **2021,** *218* (20).

3. Skorodumova, N. V.; Baudin, M.; Hermansson, K., Surface properties of CeO₂ from first principles. *Physical Review B* **2004,** *69* (7).