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Machine learning-based prediction and
optimization of plasma-based conversion of CO2

and CH4 in an atmospheric pressure glow
discharge plasma†

Jiayin Li, *a,b Jing Xu,c Evgeny Rebrov, d,e Bart Wanten a and
Annemie Bogaerts *a,b

We developed a uniform, hybrid machine learning (ML) model, integrating both supervised learning (SL)

and reinforcement learning (RL), based on several datasets across different CO2 and CH4 conversion reac-

tions in an atmospheric pressure glow discharge plasma, to advance plasma-based CO2 and CH4 conver-

sion. Given its complex and dynamic characteristics, the SL model employs artificial neural networks

(ANN) to predict performance, demonstrating excellent alignment with the entire experimental data. The

RL model subsequently provides the optimization protocol, which prioritizes coarse adjustments to high-

impact parameters then fine-tuning low-impact ones, to obtain the best performance. Furthermore, we

also investigated the simultaneous optimization of the syngas ratio (SR) and energy cost (EC), resulting in

a maximum SR of 2.12, combined with a minimum EC (syngas) of 2.04 eV per molecule (i.e., 352 kJ

mol−1), which is close to the best experimental data obtained for further methanol synthesis, when

accounting for suitable weighting between SR and EC in the model. Our study emphasizes the impor-

tance of interpreting ML results based on prior knowledge and human analysis. We hope this work

encourages a more critical view on the application of ML when studying plasma-based gas conversion.

Green foundation
1. This work presents a uniform and hybrid machine learning (ML) model across different CO2 and CH4 conversion reactions in an atmospheric pressure
glow discharge plasma, with high accuracy and adaptivity.
2. Our supervised learning (SL) model can accurately predict the performance in the entire experimental dataset. Our reinforcement learning (RL) model can
simultaneously maximize the syngas ratio and minimize energy cost, accounting for specific weighting between them.
3. ML is promising for prediction, within the dataset domain, but may give different optimization outcomes than those of the experiments across a wider
dataset. Therefore, more data are expected to become available to enhance the applicability of ML models in the future.

1. Introduction

Carbon dioxide (CO2) and methane (CH4) are the two major
greenhouse gases that significantly contribute to climate

change.1 Currently, there is an urgent need for the conversion
of CO2 and CH4 into value-added chemicals or fuels.2,3 The
basic reaction is known as the dry reforming of methane
(DRM), yielding valuable syngas (i.e., CO and H2, theoretically
in a 1 : 1 ratio), as shown in eqn (1):

CH4 þ CO2 ! 2COþ 2H2; ΔH0 ¼ 247:3 kJ mol�1 ð1Þ
Syngas is an important mixture of reactants used to

produce small organic compounds, which depend on the
syngas ratio (SR, i.e., H2/CO ratio).4,5 For example, an SR of 2 is
optimal for the Fischer − Tropsch process to create carbon-
neutral fuels and lubricants when using a cobalt catalyst,6

while an SR of around 1 is also suitable when using an iron
catalyst,7 but in general the optimal SR can vary between 1.7
and 2.15.8 Also, an SR of 2 is considered as optimal for produ-
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cing methanol, which facilitates a “methanol economy”9 due
to its higher energy density (compared to H2), to be used in
polymer chemistry and direct methanol fuel cells.9,10

Many technologies are being investigated for CO2 and CH4

conversion.11,12 One of the innovative technologies gaining
increasing attention is plasma technology. Plasma is a (par-
tially) ionized gas, and the electrons can generate various reac-
tive species, such as atoms, ions, radicals, and molecules in
both vibrational and electronic excited states. This reactive
chemical cocktail allows stable gas molecules like CO2 and
CH4 to be activated and dissociated at mild temperature and
pressure.13 Furthermore, plasma is generated with electricity,
and can be immediately switched on and off, thus enabling its
integration with the fluctuating nature of renewable energy
sources. Indeed, a recent techno-economic analysis demon-
strated that the energy cost (EC) of plasma-based CO2 conver-
sion is 43% less than that for electrolysis and conventional
CO2 conversion methods, achieving additional CO production
from O2 and enhanced CO2 conversion using a post-plasma
carbon bed.14

Various plasma types have been studied for DRM.8,15–22 To
be competitive with traditional technologies, the EC should be
below the threshold of 4.3 eV per molecule, defined by Snoeckx
and Bogaerts.11 To achieve this, warm plasmas, like gliding arc,
microwave, spark discharge and atmospheric pressure glow dis-
charge (APGD), have shown promising results. Wanten et al. used
a confined APGD (cAPGD) plasma reactor for DRM, and were able
to convert 64% of CO2 and 94% of CH4, at an EC of 3.5–4 eV per
molecule, but they reached an SR of only 0.2–0.7.23 To further
reduce the EC, Maerivoet et al. investigated oxidative CO2 reform-
ing of methane (OCRM) in the same cAPGD, and reported that O2

addition to the CO2/CH4 mixture could allow an even lower EC of
2 eV per molecule to be reached.24 However, the SR was still
limited to ca. 0.8, making it difficult to produce methanol from
syngas. To increase the SR, H2O could act as an additional source
for H2.

25 Therefore, Wanten et al. also investigated so-called bi-
reforming of methane (BRM) in the cAPGD, and found that
adding H2O to the CO2/CH4 mixture increases the SR to 2,
although it negatively affects the EC, which reaches a minimum
value of 3.9 eV per molecule.26 Therefore, combining an optimal
SR with low EC in APGD plasma reactors is really challenging due
to many interacting parameters that are inherent to the complex-
ity of plasma-based gas conversion systems.

To overcome these challenges, machine learning (ML)
methods present a novel tool to efficiently investigate complex
scientific phenomena.27 Generally, ML can be mainly divided
into several categories: a supervised learning (SL) model estab-
lishes a relationship between the input parameters and the
desired output performance for static prediction, while a
reinforcement learning (RL) model is a goal-oriented method,
which involves a decision-making process, by mapping actions
for dynamic optimization. An unsupervised learning (UL)
model involves training models on unlabeled data to discover
hidden patterns, while a self-supervised learning model,
which is a subset of UL, generates labels automatically from
the data, enabling models to learn robust representations.

These methods are gaining significant traction across diverse
applications, including use in plasma medicine,28–30 chemical
synthesis,31–34 and emissions control,35 and they have also
started to be applied in plasma-based gas conversion, specifi-
cally in dielectric barrier discharge (DBD) plasmas.36–40 For
instance, Liu et al. accurately predicted the reaction perform-
ance in plasma-based CH4 conversion to hydrocarbons using
an artificial neural network (ANN) model,36 while Zhu et al.
investigated how various operating parameters affect the per-
formance of CH3OH oxidation.37 Similarly, Wang et al.
revealed a relationship between process parameters and per-
formance targets in the plasma-based DRM to oxygenates.38

Recently, Cai et al. developed a hybrid SL model to identify the
optimal conditions for maximum energy efficiency in plasma-
catalytic DRM.39 We went one step further, and developed the
very first RL model for process optimization of plasma-catalytic
DRM.40 The reason that all these ML approaches were applied
to DBD plasmas is because of the much larger datasets avail-
able. However, DBD plasmas exhibit limited performance com-
pared to so-called warm plasmas; for instance, their EC is
often excessively high.41,42

Optimization of the operating conditions of plasma-based
CO2 and CH4 conversion typically leads to trade-offs among
conflicting objectives (e.g., higher conversion vs. higher SR vs.
higher energy efficiency11,23,24,26) and traditional trial-and-
error efforts might have reached their limit. To achieve a cost-
effective plasma-based gas conversion system with optimal
reaction performance, a thorough understanding is needed on
how the interconnected operating parameters can be dynami-
cally optimized. To our knowledge, no studies have considered
the prediction and optimization of plasma-based CO2 and CH4

conversion in warm plasmas, such as an APGD, by means of
an ML method. Typically, optimizing the chemical perform-
ance using an ML approach requires a consistent, relevant,
and sufficient amount of data for accurate prediction.
However, experimental data for warm plasmas (like APGD) are
limited in each separate study. Moreover, experimental data
from different groups cannot be directly compared, as they are
evaluated under different reaction conditions using different
setups.43 Therefore, developing a uniform ML model for warm
plasmas (such as an APGD) may be challenging, due to the
lack of available datasets.

In previous work, the PLASMANT group investigated in
detail DRM,23 OCRM24 and BRM26 in a cAPGD plasma reactor.
These three reactions are important for the simultaneous con-
version of CO2 and CH4, while the addition of O2 and H2O
(i.e., OCRM and BRM, respectively) helps to improve the reac-
tion performance, as explained above. Hence, they can be con-
sidered as two extra input parameters in ML model develop-
ment, thus enlarging the size of the available dataset.
Moreover, the latter allows us to test the applicability of ML
across widely varying datasets. In addition, the reactor design
for the DRM, OCRM and BRM reaction was the same, although
a slightly upgraded version of the reactor was used for BRM,
using a movable cathode to allow lower ignition voltages.
Changing the interelectrode distance changes the residence
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time of the molecules in the plasma, but this was found to
have no impact on the performance when compared with the
fixed cathode case (i.e., the APGD reactor used in DRM and
OCRM) within a sufficiently wide range. Therefore, the data
collected in BRM, together with the DRM and OCRM reac-
tions, can be used for developing a consistent ML model.
Compared with an SL model, an RL model is more suitable for
simultaneous multi-objective optimization, through its
dynamic and interactive learning capabilities.

In the present work, we therefore design a uniform, hybrid
ML (SL + RL) model for both prediction and optimization of
plasma-based conversion of CO2 and CH4 in a cAPGD reactor,
particularly aiming to increase the SR, making it useful for
further methanol production. Specifically, we developed the SL
(prediction) model for the reaction performance (i.e., CO2 and
CH4 conversion, H2 and CO yield, SR, and EC) using an artifi-
cial neural network (ANN) algorithm. Furthermore, we
designed an RL model to simultaneously maximize the SR and
minimize the EC, using the SL model as a simulation environ-
ment for learning interactions. This work provides new
insights into multi-objective optimization in warm plasma
reactors for gas conversion applications.

2. Methodology

In this work, we used two ML methods, i.e., SL and RL, to
develop a model for plasma-based conversion of CO2 and CH4

in an APGD reactor, as schematically illustrated in Fig. 1, and
elaborated on in detail in subsequent sections. All abbrevi-
ations relevant to these methods can be found in the ESI
(section 1, Table S1†).

2.1 Data collection and processing

Fig. S1 in the ESI (section 2†) shows the experimental setup of
the cAPGD reactor for CO2 and CH4 conversion, which is
described in detail in ref. 23, 24, and 26. By varying the input
parameters, including the CO2/CH4 ratio, O2 fraction, H2O frac-
tion, total flow rate and plasma power, the output parameters,
i.e., CO2 conversion, CH4 conversion, CO yield, H2 yield, SR
and EC, were collected as the dataset. To allow a fair investi-
gation among the DRM, OCRM and BRM reactions, the EC
was expressed in eV per molecule syngas produced (i.e. CO and
H2 combined, with the SR under the corresponding con-
ditions), because syngas serves as the product shared among
all reactions. We investigated 84 distinct reaction conditions to

Fig. 1 Overview of the ML model for plasma-based CO2 and CH4 conversion in an APGD reactor. The SL (prediction) model acquires a function f
(x), mapping inputs x to outputs y, while the RL (optimization) model involves mapping states to actions, based on policy (π). Abbreviations: at
(action), rt (reward), st and st+1 (state).
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cover the key metrics of the reaction performance, and also to
ensure stable and reliable plasma conditions. The collected
data, listed in Tables S1 and S2,† were used for training the
ML model. Before the model development, all datasets were
pre-processed by a min-max normalization method. The com-
plete dataset was divided into a 75% training subset and a
25% testing subset.

To mitigate risks of overfitting and enhance the model’s
generalizability beyond the training data, we adopted a 5-fold
cross-validation method due to the limited size of the dataset.
This technique involves randomly dividing the data into five
distinct subsets, iteratively training the model on four subsets
and testing (validating) it on the fifth. Each subset serves as
the test (validation) set exactly once across the five iterations,
ensuring evaluation of performance consistency.

2.2 Description of the SL model: an artificial neural network
(ANN)

An ANN, a well-established algorithm used in SL, was
employed to predict the performance of plasma-based conver-
sion of CO2 and CH4 across diverse operating conditions, lever-
aging its demonstrated capacity to model complex non-linear
relationships.38 The ANN architecture comprises intercon-
nected artificial neurons with adjustable weights, which act as
learnable parameters to drive the model’s training. Generally,
the model consists of multiple layers, where each node
encodes specific features of the input–output relationships. In
this study, a fully connected architecture was adopted. The five
predefined operating parameters served as inputs, while the
six target performance metrics were designated as outputs.

To refine the neural network parameters, we employed the
backpropagation (BP) algorithm, leveraging gradient descent,
as indicated in ref. 44. The ReLU activation function was
employed to address complex nonlinear relationships and
mitigate gradient vanishing issues. For loss computation, the
mean squared error (MSE) metric was selected to enhance the
efficiency of gradient descent, promoting rapid convergence
and stability in regression tasks. Furthermore, the perform-
ance of the model was rigorously assessed using two comp-
lementary metrics: MSE, which quantifies the prediction error
magnitude, and the coefficient of determination (R2), which
evaluates the proportion of variance explained by the model.
These metrics were calculated for both training and testing
phases to ensure robustness and generalizability:45

MSE ¼ 1
n

Xn
i¼1

ðyi � ŷiÞ2 ð2Þ

R2 ¼ 1�
Pn
i¼1

ðyi � ŷiÞ2

Pn
i¼1

ðyi � ȳÞ2
ð3Þ

where yi is the actual value, ŷi is the predicted value and ȳ is
the mean of the actual value. In general, achieving high model
accuracy typically requires maximizing R2 and minimizing the

MSE.46 To optimize the ANN model, we utilized a grid search
strategy for hyperparameter tuning—a method well-suited for
systematically exploring complex parameter spaces in multi-
layered architectures.47 After identifying the optimal hyper-
parameters (see MSE trends illustrated in Fig. S2†), the fina-
lized ANN configuration is presented in detail in Table 1.

2.3 Algorithm comparison

To identify the optimal predictive model, two other ML algor-
ithms, namely support vector regression (SVR) and regression
trees (RT), were selected for comparison. SVR, a robust meth-
odology for nonlinear regression, constructs hyperplanes in
high-dimensional feature spaces, offering distinct advantages
for scenarios involving limited sample sizes, nonlinear
relationships, or complex dimensionality. The RT model,
another classical supervised regression algorithm, operates by
iteratively partitioning the dataset through feature-based
splits, guided by statistical significance, until predefined ter-
mination conditions are satisfied. The hyperparameters of the
models are shown in Table. S4.†

2.4 Methods of significance analysis

The linear relationships between input variables were assessed
using Pearson’s correlation coefficient (PCC), a metric ranging
from −1 (indicating a negative correlation) to +1 (indicating a
positive correlation). The PCC is defined as:48,49

ρxy ¼
P ðxi � xmeanÞðyi � ymeanÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi � xmeanÞ2

P ðyi � ymeanÞ2
q ð4Þ

where ρxy represents the PCC value between the input feature
and the output target, xmean indicates the average of the input
feature x and ymean indicates the average of the output target y,
respectively. By analyzing the magnitude of the PCC values
(i.e., their absolute values), the relative importance of the five
operating parameters on the chemical performance was
evaluated.

2.5 Description of the RL model: proximal policy
optimization (PPO)

SL methods learn to predict patterns, but they do not inher-
ently execute actions or make decisions. In contrast, RL
models learn an optimal decision policy by actively interacting

Table 1 Detailed parameters of the ANN model

Parameter ANN model

Number of input layers 5
Number of hidden layer 1 90
Number of hidden layer 2 55
Number of hidden layer 3 35
Number of hidden layer 4 41
Number of output layers 6
Activation function ReLU
Optimizer lbfgs
Loss function MSE
Evaluation indicator MSE and R2
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with a dynamic environment to maximize the desired out-
comes. Indeed, the RL model can be treated as a feedback-
driven system where the learner’s actions directly shape sub-
sequent environmental states, as shown in Fig. 1.50 Within
this paradigm, the agent (the learning entity) interacts with
the environment (the external system), observing the state of
environment (st), choosing an action a(t ) to reach a new state
(st+1), and receiving rewards r(t ) that evaluate the action’s
efficacy. These rewards guide the agent’s behavior, enabling it
to iteratively refine its policy, π(a|s), to maximize long-term
rewards.

In this work, we designed such RL agents, to identify the
optimal SR and minimum EC by dynamically adjusting five
operational parameters. The agent was trained using the PPO
algorithm built on the AC framework (see Fig. S3†), which per-
forms effectively within the continuous data space.51 More
details can be found in our previous work.40 By employing tra-
jectory visualization techniques, we analyzed the agent’s
decision-making process to derive optimal performance regu-
lation strategies. The detailed parameters of the RL model are
listed in Table S5.†

3. Results
3.1 Evaluation of SL models

We first calculated the R2 and MSE values for the training and
test datasets separately, to check for overfitting, as shown in
Tables 2 and 3. The average R2 values of the SL models in the
training dataset were found to be 0.99074 for ANN, 0.992938
for RT and 0.975533 for SVR, respectively. The average R2

values of the SL models in the test dataset were found to be
0.976285 for ANN, 0.870211 for RT and 0.944651 for SVR,
respectively. For MSE, its average values in the training dataset
were identified as 0.0005765 for ANN, 0.001974 for RT and
0.001522 for SVR, respectively. In the test dataset, its average

values were identified as 0.002304 for ANN, 0.008738 for RT
and 0.003072 for SVR, respectively. The R2 and MSE values in
the training dataset are very close to those in the test dataset
so the SL models are not overfitting. On the other hand, the
performance of these three algorithm models followed the
order ANN > SVR > RT; thus, the ANN model was then chosen
as the SL algorithm for the prediction model.

The ANN model’s performance was evaluated by comparing
its predicted values with the actual (experimental) values for
the performance (conversion, yield, SR and EC), as shown in
Fig. 2 and 3. The ANN prediction model shows very good accu-
racy through the entire dataset, achieving an R2 value consist-
ently higher than 0.96. This demonstrates that the ANN model
is able to predict the plasma-based conversion of CO2 and
CH4, providing a robust basis for further developing the RL
model. To further validate the ANN model’s generalizability,
i.e., the robustness and adaptability of the model, we per-
formed additional experiments using new operating para-
meters within the investigated ranges (CO2/CH4 ratio = 1.9,
H2O fraction = 0%, plasma power = 89 W, total flow rate = 1 L
min−1 and O2 fraction = 0–15%). As presented in Fig. S4,† the
model’s predictions on unseen data align well with the actual
(experimental) data, thereby confirming its reliability.

3.2 Relative importance of the input parameters, and
relationship with the output parameters

The relative importance of each input parameter and the corre-
lation between operating parameters and performance para-
meters are demonstrated in Fig. 4 and Table 4. The most
important input parameter is the total flow rate, at least for
CO2 conversion (50.1%), CH4 conversion (40.1%) and CO yield
(39.6%). Furthermore, the O2 fraction is the most important
parameter for EC (45.8%), while the H2O fraction mostly influ-
ences the SR (26.9%), and the CO2/CH4 ratio mostly affects the
H2 yield (53.7%). Finally, the plasma power has only a minor

Table 2 R2 values for the training and test datasets

R2 of dataset Model CO2 conversion CH4 conversion CO yield H2 yield Syngas ratio Energy cost

Training dataset ANN 0.991935 0.994513 0.985646 0.986781 0.998768 0.986781
RT 0.993787 0.998650 0.999061 0.988424 0.996950 0.980756
SVR 0.966463 0.972702 0.965130 0.954324 0.999210 0.995366

Test dataset ANN 0.961925 0.955161 0.975608 0.983460 0.998026 0.983534
RT 0.819299 0.758787 0.829638 0.911105 0.982471 0.919968
SVR 0.921932 0.919021 0.900590 0.949489 0.997871 0.979004

Table 3 MSE values for the training and test datasets

MSE of dataset Model CO2 conversion CH4 conversion CO yield H2 yield Syngas ratio Energy cost

Training dataset ANN 0.000413 0.000187 0.000487 0.000477 0.000336 0.001559
RT 0.000296 0.000064 0.000047 0.000462 0.000833 0.010143
SVR 0.001600 0.001297 0.001757 0.001822 0.000216 0.002442

Test dataset ANN 0.002189 0.002203 0.002101 0.002215 0.000506 0.004607
RT 0.007287 0.006979 0.007470 0.003807 0.004496 0.022393
SVR 0.003148 0.002343 0.004359 0.002163 0.000546 0.005875
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impact on all performance parameters, except for the SR.
These results will be discussed in section 4 below.

3.3 Evaluation of the RL model

The investigated range of the five input parameters is as
follows: CO2/CH4 ratio (0.33–5.67), O2 fraction (0–15%), H2O
fraction (0–45%), power (71.7–400.4 W) and total flow rate

(0.5–3 L min−1). The typical RL agent training results are
shown in Fig. S5 of the ESI.† All RL calculations (i.e., to obtain
the optimal performance corresponding with the actions of
agents) were performed within the investigated range.

Fig. 5 presents the testing curves of the RL models for CO2

and CH4 conversion, including their corresponding actions
within the range of input parameters. The latter represents

Fig. 2 Predicted data versus experimental results (R2 plot). (a) CO2 conversion; (b) CH4 conversion; (c) CO yield; (d) H2 yield; (e) syngas ratio; and (f )
energy cost.
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how the input parameters affect the evolution of the CO2 and
CH4 conversion towards their optimal values. Fig. 5(a) and (b)
illustrate that the CO2 conversion can reach its maximum
value of 75.7% when the total flow rate first reaches its lower
boundary (i.e. 0.5 L min−1), and then the plasma power
reaches its upper boundary (i.e. 400.4 W), followed by the O2

fraction reaching its upper boundary (i.e. 15%). It is interesting

to note that the CO2/CH4 ratio first increases and then
decreases to an optimal value (the reason will be further dis-
cussed in section 4.2).

On the other hand, the CH4 conversion can reach its
maximum value of 98% when the total flow rate first reaches
its lower boundary (i.e. 0.5 L min−1), followed by the CO2/CH4

ratio and O2 fraction reaching their upper boundary values (i.e.

Fig. 3 Comparison of predicted values with available experimental data of plasma-based CO2 and CH4 conversion. (a) and (b) CO2/CH4 ratio
(plasma power = 96 W, total flow rate = 1 L min−1, O2 and H2O fraction = 0%); (c) and (d) H2O fraction (plasma power = 300 W, total flow rate = 3 L
min−1, CO2/CH4 ratio = 1, O2 fraction = 0%); (e) and (f ) O2 fraction (plasma power = 96 W, total flow rate = 1 L min−1, CO2/CH4 ratio = 1.9, H2O frac-
tion = 0%).
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5.67 and 15%). As is clear from the relative importance in
Table 4, the most important factor for the CO2 and CH4 con-
version is the total flow rate, so the agent first optimizes this
parameter. Because the values of relative importance of
plasma power (14.2%) and O2 fraction (15.0%) are very close to
each other for the CO2 conversion, the agent optimizes them
as the following (second and third) parameters. The optimal
policy with factors of similar relative importance (plasma
power, O2 fraction and CO2/CH4 ratio) is also applied to the
CH4 conversion.

A similar regulation policy can be found in Fig. 6, which
presents the time step-dependence of the CO and H2 yield,
with the corresponding actions. Fig. 6(a) shows that the CO
yield can reach its maximum value of 71% when the total flow
rate first reaches its lower boundary (i.e. 0.5 L min−1), followed
by the O2 fraction and CO2/CH4 ratio reaching their upper
boundary values (i.e. 15% and 5.67) (Fig. 6(b)), respectively. On
the other hand, the H2 yield can reach its maximum value of
65% when the CO2/CH4 ratio first reaches its lower boundary
(i.e. 0.33), followed by the total flow rate and O2 fraction reach-
ing their lower boundary values (i.e. 0.5 L min−1 and 0%)
(Fig. 6(d)). The two less important factors, i.e. plasma power
and H2O fraction, can reach their upper boundary and lower
boundary values (i.e. 400.4 W and 0%), respectively.

The testing curve of the RL models for the SR and EC, with
the corresponding actions, is presented in Fig. 7. From
Fig. 7(a) and (b), we can see that the SR can reach its
maximum value of 2.2 when the H2O fraction first reaches its
upper boundary (i.e. 45%), followed by the CO2/CH4 ratio
reaching its lower boundary (i.e. 0.33), while the O2 fraction is
the last to reach its lower boundary (i.e. 0%). The EC can reach
its minimum value of 1 eV per molecule when the O2 fraction
reaches its upper boundary (i.e. 15%), followed by the CO2/
CH4 ratio reaching its lower boundary (i.e. 0.33). Note that the
H2O and O2 fractions yield a trade-off between the SR and EC.

In addition to separately investigate the SR and EC, we need
a comprehensive understanding of the effect of all operating
parameters for optimizing both performance metrics of

Fig. 4 Relative importance of the five different operating parameters
for determining the CO2 and CH4 conversion, CO and H2 yield, SR and
EC.

Table 4 Relative importance of the different input parameters for determining the various output parameters

Output 1st IF 2nd IF 3rd IF 4th IF

CO2 conversion Flow (50.1%) O2 frac. (15.0%) Power (14.2%) Ratio (13.1%)
(−) (+) (+) (↗↘)

CH4 conversion Flow (40.1%) O2 frac. (17.0%) Power (16.6%) Ratio (16.0%)
(−) (+) (+) (+)

CO yield Flow (39.6%) O2 frac. (28.0%) Ratio (21.9%) H2O frac. (5.4%)
(−) (+) (+) (−)

H2 yield Ratio (53.7%) Flow (16.4%) O2 frac. (15.8%) H2O frac. (9.5%)
(−) (−) (−) (−)

Syngas ratio H2O frac. (26.9%) Ratio (25.2%) Power (23.9%) Flow (19.8%)
(+) (−) (−) (↗↘)

Energy cost O2 frac. (45.8%) Ratio (38.5%) Flow. (12.4%) H2O frac. (1.7%)
(−) (+) (+) (+)

Abbreviations used in the table: important factor (IF), O2 fraction (O2 frac.), H2O fraction (H2O frac.), CO2/CH4 ratio (Ratio), total flow rate (Flow)
and plasma power (Power). Positive factor and negative factor are represented by (+) and (−), respectively. When the output parameter first
increases and then decreases with rising input parameters, it is indicated as (↗↘).
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plasma-based CO2 and CH4 conversion. To account for the
practical need in applications, we present in Fig. 8 the super-
position of SR and EC for different weights (i.e., relative impor-

tance of SR vs. EC, equal to 0.5, 1 and 2, as an example), with
the corresponding actions. The convergence trends of SR and
EC are similar, but their optimal values depend on the weights

Fig. 5 Testing curve of the RL models for (a) CO2 conversion and (c) CH4 conversion, by plotting them against the time step, as well as the corres-
ponding actions (b) and (d). The y-axis representing the input parameters (for (b) and (d)) shows the normalized values, with 0 and 1 being the lower
and upper boundary values, respectively.

Fig. 6 Testing curve of the RL models for (a) CO yield and (c) H2 yield, by plotting them as a function of time step, as well as the corresponding
actions (b) and (d). The y-axis representing the input parameters (for (b) and (d)) shows the normalized values, with 0 and 1 being the lower and
upper boundary values, respectively.
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(for weight = 0.5, SRmax = 1.33 and ECmin = 1.04 eV per mole-
cule; for weight = 1, SRmax = 1.76 and ECmin = 1.23 eV per
molecule; and for weight = 2, SRmax = 1.88 and ECmin = 1.36 eV
per molecule). Hence, at a higher weight of SR vs. EC, a higher
maximum SR and a higher minimum EC are reached, and vice
versa, at a lower weight of SR vs. EC, a lower maximum SR and
a lower minimum EC are reached. With increasing weight, the
optimal H2O fraction increases, while the optimal O2 fraction
decreases, which corresponds with the results of the separate
SR and EC optimization, and it is in line with our expectations,
because the H2O fraction is mainly important for optimizing
the SR, while the O2 fraction is more important for optimizing
the EC. Moreover, the total flow rate can reach its upper
boundary and the CO2/CH4 ratio can reach its lower boundary
for the optimization of all weighted superpositions.

4. Discussion
4.1 Optimal policy developed by the RL model

Through an analysis of the relative importance of input para-
meters in governing the output parameters (Table 4), we
derived two optimization strategies, summarized in Table 5.
First, the agent’s actions on the input parameters correspond
to their observed directional influence on the output para-
meters. To maximize the reaction performance, parameters
with positive correlations reach their upper bounds, while
parameters with negative correlations reach their lower
bounds. Parameters exhibiting non-monotonic relationships

(i.e., those where performance first increases (decreases) and
then decreases (increases)) are optimized at intermediate
values. To minimize the EC, the O2 fraction should reach its
upper bound and the H2O fraction should reach its lower
bound, since the EC decreases with increasing O2 fraction and
decreasing H2O fraction. Second, the RL model reveals the
optimal policy (regulation sequence): the agent prioritizes
coarse adjustments to high-impact parameters then fine-tunes
low-impact ones, to obtain the maximum rewards, i.e., achieve
the maximum reaction performance and minimum EC.
Considering that the relative importance of some input para-
meters are very close to each other (their difference is lower
than 1%), we can conclude that the regulation sequence exhi-
bits good agreement with the predicted importance results.
This indicates that the RL agent can make rational, human-
like decisions when managing complex interactions among
parameters.

4.2 Explanation of the effect of the various input parameters,
for DRM, BRM and OCRM

Changing the CO2/CH4 input ratio has a different impact on
CO2 conversion in the DRM vs. BRM reaction. In the absence
of H2O, the CO2 conversion decreases with increasing CO2/CH4

ratio (pure DRM). However, in the presence of H2O, the CO2

conversion increases with increasing CO2/CH4 ratio (hence
showing the opposite pattern for BRM). This interesting
phenomenon can be explained by the water–gas shift (WGS)
reaction and Le Chatelier’s principle.26 The WGS reaction acts
as a side reaction, for both DRM and BRM, i.e., H2O + CO →

Fig. 7 Testing curve of the RL models for (a) syngas ratio and (c) energy cost, by plotting them as a function of time step, as well as the corres-
ponding actions (b) and (d). The y-axis representing the input parameters (for (b) and (d)) shows the normalized values, with 0 and 1 being the lower
and upper boundary values, respectively.
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H2 + CO2, as reported in the literature.52,53 At high H2O frac-
tion (45 vol%) and very low CO2 fraction (e.g. 14 vol% at the
lowest CO2/CH4 input ratio), this side reaction is heavily pro-
moted following Le Chatelier’s principle, and it leads to less
CO2 and more H2O being converted. The opposite is observed

in the case of only CO2 and CH4 and no H2O in the input
stream. Here, the CO2 fraction in the mixture decreases from
85 to only 65 vol%, so it remains quite high, while the pro-
duced amount of H2O is not that high. Together with the
increased amount of H2, produced from CH4, the “reverse”

Fig. 8 Superposition of the syngas ratio and energy cost, showing the best trade-offs (a, c and e), and the corresponding actions of the five input
parameters (b, d and f), for different weights, i.e., relative importance of SR vs. EC: weight = 0.5 (a) and (b); weight = 1 (c) and (d); weight = 2 (e) and
(f ).

Table 5 Regulation sequence of various input parameters within their range

Objectives 1st order 2nd order 3rd order 4th order

CO2 conversion ↑ Flow (↓) Power (↑) O2 frac. (↑) Ratio (optimal)
CH4 conversion ↑ Flow (↓) Ratio (↑) O2 frac. (↑) Power (↑)
CO yield ↑ Flow (↓) O2 frac. (↑) Ratio (↑) Power (↑)
H2 yield ↑ Ratio (↓) Flow (↓) O2 frac. (↓) H2O frac. (↓)
Syngas ratio ↑ H2O frac. (↑) Ratio (↓) Power (↓) Flow (optimal)
Energy cost ↓ O2 frac. (↑) Ratio (↓) Flow (↑) H2O frac. (↓)

Abbreviations used in the table: O2 fraction (O2 frac.), H2O fraction (H2O frac.), CO2/CH4 ratio (Ratio), total flow rate (Flow) and plasma power
(Power). When the factors reach their upper and lower bounds, they are represented by (↑) and (↓), respectively. The expected objective is to maxi-
mize the reaction performance and minimize the EC, which is represented by (↑) and (↓), respectively.
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WGS reaction will be promoted, leading to even more CO2 con-
version and H2O production. It should be noted that the exact
chemistry will be more complex than this simple reasoning,
and changing temperature upon changing the CO2/CH4 ratio
might also play a role.53 However, the above simple reasoning
can explain some of the observed trends.

In terms of yields and production rates, decreasing the
CO2/CH4 ratio will reduce the CO yield and increase the H2

yield; this is attributed to the enhanced conversion rate of CH4

and H2O, alongside the reduced CO2 conversion rate at a lower
CO2/CH4 ratio.26 On the other hand, the production rates of
CO and H2 increase with decreasing CO2/CH4 ratio. Therefore,
the SR rises to 2.03 at CO2 : CH4 ratio of 0.33, more than twice
the value observed at a ratio of 1.86, which is the best result in
our current dataset.

Overall, the H2O fraction has low impact (its relative impor-
tance is less than 11%) and it negatively affects the reactant con-
versions and product yields, which has also been observed in
other works.52,54,55 However, it has a significant positive effect on
the SR, which rises upon H2O addition. In addition, the H2O frac-
tion obviously reduces the conversion rate for both CO2 and CH4,
when these components are fed at lower flow rates.26 The rate of
H2 production also declines, but this is slight because additional
hydrogen is being produced from H2O plasmolysis. In the RL
model result, we can also observe that the CO2/CH4 ratio reaches
its lower boundary (i.e., the CO2 input fraction is decreased).
Based on the BRM reaction equation (CO2(g) + 2H2O(l) + 3CH4(g)
⇌ 4CO(g) + 8H2(g)), the CH4 fraction should indeed increase
further, to achieve an SR reaching 2. Therefore, the addition of
H2O has been shown to be advantageous, particularly when the
CO2/CH4 ratio is reduced at the same time. In addition, adding
water helps enhance plasma stability in situations where excess
soot would otherwise be generated, which has been confirmed by
previous works.54–57

The O2 fraction typically results in a more stable plasma
because of the improved oxidation of solid carbon generated
from CH4 decomposition,58 alongside a greater conversion of all
reactants, but has a less valuable product output (SR). The SR
declines as the O2 fraction rises, because the production of H2O
from CH4 and O2 limits the amount of available hydrogen necess-
ary for H2 production. It should also be noted that a lower CO2/
CH4 input ratio, combined with a higher O2 fraction, can reach a
higher SR (but still lower than that in the case of H2O addition)
but it may lead to unstable plasma conditions because of excess
solid carbon formation.24 Furthermore, as mentioned above, a
higher O2 fraction is beneficial for both CH4 and CO2 conversion.
The enhanced CH4 conversion with a higher O2 fraction can be
attributed to an additional exothermic reaction pathway besides
DRM, i.e., the partial oxidation of CH4 with O2, and by a higher
gas temperature, due to the energy released by the reaction of O2

with CH4. This higher gas temperature will also lead to a higher
CO2 conversion.

59

4.3 Critical view on the ML results

Data-driven ML models can accurately learn from a complete
dataset to identify complex trends. For instance, a higher CO2/

CH4 ratio enhances the CO2 conversion in the presence of H2O
(BRM reaction), while it reduces the CO2 conversion in the
absence of H2O (DRM reaction), so it should have an optimal
value, rather than an upper boundary or lower boundary
across the entire dataset, to maximize the CO2 conversion. We
believe this observation, combined with Le Chatelier’s prin-
ciple described in section 4.2, is a logical explanation for the
ML results.

However, ML can also lead to generating wrong results, due
to the limited data, even though it may identify the correct
trends. The total flow rate is the most important (negative)
factor for the conversion of CO2 and CH4, as well as for the CO
yield, based on the SL (ANN) prediction, which is in line with
the literature.39 From a chemical perspective, this trend is
attributed to a reduced residence time of the reactant gases in
the discharge zone at an elevated total flow rate, which
diminishes the chances of collisions between the reactants
(CH4 and CO2) and active species, such as energetic electrons,
excited species, and radicals (e.g., CHx, O, and H). This, in
turn, leads to reduced CO2 and CH4 conversion, resulting in
lower CO and H2 yields. However, it should be noted that the
training data set related to the total flow rate is quite limited.
Minor data changes can therefore lead to dramatic changes in
the predictions of conversion, by the SL model. In other
words, the fact that the total flow rate is identified as the most
important factor might be influenced by slight data variations.
Overfitting countermeasures such as early stopping may
improve, though a larger and more diverse dataset may be the
only remedy. This indicates that the results obtained from ML
should be critically analyzed.

The ML results also require a comprehensive, human ana-
lysis towards the practical application of APGD plasma reac-
tors, based on prior knowledge. As mentioned before, the SR
ideally reaches 2 for methanol production, which means that
SR is our primary goal, rather than EC. Although the optimal
results of the weighted superposition predicted by the RL
model (i.e., SR of 1.88 with superior EC of 1.36 eV per mole-
cule, at SR/EC weight of 2) seems mathematically better than
the best experimental data (SR of 2.03 and EC of 2.22 eV per
molecule), the predicted SR is still lower than 2, so it is not
quite optimal for methanol production. We already know that
the APGD is promising for its low EC, so we are willing to sacri-
fice the lower EC result to obtain a higher SR for application in
methanol synthesis. To be competitive with other existing
technologies producing syngas, Snoeckx and Bogaerts pro-
posed a target value of 4.3 eV per (molecule converted) (i.e.,
412 kJ mol−1) for plasma-based DRM (i.e., EC for conver-
sion11), while we used EC for syngas production in our ML
model development, allowing a fairer comparison between
DRM, OCRM and BRM. Hence, if we transfer our result of EC
(syngas) of 2.22 eV per molecule to EC (conversion), which is
3.85 eV per molecule (i.e., 369 kJ mol−1), this value is still
lower than the target of 4.3 eV per molecule mentioned above.
Hence, the best experimental data are suitable for the practical
needs of further methanol production, because these con-
ditions yield an SR of 2.03 and an EC below the proposed
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target. Our ML analysis predicts other conditions as optimal,
because of the lower EC, but somewhat lower SR, hence not yet
ideal for further methanol synthesis, probably because the
defined weight (of SR vs. EC) of 2 was not yet high enough.

Therefore, we also performed extra RL simulations with a
higher weight (of SR vs. EC) equal to 3 and 5, which led to a
higher maximum SR and minimum EC, as shown in Fig. 9, as
expected. It is interesting to see that the RL simulations with
(SR/EC) weight of 5 yield a maximum SR of 2.12 and a
minimum EC of 2.04 eV per molecule (i.e., 352 kJ mol−1),
which is close to the best experimental results, at the same
operating conditions (H2O fraction of 45% and O2 fraction of
0%). This illustrates it is possible to predict optimal values
very close to the actual, experimental optimal data, and under
the same experimental conditions, when selecting a suitable
weight. Since we don’t know in advance the exact weight
needed to obtain the best SR in combination with EC, this
illustrates that ML still needs human interpretation, when
used over varying datasets.

4.4 ML model compared with other modelling methods

Compared to existing ML methods, this work developed a con-
sistent ML method across different datasets (DRM, OCRM and
BRM reactions), with high accuracy and adaptivity, achieving
optimization on multi-performance metrics, as shown in
Table 6.

It should be realized that these ML methods do not provide
mechanistic insights into the reaction kinetics and transport
phenomena underlying the performance metrics. For this
purpose, computational fluid dynamics and chemical kinetics
models are needed. Such models have been developed in the
past for the reactions under study. For instance, a quasi-one
dimensional (quasi-1D) chemical kinetics model was devel-
oped to describe the plasma chemistry of DRM in the APGD
plasma reactor studied in this work.23 Furthermore, a sophisti-
cated, fully coupled multi-dimensional model, consisting of a
2D axisymmetric plasma fluid dynamics model, a 3D gas flow
model and a 0D detailed plasma chemistry model, was devel-

Fig. 9 Superposition of the syngas ratio and energy cost, showing the best trade-offs (a and c), and the corresponding actions of the five input
parameters (b and d), for different weights, i.e., relative importance of SR vs. EC: weight = 3 (a) and (b); weight = 5 (c) and (d).

Table 6 Comparison of the developed ML method and existing ML methods

Aspects ML method used in this work Existing ML method32,33

Training dataset Dataset from multiple reactions Dataset from single reaction
Model type Hybrid ML (SL + RL) method SL method
Performance Accurate (R2 > 0.96) Accurate (R2 > 0.98)
Application Static prediction + dynamic optimization Static prediction
Outcome Multi-objective optimization Single-objective prediction
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oped for OCRM in the APGD.59 While a quasi-1D chemical
kinetics model still needs to make assumptions on the gas
flow in the plasma reactor, a fully coupled multi-dimensional
model takes into account all relevant processes, including gas-
flow dynamics, plasma behavior, transport of species and
plasma chemistry, and is therefore very powerful. It can even
predict improved plasma reactor designs. Hence, these models
can provide insights into the underlying physics and chem-
istry, but on the other hand, they require significant compu-
tational resources and expertise. In Table 7 we compare the
characteristics, strengths and limitations of our data-driven
models with such mechanistic models.

4.5 ML applied to plasma-based gas conversion

Our SL method offers accurate prediction based on the dataset
domain (i.e., the available data within the investigated range),
but the RL results give somewhat different optimization out-
comes when based on a single objective than the experiments.
According to our RL model, the optimal EC can reach as low
as 1 eV per molecule when the CO2/CH4 ratio reaches 0.33,
while the minimum EC in the current dataset was 1.26 eV per
molecule (i.e., 180 kJ mol−1) when the CO2/CH4 ratio reaches
0.75 at the same O2 fraction.

Ideally, the ML method is used to predict improved con-
ditions based on limited experimental data, which are then
tested experimentally, and indeed confirm that better results
are reached under these new conditions. It should however be
noted that such predicted conditions should fall within the
dataset domain, to be more reliable. Indeed, the optimal value
identified by the RL results would agree with the optimal
experimental data if the RL model was trained on the dataset
in the whole investigated range. However, it is much more
difficult to cover a whole dataset when combining different
reactions (i.e., DRM, OCRM and BRM), which explains the dis-
crepancies between predicted and experimental results. For
instance, the RL model results for EC prediction can be accu-
rate within the dataset domain (i.e., CO2/CH4 ratio ranging
from 0.75 to 1.9 in the presence of O2). When the same model
is employed to predict the values outside the dataset domain
(CO2/CH4 ratio between 0.33 and 0.75 in the presence of O2),
the RL results based on the pattern learned within the dataset
domain may not be reliable. Considering that the CO2/CH4

ratio, O2 fraction and H2O fraction show near-linear trends
toward the output variables within the dataset domain, which
are consistent with those outside the dataset domain, our RL
model results can still provide an optimization policy (i.e., the

regulation sequence on input parameters, as discussed in
section 4.1) and qualitative analysis on experimental results
based on the actions of agents. As the CO2/CH4 ratio is the
negative factor for the EC, the optimal EC should be lower
than the minimum value from the current dataset.
Quantitative validation of the optimal results should be
further tested by experiments.

ML is promising for prediction, within the dataset domain,
but several challenges need to be addressed. As presented here, a
sufficient amount of data across a broad range of testing con-
ditions is required to ensure the robustness and relevance of the
ML models. When comparing different reactions (although they
are the same type), it is crucial to analyze their reaction perform-
ance in a consistent and fair manner. In addition, ML models
cannot be used to explain the fundamental reaction mechanisms,
so the interpretability of ML models can be limited, emphasizing
the necessity of prior knowledge in evaluating ML results. As ML
models are purely data-driven methods, they can only provide
mathematically optimal results, but care should be taken to make
smart decisions for practical applications, as illustrated in the pre-
vious section for the relative importance of SR vs. EC (where SR
might be more important for further methanol synthesis, if the
EC is already acceptable).

Plasma-based gas conversion is a booming research field and
more data are expected to become available in the coming years,
which is important for enhancing the applicability of ML models.
Indeed, it should be stressed that the size of the datasets needed
to make ML useful and powerful is an open question to be inves-
tigated. Although combining various datasets extends the size of
the dataset, it may impact the reliability of ML, while such an
imperfect dataset is indeed a realistic scenario in experimental
data collection. On the other hand, hybrid algorithms are under
investigation for their use in developing accurate and reliable ML
models, to be applied to various datasets. We believe this is a
promising avenue for future ML research.

5. Conclusions

We developed a uniform, hybrid ML (SL and RL) model to
predict and optimize plasma-based CO2 and CH4 conversion.
The SL model utilizes a typical ANN algorithm for predicting
reaction performance, reaching good agreement with the
experimental data, indicated by R2 values close to 1 for all
output parameters. The RL model for process optimization
reveals that the optimal regulation policy on a single output

Table 7 Comparison of the developed data-driven ML models and mechanistic models

Aspects Data-driven ML models Mechanistic models

Purpose Real-time optimization and control Revealing underlying mechanisms
Data needs High (experimental data) Low (input data limited to reactor geometry and

operating conditions; everything else can be calculated)
Accuracy High (within data domain) High (with full physics and chemistry)
Computational cost Low (available training data) High (simulation time)
Interpretability Low (black box) High (insights in underlying mechanisms)
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should prioritize coarse adjustments to high-impact para-
meters then fine-tuning low-impact ones. For the optimization
of the syngas ratio (SR) and energy cost (EC), our RL model
reveals that the H2O and O2 fractions yield a trade-off between
SR and EC. Furthermore, a CO2/CH4 ratio of 0.33, H2O fraction
of 45% and no O2 fraction result in an SR of 2.12 and EC
(syngas) of 2.04 eV per molecule (i.e., 352 kJ mol−1), which is
in close agreement with the best experimental dataset (when
optimized for an SR of 2, towards methanol synthesis), demon-
strating that the choice of weighting (for SR vs. EC) is very
important. However, the optimal EC predicted by our RL
models (around 1 eV per molecule) is lower than the best
experimental results, due to the different data domains across
the DRM, OCRM and BRM reactions. Therefore, our ML model
provides new insights into facilitating the optimization of
intricate nonlinear and dynamic systems, like those used in
plasma-based gas conversion.
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