Supporting Information for

Dry Reforming in a Dielectric Barrier Discharge Reactor with Non-uniform Discharge Gap: Effects of Metal Rings on the Discharge Behavior and Performance

Jinxin Wanga,b, Kaimin Zhanga, Vera Meynena* and Annemie Bogaertsb*

aLaboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
bPlasma Lab for Applications in Sustainability and Medicine - ANTwerp, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium

*Email: vera.meynen@uantwerpen.be; annemie.bogaerts@uantwerpen.be

\textbf{Fig. S1.} The raw data of Lissajous figures for plasma-based dry reforming at 50 W supplied power, in a DBD reactor with varying number of stainless steel rings with cross-sectional diameters of (a) 1.6 mm and (b) 3.2 mm.
Fig. S2. Calculated electron energy distribution function (EEDF) for plasma-based dry reforming at 50 W supplied power, in a DBD reactor with varying number of stainless steel rings with cross-sectional diameters of (a) 1.6 mm and (b) 3.2 mm.
Fig S3. (a) Carbon and (b) hydrogen atomic balance of plasma-based dry reforming in DBD reactors without rings, and with a varying number of rings with a diameter of 1.6 mm. (c) Carbon and (d) hydrogen atomic balance of plasma-based dry reforming in DBD reactors without rings and with a varying number of rings with a diameter of 3.2 mm. The plasma-based dry reforming was operated at 50 W supplied power.
Fig. S4. Conversion of CO$_2$ and CH$_4$ in a dry reforming test at 30 W for a 12 hour duration in the DBD reactor with 20 rings with a diameter of 3.2 mm.
Fig. S5. Current and voltage profile in 2 ms for the reactor with no rings at 30 W supplied power.
Fig. S6. The raw data of Lissajous figures for plasma-based dry reforming at 30 W supplied power, in a DBD reactor with varying number of stainless steel rings with cross-sectional diameters of (a) 1.6 mm and (b) 3.2 mm.
Fig. S7. Calculated electron energy distribution function (EEDF) for plasma-based dry reforming at 30 W supplied power, in a DBD reactor with varying number of stainless steel rings with cross-sectional diameters of (a) 1.6 mm and (b) 3.2 mm.
Fig. S8. (a) Carbon and (b) hydrogen atomic balance of plasma-based dry reforming in DBD reactors without rings and with a varying number of rings with a diameter of 1.6 mm. (c) Carbon and (d) hydrogen atomic balance of plasma-based dry reforming in DBD reactors without rings and with a varying number of rings with a diameter of 3.2 mm. The plasma-based dry reforming was operated at 30 W supplied power.
Fig. S9. Conversion of CO₂ in CO₂ decomposition in the DBD reactor at 30 W with rings with a diameter of 3.2 mm.